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ON SUPRA e∗-OPEN SETS AND SUPRA e∗-CONTINUOUS FUNCTIONS

BURCU SÜNBÜL AYHAN ID ∗

Abstract. In the present study, we introduced a novel type of generalized supra open sets

called supra e∗-open sets via supra δ-closure operator which we define. Through this new

concept, we defined and studied supra e∗-continuous functions, supra e∗-open functions and

supra e∗-closed functions. Also, we investigated relationships between supra e∗-continuous

functions and different generalized types of supra continuity.

Keywords: Supra regular open set, Supra δ-closure operator, Supra e∗-open set, Supra

e∗-continuous function, Supra e∗-open function.

2020 Mathematics Subject Classification: 54A10, 54A20, 54C10, 54C08.

1. Introduction

In the last decades, numerous investigators have worked on generalized types of open sets

such as preopen [17], semi-open [16], α-open [16], b-open [9], β-open [1], e-open [12], e∗-open

[13]. Some studies conducted with the help of generalized open sets are as follows: The

class of somewhere dense sets [3] are contained all α-open, preopen, semi-open, β-open and

b-open sets except for the empty set. Also, the concept of ST1-space is defined in the same

paper and its various features are investigated. Al-Shami and Noiri continued to study more

properties of somewhere dense sets in [4].

On the other hand, Mashhour et al. defined the notion of supra open sets [18] in supra

topological spaces in 1983. Later, many researchers introduced and studied generalizations

of supra open sets. In 2008, Devi et al. [11] explored a kind of sets and functions called
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supra α-open sets and supra α-continuous functions, subsequently. In 2010, Noiri and Sayed

investigated supra pre-open sets [19] and supra b-open sets [20]. In 2013, Vidyarani [22]

introduced supra regular open sets. In 2013, Jafari and Tahiliani [15] worked on supra β-open

sets and supra β-continuous functions. In 2017, Al-Shami [2] studied supra semi-continuous

functions and supra semi-open functions through supra semi-open sets.

The other studies referring to recent contributions in supra topology and their applica-

tions can be listed as follows: M. E. El-Shafei et al. [14] introduced strong supra regularly

ordered spaces, strong supra normally ordered spaces and strong supra Ti-ordered spaces

(i = 0, 1, 2, 3, 4) on supra topological ordered spaces and investigate the main properties of

them. B. A. Asaad et al. [10] studied the notion of an operator γ on a supra topological

space and then this notion is utilized to analyze supra γ-open sets. T. M. Al-Shami and I.

Alshammari [5] found new rough-approximation operators inspired by an abstract structure

called supra topology. T. M. Al-Shami et al. [6] introduced new forms of limit points of a set

and separation axioms on supra topological spaces via supra α-open sets (resp. supra β-open

sets [7]) T. M. Al-Shami et al. [8] defined three types of supra compactness and three types

of supra Lindelöfness using supra topological spaces via supra pre-open sets.

In this paper, first of all, we introduced the concept of supra δ-closure operator via supra

regular open sets. Then, we defined supra e∗-openness with the help of this operator. Later,

we developed the ideas of supra e∗-continuous functions and supra e∗-open functions via

supra e∗-open sets. We also obtained several characterizations of supra e∗-continuity and

revealed some of its basic features.

2. Preliminaries

In the whole of this study, unless explicitly stated topological spaces (Ψ,⊤) and (Φ,⊥)

(or simply Ψ and Φ) always mean on which no separation axioms are supposed. Then the

closure and interior of E are expressed by cl(E) and int(E), subsequently. The collection of

all open (resp. closed) sets of Ψ are expressed by O(Ψ)(resp. C(Ψ)). Also, (Ψ, µ) and (Φ, η)

represent supra topological spaces.

A point x ∈ Ψ is referred to as δ-cluster point [21] of E if int(cl(O))∩E ̸= ∅ for every open

neighborhood O of x. The set of all δ-cluster points of O is called the δ-closure [21] of E and

is expressed by clδ(E). If E = clδ(E), then E is called δ-closed [21] and the complementary of

a δ-closed set is called δ-open [21]. The set intδ(E) := {x|(∃O ∈ O(Ψ, x))(int(cl(O)) ⊆ E)}

is called the δ-interior of E.
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A subclass µ ⊆ 2Ψ is referred to as a supra topology on Ψ [18] if Ψ is an element of µ and

µ is closed under arbitrary union. (Ψ, µ) is referred to as a supra topological space (briefly,

supra space) [18]. The members of µ are called supra open sets (briefly, s.o.) [18]. The

complementary of supra open set is referred to as a supra closed set [18]. The intersection

(resp. union) of all supra closed (resp. supra open) sets of Ψ containing (resp. contained in)

E is called the supra closure [18] (resp. supra interior [18]) of E and is expressed by clµ(E)

(resp. intµ(E)).

Definition 2.1. Let (Ψ, µ) be a supra topological space. A subset E of Ψ is referred to as:

(ι1) supra regular open [22] (briefly, s.r.o.) if E = intµ(clµ(E)).

(ι2) supra α-open [11] (briefly, s.α.o.) if E ⊆ intµ(clµ(intµ(E))).

(ι3) supra semi-open [3] (briefly, s.s.o.) if E ⊆ clµ(intµ(E)).

(ι4) supra preopen [19] (briefly, s.p.o.) if E ⊆ intµ(clµ(E)).

(ι5) supra b-open [20] (briefly, s.b.o.) if E ⊆ intµ(clµ(E)) ∪ clµ(intµ(E)).

(ι6) supra β-open [15] (briefly, s.β.o.) if E ⊆ clµ(intµ(clµ(E))).

The complementary of a supra regular open (resp. supra α-open, supra semi-open, supra

preopen, supra b-open, supra β-open) set is called supra regular closed [22] (resp. supra

α-closed [11], supra semi-closed [3], supra preclosed [19], supra b-closed [20], supra β-closed

[15]).

The collection of all supra open (resp. supra regular open, supra α-open, supra semi-

open, supra preopen, supra b-open, supra β-open, supra closed, supra regular closed, supra

α-closed, supra semi-closed, supra preclosed, supra b-closed, supra β-closed) sets in (Ψ, µ)

is expressed by µ(Ψ) (resp. Rµ(Ψ), αµ(Ψ), Sµ(Ψ), Pµ(Ψ), bµ(Ψ), βµ(Ψ), µc(Ψ), Rµc(Ψ),

αµc(Ψ), Sµc(Ψ), Pµc(Ψ), bµc(Ψ), βµc(Ψ)).

Definition 2.2. [18] Let Ψ be a topological space. If ⊤ ⊆ µ, then µ is called a supra topology

associated with ⊤.

Definition 2.3. Let Ψ and Φ be two topological spaces and µ be a supra topology associ-

ated with ⊤. A function ∆ : Ψ → Φ is called supra continuous (resp. supra α-continuous

[11], supra precontinuous [19], supra semi-continuous [3], supra b-continuous [20], supra β-

continuous [15]) if for all open set L of Φ, ∆−1[L] is s.o. (resp. s.α.o., s.p.o., s.s.o., s.b.o.,

s.β.o.) in Ψ.
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Definition 2.4. A function ∆ : Ψ → Φ is referred to as e∗-continuous [13] if for every open

set E of Φ, ∆−1[E] is e∗-open in Ψ.

3. Supra δ-closure Operator and Supra e∗-open Sets

In this part of the study, we define supra e∗-open sets via supra δ-closure operator and

investigate some of its basic features.

Definition 3.1. Let µ be a supra topology on Ψ, then the supra δ-closure of E ⊆ Ψ is

expressed as follows:

clµδ (E) :=
⋂

{G|(E ⊆ G)(G ∈ Rµc(Ψ))}.

and the supra δ-interior of A ⊆ Ψ is expressed as follows:

intµδ (E) :=
⋃

{V |(V ⊆ E)(V ∈ Rµ(Ψ))}.

Definition 3.2. Let (Ψ, µ) be a supra topological space and E ⊆ Ψ. The set E is called a

supra δ-closed (briefly, s.δ.c.) set if E = clµδ (E). The complementary of a supra δ-closed set

is referred to as supra δ-open (briefly, s.δ.o.).

Theorem 3.1.

(ι1) Every s.r.o. set is a s.δ.o. set.

(ι2) Every s.δ.o. set is a s.o. set.

Proof. The proofs are clear from Definition 3.2. □

Remark 3.1. In the subsequent example demonstrated that a s.o. set need not be a s.δ.o.

set.

Example 3.1. Let Ψ = {ð1, ð2, ð3}. Define a supra topology µ = {Ψ, ∅, {ð1}, {ð1, ð3}, {ð2, ð3}}

on Ψ. Then the set {ð1, ð3} is a s.o. set, however, it is not s.δ.o.

Question: Is there any s.δ.o. set which is not s.r.o.?

Definition 3.3. Let (Ψ, µ) be a supra topological space and E ⊆ Ψ. The set E is called a

supra e∗-open (briefly, s.e∗.o.) set if E ⊆ clµ(intµ(clµδ (E))). The complementary of a supra

e∗-open set is referred to as supra e∗-closed. The collection of all supra e∗-open (resp. supra

e∗-closed) set is expressed by e∗µ(Ψ)(e∗µc(Ψ)).

Theorem 3.2. Every s.β.o. set is a s.e∗.o. set.
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Proof. Let E ∈ βµ(Ψ). Thus, E ⊆ clµ(intµ(clµ(E))). On the other hand, we have always

clµ(E) ⊆ clµδ (E), then we get that E ∈ e∗µ(Ψ). □

Remark 3.2. A s.e∗.o. set need not be s.β.o. as indicated by the subsequent example.

Example 3.2. Consider the supra topology in Example 3.1. Then the set {ð2} is a s.e∗.o.

set, however, it is not s.β.o.

Remark 3.3. From the above discussions and Theorem 3.2, we obtain the following diagram.

However, the opposites of these implications don’t hold always correct. Also, counterexamples

of the other implications are shown in [3], [11], [15] and [19].

s.p.o.

↗ ↘

s.r.o. → s.δ.o. → s.o. → s.α.o. s.b.o. → s.β.o. → s.e∗.o.

↘ ↗

s.s.o.

Theorem 3.3. Let (Ψ, µ) be a supra topological space, then the following properties hold:

(ι1) If A ⊆ e∗µ(Ψ), then ∪A ∈ e∗µ(Ψ).

(ι2) The intersection of two s.e∗.o. sets is not necessarily s.e∗.o.

(ι3) Ψ ∈ e∗µ(Ψ).

Proof. (ι1) : Let A be a collection of s.e∗.o. sets in Ψ.

E ∈ A ⇒ ⊆ clµ(intµ(clµδ (E))) ⊆ ∪A

⇒ E ⊆ clµ(intµ(clµδ (∪A)))

⇒ ∪A ⊆ clµ(intµ(clµδ (∪A))).

(ι2) : Let Ψ = {ð1, ð2, ð3} and let µ = {∅, {ð1}, {ð1, ð2}, {ð2, ð3},Ψ} be a supra topological

space on Ψ. Although the subsets {ð1, ð3} and {ð2, ð3} are s.e∗.o. in Ψ, which is the

intersection set {ð3} is not s.e∗.o. in Ψ.

(ι3) : Obvious. □

Theorem 3.4. Let (Ψ, µ) be a supra topological space, then the following properties hold:

(ι1) If A ⊆ e∗µc(Ψ), then ∩A ∈ e∗µc(Ψ).

(ι2) The union of two s.e∗.c. sets is not necessarily s.e∗.c.

Proof. It is obvious from the proof of Theorem 3.3. □
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Definition 3.4. The supra e∗-closure (resp. supra e∗-interior) of a set E is the intersection

(resp. union) of the supra e∗-closed (resp. supra e∗-open) sets including (resp. included in)

E, which is expressed by clµe∗(E) (resp. intµe∗(E)).

Remark 3.4. It is obvious from the above definition that intµe∗(E) ∈ e∗µ(Ψ) and clµe∗(E) ∈

e∗µc(Ψ).

Theorem 3.5. The following properties hold for the supra e∗-interior and supra e∗-closure

of subsets F and G of a space Ψ.

(ι1) int
µ
e∗(F ) ⊆ F and F ⊆ clµe∗(F ).

(ι2) int
µ
e∗(F ) = A iff F is a s.e∗.o. set and clµe∗(F ) = A iff A is a s.e∗.c. set.

(ι3) int
µ
e∗(Ψ \ F ) = Ψ \ clµe∗(F ) and clµe∗(Ψ \ F ) = Ψ \ intµe∗(F ).

(ι4) If F ⊆ G, then intµe∗(F ) ⊆ intµe∗(G) and clµe∗(F ) ⊆ clµe∗(G).

Proof. Straightforward. □

Theorem 3.6. Let A and B be any subsets of a space Ψ, then the following properties hold:

(ι1) int
µ
e∗(A) ∪ intµe∗(B) ⊆ intµe∗(A ∪B).

(ι2) cl
µ
e∗(A ∩B) ⊆ clµe∗(A) ∩ clµe∗(B).

Proof. Straightforward. □

Remark 3.5. The inclusions in (ι1) and (ι2) in Theorem 3.6 can not replaced by equalities

by as can be seen from the following examples.

Example 3.3. Let Ψ = {ð1, ð2, ð3} and µ = {∅,Ψ, {ð1}, {ð1, ð2}, {ð2, ð3}} be a supra

topology on Ψ. Where, if A = {ð2} and B = {ð3}, then intµe∗(A) = intµe∗(B) = ∅ and

intµe∗(A ∪B) = intµe∗({ð2, ð3}) = {ð2, ð3}.

Example 3.4. Let µ be the same supra topology on Ψ as given in the above example. If C =

{ð1, ð2} and D = {ð1, ð3}, then clµe∗(C) = clµe∗(D) = Ψ and clµe∗(C ∩D) = clµe∗({ð1}) = {ð1}.

4. Supra e∗-continuous Functions

In this part of the study, we define a novel form of continuous functions called supra e∗-

continuous. Also, we obtain several characterizations and investigate some of its fundamental

properties.
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Definition 4.1. Let Ψ and Φ be two topological spaces. Let µ be an associated supra topology

with ⊤. A function ∆ : Ψ → Φ is called supra e∗-continuous if for each open set V of Φ,

∆−1[V ] is supra e∗-open in Ψ.

Theorem 4.1. Every continuous function is a supra e∗-continuous function.

Proof. Let V ∈ O(Φ) and µ be an associated supra topology with ⊤.

V ∈ O(Φ)

∆ is continuous

 ⇒ ∆−1[V ] ∈ O(Ψ)

O(Ψ) ⊆ µ(Ψ)

 ⇒ ∆−1[V ] ∈ µ(Ψ) ⊆ e∗µ(Ψ).

That means ∆ is supra e∗-continuous. □

Remark 4.1. A supra e∗-continuous function need not be neither continuous nor supra

β-continuous as shown by the following examples.

Example 4.1. Let Ψ = {ð1, ð2, ð3} and ⊤ = {∅,Ψ, {ð3}} be a topology on Ψ and the supra

topology µ is expressed as µ = {∅,Ψ, {ð1}, {ð1, ð2}}. Let ∆ : (Ψ,⊤) → (Ψ,⊤) be a function

expressed as ∆ := {(ð1, ð1), (ð2, ð3), (ð3, ð2)}. The pre-image of the open set {ð3} is {ð2}.

In that case {ð2} ∈ e∗µ(Ψ) and {ð2} /∈ O(Ψ). Thus, ∆ is supra e∗-continuous, however, it

is not continuous.

Example 4.2. Let Ψ = {ð1, ð2, ð3} and ⊤ = {∅,Ψ, {ð2}} be a topology on Ψ. Consider

the supra topology in Example 3.1 on Ψ. Then the identity function ∆ : (Ψ,⊤) → (Ψ,⊤) is

supra e∗-continuous. However, it is not supra β-continuous.

Remark 4.2. From Remark 3.3 and Examples 4.1 and 4.2, we have the following diagram.

However, the opposites of the requirements are not always true. Also, counterexamples of the

other requirements are shown in [15], [19] and [20].

supra pre-cont.

↗ ↓

supra cont. → supra α-cont. supra b-cont. → supra β-cont.

↑ ↘ ↑ ↓

cont. supra semi-cont. supra e∗-cont.

Theorem 4.2. Let ∆ : Ψ → Φ be a function and µ be an associated supra topology with ⊤.

Then the following properties are equivalent:

(ι1) ∆ is s.e∗.c.;
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(ι2) If for each closed set F of Φ is ∆−1[F ] supra e∗-closed in Ψ;

(ι3) cl
µ
e∗
(
∆−1[L]

)
⊆ ∆−1[cl(L)] for each L ⊆ Φ;

(ι4) ∆ [clµe∗(E)] ⊆ cl(∆[E]) for each E ⊆ Ψ;

(ι5) ∆
−1[int(L)] ⊆ intµe∗

(
∆−1[L]

)
for each L ⊆ Φ.

Proof. (ι1) ⇒ (ι2) : Let F be a closed set in Φ.

F ∈ C(Φ) ⇒ Φ \ F ∈ O(Φ)

Hypothesis

 ⇒ ∆−1[Φ \F ] = Ψ \∆−1[F ] ∈ e∗µ(Ψ) ⇒ ∆−1[F ] ∈ e∗µc(Ψ).

(ι2) ⇒ (ι3) : Let L be any subset of Φ.

L ⊆ Φ ⇒ cl(L) ∈ C(Φ)

Hypothesis

 ⇒ ∆−1[cl(L)] ∈ e∗µc(Ψ) ⇒ clµe∗
(
∆−1[L]

)
⊆ clµe∗

(
∆−1[cl(L)]

)
=

∆−1[cl(L)].

(ι3) ⇒ (ι4) : Let E be any subset of Ψ.

E ⊆ Ψ ⇒ ∆[E] ⊆ Φ

Hypothesis

 ⇒ clµe∗(E) ⊆ clµe∗
(
∆−1[∆[E]]

)
⊆ ∆−1[cl(∆[E])]

⇒ ∆[clµe∗(E)] ⊆ ∆[∆−1[cl(∆[E])]] ⊆ cl(∆[E]).

(ι4) ⇒ (ι5) : Let L be any subset of Φ.

L ⊆ Φ ⇒ Ψ \∆−1[L] ⊆ Ψ

Hypothesis

 ⇒ ∆
[
clµe∗

(
Ψ \∆−1[L]

)]
⊆ cl

(
∆
[
Ψ \∆−1[L]

])
⇒ ∆

[
Ψ \ intµe∗

(
∆−1[L]

)]
⊆ cl(Φ \ L) = Φ \ int(L)

⇒ Ψ \ intµe∗
(
∆−1[L]

)
⊆ ∆−1[Φ \ int(L)]

⇒ ∆−1[int(L)] ⊆ intµe∗
(
∆−1[L]

)
.

(ι5) ⇒ (ι1) : Let O be an open set in Φ.

O ∈ O(Φ)

Hypothesis

 ⇒ ∆−1[O] ⊆ ∆−1[int(O)] ⊆ intµe∗(∆
−1[O])

⇒ ∆−1[O] ∈ e∗µ(Ψ)

Thus, ∆ is supra e∗-continuous. □

Theorem 4.3. If ∆ : Ψ → Φ is supra e∗-continuous and Γ : Φ → ζ is continuous, then the

composition Γ ◦∆ : Ψ → ζ is supra e∗-continuous.

Proof. Let V ∈ O(ζ).

V ∈ O(ζ)

Γ is cont.

 ⇒ Γ−1[V ] ∈ O(Φ)

∆ is supra e∗-cont.

 ⇒ ∆−1[Γ−1[V ]] = (Γ ◦∆)−1[V ] ∈ e∗µ(Ψ)

Thus, Γ ◦∆ is supra e∗-continuous. □
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Theorem 4.4. Let ∆ : Ψ → Φ be a function and µ and η be the associated supra topologies

with ⊤ and ⊥, subsequently. Afterwards ∆ is supra e∗-continuous if one of the following

holds:

(ι1) ∆
−1 [intµe∗(L)] ⊆ int

(
∆−1[L]

)
for each L ⊆ Φ.

(ι2) cl
(
∆−1[L]

)
⊆ ∆−1 [clµe∗(L)] for each L ⊆ Φ.

(ι3) ∆[cl(E)] ⊆ clµe∗(∆[E]) for each E ⊆ Ψ.

Proof. (ι1) : Let L ∈ O(Φ).

L ∈ O(Φ) ⇒ L ⊆ Φ

Hypothesis

 ⇒ ∆−1 [intµe∗(L)] ⊆ int
(
∆−1[L]

)
⇒ ∆−1 [L] ⊆ int

(
∆−1[L]

)
⇒ ∆−1 [L] ∈ O(Ψ)

O(Ψ) ⊆ e∗µ(Ψ)

 ⇒ ∆−1 [L] ∈ e∗µ(Ψ)

Thus, ∆ is supra e∗-continuous.

(ι2) : Let L ∈ O(Φ).

L ∈ O(Φ) ⇒ Φ \ L ⊆ Φ

Hypothesis

 ⇒ cl
(
∆−1[Φ \ L]

)
⊆ ∆−1 [clµe∗(Φ \ L)]

⇒ Ψ \ int
(
∆−1[L]

)
⊆ Ψ \∆−1 [intµe∗(L)]

⇒ ∆−1 [intµe∗(L)] ⊆ int
(
∆−1[L]

)
This condition is the same as (ι1). Thus, ∆ is supra e∗-continuous.

(ι3) : Let E ∈ O(Φ).

E ∈ O(Φ) ⇒ ∆−1[E] ⊆ Ψ

Hypothesis

 ⇒ ∆[cl(∆−1[E])] ⊆ clµe∗(∆[∆−1[E]])

⇒ ∆[cl(∆−1[E])] ⊆ clµe∗(E)

⇒ ∆−1[∆[cl(∆−1[E])]] ⊆ ∆−1[clµe∗(E)]

⇒ cl(∆−1[E]) ⊆ ∆−1[clµe∗(E)]

This condition is the same as (ι2). Thus, ∆ is supra e∗-continuous. □

5. Supra e∗-open Functions and Supra e∗-closed Functions

Definition 5.1. A function ∆ : Ψ → Φ is called supra e∗-open (resp. supra e∗-closed) if for

each open (resp. closed) set F of Ψ, ∆[F ] is s.e∗.o. (resp. s.e∗.c.) in Φ.

Theorem 5.1. A function ∆ : Ψ → Φ is supra e∗-open iff ∆[int(A)] ⊆ intµe∗(∆[A]) for each

set A in Ψ.
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Proof. Necessity. Let A ⊆ Ψ and suppose that ∆ is supra e∗-open.

A ⊆ Ψ ⇒ A ⊇ int(A) ∈ O(Ψ)

∆ is supra e∗-open

 ⇒ ∆[A] ⊇ ∆[int(A)] ∈ e∗µ(Φ)

intµe∗(∆[A]) = ∪{B|(B ⊆ ∆[A])(B ∈ e∗µ(Ψ))}

 ⇒

⇒ ∆[int(A)] ⊆ intµe∗(∆[A]).

Sufficiency. Suppose that ∆[int(A)] ⊆ intµe∗(∆[A]) for each set A ∈ Ψ.

A ∈ O(Ψ)

Hypothesis

 ⇒ ∆[A] ⊆ ∆[int(A)] ⊆ intµe∗(∆[A]) ⇒ ∆[A] ∈ e∗µ(Φ)

Hence, ∆ is supra e∗-open. □

Theorem 5.2. A function ∆ : Ψ → Φ is supra e∗-closed iff clµe∗(∆[A]) ⊆ ∆[cl(A)] for all set

A in Ψ.

Proof. It is obvious from the Theorem 5.1. □

Theorem 5.3. Let ∆ : Ψ → Φ and Γ : Φ → ζ be two functions. Then the following properties

hold:

(ι1) Whenever Γ ◦∆ is supra e∗-open and ∆ is continuous surjective, afterwards Γ is supra

e∗-open.

(ι2) Whenever Γ ◦∆ is open and Γ is e∗-continuous injective, afterwards ∆ is supra e∗-open.

Proof. (ι1) : Let U ∈ O(Φ).

U ∈ O(Φ)

∆ is continuous

 ⇒ ∆−1[U ] ∈ O(Ψ)

Γ ◦∆ is supra e∗-open

 ⇒

⇒ (Γ ◦∆)[∆−1[V ]] = Γ[∆[∆−1[V ]]]
∆ is surj.

= Γ[V ] ∈ e∗µ(ζ)

Hence, Γ is supra e∗-open.

(ι2) : Let U ∈ O(Ψ).

U ∈ O(Ψ)

Γ ◦∆ is open

 ⇒ (Γ ◦∆)[U ] ∈ O(ζ)

Γ is e∗-continuous

 ⇒

⇒ Γ−1[(Γ ◦∆)[V ]] = Γ−1[Γ[∆[V ]]]
Γ is inj.
= ∆[V ] ∈ e∗µ(Φ)

Hence, ∆ is supra e∗-open. □

Theorem 5.4. Let ∆ : Ψ → Φ be a bijection. Then the following functions are equivalent:

(ι1) ∆ is a s.e∗.o.;
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(ι2) ∆ is a s.e∗.c.;

(ι3) ∆
−1 is a s.e∗.c.

Proof. (ι1) ⇒ (ι2) : Obvious.

(ι2) ⇒ (ι3) : Let F ∈ C(Ψ).

F ∈ C(Ψ)

∆ is supra e∗-closed

 ⇒ ∆[F ]
∆ is bij.

= (∆−1)−1[F ] ∈ e∗µc(Φ)

By Theorem 4.2(ι2) ∆
−1 is supra e∗-continuous.

(ι3) ⇒ (ι1) : Let F ∈ O(Ψ).

F ∈ O(Ψ)

∆−1 is supra e∗-continuous

 ⇒ (∆−1)−1[F ]
∆ is bij.

= ∆[F ] ∈ e∗µ(Φ)

Hence, ∆ is supra e∗-open. □
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1. Introduction

The idea of the convergence of a sequence of real numbers has been extended to statistical

convergence independently by Fast [12] and Steinhaus [30]. Later, it was studied by Fridy [13]

and many other researchers. A sequence (xm) is said to be statistically convergent to ℓ

provided that for each ε > 0 such that

lim
m→∞

1
m |{k ≤ m : |xk − ℓ| ≥ ε}| = 0, m ∈ N.

The concept of I-convergence was introduced by Kostyrko et al. [20] as a generalization
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of statistical convergence. The idea of I-convergence was further extended to I-statistical

convergence by Savas and Das [27]. Later on, more investigation in this direction can be

found in the works of [11,15,28].

The idea of rough convergence was first introduced by Phu [23] in finite-dimensional

normed spaces. A sequence (xm) is said to be rough convergent to ℓ provided that for

each ε > 0 ∃ mε ∈ N such that

|xm − ℓ| < r + ε for all m ≥ mε,

where r is a non-negative real number and called roughness degree. After that, Dündar and

Çakan [10] introduced the notion of rough I-convergence of sequence. The concept of rough

I-statistical convergence of sequences was introduced by Savaş et al. [29] in the year 2018.

On the other hand, in 2007, Liu [21] introduced a theory named uncertainty theory, in-

cluding different types of convergence of uncertain sequences and identifying the relationships

among various forms of convergence, such as convergence in measure, distribution, mean, and

convergence a.s. Then the concept has been extended to the c.u.v.s by Peng [22]. After that,

Chen et al. [2] subsequently studied the idea of convergence of c.u.s.s using c.u.v.s. In 2017,

Tripathy and Nath [31] proposed the idea of statistical convergence of c.u.s.s in the context of

uncertainty theory. After that, Debnath and Das [6,7] introduced the notion of rough conver-

gence and rough statistical convergence of c.u.s.s, and this field has also seen a lot of exciting

changes; for details, see [1, 3–5, 9, 14, 16, 17, 19, 24–26]. The concept of rough I-convergence

of complex uncertain sequences was recently introduced by Debnath and Halder [8].

Inspired by the above works, in this paper we introduce the notion of rough I-statistical

convergence of c.u.s.s in four aspects of uncertainty, viz., a.s., measure, mean, and distribu-

tion. We also explore the concepts of rough I-statistical convergence in p-distance, and rough

I-statistical convergence in metric of c.u.s.s. Finally, we try to establish the relationship

among all rough I-statistical convergence concepts of c.u.s.s with an attached diagramatic

section.

2. Definitions and Preliminaries

In this section, we provide some basic ideas and results on generalized convergence concepts

and the theory of uncertainty that will be used throughout the article.

Definition 2.1. [20] Consider a non-empty set S. An ideal on S is defined as a family of

subsets I that satisfies the following conditions:

(i) The empty set, ϕ, belongs to I.
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(ii) For any U, V ∈ I, the union of U and V , denoted as U ∪ V , is also in I.

(iii) For any U ∈ I and any subset V ⊂ U , V is a member of I.

An ideal I is called non-trivial if I ̸= {Φ} and S /∈ I.

A non-trivial ideal I is called an admissible ideal in S if and only if {{s} : s ∈ S} ⊂ I.

Example 2.1. (i) If := The set of all finite subsets of N forms a non-trivial admissible

ideal.

(ii) Id := The set of all subsets of N whose natural density is zero forms a non-trivial

admissible ideal.

Definition 2.2. [20] A sequence (xm) is said to be I-convergent to ℓ, if for every ε > 0,

the set {m ∈ N : |xm − ℓ| ≥ ε} ∈ I.

The usual convergence of sequences is a special case of I-convergence (I=If -the ideal of

all finite subsets of N). The statistical convergence of sequences is also a special case of

I-convergence. In this case, I=Id =
{
A ⊆ N : lim

m→∞
|A∩{1,2,··· ,m}|

m = 0
}
, where |A| is the

cardinality of the set A.

Definition 2.3. [29] A sequence (xm) is said to be rough I-statistically convergent to ℓ ∈ R,

if for every δ, υ > 0,{
m ∈ N :

1

m
|{k ≤ m : |xk − ℓ| ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree. For r = 0, rough I-statistical convergence coincides with

I-statistical convergence.

Definition 2.4. [21] Let P be a σ-algebra on a non-empty set Υ. If the set function X on

Υ satisfies the following axioms, it is referred to be an uncertain measure:

• The first axiom, which deals with normality, is X{Υ} = 1;

• The second, which deals with duality, is X{Ξ}+ X{Ξc} = 1 for any Ξ ∈ P;

• The third, which deals with subadditivity is for every countable sequence of {Ξm} ∈ P,

X{
∞⋃
m=1

Ξm} ≤
∞∑
m=1

X{Ξm}.

An u.s. is denoted by the triplet (Υ,P,X ), and an event is denoted by each member Ξ in

P.

Definition 2.5. [21] A c.u.v. is represented by a variable ζ in the uncertainty space

(Υ,P,X ) if and only if both its real part ξ and imaginary part η are uncertain variables.
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Here, ξ and η correspond to the real and imaginary components of the complex variable

ζ = ξ + iη, respectively.

Definition 2.6. [22] Let ζ = ξ+iη be a c.u.v., where ξ is the real part and η is the imaginary

part of ζ. Then the complex uncertainty distribution of ζ is denoted by Ψ : C → [0, 1] and is

defined by Ψ(z) = X {ξ ≤ s, η ≤ t} for any complex number z = s+ it.

Definition 2.7. [22] Let ζ = ξ + iη be a c.u.v. If the expected value of ξ and η i.e., E[ξ]

and E[η] exists, then the expected value of ζ is defined by

E[ζ] = E[ξ] + iE[η].

Definition 2.8. [25] Let ζ and ζ∗ be two c.u.v.s. Then the p-distance between them is

defined as

dp (ζ, ζ
∗) = (E [∥ζ − ζ∗∥p])

1
p+1 , p > 0.

Definition 2.9. [26] A c.u.s. sequence (ζm) is considered statistically convergent in p-

distance to ζ if

lim
m→∞

1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1
p+1 ≥ ε

}∣∣∣ = 0 for every ε > 0.

Definition 2.10. [4] Let ζ and ζ∗ be two c.u.v.s, then the metric between them is defined

as follows

D (ζ, ζ∗) = inf {t : X {∥ζ − ζ∗∥ ≤ t} = 1} .

Definition 2.11. [4] If the condition lim
m→∞

D (ζm, ζ) = 0 is hold for a c.u.s. (ζm), then (ζm)

is called convergent in metric to ζ.

Definition 2.12. [8] A c.u.s. (ζm) is considered to be rough I-convergent a.s. to ζ if for

every small positive value δ, and for any event Ξ where X{Ξ} = 1 we have the following

condition satisfied for every element ϱ ∈ Ξ:

{m ∈ N : ∥ζm(ϱ)− ζ(ϱ)∥ ≥ r + δ} ∈ I,

where r is called roughness degree.

Definition 2.13. [8] A c.u.s. (ζm) is considered to be rough I-convergent in measure to ζ

if, for every given small positive values ε and δ, there exists a set satisfying the condition

{m ∈ N : X (∥ζm − ζ∥ ≥ ε) ≥ r + δ} ∈ I,

where r is called roughness degree.
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Definition 2.14. [8] Let Ψ,Ψ1,Ψ2, · · · denote the complex uncertainty distributions of

c.u.v.s ζ, ζ1, ζ2, · · · , respectively. The c.u.s. (ζm) is called rough I-convergent in distribution

to ζ if, for every small positive values δ, there exists a set satisfying the condition:

{m ∈ N : ∥Ψm(z)−Ψ(z)∥ ≥ r + δ} ∈ I,

where r is called roughness degree and for all z at which Ψ(z) is continuous.

Definition 2.15. [8] A c.u.s. (ζm) is considered to be rough I-convergent in mean to ζ if,

for every given small positive values δ, there exists a set satisfying the condition

{m ∈ N : E [∥ζm − ζ∥] ≥ r + δ} ∈ I,

where r is called roughness degree.

In this article, we assume that I to be a non-trivial admissible ideal of N and r as a

non-negative real number .

3. Main Results

Definition 3.1. A c.u.s. (ζm) is considered to be rough I-statistically convergent a.s. to ζ

if, for every small positive value δ and υ, and for any event Ξ where X{Ξ} = 1 we have the

following condition satisfied for every element ϱ ∈ Ξ:{
m ∈ N :

1

m
|{k ≤ m : ∥ζk(ϱ)− ζ(ϱ)∥ ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree. If we take r = 0 we obtain the notion of I-statistical

convergence a.s. of c.u.s. which was introduced by Halder and Debnath [14].

Definition 3.2. A c.u.s. (ζm) is considered to be rough I-statistically convergent in measure

to ζ if, for every given small positive values ε, δ and υ, there exists a set satisfying the

condition {
m ∈ N :

1

m
|{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree.

Definition 3.3. A c.u.s. (ζm) is considered to be rough I-statistically convergent in mean to

ζ if, for every given small positive values δ, and υ, there exists a set satisfying the condition{
m ∈ N :

1

m
|{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree.
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Definition 3.4. Let Ψ,Ψ1,Ψ2, · · · denote the complex uncertainty distributions of c.u.v.s

ζ, ζ1, ζ2, · · · , respectively. The c.u.s. (ζm) is called rough I-statistically convergent in dis-

tribution to ζ if, for every small positive values δ and υ, there exists a set satisfying the

condition: {
m ∈ N :

1

m
|{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree and for all z at which Ψ(z) is continuous.

Theorem 3.1. The c.u.s. (ζm) where ζm = ξm + iηm is rough I-statistically convergent

in measure to ζ = ξ + iη if and only if the uncertain sequence (ξm) and (ηm) are rough

I-statistically convergent in measure to ξ and η, respectively.

Proof. Omitted, since it can be established using standard technique. □

Theorem 3.2. If a c.u.s. (ζm) is rough I-statistically convergent in mean to ζ, then it is

rough I-statistically convergent in measure to ζ.

Proof. The proof follows from the following Markov inequality. □

Remark 3.1. However, the reverse of the above theorem does not hold in general.

Example 3.1. Consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2, · · · } with power set and X{Υ} = 1,

X{Φ} = 0 and

X{Ξ} =



sup
ϱm∈Ξ

m
(2m+1) , if sup

ϱm∈Ξ

m
(2m+1) <

1
2

1− sup
ϱm∈Ξc

m
(2m+1) , if sup

ϱm∈Ξc
m

(2m+1) <
1
2

1
2 , otherwise

for m = 1, 2, 3, · · ·

Also, ζm(ϱ) (the c.u.v.s) are defined by

ζm(ϱ) =


im, if ϱ = ϱm

0, otherwise

for m = 1, 2, 3, · · ·

and ζ ≡ 0. Take I=Id.

For every ε, δ, υ > 0 and r ≥ 0 we have,{
m ∈ N : 1

m |{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m |{k ≤ m : X (ϱ : ∥ζk(ϱ)− ζ(ϱ)∥ ≥ ε) ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m |{k ≤ m : X{ϱk} ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m

∣∣∣{k ≤ m : k
2k+1 ≥ r + δ

}∣∣∣ ≥ υ
}
∈ I.

Thus the sequence (ζm) is rough I-statistically convergent in measure to ζ for r = 1
2 .

However, for each m, we have the complex uncertainty distributions of uncertain variable
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∥ζm − ζ∥ is

Ψm(t) =


0, if t < 0

1− m
2m+1 , if 0 ≤ t < m

1, if t ≥ m

for m = 1, 2, 3, · · · .

Now E [∥ζm − ζ∥] =
∫ +∞
0 (1−Ψm(t)) dt =

∫m
0

m
2m+1dt =

m2

2m+1 .

Consequently, for any given δ and υ both greater than zero, and r = 1
2 ,{

m ∈ N : 1
m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ

}
=

{
m ∈ N : 1

m

∣∣∣{k ≤ m : k2

2k+1 ≥ r + δ
}∣∣∣ ≥ υ

}
/∈ I.

Hence the sequence (ζm) is not rough I-statistically convergent in mean to ζ for r = 1
2 .

Theorem 3.3. Let (ξm) and (ηm) be the real and imaginary part of a c.u.s. (ζm) are

considered to be rough I-statistical convergence in measure to ξ and η respectively. then (ζm)

is rough I-statistically convergent in distribution to ζ = ξ + iη.

Proof. Let z = s + it be a continuous point of the complex uncertainty distribution Ψ. For

any α > s and β > t, we can express

{ξm ≤ s, ηm ≤ t} = {ξm ≤ s, ηm ≤ t, ξ ≤ α, η ≤ β} ∪ {ξm ≤ s, ηm ≤ t, ξ > α, η > β}

∪ {ξm ≤ s, ηm ≤ t, ξ ≤ α, η > β} ∪ {ξm ≤ s, ηm ≤ t, ξ > α, η ≤ β}

⊂ {ξ ≤ α, η ≤ β} ∪ {|ξm − ξ| ≥ α− s} ∪ {|ηm − η| ≥ β − t} .

By the subadditivity axiom, we can conclude that:

Ψm(z) = Ψm(s+ it) ≤ Ψ(α+ iβ) +X{|ξm − ξ| ≥ α− s}+X{|ηm − η| ≥ β − t}.

Since (ξm) and (ηm) are rough I-statistically convergent in measure to ξ and η respectively,

then it follows that for any given δ, υ and r ≥ 0, we can conclude that:

Ψm(z) = Ψm(s+ it) ≤ Ψ(α+ iβ) +X{|ξm − ξ| ≥ α− s}+X{|ηm − η| ≥ β − t}.

Since (ξm) and (ηm) are rough I-statistically convergent in measure to ξ and η respectively,

then it follows that for any given δ, υ and r ≥ 0, we can conclude that:{
m ∈ N : 1

m |{k ≤ m : X (|ξk − ξ| ≥ α− s) ≥ r + δ}| ≥ υ
}
∈ I

and
{
m ∈ N : 1

m |{k ≤ m : X (|ηk − η| ≥ β − t) ≥ r + δ}| ≥ υ
}
∈ I.

Then for any α > s, β > t and letting α+ iβ → s+ it, we have

∥Ψm(z)−Ψ(z)∥ ≤ X {|ξm − ξ| ≥ α− s}+ X {|ηm − η| ≥ β − t} .

Then for every δ > 0 and r ≥ 0,

{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}

⊆ {k ≤ m : X {|ξk − ξ| ≥ α− s} ≥ r + δ}

∪ {k ≤ m : X {|ηk − η| ≥ β − t} ≥ r + δ} .



INT. J. MAPS MATH. (2025) 8(2):346-359 / ROUGH I-STATISTICAL CONVERGENCE · · · 353

⇒ 1
m |{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}|

≤ 1
m |{k ≤ m : X {|ξk − ξ| ≥ α− s} ≥ r + δ}|

+ {k ≤ m : X {|ηk − η| ≥ β − t} ≥ r + δ} .

For every υ > 0,{
m ∈ N : 1

m |{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}| ≥ υ
}

⊆
{
m ∈ N : 1

m |{k ≤ m : X {|ξk − ξ| ≥ α− s} ≥ r + δ}| ≥ υ
}

∪ {m ∈ N : {k ≤ m : X {|ηk − η| ≥ β − t} ≥ r + δ} ≥ υ} ∈ I.

Hence the c.u.s. (ζm) is rough I-statistically convergent in distribution to ζ. □

Remark 3.2. However, the reverse of the above theorem does not hold in general.

Example 3.2. Consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2} with X (ϱ1) = X (ϱ2) = 1
2 . We

define a c.u.v. as

ζ(ϱ) =


i, if ϱ = ϱ1,

−i, if ϱ = ϱ2.

We also define ζm = −ζ for m = 1, 2, · · · and take I=Id.

Then the sequence (ζm) and ζ have the same distribution as:

Ψm(z) = Ψm(s+ it) =



0, if s < 0,−∞ < t < +∞,

0, if s ≥ 0, t < −1,

1
2 , if s ≥ 0,−1 ≤ t < 1,

1, if s ≥ 0, t ≥ 1.

So the sequence (ζm) is rough I-statistically convergent in distribution to ζ.

However, for a given ε, δ, υ > 0 and r ≥ 0, we have{
m ∈ N :

1

m
|{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ

}
/∈ I.

Thus the sequence (ζm) is not rough I-statistically convergent in measure to ζ for r = 0.1.

Definition 3.5. A c.u.s. (ζm) is said to be rough I-statistically convergent in p-distance to

ζ if for every δ, υ > 0 such that{
m ∈ N :

1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1
p+1 ≥ r + δ

}∣∣∣ ≥ υ

}
∈ I,

where r is called roughness degree.

Theorem 3.4. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). Then (ζm) is considered

to be rough I-statistically convergent in measure to ζ if it is rough I-statistically convergent

in p-distance to ζ.
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Proof. Let the c.u.s. (ζm) be rough I-statistically convergent in p-distance to ζ, then for

every choice of δ and υ greater than zero, we obtain{
m ∈ N : 1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1
p+1 ≥ r + δ

}∣∣∣ ≥ υ
}
∈ I.

Then for any given ε, p > 0, we have

X (∥ζm − ζ∥ ≥ ε) ≤ E [∥ζm − ζ∥p]
εp

(Using Markov Inequality).

So for every δ > 0 and r ≥ 0,

{k ≤ m : X (∥ζk − ζ∥ ≥ ε} ≥ r + δ}

⊆
{
k ≤ m : (E [∥ζk − ζ∥p])

1
p+1 ≥ r′ + δ′

}
, where r′ + δ′ = [(r + δ) · εp]

1
p+1 .

For every υ > 0,{
m ∈ N : 1

m |{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ
}

⊆
{
m ∈ N : 1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1
p+1 ≥ r′ + δ′

}∣∣∣ ≥ υ
}
∈ I.

Hence the sequence (ζm) is rough I-statistically convergent in measure to ζ. □

Remark 3.3. However, the reverse of the above theorem does not hold in general.

Example 3.3. Let N =
∞⋃
j=1

Dj, where Dj = {2j−1j∗ : 2 does not divide j∗, j∗ ∈ N} be the

decomposition of N such that each Dj is infinite and Dj ∩Dj∗ = Φ, for j ̸= j∗. Let I be the

class of all subsets of N that can intersect only finite number of Dj
′s. Then I is a non-trivial

admissible ideal of N (see for details in [20]).

Now we consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2, · · · } with power set and X{Υ} = 1,

X{Φ} = 0 and

X{Ξ} =



sup
ϱm∈Ξ

βm, if sup
ϱm∈Ξ

βm < 1
2

1− sup
ϱm∈Ξc

βm, if sup
ϱm∈Ξc

βm < 1
2

1
2 , otherwise

where βm = 1
j+1 , if m ∈ Dj for m = 1, 2, 3, · · · .

Also, the c.u.v.s are defined by

ζm(ϱ) =


i(m+ 1), if ϱ = ϱm

0, otherwise

for m = 1, 2, 3, · · ·

and ζ ≡ 0.

It can be shown that, the sequence (ζm) is rough I-statistically convergent in measure to ζ ≡ 0

but it is not rough I-statistically convergent in p-distance to ζ ≡ 0.
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Theorem 3.5. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). Then (ζm) is consid-

ered to be rough I-statistically convergent in distribution to ζ if it is rough I-statistically

convergent in p-distance to ζ.

Proof. If the sequence (ζk) exhibits rough I-statistically convergent in p-distance to ζ, then,

according to theorems 3.4 and 3.3, it also demonstrates rough I-statistically convergent in

distribution to the same limit ζ. □

Remark 3.4. However, the reverse of the above theorem does not hold in general.

Example 3.4. In example 3.3, the complex uncertainty distributions of (ζm) are

Ψm(z) = Ψm(s+ it) =



0, if s < 0, t <∞

0, if s ≥ 0, t < 0

1− βm, if s ≥ 0, 0 ≤ t < (m+ 1)

1, if s ≥ 0, t ≥ (m+ 1)

for m = 1, 2, 3, · · ·

and the complex uncertainty distributions of ζ is

Ψ(z) = Ψ(s+ it) =


0, if s < 0, t <∞

0, if s ≥ 0, t < 0

1, if s ≥ 0, t ≥ 0.

It can be shown that the c.u.s. (ζm) is rough I-statistically convergent in distribution to ζ ≡ 0

but it is not rough I-statistically convergent in p-distance to ζ ≡ 0.

Definition 3.6. A c.u.s. (ζm) is said to be rough I-statistically convergent in metric to ζ if

for every δ, υ > 0 such that{
m ∈ N :

1

m
|{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree.

Theorem 3.6. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). Then (ζm) is considered

to be rough I-statistically convergent in mean to ζ if it is rough I-statistically convergent in

metric to ζ.

Proof. Let the c.u.s. (ζm) be rough I-statistically convergent in metric to ζ, then for every

δ, υ > 0 and r ≥ 0 we have,{
m ∈ N :

1

m
|{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ

}
∈ I,
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where D (ζm, ζ) = inf {t : X {∥ζm − ζ∥ ≤ t} = 1} .

Let D (ζm, ζ) = q and Ψm(t) represent the complex uncertainty distributions of the uncertain

variable ∥ζm − ζ∥. Then, we have D (ζm, ζ) = inf {t : Ψm(t) = 1} .

Now for any positive number ℓ,

E [∥ζm − ζ∥] =
∫ +∞
0 (1−Ψm(t)) dt =

∫ q+ℓ
0 (1−Ψm(t)) dt+

∫ +∞
q+ℓ (1−Ψm(t)) dt

=
∫ q+ℓ
0 (1−Ψm(t)) dt < 1 · (q + ℓ) = q + ℓ

⇒ E [∥ζm − ζ∥] ≤ q ⇒ E [∥ζm − ζ∥] ≤ D (ζm, ζ) .

So for every δ > 0 and r ≥ 0,

{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ} ⊆ {k ≤ m : D (ζk, ζ) ≥ r + δ}

⇒ 1
m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≤ 1

m |{k ≤ m : D (ζk, ζ) ≥ r + δ}| .

Then for every υ > 0,{
m ∈ N : 1

m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ
}

⊆
{
m ∈ N : 1

m |{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ
}
∈ I.

Hence the sequence (ζm) is rough I-statistically convergent in mean to ζ. □

Remark 3.5. However, the reverse of the above theorem does not hold in general.

Example 3.5. Consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2, · · · } with power set and X{Υ} = 1,

X{Φ} = 0 and

X{Ξ} =



sup
ϱm∈Ξ

mβm
2m+1 , if sup

ϱm∈Ξ

mβm
2m+1 <

1
2

1− sup
ϱm∈Ξc

mβm
2m+1 , if sup

ϱm∈Ξc
mβm
2m+1 <

1
2

1
2 , otherwise

where βm =


1, if m = k2, k ∈ N

0, otherwise

for m = 1, 2, 3, · · · .

Also, the c.u.v.s are defined by

ζm(ϱ) =


i(m+ 1), if ϱ = ϱm

0, otherwise

for m = 1, 2, 3, · · ·

and ζ ≡ 0. Take I=Id.

The complex uncertainty distributions associated with the uncertain variable ∥ζm − ζ∥ is

Ψm(t) =


0, if t < 0

1− mβm
2m+1 , if 0 ≤ t < (m+ 1)

1, if t ≥ (m+ 1)

for m = 1, 2, 3, · · · .
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Now E [∥ζm − ζ∥] =
∫ +∞
0 (1−Ψm(t)) dt =

∫ (m+1)
0

mβm
2m+1dt =

m(m+1)βm
2m+1 .

Then for every δ, υ > 0 and r ≥ 0, we have{
m ∈ N : 1

m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m

∣∣∣{k ≤ m : k(k+1)βk
2k+1 ≥ r + δ

}∣∣∣ ≥ υ
}
∈ I.

Again the metric between complex uncertain veriables ζm and ζ is given by

D (ζm, ζ) = inf {t : X {∥ζm − ζ∥ ≤ t} = 1} = inf {t : Ψm(t) = 1} = m+ 1.

Thus for every δ, υ > 0 and r ≥ 0,{
m ∈ N : 1

m |{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m |{k ≤ m : (k + 1) ≥ r + δ}| ≥ υ
}
/∈ I.

Hence the c.u.s. (ζm) is rough I-statistically convergent in mean to ζ ≡ 0 but it is not rough

I-statistically convergent in metric to ζ ≡ 0.

Theorem 3.7. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). If (ζm) is rough I-

statistically convergent in metric to ζ, then it is rough I-statistically convergent in measure

to ζ.

Proof. Let (ζm) be rough I-statistically convergent in metric to ζ, then it is rough I-

statistically convergent in measure to ζ by theorem 3.6 and 3.2. □

Remark 3.6. However, the reverse of the above theorem does not hold in general.

Example 3.6. From example 3.5, it can be shown that the c.u.s. (ζm) is rough I-statistically

convergent in measure to ζ ≡ 0 but it is not rough I-statistically convergent in metric to ζ ≡ 0.

4. Diagramatic representation among all convergence concepts

1. rough I-statistically convergence in measure

2. rough I-statistically convergence in metric

3. rough I-statistically convergence in mean

4. rough I-statistically convergence in distribution

5. rough I-statistically convergence in p-distance

1

2

3 4

5

5. Conclusion

This paper has mainly discussed some rough I-statistical convergence concepts of c.u.s.s,

such as rough I-statistical convergence in measure, mean, distribution, a.s., and established
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the relationships among them. Also, we initiate the notion of rough I-statistical conver-

gence in p-distance, and rough I-statistical convergence in metric of c.u.s.s and include some

interesting examples related to the notion. Furthermore, this paper is a more generalized

form of rough I-convergence of c.u.s.s, which was introduced by Debnath and Halder [8],

which is a very recent and a new approach in complex uncertainty theory. In this paper, we

try to establish relationships among all rough I-statistical convergence concepts of c.u.s.s.

However, we observe that certain concepts are unrelated to each other. It may attract future

researchers in this direction.
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1. Introduction

In 1989 [14], B.B. Sinha and K.L. Sai Prasad have defined para-Kenmotsu manifolds. They

investigated the significant properties of para-Kenmotsu manifolds. Later on, para-Kenmotsu

manifolds drew attention of several authors to study the characteristics of such manifolds.

Lorentzian para-Kenmotsu manifolds were initiated in 2018 by A. Haseeb and R. Prasad [3].

R. Sari et al. have explained slant manifolds of a Lorentzian Kenmotsu manifold [11]. Mobin

Ahmad studied semi-invariant ζ⊥-submanifolds of Lorentzian para-Sasakian manifolds in
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2019 [1]. Moreover, Abhishek Singh et al., in 2024, explored some results on β-Kenmotsu

manifolds with a non-symmetric non-metric connection [12, 13]. In 2022, Shashikant Pandey

et al. have described certain results of Ricci-soliton on 3-dimensional Lorentzian para α-

Sasakian manifolds [5]. For invariant submanifolds of Lorentzian para-Kenmotsu manifold

to be totally geodesic, Atceken [2] gave the necessary and sufficient conditions.

G.P. Pokhariyal gave the concept of W6-curvature tensor with the support of Weyl curvature

tensor in 1982 [6, 7], and is described as

W6(A, B)C = R(A, B)C+
1

n− 1
[g(A, B)QC− S(B, C)A], (1.1)

and

‘W6(A, B, C, T) = K(A, B, C, T) +
1

n− 1
[g(A, B)S(C, T)− g(A, T)S(B, C), (1.2)

∀ A, B, C, T ∈ χ(Mn), where, K(A, B, C, T) = g(R(A, B)C, T), R and Q denote Riemann curva-

ture tensor and Ricci operator, respectively.

This article has been organized in the following manner: Section-1 contains introduction,

where corresponding concepts and their brief histories are given. Section-2 covers prelim-

inaries, containing some basic results, which have been used extensively throughout this

manuscript. Section-3 describes the Lorentzian para-Kenmotsu manifold with the condition

‘W6(A, B, C, ζ) = 0. Section-4 studies the nature of Φ2((∇EW6)(A, B)C) = 0 on Lorentzian

para-Kenmotsu manifold with the construction of an example. Section-5 and section-6 ex-

amine the behavior of W6-semisymmetric, and Φ-W6-flat on (LPK)n manifold, respectively.

In section-7, we see that an (LPK)n manifold with the condition W6(E, F).R = 0 gives an

ω-Einstein manifold.

2. Preliminaries

We assume that Mn is a Lorentzian metric manifold, meaning there by, it is equipped

with an structure (Φ, ζ, ω, g), where Φ is a (1, 1)-type tensor field, ζ is a vector field, ω is a

one-form onMn, and g is a Lorentzian metric tensor holding the subsequent results [8, 9, 10]:

Φ2(A) = A+ ω(A)ζ, g(A, ζ) = ω(A), ω(ζ) = −1,

Φζ = 0, ω(ΦA) = 0, g(ΦA, ΦB) = g(A, B) + ω(A)ω(B),

 (2.3)

∀ vector fields A, B on Mn. Thus, Mn(Φ, ζ, ω, g) is called a Lorentzian almost paracontact

manifold.
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Definition 2.1. A Lorentzian almost paracontact manifoldMn(Φ, ζ, ω, g) is called a Lorentzian

para-Kenmotsu manifold if

(∇AΦ)B = −g(ΦA, B)ζ − ω(B)ΦA,

∀ vector fields A, B ∈ χ(Mn). Here, ∇ and χ(Mn) represent Levi-Civita connection, and a

collection of differentiable vector fields on Mn, respectively.

We assume that Mn(Φ, ζ, ω, g) is an (LPK)n manifold. The succeeding results hold for

Mn(Φ, ζ, ω, g):

∇Aζ = −A− ω(A)ζ, g(ΦA, B) = g(A, ΦB), (2.4)

(∇Aω)B = −g(A, B)− ω(A)ω(B), (2.5)

ω(R(A, B)C) = K(A, B, C, ζ) = g(B, C)ω(A)− g(A, C)ω(B), (2.6)

R(A, ζ)B = ω(B)A− g(A, B)ζ,

R(ζ, A)ζ = A+ ω(A)ζ,

R(A, B)ζ = ω(B)A− ω(A)B,


(2.7)

K(ζ, A, B, C) = g(A, B) ω(C)− g(A, C)ω(B), (2.8)

S(A, ζ) = (n− 1)ω(A), S(ζ, ζ) = −(n− 1),

(∇ES)(C, ζ) = S(E, C)− (n− 1)g(E, C),

 (2.9)

divR(A, B)C = (∇AS)(B, C)− (∇BS)(A, C), . (2.10)

here, S denotes Ricci tensor of Mn(Φ, ζ, ω, g).

Particularly, setting A = ζ, B = ζ, and C = ζ, respectively, in 1.1 on an (LPK)n manifold,

it yields

W6(ζ, B)C = g(B, C)ζ − ω(C)B+
1

n− 1
[ω(B)QC− S(B, C)ζ], (2.11)

W6(A, ζ)C = −g(A, C)ζ + 1

n− 1
ω(A)QC, (2.12)

W6(A, B)ζ = g(A, B)ζ − ω(A)B. (2.13)

Definition 2.2. An (LPK)n manifold is called an ω-Einstein manifold if its Ricci tensor

satisfies the following relation

S(A, B) = αg(A, B) + βω(A)ω(B),

here, α, and β are scalar functions on Mn. In case of β = 0, manifold becomes Einstein

manifold [4].
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3. ‘W6(A, B, C, ζ) = 0 on a Lorentzian para-Kenmotsu Manifolds

In this part, we discuss the condition ‘W6(A, B, C, ζ) = 0 on (LPK)n manifolds Mn. We

begin with the subsequent theorem:

Theorem 3.1. An n-dimensional Lorentzian para-Kenmotsu manifold is an Einstein man-

ifold if, ‘W6(A, B, C, ζ) = 0.

Proof. ‘W6-curvature tensor is defined by 1.2

‘W6(A, B, C, T) = K(A, B, C, T) +
1

n− 1
[g(A, B)S(C, T)− g(A, T)S(B, C)].

∀ A, B, C, T ∈ χ(Mn).

Putting T = ζ into the above equation, we have

‘W6(A, B, C, ζ) = K(A, B, C, ζ) +
1

n− 1
[g(A, B)S(C, ζ)− g(A, ζ)S(B, C)].

Applying ‘W6(A, B, C, ζ) = 0 in the above relation, we get

K(A, B, C, ζ) =
1

n− 1
[g(A, ζ)S(B, C)− g(A, B)S(C, ζ)]. (3.14)

Using 2.3, 2.6, and 2.9, the relation 3.14 yields

1

n− 1
S(B, C)ω(A) = g(B, C)ω(A)− g(A, C)ω(B) + g(A, B)ω(C). (3.15)

Applying A = ζ into 3.15, it yields

1

n− 1
S(B, C)ω(ζ) = g(B, C)ω(ζ)− g(ζ, C)ω(B) + g(ζ, B)ω(C). (3.16)

Using 2.3, on simplification, the relation 3.16 provides

S(B, C) = (n− 1)g(B, C). (3.17)

This completes the proof. □

4. nature of Φ-W6-symmetric on (LPK)n manifolds

We begin this part with the definition of Φ-W6-symmetric Lorentzian para-Kenmotsu

manifold:

Definition 4.1. A Lorentzian para-Kenmotsu manifold is said to be a Φ-W6-symmetric

Lorentzian para-Kenmotsu manifold, if it satisfies the relation

Φ2((∇EW6)(A, B)C) = 0,

for every A, B, C, E on Mn.
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Theorem 4.1. A Φ-W6-symmetric Lorentzian para-Kenmotsu manifold is an Einstein man-

ifold.

Proof. Covariant differentiation of relation 1.1 along E yields

(∇EW6)(A, B)C = (∇ER)(A, B)C− 1

n− 1
[(∇ES)(B, C)A− g(A, B)(∇EQ)C]. (4.18)

Operating Φ2 on both sides of the equation 4.18 and using 2.3, it gives

Φ2((∇EW6)(A, B)C) = (∇ER)(A, B)C+ ω((∇ER)(A, B)C)ζ

− 1

n− 1
[(∇ES)(B, C)A+ (∇ES)(B, C)ω(A)ζ

− g(A, B)(∇EQ)C− g(A, B)(∇ES)(C, ζ)ζ].

(4.19)

Using 2.9 with condition Φ2((∇EW6)(A, B)C) = 0 into the relation 4.19, it yields

0 = (∇ER)(A, B)C+ ω((∇ER)(A, B)C)ζ

− 1

n− 1
[(∇ES)(B, C)A+ (∇ES)(B, C)ω(A)ζ

− g(A, B)(∇EQ)C− g(A, B)S(E, C)ζ + (n− 1)g(A.B)g(E, C)ζ].

(4.20)

Differentiating covariantly 2.6 along E, it gives

(∇Eg)(R(A, B)C, ζ) + g(∇ER(A, B)C, ζ)

+ g(R(∇EA, B)C, ζ) + g(R(A,∇EB)C, ζ)

+ g(R(A, B)∇EC, ζ) + g(R(A, B)C,∇Eζ)

= (∇Eg)(B, C) g(A, ζ) + g(∇EB, C) g(A, ζ)

+ g(B,∇EC) g(A, ζ) + g(B, C) (∇Eg)(A, ζ)

+ g(B, C) g(∇EA, ζ) + g(B, C) g(A,∇Eζ)

− (∇Eg)(A, C) g(B, ζ)− g(∇EA, C) g(B, ζ)

− g(A,∇EC) g(B, ζ)− g(A, C) (∇Eg)(B, ζ)

− g(A, C) g(∇EB, ζ)− g(A, C) g(B,∇Eζ).

(4.21)

Applying 2.3 and 2.4 into 4.21, it gives

ω((∇ER(A, B)C) = g(R(A, B)C, E) + g(A, C)g(B, E)− g(B, C)g(A, E). (4.22)
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Relations 4.20 and 4.22, provide

(∇ER)(A, B)C+K(A, B, C, E)ζ + g(A, C) g(B, E) ζ − g(B, C) g(A, E) ζ

− 1

n− 1

[
(∇ES)(B, C)A+ (∇ES)(B, C)ω(A) ζ − g(A, B)(∇EQ)C

− g(A, B)S(E, C) ζ + (n− 1) g(A, B) g(E, C) ζ
]
= 0.

(4.23)

Innerproduct of 4.23 along F is given by

g((∇ER)(A, B)C, F) +K(A, B, C, E)ω(F) + g(A, C)g(B, E)ω(F)− g(B, C)g(A, E)ω(F)

− 1

n− 1

[
(∇ES)(B, C)g(A, F) + (∇ES)(B, C)ω(A)ω(F)

− g(A, B)g((∇EQ)C, F)− g(A, B)S(E, C)ω(F) + (n− 1)g(A, B)g(E, C)ω(F)
]
= 0. (4.24)

Contracting 4.24 along E and F, we have

n∑
i=1

ϵig((∇EiR)(A, B)C, Ei) +
n∑

i=1

ϵiK(A, B, C, Ei)g(ζ, Ei)

+

n∑
i=1

ϵig(A, C)g(B, Ei)g(ζ, Ei)−
n∑

i=1

ϵig(B, C)g(A, Ei)g(ζ, Ei)

− 1

n− 1

n∑
i=1

ϵi

[
(∇EiS)(B, C)g(A, Ei) + (∇EiS)(B, C)ω(A)g(ζ, Ei)

− g(A, B)g((∇EiQ)C, Ei)− g(A, B)S(Ei, C)g(ζ, Ei)

+ (n− 1)g(A, B)g(Ei, C)g(ζ, Ei)
]
= 0.

where, ϵi = g(Ei, Ei) and {E1, E2....En−1, ζ} are orthonormal base field on (LPK)n manifold.

Using relations 2.3, 2.6, 2.8, and 2.9 into the above relation, it gives

(divR)(A, B)C+K(A, B, C, ζ) + g(A, C)ω(B)− g(B, C)ω(A)

− 1

n− 1

[
(∇AS)(B, C) + (∇ζS)(B, C)ω(A)

− g(A, B)
C(r)

2
− g(A, B)S(C, ζ) + (n− 1)g(A, B)g(C, ζ)

]
= 0. (4.25)
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where, divQ(C)=
C(r)

2
.

Putting the value from 2.6, and 2.10 into 4.25, we have

(∇AS)(B, C)− (∇BS)(A, C) + g(B, C)ω(A)− g(A, C)ω(B)

+ g(A, C)ω(B)− g(B, C)ω(A)− 1

n− 1

[
(∇AS)(B, C)

+ (∇ζS)(B, C)ω(A)−
C(r)

2
g(A, B)

]
= 0. (4.26)

Putting C = ζ into 4.26, we get

(n− 2)

(n− 1)
(∇AS)(B, ζ) − (∇BS)(A, ζ) −

1

n− 1
(∇ζS)(B, ζ)ω(A) +

1

2(n− 1)
ζ(r)g(A, B) = 0.

(4.27)

Using the relation 2.9 into 4.27, it gives

(n− 2)

(n− 1)

[
S(A, B)− (n− 1)g(A, B)

]
−
[
S(A, B)− (n− 1)g(A, B)

]
− 1

n− 1

[
S(B, ζ)− (n− 1)ω(B)

]
ω(A) +

1

2(n− 1)
ζ(r)g(A, B) = 0. (4.28)

After simplification, 4.28 yields

S(A, B) = [(n− 1) +
ζ(r)

2
]g(A, B)]. (4.29)

Further, contracting 4.24 along A and F and using 2.8, we have

(∇ES)(C, B) = −S(E, C)ω(B) + (n− 1)g(E, C)ω(B). (4.30)

Again, contracting the above equation along B and C, we have

(∇Er) = −S(E, ζ) + (n− 1)ω(E). (4.31)

Using 2.9, it yields that scalar curvature r is constant. Therefore, 4.29 concludes the following:

S(A, B) = (n− 1)g(A, B). (4.32)

Hence, we establish that Φ-W6-symmetric (LPK)n manifold is an Einstein manifold.

□

We consider an (LPK)n manifold of constant curvature, then

R(A, B)C = k[g(B, C)A− g(A, C)B], (4.33)
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where, k is constant.

The relations 1.1 and 4.33, taken together, we have

W6(A, B)C = k[g(A, B)C− g(A, C)B]. (4.34)

Differentiating covariantly the relation 4.34 along E and operating Φ2 on both sides, it yields

Φ2((∇EW6)(A, B)C) = 0. (4.35)

This establishes the subsequent corollary:

Corollary 4.1. The (LPK)n manifolds of constant curvature are Φ-W6-symmetric (LPK)n

manifolds.

Example 4.1. Consider a differentiable manifold M4 = {(u, v, w, t) ∈ ℜ4: u, v, w is non

zero, t>0}. Suppose that {E1, E2, E3, E4} are linearly independent vectors at every point of

M4. We define,

E1 = eu+t ∂

∂u
, E2 = ev+t ∂

∂v
, E3 = ew+t ∂

∂w
, E4 =

∂

∂t
.

Lorentzian metric g on M4 is established in the following way:

gij = g(Ei, Ej) =


0 if i ̸= j

−1 if i = j = 4

1 or else.

Assuming ω is one-form corresponding to g is defined by

ω(A) = g(A, E4),

∀ A ∈ χ(M4), here χ(M4) be collection of vector fields on M4. We define Φ as (1, 1)-tensor

field as follows:

Φ(E1) = E1, Φ(E2) = E2, Φ(E3) = E3, Φ(E4) = 0.

From linear characteristic of Φ and g, the following results can easily be proved:

ω(E4) = −1, Φ2(A) = A+ ω(A)E4, g(ΦA, ΦB) = g(A, B) + ω(A)ω(B),

∀ A, B ∈ χ(M4). So, when E4 = ζ, structure (Φ, ζ, ω, g) leading to Lorentzian paracontact

structure as well as manifold M equipped with Lorentzian paracontact structure is said to be

Lorentzian paracontact manifold of dimension-4.
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We represent [A, B] as Lie-derivative of A, B, defined as [A, B] = AB − BA. The non-zero

constituents of Lie bracket are evaluated as below:

[E1, E4] = −E1, [E2, E4] = −E2, [E3, E4] = −E3.

Let Riemannian connection with respect to g be denoted by ∇. So, when E4 = ζ, we have the

subsequent results:

∇E1E1 = −E4, ∇E1E2 = 0, ∇E1E3 = 0, ∇E1E4 = −E1,

∇E2E1 = 0, ∇E2E2 = −E4, ∇E2E3 = 0, ∇E2E4 = −E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = −E4, ∇E3E4 = −E3,

∇E4E1 = 0, ∇E4E2 = 0, ∇E4E3 = 0, ∇E4E4 = 0.

Assuming A ∈ χ(M4), so A = a1E1 + a2E2 + a3E3 + a4E4, here {E1, E2, E3, E4} be the basis

of χ(M4). Above relations help verify ∇AE4 = −A − ω(A)E4 for each A ∈ χ(M4). Hence,

M4 is a Lorentzian para-Kenmotsu manifold of dimension-4. From the above relations, the

non-vanishing constituents of the curvature tensor are evaluated as subsequently,

R(E1, E2)E1 = −E2, R(E1, E3)E1 = −E3, R(E1, E4)E1 = −E4,

R(E1, E2)E2 = E1, R(E2, E3)E2 = −E3, R(E2, E4)E2 = −E4,

R(E1, E3)E3 = E1, R(E2, E3)E3 = E2, R(E3, E4)E3 = −E4,

R(E1, E4)E4 = −E1, R(E2, E4)E4 = −E2, R(E3, E4)E4 = −E3.

It can easily be seen that R(A, B)C = g(B, C)A− g(A, C)B.

From definition of Ricci tensor S on M4, the subsequent result holds,

S(A, B) = Σ4
i=1εig(R(Ei, A)B, Ei), εi = g(Ei, Ei).

Therefore, matrix representation of S is mentioned by

S =


3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 −3

 .

This gives, S(A, B) = 3g(A, B) and scalar curvature κ = Σ4
i=1εiS(Ei, Ei) = 12, this implies that

(LPK)4 manifold has constant scalar curvature. Hence, relation Φ2((∇EW6)(A, B)C) = 0

holds.

Thus, the above example verifies the results of this section.
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5. W6-semisymmetric Lorentzian para-Kenmotsu Manifolds

This part covers the behavior of W6, when R(A, B) operates on it in (LPK)n manifold.

Now, we have the following theorem:

Theorem 5.1. Let (Mn, g) be an (LPK)n manifold. If R(A, B).W6 = 0. Then, Mn is an

Einstein manifold, where R(A, B) is a Riemannian operator, and W6 is a curvature tensor.

Proof. We assume that Mn is an (LPK)n manifold satisfying subsequent condition:

(R(A, B).W6)(E, F)T = 0. (5.36)

From relation 5.36, we have

R(A, B).W6(E, F)T = W6(R(A, B)E, F)T + W6(E,R(A, B)F)T + W6(E, F)(R(A, B)T). (5.37)

Taking innerproduct of 5.37 along C, we have

K(A, B,W6(E, F)T, C) = ‘W6(R(A, B)E, F, T, C)+‘W6(E,R(A, B)F, T, C)+‘W6(E, F,R(A, B)T, C).

(5.38)

Applying A = C = ζ into 5.38, it provides

K(ζ, B,W6(E, F)T, ζ) = ‘W6(R(ζ, B)E, F, T, ζ)+‘W6(E,R(ζ, B)F, T, ζ)+‘W6(E, F,R(ζ, B)T, ζ).

(5.39)

Evaluation of left hand side of 5.39 with relation 2.6, it yields

K(ζ, B,W6(E, F)T, ζ) = −K(E, F, T, B)

− 1

n− 1
[g(E, F)S(T, B)− g(E, B)S(F, T)]

− ω(B)ω(T)g(E, F)− ω(E)ω(B)g(F, T)

+ g(E, T)ω(F)ω(B) +
1

n− 1
ω(E)ω(B)S(F, T).

(5.40)

Evaluation of first term of right hand side of 5.39 with the relation 2.6 in the following way:

‘W6(R(ζ, B)E, F, T, ζ) = g(B, E)‘W6(ζ, F, T, ζ)− ω(E)‘W6(B, F, T, ζ).



370 R. PRASAD, A. VERMA, AND V. S. YADAV

Applying the definition of W6-curvature tensor, the above relation becomes

W6(R(ζ, B)E, F, T, ζ) = −g(B, E)g(F, T)− g(B, E)ω(F)ω(T)

+ g(B, E)ω(F)ω(T) +
1

n− 1
g(B, E)S(F, T)− ω(E)ω(B)g(F, T)

+ g(B, T)ω(E)ω(F)− g(B, F)ω(E)ω(T) +
1

n− 1
ω(E)ω(B)S(F, T). (5.41)

Evaluation of middle term of right hand side of 5.39 with 2.6 into the following way:

‘W6(E,R(ζ, B)F, T, ζ) = ‘W6(E, ζ, T, ζ)g(B, F)− ω(F)‘W6(E, B, T, ζ).

Now, from the definition of W6-curvature tensor, the above relation becomes

‘W6(E,R(ζ, B)F, T, ζ) = g(B, F)g(E, T)

+ g(B, F)ω(E)ω(T)− ω(E)ω(F)g(B, T) + g(E, T)ω(E)ω(B)

− g(E, B)ω(F)ω(T) +
1

n− 1
ω(E)ω(F)S(B, T). (5.42)

Evaluation of the last term of 5.39 into the following way:

In view of relation 2.7, the last term of 5.39 becomes

‘W6(E, F,R(ζ, B)T, ζ) = g(B, T)‘W6(E, F, ζ, ζ)− ω(T)‘W6(E, F, B, ζ),

Using the definition 1.2 with relation 2.7 and 2.9 into the above relation, we have

‘W6(E, F,R(ζ, B)T, ζ) = −g(B, T)g(E, F)− ω(E)ω(F)g(B, T)

− ω(T)ω(E)g(F, B) + g(E.B)ω(F)ω(T)

− ω(T)ω(E)g(F, B) +
1

n− 1
ω(E)ω(T)S(F, B). (5.43)

Putting the values from 5.40, 5.41, 5.42, and 5.43 into 5.39, we have

K(E, F, T, B) +
1

n− 1
g(E, F)S(T, B)− g(B, E)g(F, T)

+ g(B, F)g(E, T) +
1

n− 1
S(B, T)ω(E)ω(F)− g(B, T)g(E, F)

− g(B, T)ω(E)ω(F)− g(F, B)ω(E)ω(T) +
1

n− 1
ω(E)ω(T)S(F, B) = 0. (5.44)

Contracting 5.44 along E, and B, on evaluation, it provides

S(F, T) = (n− 1)g(F, T). (5.45)

This completes the proof. □
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6. Φ-W6-flat Lorentzian para-Kenmotsu Manifolds

Theorem 6.1. If an (LPK)n manifold is Φ-W6-flat, then it is an Einstein manifold.

Proof. Let us consider that an (LPK)n manifold is Φ-W6-flat. Then,

‘W6(ΦA, ΦB, ΦC, ΦT) = 0. (6.46)

By definition of W6 curvature tensor 1.2

K(ΦA, ΦB, ΦC, ΦT) +
1

n− 1
[g(ΦA, ΦB)S(ΦC, ΦT)− S(ΦB, ΦC)g(ΦA, ΦT)] = 0. (6.47)

By definition of Riemann curvature tensor, we have

R(A, B)ΦC = ∇A∇BΦC−∇B∇AΦC−∇[A,B]ΦC.

Taking innerproduct of the above relation with respect to ΦT, it gives

g(R(A, B)ΦC, ΦT) = g(∇A∇BΦC, ΦT)− g(∇B∇AΦC, ΦT)− g(∇[A,B]ΦC, ΦT). (6.48)

Evaluation of the term ∇A∇BΦC provides

∇A∇BΦC = −g(∇AΦB, C)ζ − g(ΦB,∇AC)ζ

+ g(ΦB, C)A+ g(ΦB, C)ω(A)ζ − (∇Aω)(C)ΦB− ω(∇AC)ΦB

+ g(ΦA, B)ω(C)ζ + ω(B)ω(C)ΦA− ω(C)Φ(∇AB)

− g(ΦA,∇BC)ζ − ω(∇BC)ΦA+ Φ(∇A∇BC). (6.49)

Taking innerproduct of 6.49 with ΦT, we have

g(∇A∇BΦC, ΦT) = −g(∇AΦB, C)g(ζ, ΦT)− g(ΦB,∇AC)g(ζ, ΦT)

+ g(ΦB, C)g(A, ΦT) + g(ΦB, C)ω(A)g(ζ, ΦT)− (∇Aω)(C)g(ΦB, ΦT)

− ω(∇AC)g(ΦB, ΦT) + g(ΦA, B)ω(C)g(ζ, ΦT) + ω(B)ω(C)g(ΦA, ΦT)

− ω(C)g(Φ(∇AB), ΦT)− g(ΦA,∇BC)g(ζ, ΦT)

− ω(∇BC)g(ΦA, ΦT) + g(Φ(∇A∇BC), ΦT). (6.50)

Using 2.3 into 6.50, we have

g(∇A∇BΦC, ΦT) = g(ΦB, C)g(A, ΦT)− (∇Aω)(C)g(ΦB, ΦT)

− ω(∇AC)g(ΦB, ΦT) + ω(B)ω(C)g(ΦA, ΦT)− ω(C)g(Φ(∇AB), ΦT)

− ω(∇BC)g(ΦA, ΦT) + g(Φ(∇A∇BC), ΦT). (6.51)
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Applying A ↔ B in 6.51, we have

g(∇B∇AΦC, ΦT) = g(ΦA, C)g(B, ΦT)− (∇Bω)(C)g(ΦA, ΦT)

− ω(∇BC)g(ΦA, ΦT) + ω(A)ω(C)g(ΦB, ΦT)− ω(C)g(Φ(∇BA), ΦT)

− ω(∇AC)g(ΦB, ΦT) + g(Φ(∇B∇AC), ΦT). (6.52)

Differentiating covariantly ΦC along [A, B], we find

∇[A,B](ΦC) = −g(Φ[A, B], C)ζ − ω(C)[Φ(∇AB−∇BA)] + Φ(∇[A,B]C). (6.53)

Taking innerproduct of 6.53 with ΦT, we have

g(∇[A,B](ΦC), ΦT) = −ω(C)g(Φ(∇AB), ΦT) + ω(C)g(Φ(∇BA), ΦT) + g(Φ(∇[A,B]C), ΦT). (6.54)

Putting values 6.51, 6.52 and 6.54 into relation 6.48, it yields

K(A, B, ΦC, ΦT) = g(ΦB, C)g(A, ΦT)− g(ΦA, C)g(B, ΦT)

+ (∇Bω)(C)g(ΦA, ΦT)− (∇Aω)(C)g(ΦB, ΦT) + ω(B)ω(C)g(ΦA, ΦT)

− ω(A)ω(C)g(ΦB, ΦT) + g(Φ(R(A, B)C, ΦT). (6.55)

Applying the relation 2.4 into the last term of right hand side of 6.55, and then transposing

to left hand side, we have

K(A, B, ΦC, ΦT)−K(A, B, C, Φ2T) = g(ΦB, C)g(A, ΦT)− g(ΦA, C)g(B, ΦT)

+ [(∇Bω)(C) + ω(B)ω(C)]g(ΦA, ΦT)− [(∇Aω)(C) + ω(A)ω(C)]g(ΦB, ΦT). (6.56)

Using 2.3, and 2.5 into 6.56, we have

K(A, B, ΦC, ΦT)−K(A, B, C, T)− ω(T)K(A, B, C, ζ) = g(ΦB, C)g(A, ΦT)

− g(ΦA, C)g(B, ΦT)− g(B, C)g(ΦA, ΦT) + g(A, C)g(ΦB, ΦT). (6.57)

Using 2.3, and 2.6 into 6.57, we have

K(A, B, ΦC, ΦT)−K(A, B, C, T) = g(ΦB, C)g(A, ΦT)

− g(ΦA, C)g(B, ΦT)− g(B, C)g(A, T) + g(A, C)g(B, T). (6.58)

By Riemann curvature property, we have

K(A, B, C, T) = K(C, T, A, B). (6.59)
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Applying X ↔ Z, and Y ↔ T into 6.58, we have

K(C, T, ΦA, ΦB)−K(C, T, A, B) = g(ΦT, A)g(C, ΦB)

− g(ΦC, A)g(T, ΦB)− g(T, A)g(C, B) + g(C, A)g(T, B). (6.60)

Subtracting 6.60 from 6.58, and using 6.59, we have

K(A, B, ΦC, ΦT) = K(C, T, ΦA, ΦB). (6.61)

Applying A → ΦA, and B → ΦB into 6.61, we have

K(ΦA, ΦB, ΦC, ΦT) = K(C, T, Φ2A, Φ2B). (6.62)

Applying 2.3, and 6.59 into 6.62, on simplification, we have

K(ΦA, ΦB, ΦC, ΦT) = K(A, B, C, T) + g(A, T)ω(B)ω(C)

− g(A, C)ω(B)ω(T) + g(B, C)ω(A)ω(T)− g(B, T)ω(A)ω(C). (6.63)

Putting value from relation 6.63 into 6.47, we have

K(A, B, C, T)− g(A, C)ω(B)ω(T) + g(B, C)ω(A)ω(T)

− g(B, T)ω(A)ω(C) +
1

n− 1
[S(C, T)g(A, B) + (n− 1)g(A, B)ω(C)ω(T)

+ S(C, T)ω(A)ω(B)− S(B, C)g(A, T)− S(B, C)ω(A)ω(T)] = 0. (6.64)

Contracting 6.64 with respect to A, and T, we have

S(B, C)− ω(B)ω(C)− g(B, C)− ω(B)ω(C) +
1

n− 1
[S(B, C)

+ (n− 1)ω(C)ω(B) + S(C, ζ)ω(B)− nS(B, C) + S(B, C)] = 0. (6.65)

On simplification of 6.65, it concludes

S(B, C) = (n− 1)g(B, C). (6.66)

This completes the proof. □
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7. Lorentzian para-Kenmotsu manifolds with condition W6(E, F).R = 0

In this part, we explore the behavior of (LPK)n manifold admitting W6(E, F).R = 0.

We begin this with the subsequent theorem:

Theorem 7.1. An (LPK)n manifold is an ω-Einstein manifold if, it satisfies the relation

W6(E, F).R = 0 .

Proof. Let us consider that the (LPK)n manifold admits the condition

W6(E, F).R = 0. (7.67)

From the relation 7.67, we have

W6(E, F)R(A, B)C−R(W6(E, F)A, B)C−R(A,W6(E, F)B)C−R(A, B)W6(E, F)C = 0. (7.68)

Putting B = ζ into the relation 7.68, we have

W6(E, F)(R(A, ζ)C)−R(W6(E, F)A, ζ)C−R(A,W6(E, F)ζ)C−R(A, ζ)W6(E, F)C = 0. (7.69)

Evaluation of the terms of the relation 7.69 in the subsequent manner:

Using 2.7, 2.9, 1.1, 2.13 into first term of 7.69, we get

W6(E, F)R(A, ζ)C = ω(C)R(E, F)A

+
1

n− 1
g(E, F)ω(C)QA− 1

n− 1
S(F, A)ω(C)E− g(A, C)ω(F)E

+ g(A, C)ω(E)F− g(A, C)g(E, F)ζ + g(A, C)ω(F)E. (7.70)

Using 2.7, 2.9, and 1.1, into second term of 7.69, we get

R(W6(E, F)A, ζ)C = ω(C)R(E, F)A

+
1

n− 1
g(E, F)ω(C)QA− 1

n− 1
S(F, A)ω(C)E−K(E, F, A, C)ζ

− 1

n− 1
g(E, F)S(A, C)ζ + 1

n− 1
S(F, A)g(E, C)ζ. (7.71)

Applying relations 2.7, and 2.13 into third term of 7.69, we get

R(A,W6(E, F)ζ)C = g(E, F)ω(C)A− g(E, F)g(A, C)ζ − ω(E)R(A, F)C. (7.72)
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Using 2.7, 2.9, 1.1 and 2.13 into fourth term of 7.69, we get

R(A, ζ)W6(E, F)C = g(F, C)ω(E)A− g(E, C)ω(F)A

+ g(E, F)ω(C)A− 1

n− 1
S(F, C)ω(E)A−K(E, F, C, A)ζ

− 1

n− 1
g(E, F)S(A, C)ζ + 1

n− 1
S(F, C)g(E, A)ζ. (7.73)

Putting the values from 7.70, 7.71, 7.72, and 7.73 into 7.69, it gives

g(A, C)ω(E)F+
2

n− 1
g(E, F)S(A, C)ζ − 1

n− 1
S(F, A)g(E, C)ζ

− 2g(E, F)ω(C)A+ ω(E)R(A, F)C− g(F, C)ω(E)A+ g(E, C)ω(F)A

+
1

n− 1
S(F, C)ω(E)A− 1

n− 1
S(F, C)g(E, A)ζ = 0. (7.74)

Contracting 7.74 along A, we have

g(F, C)ω(E) +
2

n− 1
g(E, F)S(ζ, C)− 1

n− 1
S(F, ζ)g(E, C)− 2ng(E, F)ω(C) + ω(E)S(F, C)

− ng(F, C)ω(E) + ng(E, C)ω(F) +
n

n− 1
S(F, C)ω(E)− 1

n− 1
S(F, C)ω(E) = 0. (7.75)

Putting E = ζ and making use of 2.9 into 7.75, it provides

S(F, C) = (n− 1)

2
g(F, C)− (n− 1)

2
ω(E)ω(F). (7.76)

This completes the proof. □

Acknowledgments. The authors would like to thank the referee for some useful comments

and their helpful suggestions that have improved the quality of this paper.

References

[1] Ahmad, M. (2019). On semi-invariant ζ⊥ submanifolds of Lorentzian para-Sasakian Mani-

folds.International journal of maps in mathematics, 2(1), 89-98.

[2] Atceken, M. (2022). Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds.

Korean J. Math., 30(1), 175-185.

[3] Haseeb, A., & Prasad, R. (2021). Certain results on Lorentzian para-Kenmotsu manifolds. Bull. Parana.s

Math. Soc., 39(3), 201-220.

[4] O’Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Math-

ematics, Vol. 103 (Academic Press, New York).

[5] Pandey, S., Singh, A., & Bahadur, O. (2022). Certain results of Ricci solitons on Three dimensional

Lorentzian para-α-Sasakian Manifolds. International journal of maps in mathematics, 5(2), 139-153.

[6] Pokhariyal, G.P.(1982). Study of new curvature tensor in Sasakian manifold. Tensor, N.S., 36 , 222-226.



376 R. PRASAD, A. VERMA, AND V. S. YADAV

[7] Pokhariyal, G.P. (1982). Relativistic Significance of curvature tensors. International Journal of Mathe-

matics and Mathematical Sciences, 5(1), 133-139.

[8] Prasad, R., Haseeb, A., Verma, A., & Yadav, V. S. (2024). A study of φ-Ricci symmetric LP-Kenmotsu

manifolds. International Journal of Maps in Mathematics, Volume 7, Issue 1, Pages: 33-44.

[9] Prasad, R., Verma A., & Yadav, V. S. (2023). Characterization of the perfect fluid Lorentzian α-para

Kenmotsu spacetimes. GANITA, Vol. 73(2), 89-104.

[10] Prasad, R., Verma A., & Yadav, V. S. (2023). Characterization of Φ-symmetric Lorentzian para-

Kenmotsu manifolds. FACTA UNIVERSITATIS (NIS) SER. MATH. INFORM. Vol. 38, No 3 635-647

https://doi.org/10.22190/FUMI230314040P

[11] Sari, R., & Vanli, A. T. (2019). Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math.,

16, 1-17.

[12] Sharma, R. (2008). Certain results on k-contact and (κ, µ)-contact manifolds. J. Geom., 89, 138-147.

[13] Singh, A., Ahmad, M., Yadav, S.K., & Patel, S. (2024). Some Results on β-Kenmotsu manifolds with a

Non-symmetric Non metric connection. International journal of maps in mathematics, 7(1), 20-32.

[14] Sinha, B. B., & Sai Prasad, K. l. (1995). A class of almost para contact metric manifold. Bull. Calcutta

Math. Soc., 87, 307-312.

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.



International Journal of Maps in Mathematics

Volume 8, Issue 2, 2025, Pages:377-412

E-ISSN: 2636-7467

www.simadp.com/journalmim

ON RULED SURFACES BY SMARANDACHE GEOMETRY IN E3
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Abstract. The paper introduces a series of new ruled surfaces by following the idea of

Smarandache geometry according to Frenet frame by taking into account all the possible

linear combinations of the frame vectors. The metric properties of each defined ruled surface

is examined by computing the 1st and 2nd fundamental forms as well as the curvatures of

Gaussian and the mean expressed by the harmonic curvature function. Therefore, the condi-

tions for each surface to be minimal or developable are provided. Moreover, the constraints

for the characteristics of the base curve are discussed whether it is geodesic, asymptotic

or a curvature line on the generated ruled surface. Finally, the graphical illustrations are

presented for each ruled surface with a given appropriate example.
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1. Introduction

Ruled surfaces are widely recognized as the most fundamental and extensively employed

objects in the geometric modeling. Researchers utilize this type of surface in various grounds

such as computer graphics, architecture, arts, sculpture, manufacturing, etc. The basic defi-

nition of a ruled surface is the image of lines’ motion on and along a given curve. Therefore,
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a ruled surface is also called the surface of infinitely many lines. Interested readers can refer

the main sources [1, 4, 19] to gain a deep insight into about ruled surfaces. Following the

importance of this surface kind, researchers defined new ruled surfaces and examined their

characterizations. For example, the ruled surfaces were re-visited by means of geodesic cur-

vature and the 2nd fundamental form by [14]. [12] conducted a study on the characteristics of

ruled surfaces along the striction curves of a non-cylindrical ruled surface according to Frenet

frame. The ruled surfaces according to Bishop frame and their characteristics was examined

by [20] and [8]. Further, [13] studied the characteristics for the ruled surfaces with respect to

the alternative frame. Moreover, the ruled surfaces generated by rotation minimizing frame

(RMF) are investigated in [6] while those by Sannia frame are defined in [5].

Recently, [11] put forth a new way of generating ruled surfaces by taking the advantage

of the idea of Smarandache curves which was defined by [21] for Minkowski space, and by

[2] for Euclidean space E3. The method relies on assigning one of the Smarandache curves

as a base curve of the surface and utilizes other vector elements of the Frenet frame as the

generator line. Thus, she named these newly constructed ruled surfaces as Smarandache

ruled surfaces. However, prior to her study, [24] had also discussed the idea of constructing

such ruled surfaces. They specifically worked on geodesic conditions of the tangent and

normal surfaces with TN-Smarandache curve as a base curve [23]. In addition, the authors

examined the geodesics of the binormal surface in [25]. By considering different frames such

as alternative, Darboux, Flc (by [3]) and successor frame, Smarandache ruled surfaces were

re-defined in [9], [10], [15] and [22], respectively. Moreover, this way of generating such ruled

surfaces were benefited in [16, 17, 18] from different point of view most likely by incorporating

the Darboux vector. Therefore, in this paper, with the motivation of the given studies, we

extend our investigations for the studies in which Smarandache ruled surfaces according to

Frenet frame were used. That is we consider all possible combinations of Frenet vectors

to construct new ruled surfaces and examine their main characteristics in a more broader

perspective.

2. Preliminaries

This section is to recall the primary concepts which we will be using through out the

paper. Let γ : s ∈ I ⊂ ℜ → E3 be a regular unit speed curve in three dimensional Euclidean

space E3 and denote {T,N,B, κ, τ} as its Frenet elements. Then, the definitions of Frenet
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vectors and the well-known Frenet formulas are given as

T =
γ′

∥γ′∥
, N = B × T, B =

γ′ × γ′′

∥γ′ × γ′′∥
,

κ =
∥γ′ × γ′′∥
∥γ′∥3

, τ =
⟨γ′ × γ′′, γ′′′⟩
∥γ′ × γ′′∥2

,

T ′ = κνN, N ′ = −κνT + τνB, B′ = −τνN,

(2.1)

where ν = ∥γ′∥, and ⟨ , ⟩, × and ∥ ∥ denote standard inner product, vector product and

norm, respectively. κ is the curvature and τ is the torsion of the curve γ(s) [1, 4]. Further,

a surface χ is ruled if it is formed with the motion of line X(s) on and along a given curve

γ(s). Thus, a parametrization for a ruled surface is given as follows

χ : ψ(s, v) = γ(s) + vX(s). (2.2)

Here the curve γ(s) is called as the base while X(s) is the ruling. The normal vector field

for the surface χ is computed by

n⃗ψ =
ψs × ψv
∥ψs × ψv∥

. (2.3)

The 1st and 2nd fundamental forms and the curvatures of Gaussian and mean for the given

ruled surface χ are given by

I = Eds2 + 2Fdsdv + dv2, II = Lds2 + 2Mdsdv, (2.4)

K =
−M2

E − F 2
, H =

L− 2FM

2(E − F 2)
, (2.5)

where the given coefficients are obtained by the following expressions

E = ⟨ψs, ψs⟩ , F = ⟨ψs, ψv⟩ , G = ⟨ψv, ψv⟩ ,

L = ⟨ψss, n⃗ψ⟩ , M = ⟨ψsv, n⃗ψ⟩ , N = ⟨ψvv, n⃗ψ⟩ .
(2.6)

Note that for a ruled surfaces having the ruling of a unit vector, it is always valid that G = 1

and N = 0. Therefore, the fundamental forms and the curvatures are expressed in their

simplified forms as in the Equation (2.4) and (2.5). Regarding to the given invariants of the

surface χ, there exist following definitions:

Definition 2.1. [1, 4, 19] The surface χ is developable (resp. minimal) if Gaussian (resp.

mean) curvature vanishes that is K = 0 (resp. H = 0) .

Moreover, the normal curvature κn, the geodesic curvature κg and the geodesic torsion τg

of the surface χ are defined as follows

κn = ⟨γ′′, nψ⟩, κg = ⟨nψ × T, T ′⟩, τg = ⟨nψ × n′ψ, T
′⟩. (2.7)
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There also exist following definitions for given expressions above

Definition 2.2. [1, 4, 19]

• γ(s) is asymptotic on the surface χ ⇐⇒ κn = 0,

• γ(s) is geodesic on the surface χ ⇐⇒ κg = 0,

• γ(s) is principal line on the surface χ ⇐⇒ τg = 0.

Additionally, we recall the following theorems considered to the specific cases of which the

curve γ(s) is general or slant helix.

Theorem 2.1. (Lancret’s theorem) A curve is called a general helix ⇐⇒ h = const. ,

where h =
τ

κ
is the harmonic curvature function [19, 26].

Theorem 2.2. A curve is called a slant helix ⇐⇒ σ = const. where σ =
h′

κ (1 + h2)
3
2

, [7].

3. The Smarandache Based Ruled Surfaces according to Frenet Frame in E3

In this section of the paper, it is of interest for us to extend the study of [11] and examine

ruled surfaces formed by other possible combinations of Frenet vectors. In addition, the

conditions for the base curve to be asymptotic, geodesic and curvature line on the constructed

surface are provided, as well. Some special cases are discussed regarding to that the main

curve is a general or a slant helix. Thus, twelve of new ruled surfaces all formed by the

vectors of Frenet frame are studied by following the idea of Smarandache geometry.

3.1. Ruled Surfaces with the Base TN− Smarandache Curve.

Definition 3.1. Let γ : s ∈ I ⊂ ℜ → E3 be a regular unit speed curve of C2 class and

{T, N, B} denotes the set of its Frenet vectors. The original definition of TN− Smarandache

ruled surface introduced in [11] is given as following

TN
B ψ(s, v) =

T (s) +N(s)√
2

+ vB(s). (3.8)

However, in this study, other two ruled surfaces having the same TN− curve as a base curve

with other Frenet vector as a ruling are considered, which are parameterized in the following

TN
T ψ(s, v) =

T (s) +N(s)√
2

+ vT (s),

TN
N ψ(s, v) =

T (s) +N(s)√
2

+ vN(s).

(3.9)

In addition, we also examine the conditions for the base curve to be asymptotic, geodesic

and curvature line on each ruled surface.
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3.1.1. The characteristics of the ruled surface TN
B ψ(s, v).

[11] put forth the following corollaries for the surface TN
B ψ(s, v)

Corollary 3.1. [11]

• TN
B ψ(s, v) is developable when γ(s) is a plane curve,

• TN
B ψ(s, v) is minimal if the following relation holds

κτ2
(
1− 2v2

)
+
(
κ′ + 2κ2

) (√
2vτ − κ

)
= 0.

Remark 3.1. We note that in order for TNB ψ(s, v) be minimal, the following relation should

hold

κτ2
(
1− 2v2

)
+

√
2τv

(
2κ2 + κ′

)
− κ

(√
2τ ′v + 2κ2

)
= 0.

Now, let us consider the characteristic of the base curve on the TN
B ψ(s, v), and examine

the conditions for it be asymptotic, geodesic and curvature line by associating to γ(s).

Theorem 3.1. The normal curvature TN
B κn, the geodesic curvature TN

B κg and the geodesic

torsion TN
B τg of the TN

B ψ(s, v) surface are given as follows

TN
B κn =

√
2hv

(
κ2 + κ′

)
− τ2 − 2κ2

√
2

√(√
2hv − 1

)2
+ 1

,

TN
B κg =

√
2h′
(√

2− hv
)
− τ

(
h2 + 2

) (√
2hv − 1

)
(h2 + 2)

√(√
2hv − 1

)2
+ 1

, (3.10)

TN
B τg =

2vh′
(
h′
√
2 + 2τhv

)
+
((√

2hv − 1
) (
h2 + 2

)
τκ− 2h′κ

) (√
2hv − h2 − 2

)((√
2hv − 1

)2
+ 1
)
(h2 + 2)

3
2

,

respectively.

Proof. By referring the Equation (2.1), the tangent TTN of TN− Smarandache curve, its

derivative and the second order derivative of TN− Smarandache curve are given as

TTN =
−T +N + hB√

h2 + 2
,

T ′
TN =

(h′h− τh− 2κ)T −
(
h′h+ 2κ+

(
h2 + 3

)
τh
)
N +

(
2h′ + τ

(
h2 + 2

))
B

(h2 + 2)
3
2

,

(
T +N√

2

)′′
=−

(
κ′ + κ2

)
T −

(
κ′ − κ2 − τ2

)
N − (τ ′ + κτ)B

√
2

.

(3.11)

Moreover, the derivative of the normal vector of TN
B ϕ(s, v) defined as

TN
B n =

(
κ− vτ

√
2
)
T + κN

√
2
√
κ2 −

√
2κvτ + v2τ2

in [11], but expressed by the harmonic curvature function
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as TNB n = −
(√

2hv − 1
)
T −N√(√

2hv − 1
)2

+ 1
is given in the following

TN
B n′ =−

h′v + vτ
(√

2hv − 2
)
+
√
2κ

2
(
h2v2 −

√
2hv + 1

) 3
2

T

−

 h′v
(√

2hv − 1
)

2
(
h2v2 −

√
2hv + 1

) 3
2

+
κ
(
2hv −

√
2
)

2
√
h2v2 −

√
2hv + 1

N

+

(
τ
√
2

2
√
h2v2 −

√
2hv + 1

)
B.

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.10 of Theorem 3.1, we

have the following corollary:

Corollary 3.2.

• The TN− Smarandache curve of γ(s) cannot be asymptotic on TN
B ψ(s, v).

• If γ(s) is plane curve, then its corresponding TN− Smarandache curve lies both as

geodesic and curvature line on the ruled surface TNB ψ(s, v), while the normal curvature

simplifies to TN
B κn = −κ2.

3.1.2. The characteristics of the ruled surface TN
T ψ(s, v).

Theorem 3.2. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TNT ψ(s, v) are given as following:

TN
T I =

(
κ2 + τ2

2
+ κ2

(
v +

1√
2

)2
)
ds2 − κ

√
2 dsdv + dv2,

TN
T II =

(
−2τκ2

(
v2 +

√
2v + 1

)
+
(√

2v + 1
)
(κ′τ − τ ′κ)− τ3

)
ds2 + 2κτ

√
2dsdv

√
2

√(
κ
(√

2v + 1
))2

+ τ2
,

TN
T K =− 2

(
κτ(

κ
(√

2v + 1
))2

+ τ2

)2

,

TN
T H =

−2τκ2v
(√

2 + v
)
+
(√

2v + 1
)
(κ′τ − τ ′κ)− τ3

√
2
((
κ
(√

2v + 1
))2

+ τ2
) 3

2

,

respectively.
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Proof. The partial derivatives of TNT ψ(s, v) are given as follows

TN
T ψ(s, v)s =

(
−κ√
2

)
T + κ

(
v +

1√
2

)
N +

(
τ√
2

)
B,

TN
T ψ(s, v)ss =−

(
κ′√
2
+ κ2

(
v +

1√
2

))
T +

(
− 1√

2
(κ2 + τ2 − κ′) + vκ′

)
N

+

(
1√
2
τ ′ +

(
v +

1√
2

)
κτ

)
B,

TN
T ψ(s, v)v =T,

TN
T ψ(s, v)sv = κN, TN

T ψ(s, v)vv = 0.

From Equation 2.3, the normal of TNT ψ(s, v) is given as

TN
T n =

τN − κ
(√

2v + 1
)
B√(

κ
(
τ2 +

√
2v + 1

))2 .
By recalling Equation 2.6, the components for the fundamental forms can be obtained. Then,

by substituting those in Equation 2.4 and 2.5, the proof is completed. □

By using the Definition 2.1 and the Theorem 3.2, the two corollaries given below are valid

without the need for proof.

Corollary 3.3.

• TN
T ψ(s, v) is both developable and minimal when γ(s) is a plane curve.

• TN
T ψ(s, v) is minimal if the following relation holds

−2τκ2v
(√

2 + v
)
+
(√

2v + 1
) (
κ′τ − τ ′κ

)
− τ3 = 0.

Theorem 3.3. The normal curvature TN
T κn, the geodesic curvature TN

T κg and the geodesic

torsion TN
T τg of the TN

T ψ(s, v) surface are given as follows

TN
T κn =−

κτ
(
h2 +

√
2v + 2

)
+ h′κ

(√
2v + 1

)
+
√
2hvκ′

√
2

√
h2 +

(√
2v + 1

)2 ,

TN
T κg =

hh′ − (τh+ 2κ)
(√

2v + 1
)

(h2 + 2)

√
h2 +

(√
2v + 1

)2 , (3.12)

TN
T τg =

(
h(h′)2 − 2h′κ−

(
h2 +

√
2v + 2

) (
h2 + 2

)
τκ
) (√

2v + 1
)
+
(
h2 + 2v2 + 1

)
h′τh(

h2 +
(√

2v + 1
)2)

(h2 + 2)
3
2

,

respectively.

Proof. Recall the Equation 3.11, since the base curve is still the same TN− Smarandache

curve. Moreover, the derivative of the normal of TNT ψ(s, v) ruled surface expressed by the
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harmonic curvature function as TNT n =
hN −

(√
2v + 1

)
B√

h2 +
(√

2v + 1
)2 is given in the following

TN
T n′ =

− τ√
h2 +

(√
2v + 1

)2
T

+

 h′
(
2v2 + 2

√
2v + 1

)(
h2 +

(√
2v + 1

)2) 3
2

+
τ
(√

2v + 1
)√

h2 +
(√

2v + 1
)2
N

+

 hh′
(√

2v + 1
)(

h2 +
(√

2v + 1
)2) 3

2

+
hτ√

h2 +
(√

2v + 1
)2
B.

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.12 of Theorem 3.3, we

have the following corollary:

Corollary 3.4.

• The TN− Smarandache curve of γ(s) cannot be geodesic on TN
T ψ(s, v).

• If γ(s) is a plane curve, then its corresponding TN− Smarandache curve lies both as

asymptotic and curvature line on TN
T ψ(s, v), while the geodesic curvature is expressed

by TN
T κg = −κ.

3.1.3. The characteristics of the ruled surface TN
N ψ(s, v).

Theorem 3.4. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TNN ψ(s, v) are given as following:

TN
N I =

((
κ2 + τ2

) (
v2 + v

√
2 + 1

)
− τ2

2

)
ds2 + κ

√
2dsdv + dv2,

TN
N II =

(
(κ′τ − κτ ′)

∣∣√2v + 1
∣∣

√
2
√
κ2 + τ2

)
ds2,

TN
N K =0,

TN
N H =

(κ′τ − κτ ′)∣∣2v +√
2
∣∣ (κ2 + τ2)

3
2

,

respectively.
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Proof. The partial derivatives of TNN ψ(s, v) are given as follows

TN
N ψ(s, v)s =−

(
v +

1√
2

)
κT +

1√
2
κN +

(
v +

1√
2

)
τB,

TN
N ψ(s, v)ss =−

(
1√
2
κ2 +

(
v +

1√
2

)
κ′
)
T

−
((

v +
1√
2

)
τ2 − 1√

2
κ′ +

(
v +

1√
2

)
κ2
)
N

+

((
v +

1√
2

)
τ ′ +

1√
2
κτ

)
B,

TN
N ψ(s, v)v =N,

TN
N ψ(s, v)sv = −κT + τB, TN

N ψ(s, v)vv = 0.

From Equation 2.3, the normal of TNN ψ(s, v) is given as

TN
N n = −ϵ1

τT + κB√
κ2 + τ2

,

where ϵ1 = sign(1 +
√
2v). By recalling Equation 2.6, the components for the fundamental

forms can be obtained. Then, by substituting those in Equation 2.4 and 2.5, the proof is

completed. □

By using the Definition 2.1 and the Theorem 3.4, the following corollaries are clear without

the need for proof.

Corollary 3.5.

• The surface TN
N ψ(s, v) is always developable.

• TN
N ψ(s, v) is minimal when γ(s) is a general helix.

Theorem 3.5. The normal curvature TN
N κn, the geodesic curvature TN

N κg and the geodesic

torsion TN
N τg of the TN

N ψ(s, v) surface are given as follows

TN
N κn =− ϵ1

h′κ√
2
√
h2 + 1

,

TN
N κg =− ϵ1

τh
(
h2 + 3

)
+ h′h+ 2κ

(h2 + 2)
√
h2 + 1

, (3.13)

TN
N τg =−

h′
(
τh
(
h2 + 3

)
+ h′h+ 2κ

)
(h2 + 2)

3
2 (h2 + 1)

,

respectively.
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Proof. Recall again the Equation 3.11. Moreover, the derivative of the normal of TNN ψ(s, v)

expressed by the harmonic curvature function as TNN n = −ϵ1
hT +B√
h2 + 1

is given in the following

TN
N n′ = −ϵ1σκ (T − hB) .

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.13 of Theorem 3.5, we

have the following remark:

Remark 3.2. The given corollaries for TN
T ψ(s, v) are the same as of TNN ψ(s, v).

Example 3.1. Let γ : [−2π, 2π] → E3 be a regular unit speed curve defined by the following

parameterization γ(s) = (cosh(s), sinh(s), 2s). Then, we compute its Frenet apparatus as

follows

T =
(sinh (s) , cosh (s) , 2)√

4 + cosh (2s)
, N =

(5 cosh (s) , 3 sinh (s) ,−2 sinh (2s))√
(4 + cosh (2s)) (1 + 4 cosh (2s))

,

B =
(−2 sinh (s) , 2 cosh (s) ,−1)√

1 + 4 cosh (2s)
, κ =

√
1 + 4 cosh (2s)

(4 + cosh (2s))
3
2

, τ =
2

1 + 4 cosh (2s)
·

(3.14)

Hence, from the Equations 3.8, 3.9 and 3.14, the ruled surfaces TN
T ψ(s, v), TNN ψ(s, v) and

TN
B ψ(s, v) can be easily obtained (see Fig. 1).
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(a) The ruled surface TN
T ψ(s, v) (b) The ruled surface TN

N ψ(s, v)

(c) The ruled surface TN
B ψ(s, v)

Figure 1. Ruled surfaces with base curve of TN -Smarandache curve (red)

where s ∈ [−2π, 2π] and v ∈ [−2, 2]

3.2. Ruled Surfaces with the Base TB− Smarandache Curve.

Definition 3.2. Let γ : s ∈ I ⊂ ℜ → E3 be a regular unit speed curve of C2 class and

{T, N, B} denotes the set of its Frenet vectors. The original definition of TB− Smarandache
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ruled surface introduced in [11] is as following:

TB
N ψ(s, v) =

T +B√
2

+ vN. (3.15)

As noted before, the other two ruled surfaces with the base of TB− Smarandache curve and

with the ruling of other two Frenet vectors are discussed, which are parameterized in the

following
TB
T ψ(s, v) =

T +B√
2

+ vT,

TB
B ψ(s, v) =

T +B√
2

+ vB.

(3.16)

The conditions for the base curve to be asymptotic, geodesic and curvature line on each ruled

surface are examined, as well.

3.2.1. The characteristics of the ruled surface TB
N ψ(s, v).

Ouarab, [11] obtained the following corollaries for the ruled surface TB
N ψ(s, v) as

Corollary 3.6. [11]

• TB
N ψ(s, v) is always developable.

• TB
N ψ(s, v) is minimal when γ(s) is a general helix.

The base curve characteristics of the TBN ψ(s, v) surface associated to γ(s) is given with the

following theorem.

Theorem 3.6. The normal curvature TB
N κn, the geodesic curvature TB

N κg and the geodesic

torsion TB
N τg of the TB

N ψ(s, v) surface are given as follows

TB
N κn = 0, TB

N κg = −ϵ2κ
√
h2 + 1, TB

N τg = 0, (3.17)

respectively, , where ϵ2 = sign(v).

Proof. By utilizing the Equation (2.1), the tangent and its derivative, and the second order

derivative of the TB− Smarandache curve are given as

TTB =ηN, T ′
TB = −ηκ(T − hB),(

T +B√
2

)′′
=
κ2 (h− 1)T − (τ ′ − κ′)N − hκ2 (h− 1)B√

2
,

(3.18)

where η = sign(κ − τ). Moreover, the derivative of the normal of TBN ψ(s, v) ruled surface

defined as TBN n = ± τT + κB√
κ2 + τ2

in [11], but expressed by the harmonic curvature function as

TB
N n = −ϵ2

hT +B√
h2 + 1

is given in the following

TB
N n′ = −ϵ2σκ (T − hB).
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By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.17 of Theorem 3.6, we

have the following corollary:

Corollary 3.7.

• The TB− Smarandache curve of γ(s) is always asymptotic and curvature line on

TB
N ψ(s, v), while the geodesic curvature simplifies to TB

N κg = −ϵ2κ.

• The TB− Smarandache curve of γ(s) cannot be geodesic on TB
N ψ(s, v).

3.2.2. The characteristics of the ruled surface TB
T ψ(s, v).

Theorem 3.7. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TBT ψ(s, v) are given as following:

TB
T I =

((
v +

1√
2

)
κ− 1√

2
τ

)2

ds2 + dv2,

TB
T II =− ϵ3

((
v +

1√
2

)
κ− 1√

2
τ

)
τds2,

TB
T K =0, TB

T H = −ϵ3
τ√

2
(
κ(
√
2v + 1)− τ

) ,
respectively, where ϵ3 = sign(κ

(
1 +

√
2v
)
− τ).

Proof. The partial derivatives of TBT ψ(s, v) are given as follows

TB
T ψ(s, v)s =

((
v +

1√
2

)
κ− 1√

2
τ

)
N,

TB
T ψ(s, v)ss =

(
1√
2
κτ −

(
v +

1√
2

)
κ2
)
T +

((
v +

1√
2

)
κ′ − 1√

2
τ ′
)
N

+

((
v +

1√
2

)
κτ − 1√

2
τ2
)
B,

TB
T ψ(s, v)v =T,

TB
T ψ(s, v)sv = κN, TB

T ψ(s, v)vv = 0.

From Equation 2.3, the normal vector of TBT ψ(s, v) is computed as

TB
T n = −ϵ3B.

By recalling Equation 2.6, the components for the fundamental forms can be obtained. Then,

by substituting those in Equation 2.4 and 2.5, the proof is completed. □

Corollary 3.8.

• TB
T ψ(s, v) is always developable.
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• TB
T ψ(s, v) is minimal when γ(s) is a plane curve.

Theorem 3.8. The normal curvature TB
T κn, the geodesic curvature TB

T κg and the geodesic

torsion TB
T τg of the TB

T ψ(s, v) surface are given as follows

TB
T κn = ϵ3

κτ (h− 1)√
2

, TB
T κg = −ϵ3κ, TB

T τg = −ηκτ, (3.19)

respectively.

Proof. Recall the Equation 3.18, since the base is the same TB− Smarandache curve. The

derivative of the normal vector of TBT ψ(s, v) computed before as TBT n = −ϵ3B is given in the

following

TB
T n′ = ϵ3τN.

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.19 of Theorem 3.8, we

have the following corollary:

Corollary 3.9.

• The TB− Smarandache curve of γ(s) cannot be geodesic on TB
T ψ(s, v).

• If γ(s) is a plane curve , then its corresponding TB− Smarandache curve lies both

as asymptotic and curvature line on TB
T ψ(s, v).

3.2.3. The characteristics of the ruled surface TB
B ψ(s, v).

Theorem 3.9. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TBB ψ(s, v) are given as following:

TB
B I =

(
1√
2
κ−

(
v +

1√
2

)
τ

)2

ds2 + dv2,

TB
B II =− ϵ4

(
1√
2
κ2 −

(
v +

1√
2

)
κτ

)
ds2,

TB
B K =0,

TB
B H =− ϵ4

κ√
2
(
κ− τ

(√
2v + 1

)) ,
respectively, where ϵ4 = sign

(
κ− τ

(√
2v + 1

))
.
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Proof. The partial derivatives of TBB ψ(s, v) are given as follows

TB
B ψ(s, v)s =

(
1√
2
κ−

(
v +

1√
2

)
τ

)
N,

TB
B ψ(s, v)ss =

(
− 1√

2
κ2 +

(
v +

1√
2

)
κτ

)
T +

(
1√
2
κ′ −

(
v +

1√
2

)
τ ′
)
N

+

(
1√
2
κτ −

(
v +

1√
2

)
τ2
)
B,

TB
B ψ(s, v)v =B,

TN
N ψ(s, v)sv = −τN, TN

N ψ(s, v)vv = 0.

From Equation 2.3, the normal vector of TBB ψ(s, v) is computed as

TB
B n = ϵ4T.

By recalling Equation 2.6, the components for the fundamental forms can be obtained. Then,

by substituting those in Equation 2.4 and 2.5, the proof is completed. □

Corollary 3.10.

• TB
B ψ(s, v) is always developable.

• TB
B ψ(s, v) can not be minimal.

• If γ(s) is a plane curve, then TB
B ψ(s, v) is a constant-mean-curvature (CMC) surface.

Theorem 3.10. The normal curvature TB
B κn, the geodesic curvature TB

B κg and the geodesic

torsion TB
B τg of the TB

B ψ(s, v) surface are given as follows

TB
B κn = ϵ4

κ2 (h− 1)√
2

, TB
B κg = ϵ4τ,

TB
B τg = ηκτ, (3.20)

respectively.

Proof. By recalling again the Equation 3.18, and taking the derivative of the normal of

TB
B ψ(s, v) computed before as TBB n = −T , we have

TB
B n′ = −κN.

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.20 of Theorem 3.10,

we have the following corollary:

Corollary 3.11.

• The TB− Smarandache curve of γ(s) cannot be asymptotic on TB
B ψ(s, v).
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• If γ(s) is a plane curve, then its corresponding TB− Smarandache curve lies both as

geodesic and curvature line on TB
B ψ(s, v).

Example 3.2. By reconsidering the curve given in Example 3.1, and using the Equations

3.14, 3.15 and 3.16 the ruled surfaces TB
T ψ(s, v), TBN ψ(s, v) and TB

B ψ(s, v) can be easily ob-

tained and illustrated in Fig. 2.

3.3. Ruled Surfaces with the Base NB− Smarandache Curve.

Definition 3.3. Let γ : s ∈ I ⊂ ℜ → E3 be a regular unit speed curve of C2 class and

{T, N, B} denotes the set of its Frenet vectors. The original definition of NB− Smaran-

dache ruled surface introduced in [11] is as following:

NB
T ψ(s, v) =

N +B√
2

+ vT. (3.21)

As before, the other two ruled surfaces with the base of NB− Smarandache curve and with

the ruling of other two Frenet vectors are discussed, which are parameterized in the following

NB
N ψ(s, v) =

N +B√
2

+ vN,

NB
B ψ(s, v) =

N +B√
2

+ vB.

(3.22)

The conditions for the base curve to be asymptotic, geodesic and curvature line on each ruled

surface are examined, as well.

3.3.1. The characteristics of the ruled surface NB
T ψ(s, v).

[11] claimed the following corollaries for the ruled surface NB
T ψ(s, v)

Corollary 3.12. [11]

• If γ(s) is a plane curve, then NB
T ψ(s, v) is developable, and if it is developable, then

it is also minimal.

• NB
T ψ(s, v) is minimal if the following relation holds

τ
(
2κ2τ − 2τ2 − κ2

)
√
2

+ v
(
κ′τ + 2κτ2 − κ2τ ′

)
−
√
2v2κ2τ = 0.

Remark 3.3. We note that in order for the ruled surface NBT ψ(s, v) be minimal, the following

relation should hold

v
√
2
(
2κτ2 + κ′τ − κτ ′

)
− τ

(
2τ2 − κ2

(
1− 2v2

))
= 0.
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(a) The ruled surface TB
T ψ(s, v) (b) The ruled surface TB

N ψ(s, v)

(c) The ruled surface TB
B ψ(s, v)

Figure 2. Ruled surfaces with base curve of TB-Smarandache curve (red)

where s ∈ [−2π, 2π] and v ∈ [−2, 2]
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The base curve characteristics of the NBT ψ(s, v) surface associated to the curve γ(s) is given

with the following theorem.

Theorem 3.11. The normal curvature , the geodesic curvature and the geodesic torsion of

the NB
T ψ(s, v) surface are given as follows

NB
T κn =

(√
2v − 2h

)
τ2 − (τ + h′κ)

√
2v − τκ

2
√
h2 −

√
2hv + v2

,

NB
T κg =

(
2h2 + 1− 2

√
2hv

)√
2τ + 2

((√
2h− v

)
h′ − vκ

)
2 (2h2 + 1)

√
h2 −

√
2hv + v2

, (3.23)

NB
T τg =

√
2v(h′)2 + τ

(
2h2 −

√
2hv + 2v2 + 1

)
h′(

h2 −
√
2hv + v2

)
(2h2 + 1)

3
2

+

(
h−

√
2v
) (

2h2 −
√
2hv + 1

)
κ2

2
(
h2 −

√
2hv + v2

)√
2h2 + 1

,

respectively.

Proof. By referring the Equation (2.1), the tangent and its derivative, and the second order

derivative of NB− Smarandache curve are given as

TNB =− T + h (N −B)√
2h2 + 1

,

T ′
NB =

h (2hτ + 2h′ + κ)T −
(
2h3τ + 3hτ + h′ + κ

)
N −

(
2h3τ + hτ − h′

)
B

(2h2 + 1)
3
2

,

(
N +B√

2

)′′
=
(−κ′ + κτ)T −

(
τ2 + hκ′ + h′κ+ κ2

)
N −

(
τ2 − hκ′ − h′κ

)
B

√
2

.

(3.24)

Moreover, the derivative of the normal ofNB− surface defined as NBT n =
τN +

(
τ −

√
2κv

)
B√

τ2 +
(
τ −

√
2κv

)2
in [11], but expressed by the harmonic curvature function as

NB
T n =

hN +
(
h−

√
2v
)
B√

h2 +
(
h−

√
2v
)2 is given in the following

NB
T n′ =−

(
τ
√
2

2
√
h2 −

√
2hv + v2

)
T +

τ (2v − h
√
2
) (
h2 −

√
2hv + v2

)
+ h′v

(√
2v − h

)
2
(
h2 −

√
2hv + v2

) 3
2

N

+

h ((h2 + v2
)
τ
√
2− v (2hτ − h′)

)
2
(
h2 −

√
2hv + v2

) 3
2

B.

By substituting the relations given above into Equation 2.7, the proof is completed. □
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Without the need for proof, from Definition 2.2 and the Equation 3.23 of Theorem 3.11,

we have the following corollary:

Corollary 3.13.

• The NB− Smarandache curve of γ(s) cannot be geodesic on NB
T ψ(s, v).

• If γ(s) is plane curve, then its corresponding NB− Smarandache curve lies both as

asymptotic and curvature line on NB
T ψ(s, v), while the geodesic curvature simplifies

to NB
T κn = −κ.

3.3.2. The characteristics of the ruled surface NB
N ψ(s, v).

Theorem 3.12. The 1st and 2nd fundamental forms, and the Gaussian and mean curvature

of the ruled surface, NBN ψ(s, v) are given as following:

NB
N I =

((
v2 + v

√
2 + 1

)
(κ2 + τ2)− κ2

2

)
ds2 − τ

√
2dsdv + dv2,

NB
N II =

(τκ′ − κτ ′)
∣∣√2v + 1

∣∣
√
2
√
κ2 + τ2

ds2,

NB
N K =0,

NB
N H =

(κ′τ − κτ ′)∣∣2v +√
2
∣∣ (κ2 + τ2)

3
2

,

respectively.

Proof. The partial derivatives of NBN ψ(s, v) are given as follows

NB
N ψ(s, v)s =−

(
v +

1√
2

)
κT − 1√

2
τN +

(
v +

1√
2

)
τB,

NB
N ψ(s, v)ss =

(
1√
2
κτ −

(
v +

1√
2

)
κ′
)
T −

((
1√
2
+ v

)(
κ2 + τ2

)
+

1√
2
τ ′
)
N

−
(

1√
2
τ2 −

(
v +

1√
2

)
τ ′
)
B,

NB
N ψ(s, v)v =N,

NB
N ψ(s, v)sv = −κT + τB, NB

N ψ(s, v)vv = 0.

From Equation 2.3, the normal vector of NBN ψ(s, v) is computed as

NB
N n = −ϵ1

τT + κB√
κ2 + τ2

.

Let us remind that ϵ1 = sign(
√
2v+1) was already defined in the proof of the Theorem (3.4).

Then, by recalling Equation 2.6, the components for the fundamental forms can be obtained,

and by substituting those in the Equations 2.4 and 2.5, the proof is completed. □
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Corollary 3.14.

• NB
N ψ(s, v) is always developable.

• NB
N ψ(s, v) is minimal when γ(s) is a general helix.

Theorem 3.13. The normal curvature NB
N κn, the geodesic curvature NB

N κg and the geodesic

torsion NB
N τg of the NB

N ψ(s, v) surface are given as follows

NB
N κn =− ϵ1

κh′√
2 (h2 + 1)

,

NB
N κg =− ϵ1

(
τh
(
2h2 + 3

)
+ h′ + κ

)
(2h2 + 1)

√
h2 + 1

, (3.25)

NB
N τg =−

h′
(
τh
(
2h2 + 3

)
+ h′ + κ

)
(h2 + 1) (2h2 + 1)

3
2

,

respectively.

Proof. Recall the Equation 3.24, since the base is the same NB− Smarandache curve. The

derivative of the normal vector of NBN ψ(s, v) ruled surface expressed by the harmonic curva-

ture function as NBN n = −ϵ1
(hT +B)√
h2 + 1

is given in the following

NB
N n′ = −ϵ1σκ (T − hB) .

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.25 of Theorem 3.13,

we have

Corollary 3.15.

• The NB− Smarandache curve of γ(s) cannot be geodesic on NB
N ψ(s, v).

• If γ(s) is a plane curve , then its NB− Smarandache curve lies both as asymptotic

and curvature line on NB
N ψ(s, v), while the geodesic curvature is NB

N κg = −κ.

Remark 3.4. The two corollaries expressed for the ruled surfaces TN
T ψ(s, v) and TN

N ψ(s, v)

are exactly the same for the ruled surface NB
N ψ(s, v).
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3.3.3. The characteristics of the ruled surface NB
B ψ(s, v).

Theorem 3.14. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, NBB ψ(s, v) are given as following:

NB
B I =

(
κ2

2
+
(
v2 + v

√
2 + 1

)
τ2
)
ds2 + τ

√
2dsdv + dv2,

NB
B II =− κ

(τ2 (√2v + 1
)
− (τκ′ + κτ ′)

) (√
2v + 1

)
−
(
τ2 + κ2

)
√
2

√
κ2 +

(
τ
(√

2v + 1
))2

 ds2

− 2κτ√
κ2 +

(
τ
(√

2v + 1
))2dsdv,

NB
B K =− 2

(
κτ

κ2 +
(
τ
(√

2v + 1
))2
)2

,

NB
B H =−

(√
2v + 1

)
(κτ ′ + τκ′) +

(
2τ2v

(√
2 + v

)
+ κ2

)
κ

√
2
(
κ2 +

(
τ
(√

2v + 1
))2) 3

2

,

respectively.

Proof. The partial derivatives of NBB ψ(s, v) are given as follows

NB
B ψ(s, v)s =− κ√

2
T − τ

(
v +

1√
2

)
N +

τ√
2
B,

NB
B ψ(s, v)ss =

((
v +

1√
2

)
κτ − κ′√

2

)
T −

(
κ2 + τ2√

2
+ τ ′

(
v +

1√
2

))
N

−
(
τ2
(
v +

1√
2

)
− τ ′√

2

)
B,

NB
B ψ(s, v)v =B,

NB
B ψ(s, v)sv = −τN, NB

B ψ(s, v)vv = 0.

From 2.3, the normal vector of NBB ψ(s, v) is computed as

NB
B n = −

τ
(√

2v + 1
)
T − κN√

κ2 +
(
τ
(√

2v + 1
))2 .

By using the Equation (2.6), the components for the fundamental forms can be obtained.

Then, by substituting those in the Equation (2.4) and (2.5), the proof is completed. □
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Corollary 3.16.

• NB
B ψ(s, v) is developable when γ(s) is a plane curve.

• NB
B ψ(s, v) is minimal if the following relation holds:(√

2v + 1
) (
κτ ′ + τκ′

)
+ κ

(
2τ2v

(√
2 + v

)
+ κ2

)
= 0.

Theorem 3.15. The normal curvature NB
B κn, the geodesic curvature NB

B κg and the geodesic

torsion NB
B τg of the NB

B ψ(s, v) surface are given as follows

NB
B κn =

√
2vκ′h− τ2

(√
2v + 2

)
− h′κ− κ2

√
2

√
h2
(√

2v + 1
)2

+ 1
,

NB
B κg =

h′ − hτ
(
2h2 + 1

) (√
2v + 1

)
(2h2 + 1)

√
h2
(√

2v + 1
)2

+ 1
,

NB
B τg =

((
2v2 + 3

)√
2h2v +

(
6v2 + 1

)
h2 +

√
2v + 1

)
(h′)2(

h2
(√

2v + 1
)2

+ 1
)
(2h2 + 1)

3
2

(3.26)

−
κ
(
2h4

(√
2v + 1

)
− h2

(
2v2 + 1

)
− 1
)
h′√

h2
(√

2v + 1
)2

+ 1(2h2 + 1)
3
2

−
(
2h2 +

√
2h2v + 1

) (√
2v + 1

)
τ2(

h2
(√

2v + 1
)2

+ 1
)√

2h2 + 1
,

respectively.

Proof. By recalling again the Equation 3.24, and taking the derivative of the normal of

NB
B ψ(s, v) expressed by the harmonic curvature function as NBB n = −

h
(√

2v + 1
)
T −N√

h2
(√

2v + 1
)2

+ 1
,
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we have

NB
B n′ =−


(√

2v + 1
)
h′ + κ

(
h2
(√

2v + 1
)2

+ 1
)

(
h2
(√

2v + 1
)2

+ 1
) 3

2

T

−

hh′
(√

2v + 1
)2

+ τ
(
h2
(√

2v + 1
)2

+ 1
) (√

2v + 1
)

(
h2
(√

2v + 1
)2

+ 1
) 3

2

N

+

 τ√
h2
(√

2v + 1
)2

+ 1

B.

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.26 of Theorem 3.15,

we have the following corollary:

Corollary 3.17.

• If the curve γ(s) is plane curve, then its corresponding NB− Smarandache curve lies

both as geodesic and curvature line on the ruled surface NB
B ψ(s, v), while the normal

curvature simplifies to the relation NB
B κn = − κ2√

2
.

• The NB− Smarandache curve of γ(s) cannot be asymptotic on the ruled surface

NB
B ψ(s, v).

Example 3.3. By utilizing the same curve as of previous examples, and by applying the

Equations 3.14, 3.21 and 3.22 the ruled surfaces NBT ψ(s, v), NBN ψ(s, v) and NB
B ψ(s, v) can be

easily obtained and illustrated in Fig. 3
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(a) The ruled surface NB
T ψ(s, v) (b) The ruled surface NB

N ψ(s, v)

(c) The ruled surface NB
B ψ(s, v)

Figure 3. Ruled surfaces with base curve of NB-Smarandache curve (red)

where s ∈ [−2π, 2π] and v ∈ [−2, 2]
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3.4. Ruled Surfaces with the Base TNB− Smarandache Curve.

Definition 3.4. Let γ : s ∈ I ⊂ ℜ → E3 be a regular unit speed curve of C2 class and

{T, N, B} denotes the set of its Frenet vectors. Then the ruled surfaces with the base

of TNB− Smarandache curve and the generator lines as each one of them are defined as

following:

TNB
T ψ(s, v) =

(
T +N +B√

3

)
+ vT,

TNB
N ψ(s, v) =

(
T +N +B√

3

)
+ vN,

TNB
B ψ(s, v) =

(
T +N +B√

3

)
+ vB.

(3.27)

3.4.1. The characteristics of the ruled surface TNB
T ψ(s, v).

Theorem 3.16. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TNBT ψ(s, v) are given as following:

TNB
T I =

(
κ2 + τ2

3
+

(
κ− τ√

3
+ vκ

)2
)
ds2 − 2κ√

3
dsdv + dv2,

TNB
T II =

((√
3v + 1

)
(τκ′ − κτ ′)− τ

(
τ2 + κ2 +

(
κ
(√

3v + 1
)
− τ
)2))

ds2 + 2
√
3κτ dsdv

√
3

√
τ2 +

(
κ
(√

3v + 1
)
− τ
)2 ,

TNB
T K =− 3

(
κτ

τ2 +
(
κ
(√

3v + 1
)
− τ
)2
)2

,

TNB
T H =−

√
3

2

τ
(
τ2 +

(√
3vκ− τ

) (
2κ+

√
3vκ− τ

))
+ (κτ ′ − κ′τ)

(√
3v + 1

)(
τ2 +

(
κ
(√

3v + 1
)
− τ
)2) 3

2

,

respectively.

Proof. The partial derivatives of TNBT ψ(s, v) are given as follows

TNB
T ψ(s, v)s =− κ√

3
T +

((
1√
3
+ v

)
κ− τ√

3

)
N +

τ√
3
B,

TNB
T ψ(s, v)ss =

(
−
(

1√
3
+ v

)
κ2 +

κτ − κ′√
3

)
T −

(
κ2 + τ2 + τ ′√

3
−
(

1√
3
+ v

)
κ′
)
N

+

((
1√
3
+ v

)
τκ+

τ ′ − τ2√
3

)
B,

TNB
T ψ(s, v)v =T,

TNB
T ψ(s, v)sv = κN, TNB

T ψ(s, v)vv = 0.
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From Equation 2.3, the normal vector of TNBT ψ(s, v) is computed as

TNB
T n =

τN −
(
κ
(√

3v + 1
)
− τ
)
B√

τ2 +
(
κ
(√

3v + 1
)
− τ
)2 .

By recalling Equation 2.6, the components for the fundamental forms can be obtained. Then,

by substituting those in Equation 2.4 and 2.5, the proof is completed. □

Corollary 3.18.

• If the curve γ(s) is a plane curve, then the ruled surface TNBT ψ(s, v) is both developable

and minimal.

• If the curve γ(s) is a regular unit speed space curve, then TNB
T ψ(s, v) is minimal if

the following relation holds

τ
(
τ2 +

(√
3vκ− τ

)(
2κ+

√
3vκ− τ

))
−
(
κτ ′ − κ′τ

) (√
3v + 1

)
= 0.

The base curve characteristics of the TNB
T ψ(s, v) surface associated to the curve γ(s) is

given with the following theorem.

Theorem 3.17. The normal curvature TNB
T κn, the geodesic curvature TNB

T κg and the geo-

desic torsion TNB
T τg of the TNB

T ψ(s, v) surface are given as follows

TNB
T κn =−

(√
3v + 1

)
(h′κ+ hκ′)− h

(
κ′ + κ2

((√
3v − 2h

)
(h− 1)− 2

))
√
3

√(√
3v − h+ 1

)2
+ h2

,

TNB
T κg =−

(√
3v − 2h+ 1

)
h′ + 2κ

(√
3v − h+ 1

) (
h2 − h+ 1

)
2 (h2 − h+ 1)

√(√
3v − h+ 1

)2
+ h2

,

TNB
T τg =

(h′)2
(√

3v + 1
)
(2h− 1)

−κh′
(
3hv2 (1− 2h) + v

√
3
(
2h2 − 3h+ 2

)
(h+ 1)− 2

(
h2 − h+ 1

) (
2h2 − 1

))
2
√
2
((√

3v − h+ 1
)2

+ h2
)
(h2 − h+ 1)

3
2

− ϵ5
κτ
(√

3v − h+ 1
) (

(h− 1)
(√

3v − 2h
)
− 2
)

√
2
((√

3v − h+ 1
)2

+ h2
)√

h2 − h+ 1
,

(3.28)

respectively, where ϵ5 = sign(h2 − h+ 1).



INT. J. MAPS MATH. (2025) 8(2):377-412 / ON RULED SURFACES BY SMARANDACHE 403

Proof. By referring the Equation (2.1), the tangent and its derivative, and the second order

derivative of TNB− Smarandache curve are given as

TTNB =
−T − (h− 1)N + hB√

2
√
h2 − h+ 1

,

T ′
TNB =

(
h′ (2h− 1) + 2κ (h− 1)

(
h2 − h+ 1

))
T

−
(
h′ (h+ 1) + 2κ

(
h2 + 1

) (
h2 − h+ 1

))
N

−
(
h′ (h− 2) + 2τ (h− 1)

(
h2 − h+ 1

))
B

2
√
2(h2 − h+ 1)

3
2

,

(
T +N +B√

3

)′′
=

−
(
κ′ − κ2 (h− 1)

)
T −

(
κ′ (h− 1) + κ

(
h′ + κ

(
h2 + 1

)))
N

+(hκ′ + κ (h′ − τ (h− 1)))B
√
3

.

(3.29)

Moreover, the derivative of the normal of TNBT ψ(s, v) ruled surface which is expressed by the

harmonic curvature function as TNBT n =
hN −

(√
3v − h+ 1

)
B√(√

3v − h+ 1
)2

+ h2
is given in the following

TNB
T n′ =− τ√(√

3v − h+ 1
)2

+ h2
T

−

(
τ
((√

3v − h+ 1
)2

+ h2
)
+ h′

(√
3v + 1

)) (√
3v − h+ 1

)
((√

3v − h+ 1
)2

+ h2
) 3

2

N

−
h
(
τ
((√

3v − h+ 1
)2

+ h2
)
+ h′

(√
3v + 1

))
((√

3v − h+ 1
)2

+ h2
) 3

2

B.

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.28 of Theorem 3.17,

we have the following corollary:

Corollary 3.19.

• The TNB− Smarandache curve of γ(s) cannot be geodesic on the ruled surface

TNB
T ψ(s, v).

• If the curve γ(s) is plane curve, then its corresponding TNB− Smarandache curve

lies both as asymptotic and curvature line on the ruled surface TNB
T ψ(s, v), while the

geodesic curvature simplifies to TNB
T κn = −κ.



404 S. ŞENYURT, D. CANLI, K. H. AYVACI, AND Y. LI

3.4.2. The characteristics of the ruled surface TNB
N ψ(s, v).

Theorem 3.18. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TNBN ψ(s, v) are given as following:

TNB
N I =

((
1√
3
+ v

)2 (
κ2 + τ2

)
+

(κ− τ)2

3

)
ds2 +

2√
3
(κ− τ)dsdv + dv2,

TNB
N II =

(∣∣√3v + 1
∣∣ (κ′τ − κτ ′)

√
3
√
(τ2 + κ2)

)
ds2,

TNB
N K =0,

TNB
N H =

√
3

2

τκ′ − κτ ′∣∣√3v + 1
∣∣ (κ2 + τ2)

3
2

,

respectively.

Proof. The partial derivatives of TNBN ψ(s, v) are given as follows

TNB
N ψ(s, v)s =−

(
1√
3
+ v

)
κT +

(κ− τ)√
3

N +

(
1√
3
+ v

)
τB,

TNB
N ψ(s, v)ss =−

(
(κ− τ)κ√

3
+ κ′

(
1√
3
+ v

))
T −

((
1√
3
+ v

)(
τ2 + κ2

)
− (κ′ − τ ′)√

3

)
N

+

((
1√
3
+ v

)
τ ′ +

(κ− τ) τ√
3

)
B,

TNB
N ψ(s, v)v =N,

TNB
N ψ(s, v)sv = −κT + τB, TNB

N ψ(s, v)vv = 0.

From Equation 2.3, the normal vector of TNBN ψ(s, v) is computed as

TNB
N n = −ϵ6

(τT + κB)√
(τ2 + κ2)

,

where ϵ6 = sign(
√
3v + 1). By recalling Equation 2.6, the components for the fundamental

forms can be obtained. Then, by substituting those in Equation 2.4 and 2.5, the proof is

completed. □

Corollary 3.20.

• TNB
N ψ(s, v) is always developable.

• TNB
N ψ(s, v) is minimal when γ(s) is a general helix.
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Theorem 3.19. The normal curvature TNB
N κn, the geodesic curvature TNB

N κg and the geo-

desic torsion TNB
N τg of the TNB

N ψ(s, v) surface are given as follows

TNB
N κn =− ϵ6

h′κ√
3
√
h2 + 1

,

TNB
N κg =− ϵ6

(h+ 1)h′ + 2κ
(
h2 + 1

) (
h2 − h+ 1

)
2
√
h2 + 1 (h2 − h+ 1)

, (3.30)

TNB
N τg =−

(h+ 1) (h′)2 + 2κh′
(
h2 + 1

) (
h2 − h+ 1

)
2
√
2 (h2 + 1) (h2 − h+ 1)

3
2

,

respectively.

Proof. By using the Equation 3.29, and taking the derivative of the normal of TNBN ψ(s, v)

ruled surface expressed by the harmonic curvature function as TNBN n = −ϵ6
hT +B√
h2 + 1

is given

in the following

TNB
N n′ = −ϵ6σκ (T − hB) .

By substituting the relations given above into Equation 2.7, the proof is completed. □

Without the need for proof, from Definition 2.2 and the Equation 3.30 of Theorem 3.19,

we have the following corollary:

Corollary 3.21.

• The TNB− Smarandache curve of γ(s) cannot be geodesic on the ruled surface

TNB
N ψ(s, v).

• If γ(s) is a general helix such that h is constant, then its corresponding TNB−

Smarandache curve lies both as asymptotic and curvature line on TNB
N ψ(s, v), while

the geodesic curvature simplifies to TNB
N κg = −κ

√
h2 + 1.
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3.4.3. The characteristics of the ruled surface TNB
B ψ(s, v).

Theorem 3.20. The 1st and 2nd fundamental forms, and the curvatures of Gaussian and

mean for the ruled surface, TNBB ψ(s, v) are given as following:

TNB
B I =

(
κ2 + τ2

3
+

(
1√
3
(κ− τ)− vτ

)2
)
ds2 +

2τ√
3
dsdv + dv2,

TNB
B II =−

(
κ
(
κ2 + τ2 +

(
κ− τ

(√
3v + 1

))2)
+
(√

3v + 1
)
(κτ ′ − τκ′)

)
ds2 − 2

√
3κτdsdv

√
3

√
κ2 +

(
κ− τ

(√
3v + 1

))2 ,

TNB
B K =− 3

(
κτ

κ2 +
(
κ− τ

(√
3v + 1

))2
)2

,

TNB
B H =−

√
3

2

(κτ ′ − κ′τ)
(√

3v + 1
)
− κ

(
τ2 − κ2 −

(
κ− τ

(√
3v + 1

))2)
((
κ− τ

(
v
√
3 + 1

))2
+ κ2

) 3
2

,

respectively.

Proof. The partial derivatives of TNBB ψ(s, v) are given as follows

TNB
B ψ(s, v)s =− 1√

3
(κT − τB) +

(
1√
3
(κ− τ)− vτ

)
N,

TNB
B ψ(s, v)ss =−

(
1√
3
κ′ +

(
(κ− τ)√

3
− vτ

)
κ

)
T

−
(

1√
3

(
κ2 + τ2 − κ′

)
+

(
1√
3
+ v

)
τ ′
)
N

+

(
1√
3
τ ′ +

(
1√
3
(κ− τ)− vτ

)
τ

)
B,

TNB
B ψ(s, v)v =B,

TNB
B ψ(s, v)sv = −τN, TNB

B ψ(s, v)vv = 0.

From Equation 2.3, the normal vector of TNBB ψ(s, v) is computed as

TNB
B n =

(
κ− τ

(√
3v + 1

))
T + κN√

κ2 +
(
κ− τ

(√
3v + 1

))2 .
By recalling Equation 2.6, the components for the fundamental forms can be obtained. Then,

by substituting those in Equation 2.4 and 2.5, the proof is completed. □
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Corollary 3.22.

• TNB
B ψ(s, v) is developable, when γ(s) is a plane curve.

• TNB
B ψ(s, v) can not be minimal.

• If γ(s) is a plane curve, then TNB
B ψ(s, v) is a constant-mean-curvature (CMC) sur-

face.

Theorem 3.21. The normal curvature TNB
B κn, the geodesic curvature TNB

B κg and the geo-

desic torsion TNB
B τg of the TNB

B ψ(s, v) surface are given as follows

TNB
B κn =−

h′κ−
√
3hκ′v+κ2

(
h (h− 1)

(√
3v + 2

)
+ 2
)

√
3

√(
h
(√

3v + 1
)
− 1
)2

+ 1
,

TNB
B κg =

h′ −
(
h′ + 2τ

(
h2 − h+ 1

)) (
h
(√

3v + 1
)
− 1
)

2 (h2 − h+ 1)

√(
h
(√

3v + 1
)
− 1
)2

+ 1
, (3.31)

TNB
B τg =

(2− h)
(
(h′′)2

(√
3v + 1

)
+ κh′3h2v2

)
−κh′

(√
3hv (h+ 1)

(
2h2 − 3h+ 2

)
+ 2

(
h2 − h+ 1

) (
h2 − 2

))
2
√
2(h2 − h+ 1)

3
2

((
h
(√

3v + 1
)
− 1
)2

+ 1
)

− ϵ5
κτ
(
2h2 +

(√
3hv − 2

)
(h− 1)

) (
h
(√

3v + 1
)
− 1
)

√
2
√
h2 − h+ 1

((
h
(√

3v + 1
)
− 1
)2

+ 1
) ,

respectively, where ϵ5 = sign(h2 − h+ 1) as already defined in the Theorem 3.17.

Proof. By using the Equation 3.29, and taking the derivative of the normal of TNBB ψ(s, v)

ruled surface expressed by the harmonic curvature function as

TNB
B n = −

(
h
(√

3v + 1
)
− 1
)
T −B√(

h
(√

3v + 1
)
− 1
)2

+ 1
is given in the following

TNB
B n′ =−

2κ+
(
h′ + τ

(
h
(√

3v + 1
)
− 2
)) (√

3v + 1
)((

h
(√

3v + 1
)
− 1
)2

+ 1
) 3

2

T

−
√
3
(
2κ+

(
h′ + τ

(
h
(√

3v + 1
)
− 2
)) (√

3v + 1
)) (

h
(√

3v + 1
)
− 1
)((

h
(√

3v + 1
)
− 1
)2

+ 1
) 3

2

N

+
τ√(

h
(√

3v + 1
)
− 1
)2

+ 1
B.

By substituting the relations given above into Equation 2.7, the proof is completed. □
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Without the need for proof, from Definition 2.2 and the Equation 3.31 of Theorem 3.21,

we have the following corollary:

Corollary 3.23.

• The TNB− Smarandache curve of γ(s) cannot be asymptotic on TNB
B ψ(s, v).

• If γ(s) is plane curve, then its corresponding TNB− Smarandache curve lies both

as geodesic and curvature line on the ruled surface TNB
B ψ(s, v), while the asymptotic

curvature simplifies to TNB
B κn = − κ√

3
.

Example 3.4. By utilizing the same curve as of previous examples, and by applying the

Equations 3.14, and 3.27 the ruled surfaces TNB
T ψ(s, v), TNBN ψ(s, v) and TNB

B ψ(s, v) can be

easily obtained and illustrated in Fig. 4.

(a) The ruled surface TNB
T ψ(s, v)

Figure 4. Ruled surfaces with base curve of TNB-Smarandache curve (red)

where s ∈ [−2π, 2π] and v ∈ [−2, 2]
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(b) The ruled surface TNB
N ψ(s, v)

(c) The ruled surface TNB
B ψ(s, v)

Figure 4. Ruled surfaces with base curve of TNB-Smarandache curve (red)

where s ∈ [−2π, 2π] and v ∈ [−2, 2]
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4. Conclusion

The theory of ruled surfaces plays an important role in the field of geometric modeling,

since they are the most preferred ones for computational designs. This study introduces a

series of new ruled surfaces and provides some of their metric properties. Such properties as

developability and minimality are discussed in terms of the fundamental forms and principal

curvatures. Hence, the required conditions are provided for each ruled surface to meet these

characteristics. Moreover, asymptotic, geodesic and curvature line characteristics of the each

Smarandache curve as a base curve are discussed. This way of generating and characterizing

new ruled surfaces as in this study can be extended by referring other orthonormal frames

and by using different space forms. Finally, researchers can be interested to examine the dual

expressions for these surfaces.
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1. Introduction

The idea of weak convergence, first proposed by Banach [1], is a foundational concept in

functional analysis, offering a framework for understanding the convergence behavior of se-

quences in infinite-dimensional spaces. Despite its significance, weak convergence has several

limitations, particularly when dealing with more complex sequence structures or when finer

convergence criteria are required.

In recent years, researchers like Mahanta and Tripathy [15] have advanced the study of vector-

valued sequence spaces by exploring new types of convergence and their implications. Their

work has contributed to a deeper understanding of the algebraic and topological properties

of these spaces and has led to the development of innovative tools and techniques for ana-

lyzing convergence in more generalized contexts. This expanding research underscores the
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continuous evolution and refinement of sequence space theory, addressing the shortcomings

of traditional weak convergence and meeting the demands of increasingly complex mathe-

matical analysis.

Freedman et al. [7] conducted pioneering research on lacunary sequences, investigating

strongly Cesaro summable and strongly lacunary convergent sequences in the context of

a general lacunary sequence θ. Their work uncovered significant connections between these

two classes of sequences. Following their initial findings, researchers such as Ercan et al.

[5], Gumus [8], Dowari, and Tripathy [2, 3] have further explored various aspects of lacunary

sequences, broadening our understanding of their properties and applications. More recently,

Tamuli and Tripathy [19, 20] have advanced this field by examining generalized difference

lacunary weak convergence of sequences. Their study sheds light on new convergence behav-

iors and enhances the theoretical framework for analyzing lacunary sequences, highlighting

the ongoing development and deepening of this area of research.

Motivation: In recent years, the study of weak convergence in Banach [1] spaces has gained

significant attention due to its essential role in various areas of functional analysis, including

the theory of distribution, optimization, and approximation methods. The concept of weak

convergence was introduced by Banach in the early 20th century, specifically in the 1920s.

Banach developed the theory of weak convergence while working in the context of Banach

spaces, which are complete normed vector spaces. His work laid the foundation for the study

of weak convergence in functional analysis. Fatih Nuray [13] investigated lacunary weak sta-

tistical convergence. Motivated by this work, we have investigated some classes of lacunary

weak convergent of sequences defined by Orlicz function.

Potential Applications: The work done in this article are on weak convergence. The con-

cept of strong convergence implies weak convergence, but not necessarily conversely. There-

fore the work done in this article can be applied for other areas of research, and since, it

covers a larger class of sequences.

2. Definition and Preliminaries

The concept of the difference sequence space Z(∆) was first introduced by Kizmaz [9],

defined as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ X},

where ∆x = (∆xk) = (xk − xk+1), for all k ∈ N.

Later, Et and Colak [6] extended this idea by defining generalized difference sequence spaces,
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expressed as:

Z(∆p) = {x = (xk) : (∆
pxk) ∈ X},

for Z = ℓ∞, c, and c0, where ∆pxk = ∆p−1xk − ∆p−1xk+1 and ∆0xk = xk ∀ k ∈ N.The

binomial expansion for this generalized difference operator is provided below:

∆pxk =

p∑
v=0

(−1)v

 p

v

xk+v, for all k ∈ N. (2.1)

These generalized difference sequence spaces have been further studied by researchers such

as Tripathy [16], Tripathy , Et and Altin [17], among others.

Consider a sequence θ = (ks) of positive integers, which is termed lacunary if k0 = 0, 0 <

ks < ks+1, and hs = ks − ks−1 → ∞ as s → ∞. The intervals determined by θ are denoted

by Is = (ks−1, ks), and qs = ks/ks−1 ∀ s ∈ N.

According to Freedman et al., the space of lacunary strongly convergent sequence Nθ is

defined as follows: [7]

Nθ =

{
x : lim

s→∞

1

hs

∑
i∈Is

|xi − L| = 0, for some L

}
.

An Orlicz function H : [0,∞) → [0,∞) is defined such that H(0) = 0,H(x) > 0 for x >

0, and H(x) → ∞, as x→ ∞. This function is continuous, non-decreasing, and convex.

Lindenstrauss and Tzafriri [12] introduced the concept of the Orlicz function to define the

sequence space

ℓH =

{
(xi) ∈ ω :

∞∑
i=1

H
(
|xi|
ρ

)
<∞, for some ρ > 0

}
,

where ω denotes the class of all sequences. The norm of the sequence space ℓH is given by

||x|| = inf

{
ρ > 0 :

∞∑
i=1

H
(
|xi|
ρ

)
≤ 1

}
,

which transforms it into a Banach space, commonly referred to as an Orlicz sequence space.

Various researchers, including Tripathy and Esi [18], Parashar and Choudhury [14], Tripathy

and Mahanta [15], have explored different forms of Orlicz sequence spaces.

Definition 2.1. A sequence (xi) in a normed linear space X is called weakly convergent to

an element L ∈ X if

lim
i→∞

f(xi − L) = 0, for all f ∈ X ′,

where X ′ represents the continuous dual of X .
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Definition 2.2. A sequence (xi) in a normed linear space X is said to be lacunary weakly

convergent to L ∈ X if

lim
s→∞

1

hs

∑
k∈Is

f(xi − L) = 0,

for all f ∈ X ′, where X ′ is the continuous dual of X. In this context, the notation Dw
θ used

to denote lacunary weak convergent.

Definition 2.3. The sequence space J is termed solid if, for any sequence of scalar (αi)

with |αi| ≤ 1 for all i ∈ N, the condition (xi) ∈ J implies (αixi) ∈ J .

Definition 2.4. A sequence space J ⊂ ω referred to as monotone if it includes all pre-images

of its step spaces.

Definition 2.5. A sequence space J ⊂ ω is known as symmetric if, whenever (xi) ∈ J , the

permuted sequence (xπ(i)) also belongs to J , where π is a permutation of N.

Definition 2.6. A sequence space J is said to be convergence free, if x is in J and if yk = 0

whenever xk = 0, then y is in J

Lemma 2.1. A sequence space J being solid does not necessary imply that J is monotone.

Definition 2.7. An Orlicz function H satisfies the ∆2− condition if there exists a constant

T > 0 such that, for each z ≥ 0

H(2z) ≤ TH(z).

3. Main Result

In this section we introduce the following classes of sequences and establish result invloving

them.

[Dw
θ ,H,∆p]0 =

x = (xk) : lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
= 0, for some g > 0

 ;

[Dw
θ ,H,∆p]1 =

x = (xk) : lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk − L)|

g

)
= 0, for some L and g > 0

 ;

[Dw
θ ,H,∆p]∞ =

x = (xk) : lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
<∞, for some g > 0

 .

We state, without proof, the following result.
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Theorem 3.1. The classes of sequences [Dw
θ ,H,∆p]0, [Dw

θ ,H,∆p]1 and [Dw
θ ,H,∆p]∞ are

linear spaces.

Theorem 3.2. For any Orlicz function H, [Dw
θ ,H,∆p]∞ is a normed linear space for the

given norm

ξ∆p(x) =

p∑
i=1

|f(xi)|+ inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
≤ 1, s = 1, 2, 3, ...

 ;

where the infimum is taken over all g > 0.

Proof. Clearly, ξ∆p(x) = ξ∆p(−x), x = θ implies ∆pxk = 0 and as such we have H(θ) = 0.

Therefore ξ∆p(θ) = 0. Conversely support that ξ∆p(x) = 0, then

p∑
i=1

|f(xi)|+ inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
≤ 1, s = 1, 2, 3, ...

 = 0.

⇒
p∑

i=1

|f(xi)| = 0 and inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
≤ 1, s = 1, 2, 3, ...

 = 0.

From the first part we have

xi = θ̄, for i = 1, 2, 3, ...,m. (3.2)

where, θ̄ is the zero element. In accordance with this second section, there exists some

gε (0 < gε < ε) for a given ε > 0. such that

sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

gε

)
≤ 1

⇒
∑
k∈Is

H
(
|f(∆pxk)|

gε

)
≤ 1.

Thus, ∑
k∈Is

H
(
|f(∆pxk)|

ε

)
≤

∑
k∈Is

H
(
|f(∆pxk)|

gε

)
≤ 1.

Suppose ∆pxci ̸= θ̄, for each i. Taking ε→ 0, we have
|f(∆pxci )|

ε → ∞.

It follows that

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

ε

)
→ ∞,

as ε → 0, for ci ∈ Is. Hence we arrive at a contradiction. Therefore, ∆pxci = θ̄, for each i ∈

N. Thus ∆pxk = θ̄,∀k ∈ N.
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Therefore, it follows from (2.1) and (3.2) that xk = θ̄,∀k ∈ N. Hence x = θ.

Next let g1, g2 > 0 such that

sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g1

)
≤ 1.

and

sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g2

)
≤ 1.

Let g = g1 + g2, then we have

sup
s

1

hs

∑
k∈Is

H
(
|f(∆p(xk + yk)|

g

)
≤ 1.

Given that the g′s are not negative, we have

ξ∆p(x+y) =

p∑
i=1

|f(xi+yi)|+inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆p(xk + yk))|

g

)
≤ 1, s = 1, 2, 3, ...


⇒ ξ∆p(x+ y) ≤ ξ∆p(x) + ξ∆p(y).

Let φ ̸= 0, and φ ∈ C, then

ξ∆p(φx) =

p∑
i=1

|f(φxi)|+ inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆p(φxk))|

g

)
≤ 1, s = 1, 2, 3, ...


≤ |φ|ξ∆p(x).

This completes the theorem’s proof. □

Theorem 3.3. The sequence space [Dw
θ ,H,∆p]∞ is convex.

Proof. Consider (xk), (yk) ∈ [Dw
θ ,H,∆p]∞. Then from the definition of the space we can

write

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

gx

)
<∞, for some gx > 0,

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pyk)|

gy

)
<∞, for some gy > 0.

Now, for z = λx+ (1− λ)y we have to show that

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆p(λxk + (1− λ)yk)|

gz

)
<∞, for some gz > 0

Since H is convex function, we have

H
(
|f(∆p(λxk + (1− λ)yk)|

gz

)
≤ λH

(
|f(∆pxk)|

gx

)
+ (1− λ)H

(
|f(∆pyk)|

gy

)
,
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where gz = λgx + (1− λ)gy

Now, taking the limit s→ ∞ :

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pzk)|

gz

)
≤ λ lim

s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

gx

)
+(1−λ) lim

s→∞

1

hs

∑
k∈Is

H
(
|f(∆pyk)|

gy

)
Therefore, z = λx+ (1− λ)y ∈ [Dw

θ ,H,∆p]∞.

Hence [Dw
θ ,H,∆p]∞ is convex. □

Theorem 3.4. Let H1 and H2 be Orlicz functions satisfying ∆2− condition. Then

(i) [Dw
θ ,H1,∆

p]G ⊆ [Dw
θ ,H2.H1,∆

p]G .

(ii)[Dw
θ ,H1,∆

p]G ∩ [Dw
θ ,H2,∆

p]G ⊆ [Dw
θ ,H1 +H2,∆

p]G , where G = 0, 1, and ∞.

Proof. We prove it in the case of G = 0, we will apply same methods to the remaining cases.

(i) Let (xk) ∈ [Dw
θ ,H1,∆

p]0. Then ∃ g > 0 such that

lim
s→∞

1

hs

∑
k∈Is

H1

(
|f(∆pxk)|

g

)
= 0.

Let 0 < ε < 1 and 0 < δ < 1 such that H2(t) < ε, for 0 ≤ t < δ.

Let yk = H1

(
|f(∆pxk)|

g

)
and consider

∑
k∈Is

H2(yk) =
∑
1

H2(yk) +
∑
2

H2(yk),

where the summations are over yk > δ in the second summation and over yk ≤ δ in the first.

Since,

1

hs

∑
1

H2(yk) < H2(2)
1

hs

∑
1

(yk), (3.3)

for yk > δ, we have

yk < 1 +
yk
δ
.

Given that H2 is convex and non-decreasing, it follows thatSince, H2 is non-decreasing and

convex, it follows that

H2(yk) <
1

2
H2(2) +

1

2
H2

(
2yk
δ

)
.

Since, H2 satisfies ∆2− conditions, we have

H2(yk) = K
yk
δ
H2(2).
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Hence,

1

hs

∑
2

H2(yk) ≤ max
(
1,Kδ−1H2(2)

) 1

hs

∑
2

yk. (3.4)

Taking limit as s→ ∞, from (3.3) and (3.4) we have

(xk) ∈ [Dw
θ ,H2.H1,∆

p]0.

Similar proof can be shown for the other cases.

(ii) The proof is obvious and omitted. □

Taking H1(x) = x and H2 = H(x) in Theorem 3.4(i) we have the following particular case.

Corollary 3.1. [Dw
θ ,∆

p]0 ⊆ [Dw
θ ,H,∆p]0

Theorem 3.5. If p ≥ 1, then [Dw
θ ,H,∆p−1]G ⊂ [Dw

θ ,H,∆p]G for G = 0, 1,∞. In gen-

eral [Dw
θ ,H,∆i]G ⊂ [Dw

θ ,H,∆p]G for i = 0, 1, 2, ..., p− 1.

Proof Let (xk) ∈ [Dw
θ ,H,∆p−1]0.

Then we have,

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆p−1xk)|

g

)
= 0, for some g > 0. (3.5)

Given that H is convex and non-decreasing, it follows that

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

2g

)
=

1

hs

∑
k∈Is

H
(
|f(∆p−1xk −∆p−1xk+1)|

2g

)

≤

 1

hs

∑
k∈Is

H
(
|f(∆p−1xk)|

g

)
− 1

hs

∑
k∈Is

H
(
|f(∆p−1xk+1)|

g

)
as s→ ∞, we have

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
= 0, by (3.5)

which implies (xk) ∈ [Dw
θ ,H,∆p]0.

The remaining cases will proceed in a similar manner.

Proceeding inductively we have, [Dw
θ ,H,∆i]G ⊂ [Dw

θ ,H,∆p]G and i = 0, 1, ..., p− 1.

The next example strictly follows the inclusion above.

Example 3.1. Let θ = (2s) be a lacunary sequence and H(x) = x. Consider a sequence

(xk) = (kp−1). Then ∆p(xk) = 0,∆p−1xk = (−1)m−1(m-1)! for all k ∈ N. Therefore (xk) ∈

[Dw
θ ,H,∆p]0 but (xk) /∈ [Dw

θ ,H,∆p−1]0
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Theorem 3.6. The space [Dw
θ ,H,∆p]G, where, in general, G = 0, 1,∞ are not solid. The

space [Dw
θ ,H]0 and [Dw

θ ,H]∞ are solid.

Proof Let (xk) ∈ [Dw
θ ,H]0.

Then there exists g > 0 such that

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(xk)|
g

)
= 0.

Let (γk) be a sequence of scalars such that |γk| ≤ 1. Then for each s we can write,

1

hs

∑
k∈Is

H
(
|f(γkxk)|

g

)
≤ 1

hs

∑
k∈Is

H
(
|f(xk)|
g

)
(3.6)

⇒ lim
s→∞

1

hs

∑
k∈Is

H
(
|f(γkxk)|

g

)
= 0.

⇒ (γkαk) ∈ [Dw
θ ,H]0.

From the above inequality (3.6) it follows that [Dw
θ ,H]∞ is solid.

To show that the spaces [Dw
θ ,H,∆p]1, [Dw

θ ,H,∆p]∞ are not solid, in general, we illustrate

the following examples.

Example 3.2. Consider the function f(x) = x, ∀ x ∈ R, and let X = R, with p = 1,.

Let us consider the sequence (xk), defined by xk = k, ∀ k ∈ N. Let H(x) = xr, r ≥ 1 and

the lacunary sequence θ = (2s). Then (xk) ∈ [Dw
θ ,H,∆p]1 and (xk) ∈ [Dw

θ ,H,∆p]∞. Let

(γk) = ((−1)k), then (γkxk) /∈ [Dw
θ ,H,∆p]1 and (γkxk) /∈ [Dw

θ ,H,∆p]∞.

We consider the following example to show that [Dw
θ ,H,∆p]0 is not solid in general.

Example 3.3. Let X = R and consider the function f(x) = x, ∀ x ∈ R. let p = 1, Let us now

consider the sequence (xk), which is defined as xk = 1, ∀ k ∈ N. Assume that H(x) = xr,

r = 2, and that the lacunary sequence is θ = (2s). Let (γk) = ((−1)k), ∀ k ∈ N. Then,

(γkxk) /∈ [Dw
θ ,H,∆p]0.

Thus, the set [Dw
θ ,H,∆p]0 is not solid.

The following result is a consequence of Lemma 1 and Theorem 6.

Corollary 3.2. The spaces [Dw
θ ,H]0 and [Dw

θ ,H]∞ are monotone.

Result 1. The space [Dw
θ ,H,∆p]0 is not convergence free.

Proof The following example makes it obvious.
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Example 3.4. Let p = 1,H = x and f(x) = x. Consider a lacunary sequence θ = (2s).

Consider a sequence (xk) which is define as

xk =
1

2

(
1− (−1)k

)
Then, (xk) ∈ [Dw

θ ,H,∆p]0. Consider the sequence (yk) defined as

xk =

 k, if k is odd

0, if k is even.

Then, (yk) /∈ [Dw
θ ,H,∆p]0.

Result 2. The spaces [Dw
θ ,H,∆p]G , where G = 0, 1,∞ are not symmetric in general.

The following example is given to support the previous result.

Example 3.5. Let p = 1, let X = R, and the function f(x) = x, ∀x ∈ R, be considered.

Let H(x) = x2, and a lacunary sequence θ = (2s). Considering the sequence (xk) where

(xk) ∈ [Dw
θ ,H,∆p]0, define it as:

xk =


1 if k = 2mfor some m ∈ N,

0 otherwise.

After rearranging the sequence (xk) as follows, let (yk) be considered:

yk = (x1, x2, x4, x3, x8, . . . )

Then, (yk) /∈ [Dw
θ ,H,∆p]G , where G = 0, 1,∞.

[Dw
θ ,H,∆p]G , where G = 0, 1,∞ are not symmetric in general.

4. Conclusion

In this paper, we have introduced and studied the concept of difference lacunary weak

convergence in sequences defined by an Orlicz function. Through our exploration, we have

thoroughly examined the algebraic and topological properties of these sequences, providing

a foundational understanding of their structure and behavior. Additionally, we have estab-

lished several key inclusion relationships between these newly defined spaces and other known

sequence spaces, further enriching the framework within which these sequences operate. Our

findings contribute to the broader field of functional analysis, particularly in the study of

sequence spaces and Orlicz functions, offering new insights and potential avenues for future

research
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Abstract. In this note, we study N (κ)-quasi-Einstein (in short, N (κ)-QE) manifolds ad-

mitting the Schouten tensor satisfying certain curvature conditions. At last, the existence

of an N (κ)-QE manifold is verified by an example.
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1. Introduction

A Riemannian manifold (Mn, g) is named an Einstein manifold [1] if its (0, 2) type Ricci

tensor Ric(̸= 0) satisfies: Ric = scal
n g, here scal denotes the scalar curvature of Mn. Einstein

manifolds play a key role in mathematical physics, Riemannian geometry as well as in general

theory of relativity . Due to its significant physical applications in broad perspectives, these

manifolds have been explored by many geometers.

An (Mn, g) is said to be a quasi-Einstein (QE) [3] if its Ric(̸= 0) fulfills

Ric(Υ1,Υ2) = ϑg(Υ1,Υ2) + ΦA(Υ1)A(Υ2), (1.1)

for some smooth functions ϑ,Φ(̸= 0), and 1-form A(̸= 0) such that

g(Υ1, ℓ) = A(Υ1), g(ℓ, ℓ) = A(ℓ) = 1, (1.2)
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for any vector field Υ1 and a unit vector field ℓ named the generator of QE manifold. A is

also called the associated 1-form. It is clear from (1.1) that for Φ = 0, a QE manifold reduce

to an Einstein manifold.

From (1.1) and (1.2), we have

scal = nϑ+Φ, R(Υ1) = ϑΥ1 +ΦA(Υ1)ℓ, (1.3)

where R is the Ricci operator defined by

g(R(Υ1),Υ2) = Ric(Υ1,Υ2), (1.4)

for Υ1,Υ2 ∈ Γ(TM).

The concept of QE manifolds came into existence during considerations of quasi-umbilical

hypersurfaces of semi-Euclidean spaces as well as during the study of exact solutions to

Einstein’s field equations. For example, the Robertson-Walker spacetimes are QE manifolds.

Also, QE spacetime can be used as a model of the perfect fluid spacetime in general relativity

[13].

The QE manifolds have also been studied by many authors such as Bilal et. al. [2], Chaki

[4], De and Ghosh [8], Vasiulla et al. [20] and many others.

Let K denotes the Riemannian curvature tensor and κ-nullity distribution N (κ) of an

(Mn, g) [19] is defined by

N (κ) : p→ Np(κ) = {Υ3 ∈ TpM : K(Υ1,Υ2)Υ3 = κ[g(Υ2,Υ3)Υ1 − g(Υ1,Υ3)Υ2]}, (1.5)

for all vector fields Υ1, Υ2, Υ3 ∈ Γ(T M) (Γ(T M): the set of all smooth vector fields on

Mn) and κ being some smooth function. Also see [12, 14].

From (1.2) and (1.5), we have

Ric(Υ1, ℓ) = κ(n− 1). (1.6)

Similarly, κ-nullity distribution N (κ) of a Lorentzian manifold can also be defined. In a

QE manifold, if ℓ belongs to some κ-nullity distribution N (κ), then M is named N (κ)-

QE manifold [15]. For more detailed study of N (κ)-QE manifolds, we refer the papers

[5, 6, 18, 22]. Indeed, κ is not arbitrary as the following lemma:

Lemma 1.1. [15] In an n-dimensional N (κ)-QE manifold it follows that

κ =
ϑ+Φ

n− 1
. (1.7)
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It is to be noted that in an n-dimensional N (κ)-QE manifold [15]

K(Υ1,Υ2, ℓ) =
ϑ+Φ

n− 1
[A(Υ2)Υ1 −A(Υ1)Υ2], (1.8)

which is equivalent to

K(ℓ,Υ1,Υ2) =
ϑ+Φ

n− 1
[g(Υ1,Υ2)ℓ−A(Υ2)Υ1] = −K(Υ1, ℓ,Υ2). (1.9)

Taking Υ2 = ℓ in (1.9), we have

K(ℓ,Υ1, ℓ) =
ϑ+Φ

n− 1
[A(Υ1)ℓ−Υ1]. (1.10)

A conformally flat QE manifold of dimension n is an N (ϑ+Φ
n−1 )-QE manifold and hence,

a QE manifold of dimension 3 is an N (ϑ+Φ
2 )-QE manifold, as demonstrated in [15]. The

conformally flat QE manifolds are certain N (κ)-QE manifolds [17]. In 2021, Hazra and

Sarkar [11] studied certain curvature conditions on N (k)-QE manifolds. The derivation

conditions K(ℓ,Υ1) · K = 0 and K(ℓ,Υ1) ·Ric = 0 have also been studied in [17]. In [15], the

authors studied the derivation conditions N(ℓ,Υ1) ·N = 0 and N(ℓ,Υ1) ·K = 0 on N (κ)-QE

manifolds, where N denotes the concircular curvature tensor.

The Weyl conformal curvature tensor C [7, 9] of an (Mn, g) is defined by

C(Υ1,Υ2,Υ3) = K(Υ1,Υ2,Υ3)−
1

n− 2
[Ric(Υ2,Υ3)Υ1 −Ric(Υ1,Υ3)Υ2

+ g(Υ2,Υ3)R(Υ1)− g(Υ1,Υ3)R(Υ2)]

+
scal

(n− 1)(n− 2)
[g(Υ2,Υ3)Υ1 − g(Υ1,Υ3)Υ2],

(1.11)

for all Υ1,Υ2,Υ3 ∈ Γ(T M). Also, in n-dimensional N (κ)-QE manifolds, C satisfies:

C(Υ1,Υ2,Υ3) = − Φ

n− 2
[A(Υ2)A(Υ3)Υ1 −A(Υ1)A(Υ3)Υ2], (1.12)

C(Υ1,Υ2, ℓ) = − Φ

n− 2
[A(Υ2)Υ1 −A(Υ1)Υ2], (1.13)

A(C(Υ1,Υ2)Υ3) = 0, A(C(Υ1,Υ2)ℓ) = 0, (1.14)

C(ℓ,Υ2,Υ3) = − Φ

n− 2
[A(Υ2)A(Υ3)ℓ−A(Υ3)Υ2], (1.15)

for all Υ1,Υ2,Υ3 ∈ Γ(T M).

The projective curvature tensor P is defined by [10, 21]

P(Υ1,Υ2,Υ3) = K(Υ1,Υ2,Υ3)−
1

n− 1
[Ric(Υ2,Υ3)Υ1 −Ric(Υ1,Υ3)Υ2], (1.16)

for all Υ1,Υ2,Υ3 ∈ Γ(T M). Also, in n-dimensional N (κ)-QE manifolds, P satisfies:

P(Υ1,Υ2, ℓ) = 0, (1.17)
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P(ℓ,Υ1,Υ2) =
Φ

n− 1
[g(Υ1,Υ2)ℓ−A(Υ1)A(Υ2)ℓ], (1.18)

A(P(Υ1,Υ2,Υ4) =
Φ

n− 1
[g(Υ2,Υ4)A(Υ1)− g(Υ1,Υ4)A(Υ2)], (1.19)

for all Υ1,Υ2,Υ4 ∈ Γ(T M).

In an (Mn, g), the Schouten tensor S is given by [16]

S(Υ1,Υ2) =
1

n− 2

[
Ric(Υ1,Υ2)−

scal

2(n− 1)
g(Υ1,Υ2)

]
, (1.20)

for Υ1,Υ2 ∈ Γ(T M).

In an N (κ)-QE manifold, the Schouten tensor takes the form

S(Υ1,Υ2) =
1

n− 2

[{
ϑ− scal

2(n− 1)

}
g(Υ1,Υ2) + ΦA(Υ1)A(Υ2)

]
. (1.21)

By contracting (1.21) over Υ1 and Υ2, we find

scal =
1

n− 2

[{
ϑ− scal

2(n− 1)

}
n+Φ

]
. (1.22)

Taking Υ1 = ℓ in (1.21), we have

S(ℓ,Υ2) =
A(Υ2)

n− 2

[
ϑ+Φ− scal

2(n− 1)

]
. (1.23)

2. N (κ)-QE manifolds satisfying K(ℓ,Υ1) · S = 0

Let us consider an N (κ)-QE manifold that satisfies K(ℓ,Υ1) · S = 0. Then

(K(ℓ,Υ1) · S)(Υ2, ℓ) = −S(K(ℓ,Υ1)Υ2, ℓ)− S(Υ2,K(ℓ,Υ1)ℓ) = 0. (2.24)

From (1.9) and (1.21), we find

S(K(ℓ,Υ1)Υ2, ℓ) =
1

n− 2

[(
ϑ+Φ− scal

2(n− 1)

)
K(ℓ,Υ1,Υ2, ℓ)

]
, (2.25)

where g(K(Υ1,Υ2)Υ3,Υ4) = K(Υ1,Υ2,Υ3,Υ4), K is the (0, 4) type curvature tensor.

Also, from (1.10) and (1.21), we find

S(Υ2,K(ℓ,Υ1)ℓ) = − 1

n− 2

[(
ϑ− scal

2(n− 1)

)
K(ℓ,Υ1,Υ2, ℓ)

]
, (2.26)

where g(K(ℓ,Υ1)ℓ,Υ2) = −K(ℓ,Υ1,Υ2, ℓ) and g(K(ℓ,Υ1)ℓ, ℓ) = 0 being used.

By virtue of (2.25) and (2.26), the relation (2.24) yields,( Φ

n− 2

)
K(ℓ,Υ1,Υ2, ℓ) = 0. (2.27)

From (1.9) and (2.27), we have( Φk

n− 2

)
(g(Υ1,Υ2)−A(Υ1)A(Υ2)) = 0, (2.28)
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Since Φ ̸= 0 and g(Υ1,Υ2) ̸= A(Υ1)A(Υ2), then we have κ = 0, i.e., ϑ+Φ = 0. Conversely,

if κ = 0, then in view of (1.9) and (1.10) M satisfies K(ℓ,Υ1) · S = 0. Thus, we can state:

Theorem 2.1. An N (κ)-QE manifold satisfies K(ℓ,Υ1) · S = 0 if and only if ϑ+Φ = 0.

3. N (κ)-QE manifolds satisfying P(ℓ,Υ1) · S = 0

Let an N (κ)-QE manifold satisfies P(ℓ,Υ1) · S = 0. Then

(P(ℓ,Υ1) · S)(Υ2,Υ3) = −S(P (ℓ,Υ1)Υ2,Υ3)− S(Υ2,P(ℓ,Υ1)Υ3) = 0, (3.29)

which in view of (1.18) takes the form

Φ

n− 1

[
g(Υ1,Υ2)S(ℓ,Υ3)−A(Υ1)A(Υ2)S(ℓ,Υ3) (3.30)

+g(Υ1,Υ3)S(Υ2, ℓ)−A(Υ1)A(Υ3)S(Υ2, ℓ)
]
= 0.

Since Φ(̸= 0), therefore, we have

g(Υ1,Υ2)S(ℓ,Υ3)−A(Υ1)A(Υ2)S(ℓ,Υ3) (3.31)

+g(Υ1,Υ3)S(Υ2, ℓ)−A(Υ1)A(Υ3)S(Υ2, ℓ) = 0.

In view of (1.23), (3.31) gives(
ϑ+Φ− scal

2(n− 1)

)(
g(Υ1,Υ2)A(Υ3) + g(Υ1,Υ3)A(Υ2)− 2A(Υ1)A(Υ2)A(Υ3)

)
= 0,

which by contracting over Υ1 and Υ2 gives(
ϑ+Φ− scal

2(n− 1)

)
A(Υ3) = 0. (3.32)

This gives
(
ϑ+Φ− scal

2(n−1)

)
= 0, as A(Υ3) ̸= 0. Thus, we can state:

Theorem 3.1. An N (κ)-QE manifold M (n ≥ 3) satisfies P(ℓ,Υ1).S = 0 if and only if(
ϑ+Φ− scal

2(n−1)

)
= 0.

4. N (κ)-QE manifolds satisfying S(Υ1, ℓ) · K = 0

Let an N (κ)-QE manifold satisfies the condition (S(Υ1, ℓ) · K)(Υ2,Υ3)Υ4 = 0. We know

that

(S(Υ1, ℓ) · K)(Υ2,Υ3)Υ4 = ((Υ1 ∧S ℓ) · K)(Υ2,Υ3)Υ4, (4.33)

where the endomorphism (Υ1 ∧S Υ2)Υ3 is given by

(Υ1 ∧S Υ2)Υ3 = S(Υ2,Υ3)Υ1 − S(Υ1,Υ3)Υ2. (4.34)
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Rewriting (4.33) as

(S(Υ1, ℓ) · K)(Υ2,Υ3)Υ4 = ((Υ1 ∧S ℓ)K)(Υ2,Υ3)Υ4 −K((Υ1 ∧S ℓ)Υ2,Υ3)Υ4

−K(Υ2, (Υ1 ∧S ℓ)Υ3)Υ4 −K(Υ2,Υ3)(Υ1 ∧S ℓ)Υ4,

which by using S(Υ1, ℓ) · K = 0 and (4.34) turns to

S(ℓ,K(Υ2,Υ3)Υ4)Υ1 − S(Υ1,K(Υ2,Υ3)Υ4)ℓ− S(ℓ,Υ2)K(Υ1,Υ3)Υ4

+ S(Υ1,Υ2)K(ℓ,Υ3),Υ4 − S(ℓ,Υ3)K(Υ2,Υ1)Υ4 + S(Υ1,Υ3)K(Υ2, ℓ)Υ4

− S(ℓ,W )K(Υ2,Υ3)Υ1 + S(Υ1,Υ4)K(Υ2,Υ3)ℓ = 0.

(4.35)

By using (1.8), (1.9) and (1.21) in (4.35), and taking the inner product with ℓ, we have

Φκ

n− 2
[g(Υ1,Υ2)A(Υ3)A(Υ4)− g(Υ1,Υ3)A(Υ2)A(Υ4)] = 0. (4.36)

Putting Υ3 = ℓ in (4.36), we have

ΦκA(Υ4)[g(Υ1,Υ2)−A(Υ1)A(Υ2)] = 0. (4.37)

Since Φ(̸= 0), A(̸= 0) and g(Υ1,Υ2) ̸= A(Υ1)A(Υ2), then κ = 0. If κ = 0, then the converse

is trivial. Thus, we have:

Theorem 4.1. An N (κ)-QE manifold satisfies S(Υ1, ℓ) · K = 0 if and only if ϑ+Φ = 0.

5. N (κ)-QE manifolds satisfying C · S = 0

Let an N (κ)-(QE) manifold holds C · S = 0. We know that

(C(Υ1,Υ2) · S)(Υ3,Υ4) = −S(C(Υ1,Υ2)Υ3,Υ4)− S(Υ3, C(Υ1,Υ2)Υ4). (5.38)

Making use of (1.21) in (5.38), we have

(C(Υ1,Υ2) · S)(Υ3,Υ4) = − 1

n− 2

[{
ϑ− scal

2(n− 1)

}(
g(C(Υ1,Υ2)Υ3,Υ4)

+g(Υ3, C(Υ1,Υ2)Υ4)
)
+Φ

(
A(C(Υ1,Υ2)Υ3)A(Υ4) (5.39)

+A(Υ3)A(C(Υ1,Υ2)Υ4)
)]
,

which by using the symmetric property of the metric tensor, and the skew-symmetric property

of K(Υ1,Υ2,Υ3,Υ4) reduces to

(C(Υ1,Υ2) · S)(Υ3,Υ4) = − Φ

n− 2

(
A(C(Υ1,Υ2)Υ3)A(Υ4) +A(Υ3)A(C(Υ1,Υ2)Υ4)

)
.
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In view of (1.14), the foregoing equation turns to

C((Υ1,Υ2) · S)(Υ3,Υ4) = 0. (5.40)

Thus, we have:

Theorem 5.1. In an N (κ)-QE manifold, the relation C · S = 0 holds for all Υ1,Υ2,Υ3,Υ4.

6. Schouten-recurrent N (κ)-QE manifolds

In 1952, Patterson [16] proposed the idea of Ricci recurrent manifolds . According to him,

an (Mn, g) is said to be Ricci recurrent if

(DΥ1Ric)(Υ2,Υ3) = A(Υ1)Ric(Υ2,Υ3), (6.41)

for some 1-form A(̸= 0).

An (Mn, g) is named a Schouten recurrent manifold if its Schouten tensor satisfies

(DΥ1S)(Υ2,Υ3) = A(Υ1)S(Υ2,Υ3). (6.42)

We write

(DΥ1S)(Υ2,Υ3) = Υ1S(Υ2,Υ3)− S(DΥ1Υ2,Υ3)− S(Υ2, DΥ1Υ3). (6.43)

From (6.42) and (6.43), we have

Υ1S(Υ2,Υ3)− S(DΥ1Υ2,Υ3)− S(Υ2, DΥ1Υ3) = A(Υ1)S(Υ2,Υ3). (6.44)

Putting Υ2 = Υ3 = ℓ in (6.44) and using (1.21), we find(
ϑ+Φ− scal

2(n− 1)

)
A(Υ1) = Υ1

(
ϑ+Φ− scal

2(n− 1)

)
. (6.45)

Thus, we have the following result:

Theorem 6.1. If (Mn, g) is a Schouten recurrent N (κ)-QE manifold, then(
ϑ+Φ− scal

2(n− 1)

)
A(Υ1) = Υ1

(
ϑ+Φ− scal

2(n− 1)

)
,

for all Υ1 ∈ Γ(T M).

A Schouten recurrent manifold is Schouten symmetric iff A = 0 . Thus, we have:

Corollary 6.1. If (Mn, g) is a Schouten symmetric N (κ)-QE manifold, then ϑ+Φ− scal
2(n−1)

is constant.
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Corollary 6.2. If (Mn, g) is a Schouten symmetric N (κ)-QE manifold and if ϑ+Φ− scal
2(n−1)

is constant, then either ϑ+Φ− scal
2(n−1) = 0 or (Mn, g) reduces to a Schouten symmetric N (κ)-

QE manifold.

7. Example

Define a Riemannian metric g in 4-dimensional space R4 by

ds2 = gijdκidκj = (1 + 2p)[(dκ4)2 + (dκ3)2 + (dκ2)2 + (dκ1)2], (7.46)

where κ1,κ2,κ3,κ4 are non-zero finite and p = eκ
1
k−2. Then the covariant and contravariant

components of the metric tensor are

gij = (1 + 2p), for i = j = 1, 2, 3, 4, gij = 0, otherwise (7.47)

and

gij =
1

1 + 2p
, for i = j = 1, 2, 3, 4, gij = 0, otherwise, (7.48)

respectively. The only non-vanishing components of the Christoffel symbols are 1

11

 =

 2

12

 =

 3

13

 =

 4

14

 =
p

1 + 2p
,

 1

22

 =

 1

33

 =

 1

44

 =
−p

1 + 2p
.

(7.49)

The non-zero derivatives of (7.49) are

∂

∂κ1

 4

14

 =
∂

∂κ1

 3

13

 =
∂

∂κ1

 2

12

 =
∂

∂κ1

 1

11

 =
p

(1 + 2p)2
,

∂

∂κ1

 1

44

 =
∂

∂κ1

 1

33

 =
∂

∂κ1

 1

22

 =
−p

(1 + 2p)2
.

(7.50)

For the Riemannian curvature tensor,

Kl
ijk =

∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂κj

∂
∂κk

 l

ij


 l

ik



∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=I

+

∣∣∣∣∣∣∣∣∣∣∣∣

mik


mij
 l

mk


 l

mj



∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=II

.

The non-zero components of (I) are:
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K1
221 = − ∂

∂κ1

 1

22

 =
p

(1 + 2p)2
,

K1
331 = − ∂

∂κ1

 1

33

 =
p

(1 + 2p)2
,

K1
441 = − ∂

∂κ1

 1

44

 =
p

(1 + 2p)2

and the non-zero components of (II) are:

K2
332 =

m

32


 2

m3

−

m

33


 2

m2

 = −

 1

33


 2

12

 =
p2

(1 + 2p)2
,

K2
442 =

m

42


 2

m4

−

m

44


 2

m2

 = −

 1

44


 2

12

 =
p2

(1 + 2p)2
,

K3
443 =

m

43


 3

m4

−

m

44


 3

m3

 = −

 1

44


 3

13

 =
p2

(1 + 2p)2
.

Adding the corresponding components of (I) and (II), we have

K1
221 = K1

331 = K1
441 =

p

(1 + 2p)2
,

K2
332 = K2

442 = K3
443 =

p2

(1 + 2p)2
.

Thus, the non-zero components of the curvature tensor, up to symmetry are

K1221 = K1331 = K1441 =
p

1 + 2p
,

K2332 = K2442 = K3443 =
p2

1 + 2p

and the non-zero components of the Ricci tensor are

Ric11 = gjhK1j1h = g22K1212 + g33K1313 + g44K1414 =
3p

(1 + 2p)2
,

Ric22 = gjhK2j2h = g11K2121 + g33K2323 + g44K2424 =
p

(1 + 2p)
,

Ric33 = gjhK3j3h = g11K3131 + g22K3232 + g44K3434 =
p

(1 + 2p)
,

Ric44 = gjhK4j4h = g11K4141 + g22K4242 + g33K4343 =
p

(1 + 2p)
.

The scalar curvature scal is

scal =
6p(1 + p)

(1 + 2p)2
.
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Let us consider the associated scalars ϑ,Φ are defined by

ϑ =
p

(1 + 2p)2
, Φ =

2p(1− p)

(1 + 2p)3

and the 1-form

Ai(x) =


√
1 + 2p, if i = 1,

0, otherwise,

where generators are unit vector fields, then from (1.11), we have

Ric11 = ϑg11 +ΦA1A1, (7.51)

Ric22 = ϑg22 +ΦA2A2, (7.52)

Ric33 = ϑg33 +ΦA3A3, (7.53)

Ric44 = ϑg44 +ΦA4A4. (7.54)

R.H.S. of (7.51) = ϑg11 +ΦA1A1

=
3p

(1 + 2p)2

= L.H.S. of (7.51)

By similar way it can be shown that (7.52) to (7.54) are also true. Hence (R4, g) is an

N
(

p
(1+2p)3

)
-QE manifold.
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Abstract. In this paper, we introduce the notion of pointwise bi-slant lightlike subman-

ifolds of an indefinite nearly Kähler manifold and provide a characterization theorem for

the existence of these submanifolds. Following this, we provide a non-trivial example of

pointwise bi-slant lightlike submanifolds of indefinite nearly Kähler manifolds and then de-

rive some conditions for the distributions associated with this class of submanifolds to be

involutive. Further, we provide a characterization for a pointwise bi-slant lightlike sub-

manifold of an indefinite nearly Kähler manifold to be a bi-slant lightlike submanifold and

investigate the geometry of totally umbilical pointwise bi-slant lightlike submanifold of an

indefinite nearly Kähler manifold. Finally, we obtain necessary and sufficient conditions

for foliations determined by distributions on pointwise bi-slant lightlike submanifolds of an

indefinite nearly Kähler manifold to be totally geodesic.
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1. Introduction

Chen [4, 5] introduced the notion of slant submanifolds of Kähler manifolds as a generaliza-

tion of holomorphic and totally real submanifolds. Following this, Lotta [15, 16] introduced

and studied concept of slant submanifolds in contact manifolds. Further, Carbrerizo et al.
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[1] studied slant submanifolds in Sasakian manifolds. Afterwards, several generalizations of

slant submanifolds were introduced and studied by Carriazo [2, 3], Sahin [19] and Papaghuic

[18]. Etayo [9] generalized the notion of slant submanifolds to quasi- slant submanifolds of

Kähler manifolds. On a similar note, Chen and Garay [6] generalized the notion of slant

submanifolds to pointwise slant submanifolds of a Kähler manifold.

Due to interesting applications in study of asymptotically flat spacetimes, even horizon of

Kerr and Kruskal black holes, electromagnetic fields, focus of geometers shifted towards the

study of geometry of manifolds and submanifolds endowed with indefinite metric. The the-

ory of lightlike submanifolds of semi-Riemannian manifolds was introduced by Bejancu and

Duggal [8] which differs from it’s non-degenerate counterpart due to non-trivial intersection

of tangent and normal bundle. Further, Sahin [20, 22] introduced notion of slant and screen

slant lightlike submanifolds of Kähler manifolds. Following this, several generalizations of

slant and screen slant submanifolds of indefinite Kähler manifolds were introduced and stud-

ied by Shukla et al. [23, 24]. Moreover, slant and screen slant lightlike submanifolds in

framework of Contact and indefinite nearly Kähler manifolds were studied as in [21, 12, 14].

Gupta et al. [11] studied pointwise slant lightlike submanifolds of indefinite Kähler manifolds.

Further, Kumar et al. [13, 17] studied the theory of screen bi-slant and pointwise bi-slant

lightlike submanifolds of indefinite Kähler manifolds. However, the concept of pointwise bi-

slant lightlike submanifolds is yet to be explored in indefinite nearly Kähler manifolds.

Therefore, in this paper, we introduce the notion of pointwise bi-slant lightlike submani-

folds of indefinite nearly Kähler manifolds. Then, we give a characterization theorem for the

existence of pointwise bi-slant lightlike submanifolds of indefinite nearly Kähler manifolds

and provide a non-trivial example of this class of lightlike submanifolds. We further derive

integrability conditions for the distributions associated with these submanifolds and give

some conditions for a pointwise bi-slant lightlike submanifold of an indefinite nearly Kähler

manifold to be a bi-slant lightlike submanifold. Finally, we investigate the geometry of to-

tally umbilical pointwise bi-slant lightlike submanifolds of indefinite nearly Kähler manifolds

and obtain necessary and sufficient conditions for foliations determined by distributions on

pointwise bi-slant lightlike submanifolds of an indefinite nearly Kähler manifold to be totally

geodesic.
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2. Preliminaries

Definition 2.1. Let (N, g) be m−dimensional submanifold of semi-Riemannian manifold

(N̄ , ḡ) of dimension (m + n) equipped with metric ḡ of index q(̸= 0), where, m,n ≥ 1 and

m + n − 1 ≥ q ≥ 1. We assume that metric ḡ on TN is degenerate, then, metric ḡ is

degenerate on TN⊥ which gives rise to a distribution Rad(TN) : p ∈ N → Rad(TpN) given

by Rad(TpN) = TpN ∩ TpN
⊥. We call N as r−lightlike submanifold if Rad(TN) is a

smooth distribution of rank r > 0 (1 ≤ r ≤ n ) on N .

Let S(TN) and S(TN⊥) be non-degenerate subbundles of Rad(TN) in TN and TN⊥

respectively such that TN = Rad(TN) ⊥ S(TN) and TN⊥ = Rad(TN) ⊥ S(TN⊥). More-

over, for local coordinate neighbourhood U of N and local frame field {ξi}, {i ∈ 1, 2, ....., r}

of Γ(Rad(TN)), there exists a local null frame {Ni} of sections with values in the orthogonal

complement of S(TN⊥) i.e, S(TN⊥)⊥ such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, for i, j ∈ {1, 2, ..., r}. (2.1)

In view of Theorem (1.3), Chapter 5 (see, [8]), there exists a lightlike transversal vector

bundle ltr(TN) complementary to Rad(TN) in S(TN⊥)⊥ locally spanned by {Ni}. Next,

consider the vector bundle tr(TN) in TN̄ |N defined by

tr(TN) = ltr(TN) ⊥ S(TN⊥),

and therefore

TN̄ |N = TN ⊕ tr(TN) = S(TN) ⊥ (Rad(TN)⊕ ltr(TN)) ⊥ S(TN⊥). (2.2)

Let ∇̄ be Levi-Civita connection of N̄ . Then, for Z1, Z2 ∈ Γ(TN) and V ∈ Γ(tr(TN)), Gauss

and Weingarten formulae are given by

∇Z1Z2 = ∇Z1Z2 + h(Z1, Z2), ∇Z1V = −AV Z1 +∇t
Z1
V, (2.3)

where {h(Z1, Z2),∇t
Z1
V } ∈ Γ(tr(TN)), {∇Z1Z2, AV Z1} ∈ Γ(TN) and h, AV represent sec-

ond fundamental form on Γ(TN) and linear shape operator on N respectively. In view of

Eq. (2.2), we give the the Gauss and Weingarten formulae as

∇Z1Z2 = ∇Z1Z2 + hl(Z1, Z2) + hs(Z1, Z2), (2.4)

∇Z1V = −AV Z1 +∇l
Z1
LV +∇s

Z1
SV +Dl(Z1, SV ) +Ds(Z1, LV ) (2.5)
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where, Z1, Z2 ∈ Γ(TN), V ∈ Γ(tr(TN)), hl and hs are Γ(ltr(TN)) and Γ(S(TN⊥)) valued

lightlike second fundamental form and screen second fundamental form of N , ∇l and ∇s

are lightlike and screen transversal linear connections on N respectively and Dl : Γ(TN) ×

Γ(S(TN⊥)) → Γ(ltr(TN)), Ds : Γ(TN) × Γ(ltr(TN)) → Γ(S(TN⊥)) respectively are bi-

linear mappings, where L and S are projection morphisms onto ltr(TN) and S(TM⊥). In

particular, if N ∈ Γ(ltr(TN)) and W ∈ Γ(S(TN⊥)), then, from Eq.(2.5), we have

∇Z1N = −ANZ1 +∇l
Z1
N +Ds(Z1, N) (2.6)

and

∇Z1W = −AWZ1 +Dl(Z1,W ) +∇s
Z1
W (2.7)

From Eqs. (2.4), (2.6) and (2.7), we obtain

g(AWZ1, Z2) = ḡ(hs(Z1, Z2),W ) + ḡ(Z2, D
l(Z1,W )), (2.8)

g(AWZ1, N) = ḡ(Ds(Z1, N),W ). (2.9)

LetQ be the projection of TN onto screen distribution S(TN), then using TN = Rad(TN) ⊥

S(TN), we get

∇Z1QZ2 = ∇∗
Z1
QZ2 + h∗(Z1, QZ2), ∇Z1ξ = −A∗

ξZ1 +∇∗t
Z1
ξ, (2.10)

where ξ ∈ Γ(Rad(TN)), {h∗(Z1, QZ2),∇∗t
Z1
ξ} ∈ Γ(Rad(TN)) and {∇∗

Z1
QZ2, A

∗
ξZ1} ∈ Γ(S(TN)).

Also, h∗ : Γ(TN) × Γ(S(TN) → Γ(Rad(TN)) and A∗ : Γ(TN) × Γ(Rad(TN) → Γ(S(TN))

are bilinear forms called second fundamental form and shape operator of distributions S(TN)

and Rad(TN) respectively. Moreover, ∇∗ and ∇∗t denote the induced Levi-Civita connection

on S(TN) and Rad(TN) respectively. Then, from Eqs. (2.5), (2.6) and (2.10), we get

ḡ(hl(Z1, QZ2), ξ) = g(A∗
ξZ1, QZ2). (2.11)

As ∇̄ is a metric connection on N , therefore for Z1, Z2, Z3 ∈ Γ(TN), one has

(∇Z1g)(Z2, Z3) = ḡ(hl(Z1, Z2), Z3) + ḡ(hl(Z1, Z3), Z2). (2.12)

which shows that the induced connection ∇ on N is not a metric connection.

Definition 2.2. [10] An indefinite almost Hermitian manifold (N̄ , J̄ , ḡ, ∇̄) is said to be an

indefinite nearly Kähler manifold if

J̄2 = −I, g(J̄Z1, J̄Z2) = g(Z1, Z2), (∇Z1 J̄)Z2 + (∇Z2 J̄)Z1 = 0, (2.13)

∀Z1, Z2 ∈ Γ(TN̄).
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3. Pointwise bi-slant Lightlike Submanifolds

In view of Lemmas (3.1) and (3.2) stated by Sahin [20], we introduce the concept of

pointwise bi-slant lightlike submanifolds of indefinite nearly Kähler manifolds as follows:

Definition 3.1. A q-lightlike submanifold N of an indefinite nearly Kähler manifold N̄ with

index 2q is said to be a pointwise bi-slant lightlike submanifold if the following conditions

hold:

(i) J̄(Rad(TN)) is a distribution on N such that J̄(Rad(TN)) ∩Rad(TN)={0}.

(ii) There exists non-degenerate orthogonal distributions D1 and D2 on N such that

S(TN) = (J̄ ltr(TN)⊕ J̄Rad(TN)) ⊥ D1 ⊥ D2.

(iii) J̄D1 ⊥ D2 and J̄D2 ⊥ D1.

(iv) For p ∈ U ⊂ N and each non-zero tangent vector field Z ∈ Γ(Dj)p (for j = 1, 2),

the angle (θj)p between J̄Z and the vector space (Dj)p is independent of choice of

Z ∈ Γ(Dj)p.

Note that the angle θj is called the slant function on N and the pair {θ1, θ2} is called bi-slant

function on N. At each point p ∈ U ⊂ N , (θj)p (for j = 1, 2) is called the slant angle of

the distribution (Dj)p. Moreover, if for j = 1, 2, (Dj)p ̸= {0} and (θj)p ̸= 0, π/2, then, the

pointwise bi-slant lightlike submanifold is said to be proper.

In view of above definition, the tangent bundle TN of N can be decompsed as:

TN = Rad(TN) ⊥ (J̄ ltr(TN)⊕ J̄Rad(TN)) ⊥ D1 ⊥ D2. (3.14)

For Z ∈ Γ(TN), we have,

J̄Z = tZ + nZ (3.15)

and for V ∈ Γ(tr(TN))

J̄V = BV + CV, (3.16)

where tZ,BV ∈ Γ(TN) and nZ,CV ∈ Γ(tr(TN)).

Note: In upcoming sections, we will use pw.bi-s.l.s. to denote a pointwise bi-slant lightlike

submanifold and an indefinite nearly Kähler manifolds will be denoted by N̄ , unless other-

wise stated.
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Consider ϕ1, ϕ2, ϕ3, ϕ4 and ϕ5 be the projections of TN on Rad(TN), J̄(Rad(TN)),

J̄(ltr(TN)), D1 and D2, respectively. Then, for Z ∈ Γ(TN), we have

Z = ϕ1Z + ϕ2Z + ϕ3Z + ϕ4Z + ϕ5Z. (3.17)

Applying J̄ on both sides and using Eq. (3.15), we get

J̄Z = J̄ϕ1Z + J̄ϕ2Z + J̄ϕ3Z + tϕ4Z + nϕ4Z + tϕ5Z + nϕ5Z, (3.18)

where J̄ϕ1Z ∈ Γ(J̄(Rad(TN))), J̄ϕ2Z ∈ Γ(Rad(TN)) and J̄ϕ3Z ∈ Γ(ltr(TN)).

Lemma 3.1. For a pw.bi-s.l.s. N of N̄ , {nϕ4Z, nϕ5Z} ∈ Γ(S(TN⊥)), tϕ4Z ∈ Γ(D1) and

tϕ5Z ∈ Γ(D2), for Z ∈ Γ(TN).

Proof. For ξ ∈ Γ(Rad(TN)), we have

g(nϕiZ, ξ) = −g(ϕiZ, J̄ξ) = 0 (3.19)

for i = 4, 5. Therefore, nϕiZ has no component in ltr(TN), which implies {nϕ4Z, nϕ5Z} ∈

(S(TN⊥)). On the other hand, Let N ∈ Γ(ltr(TN)), then using Eqs.(3.19), (2.13), (3.14)

and using the condition J̄D2 ⊥ D1, we have

ḡ(tϕ4Z,N) = 0 = ḡ(tϕ4Z, J̄ϕ1Z) = ḡ(tϕ4Z, J̄ϕ2Z) = ḡ(tϕ4Z, J̄ϕ3Z) = ḡ(tϕ4Z, ϕ5Z),

which shows that tϕ4Z ∈ Γ(D1). Similarly, using Eqs.(3.19), (2.13), (3.14) and using the

condition J̄D1 ⊥ D2, it follows that tϕ5Z ∈ Γ(D2).

□

We now provide a classification theorem for the existence of pw.bi-s.l.s. N of N̄ .

Theorem 3.1. (Existence Theorem) A q-lightlike submanifold N of N̄ with index 2q is a

pw.bi-s.l.s., if and only if,

(i) J̄(ltrTN) is a distribution on N such that J̄(ltrTN) ∩Rad(TN) = {0}.

(ii) There exists non-degenerate orthogonal distributions D1 and D2 on N such that

S(TN) = (J̄ ltr(TN)⊕ J̄Rad(TN)) ⊥ D1 ⊥ D2.

(iii) J̄D1 ⊥ D2 and J̄D2 ⊥ D1.

(iv) for {i = 4, 5}, there exist functions αi ∈ [0, 1) such that t2(ϕiZ) = −αi(ϕiZ) for all

Z ∈ Γ(S(TN)), where cos2(θj)p = αi such that (θj)p are the respective slant functions

of (Dj)p for j = i− 3 and p ∈ N .
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Proof. Let N be a pw.bi-s.l.s. of N̄ . Then, the conditions (ii) and (iii) hold trivially. Let

J̄N ′ ∈ Γ(Rad(TN)) for N ′ ∈ Γltr(TN), one has J̄ J̄N ′ = −N ′ ∈ Γ(S(TN)), which is a

contradiction. Therefore, we get J̄N ′ /∈ Γ(Rad(TN)). Again, let J̄N ′ ∈ Γ(ltr(TN)) for

N ′ ∈ Γ(ltr(TN)). Choose ξ ∈ Γ(Rad(TN)) such that ḡ(N ′, ξ) = 1. Then from Eq. (2.13),

we derive 0 = ḡ(J̄N ′, J̄ξ) = ḡ(N ′, ξ) = 1, which is again a contradiction to our hypothesis.

Therefore, J̄N ′ /∈ Γ(ltr(TN)). Consider J̄N ′ ∈ Γ(S(TN⊥)) for N ′ ∈ Γ(ltr(TN)). Choose

ξ ∈ Γ(Rad(TN)) such that ḡ(N ′, ξ) = 1, then, using Eq. (2.13), we have 0 = ḡ(J̄N ′, J̄ξ) =

ḡ(N ′, ξ) = 1, which is a contradiction to hypothesis. Therefore, J̄N ′ /∈ Γ(S(TN⊥)). Thus,

we conclude that J̄(ltr(TN)) ⊂ S(TN) and J̄(ltr(TN)) ∩ Rad(TN)={0}, which proves

condition (i).

As N is pw.bi-s.l.s. of N̄ , the angle between J̄ϕiZ and Dj at p is constant, therefore for

Z ∈ Γ(S(TN)) and p ∈ N , we have

cos(θj)p =
g(J̄ϕiZ, tϕiZ)

|J̄ϕiZ| |tϕiZ|
= −g(ϕiZ, J̄tϕiZ)

|ϕiZ| |tϕiZ|
= −g(ϕiZ, t

2(ϕiZ))

|ϕiZ| |tϕiZ|
.

Since, cos(θj)p=
|tϕiZ|

|J̄(ϕiZ)| , therefore we have

cos2(θj)p = −g(ϕiZ, t
2(ϕiZ))

|ϕiZ|2
. (3.20)

We know that (θj)p is constant on (Dj)p. Hence, we get

g(ϕiZ, t
2ϕiZ) = −αig(ϕiZ, ϕiZ),

which gives t2ϕiZ = −αiϕiZ as g = g|(Dj)p×(Dj)p is non-degenerate. Hence, (iv) holds.

Conversely, suppose that N be a q-lightlike submanifold of N̄ such that the conditions (i)−

(iv) are satisfied. Let J̄ξ ∈ Γ(ltr(TN)) for ξ ∈ Γ(Rad(TN)), one has J̄ J̄ξ = −ξ ∈ Γ(S(TN))

by condition (i), which is a contradiction. Therefore, we get J̄ξ /∈ Γ(ltr(TN)). Again, let

J̄ξ ∈ Γ(S(TN⊥)) for ξ ∈ Γ(Rad(TN)). Choose N ′ ∈ Γ(ltr(TN)) such that ḡ(N ′, ξ) = 1.

Then from conditions (i), (ii) and Eq. (2.13), we derive 0 = ḡ(J̄N ′, J̄ξ) = ḡ(N ′, ξ) = 1, which

is again a contradiction to our hypothesis. Therefore, J̄ξ /∈ Γ(S(TN⊥)). Now, Consider

J̄ξ ∈ Γ(Rad(TN)) for ξ ∈ Γ(Rad(TN)). Choose N ′ ∈ Γ(ltr(TN)) such that ḡ(N ′, ξ) = 1,

then, using condition (i) and Eq. (2.13), we have 0 = ḡ(J̄N ′, J̄ξ) = ḡ(N ′, ξ) = 1, which

is a contradiction to hypothesis. Therefore, J̄ξ /∈ Γ(Rad(TN)). Thus, we conclude that

J̄(Rad(TN)) ⊂ S(TN) and J̄(Rad(TN)) ∩ Rad(TN)={0}. Also, by condition (iv), there

exists a function αi such that t2ϕiZ = −αiϕiZ for Z ∈ Γ(S(TN)). Then using the Eqs.
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(2.13) and (3.20), we obtain

cos2(θj)p =
g(t(ϕiZ), t(ϕiZ))

g(ϕiZ, ϕiZ)

= αi,

which shows that the Wirtinger angle is independent of ϕiZ ∈ (Dj)p. Hence, the theorem is

proved. □

Corollary 3.1. Assume that N be a pw.bi-s.l.s. of N̄ . Then, for i = 4, 5 and j = i− 3,

(i) g(tϕiZ1, tϕiZ2) = cos2 (θj)pg(ϕiZ1, ϕiZ2),

(ii) g(nϕiZ1, nϕiZ2) = sin2 (θj)pg(ϕiZ1, ϕiZ2),

where Z1, Z2 ∈ Γ(TN).

Proof. Let Z1, Z2 ∈ Γ(TN), then we have

g(tϕiZ1, tϕiZ2) = g(tϕiZ1, tϕiZ2) = −g(ϕiZ1, t
2ϕiZ2) = −g(ϕiZ1,−αiϕiZ2) = αig(ϕiZ1, ϕiZ2),

which leads to g(tϕiZ1, tϕiZ2) = cos2(θj)pg(ϕiZ1, ϕiZ2). Similarly, consider

g(ϕiZ1, ϕiZ2) = g(J̄ϕiZ1, J̄ϕiZ2) = g(tϕiZ1, tϕiZ2) + g(nϕiZ1, nϕiZ2),

which gives g(nϕiZ1, nϕiZ2) = sin2(θj)pg(ϕiZ1, ϕiZ2), thus the proof is complete. □

Next, we present a non-trivial example of pw.bi-s.l.s. N of an indefinite nearly Kähler

manifold N̄ .

Example 3.1. Consider N be a 6-dimensional submanifold of (R16
3 , ḡ) with signature

(−,−,−,+,+,+,+,+,+,+,+,+,+,+,+,+) given by

x1 = u1 = x4, x2 = u2 = −x3, x5 = u3, x6 = u3, x7 = u4, x8 = u4,

x9 = u3u4, x10 =
(u3)2

2
+

(u4)2

2
, x11 = u5, x12 = u5, x13 = u6,

x14 = u6, x15 = u5u6, x16 =
(u5)2

2
+

(u6)2

2
, u3 ̸= ±u4, u5 ̸= ±u6.

Then TN is spanned by Z1, Z2, Z3, Z4, Z5, Z6, where

Z1 = ∂x1 + ∂x4, Z2 = ∂x2 − ∂x3,

Z3 = ∂x5 + ∂x6 + u4∂x9 + u3∂x10, Z4 = ∂x7 + ∂x8 + u3∂x9 + u4∂x10,

Z5 = ∂x11 + ∂x12 + u6∂x15 + u5∂x16, Z6 = ∂x13 + ∂x14 + u5∂x15 + u6∂x16.
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As Rad(TN) = Span{Z1} and J̄Rad(TN) = Span{Z2}, where J̄Z1 = Z2, thus N is a 1-

lightlike submanifold with ltr(TN) spanned by N1 = 1
2{−∂x1 + ∂x4} and J̄ ltr(TN) spanned

by J̄N1 = 1
2{−∂x2 − ∂x3}. On the other hand, by direct calculations, we find that S(TN⊥)

is spanned by

W1 = −u3∂x5 − u4∂x8 + ∂x10, W2 = −u5∂x11 − u6∂x14 + ∂x16.

Hence, D1 = Span{Z3, Z4} and D2 = Span{Z5, Z6} are slant distributions with the slant

angles θ1 =
(u4)2−(u3)2

2+(u3)2+(u4)2
and θ2 =

(u6)2−(u5)2

2+(u5)2+(u6)2
. Thus, N is a proper pw.bi-s.l.s. of R16

3 .

Lemma 3.2. For a pw.bi-s.l.s. N of N̄ , nD1 and nD2 are orthogonal.

Proof. Since N is pw.bi-s.l.s. of N̄ , therefore using Eq.(3.14) and Eq.(3.16) along with

theorem (3.1) for Z ∈ Γ(TN), we have

g(nϕ4Z, nϕ5Z) = g(J̄ϕ4Z − tϕ4Z, J̄ϕ5Z − tϕ5Z)

= −g(J̄ϕ4Z, tϕ5Z)− g(J̄ϕ5Z, tϕ4Z)

= g(ϕ4Z, J̄tϕ5Z) + g(ϕ5Z, J̄tϕ4Z)

= g(ϕ4Z, t
2ϕ5Z) + g(ϕ5Z, t

2ϕ4Z)

= − cos2(θ2)pg(ϕ4Z, ϕ5Z)− cos2(θ1)pg(ϕ5Z, ϕ4Z)

= 0,

which completes the proof. □

In view of Lemma (3.2), there exists a holomorphic subspace µp ⊂ S(TpN
⊥), such that at

each p ∈ N , we have

S(TN⊥) = nD1 ⊥ nD2 ⊥ µ (3.21)

and

TN̄ = S(TN) ⊥ {Rad(TN)⊕ ltr(TN)} ⊥ nD1 ⊥ nD2 ⊥ µ. (3.22)

Also, for V ∈ Γ(tr(TN)), we have V = PV + QV , where PV ∈ Γ(ltr(TN)) and QV ∈

Γ(S(TN⊥)). Note that as per Eq.(3.21) for V ∈ Γ(S(TN⊥)), we have

QV = Q1V +Q2V +Q3V,
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where Q1, Q2 and Q3 denote the projections of S(TN⊥) onto nD1, nD2 and µ, respectively.

Now, applying J̄ on both sides, we have

J̄V = J̄PV + J̄QV

= J̄PV +BQ1V + CQ1V +BQ2V + CQ2V + J̄Q3V,

where, J̄PV ∈ ΓJ̄ ltr(TN)) and using Lemma (3.1), we have BQ1V ∈ Γ(D1), CQ1V ∈

Γ(S(TN⊥)), BQ2V ∈ Γ(D2), CQ2V ∈ Γ(S(TN⊥)) and J̄Q3V ∈ Γ(µ). Then, using

Eqs. (2.4), (2.7), (2.13) with (3.15) and (3.16) and equating the components of Rad(TN),

J̄Rad(TN), J̄(ltr(TN)), D1, D2, ltr(TN) and S(TN)⊥, we get

ϕ1(∇Z1 J̄ϕ1Z2) + ϕ1(∇Z1 J̄ϕ2Z2) + ϕ1(∇Z1tϕ4Z2) + ϕ1(∇Z1tϕ5Z2)

+ϕ1(∇Z2 J̄ϕ1Z1) + ϕ1(∇Z2 J̄ϕ2Z1) + ϕ1(∇Z2tϕ4Z1) + ϕ1(∇Z2tϕ5Z1)

= ϕ1(Anϕ3Z2Z1) + ϕ1(Anϕ4Z2Z1) + ϕ1(Anϕ5Z2Z1) + ϕ1(Anϕ3Z1Z2) (3.23)

+ ϕ1(Anϕ4Z1Z2) + ϕ1(Anϕ5Z1Z2) + J̄ϕ2∇Z1Z2 + J̄ϕ2∇Z2Z1,

ϕ2(∇Z1 J̄ϕ1Z2) + ϕ2(∇Z1 J̄ϕ2Z2) + ϕ2(∇Z1tϕ4Z2) + ϕ2(∇Z1tϕ5Z2)

+ϕ2(∇Z2 J̄ϕ1Z1) + ϕ2(∇Z2 J̄ϕ2Z1) + ϕ2(∇Z2tϕ4Z1) + ϕ2(∇Z2tϕ5Z1)

= ϕ2(Anϕ3Z2Z1) + ϕ2(Anϕ4Z2Z1) + ϕ2(Anϕ5Z2Z1) + ϕ2(Anϕ3Z1Z2) (3.24)

+ ϕ2(Anϕ4Z1Z2) + ϕ2(Anϕ5Z1Z2) + J̄ϕ1∇Z1Z2 + J̄ϕ1∇Z2Z1,

ϕ3(∇Z1 J̄ϕ1Z2) + ϕ3(∇Z1 J̄ϕ2Z2) + ϕ3(∇Z1tϕ4Z2) + ϕ3(∇Z1tϕ5Z2)

+ϕ3(∇Z2 J̄ϕ1Z1) + ϕ3(∇Z2 J̄ϕ2Z1) + ϕ3(∇Z2tϕ4Z1) + ϕ3(∇Z2tϕ5Z1)

= ϕ3(Anϕ3Z2Z1) + ϕ3(Anϕ4Z2Z1) + ϕ3(Anϕ5Z2Z1) + ϕ3(Anϕ3Z1Z2) (3.25)

+ ϕ3(Anϕ4Z1Z2) + ϕ3(Anϕ5Z1Z2) + 2Bhl(Z1, Z2),

ϕ4(∇Z1 J̄ϕ1Z2) + ϕ4(∇Z1 J̄ϕ2Z2) + ϕ4(∇Z1tϕ4Z2) + ϕ4(∇Z1tϕ5Z2)

+ϕ4(∇Z2 J̄ϕ1Z1) + ϕ4(∇Z2 J̄ϕ2Z1) + ϕ4(∇Z2tϕ4Z1) + ϕ4(∇Z2tϕ5Z1)

= ϕ4(Anϕ3Z2Z1) + ϕ4(Anϕ4Z2Z1) + ϕ4(Anϕ5Z2Z1) + ϕ4(Anϕ3Z1Z2) (3.26)

+ ϕ4(Anϕ4Z1Z2) + ϕ4(Anϕ5Z1Z2) + 2BQ1h
s(Z1, Z2)

+ tϕ4∇Z1Z2 + tϕ4∇Z2Z1,
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ϕ5(∇Z1 J̄ϕ1Z2) + ϕ5(∇Z1 J̄ϕ2Z2) + ϕ5(∇Z1tϕ4Z2) + ϕ5(∇Z1tϕ5Z2)

+ϕ5(∇Z2 J̄ϕ1Z1) + ϕ5(∇Z2 J̄ϕ2Z1) + ϕ5(∇Z2tϕ4Z1) + ϕ5(∇Z2tϕ5Z1)

= ϕ5(Anϕ3Z2Z1) + ϕ5(Anϕ4Z2Z1) + ϕ5(Anϕ5Z2Z1) + ϕ5(Anϕ3Z1Z2) (3.27)

+ ϕ5(Anϕ4Z1Z2) + ϕ5(Anϕ5Z1Z2) + 2BQ2h
s(Z1, Z2)

+ tϕ5∇Z1Z2 + tϕ5∇Z2Z1,

hl(Z2, J̄ϕ1Z1) + hl(Z2, J̄ϕ2Z1) + hl(Z2, tϕ4Z1) + hl(Z2, tϕ5Z1)

+hl(Z1, J̄ϕ1Z2) + hl(Z1, J̄ϕ2Z2) + hl(Z1, tϕ4Z2) + hl(Z1, tϕ5Z2)

= nϕ3∇Z1Z2 + nϕ3∇Z2Z1 −∇l
Z1
nϕ3Z2 −Dl(Z1, nϕ4Z2) (3.28)

−Dl(Z1, nϕ5Z2)−∇l
Z2
nϕ3Z1 −Dl(nϕ4Z1, Z2)−Dl(Z2, nϕ5Z1),

and

hs(Z2, J̄ϕ1Z1) + hs(Z2, J̄ϕ2Z1) + hs(Z2, tϕ4Z1) + hs(Z2, tϕ5Z1)

+hs(Z1, J̄ϕ1Z2) + hs(Z1, J̄ϕ2Z2) + hs(Z1, tϕ4Z2) + hs(Z1, tϕ5Z2)

= nϕ4∇Z1Z2 + nϕ5∇Z1Z2 + nϕ4∇Z2Z1 + nϕ5∇Z2Z1 (3.29)

−Ds(Z1, nϕ3Z2)−∇s
Z1
nϕ4Z2 −∇s

Z1
nϕ5Z2

−Ds(Z2, nϕ3Z1)−∇s
Z2
nϕ4Z1 −∇s

Z2
nϕ5Z1

+ 2CQ1h
s(Z1, Z2) + 2CQ2h

s(Z1, Z2) + 2CQ3h
s(Z1, Z2).

Next, we investigate conditions for the distributions associated with pw.bi-s.l.s. N of N̄ to

be involutive.

Theorem 3.2. For a pw.bi-s.l.s. N of N̄ , the distribution Rad(TN) is involutive, if and

only if

(i) ϕ1
(
∇Z1 J̄ϕ1Z2

)
+ ϕ1

(
∇Z2 J̄ϕ1Z1

)
= 2J̄ϕ2∇Z2Z1,

(ii) ϕ4
(
∇Z1 J̄ϕ1Z2

)
+ ϕ4

(
∇Z2 J̄ϕ1Z1

)
= 2BQ1h

s (Z1, Z2) + 2tϕ4∇Z2Z1,

(iii) ϕ5
(
∇Z1 J̄ϕ1Z2

)
+ ϕ5

(
∇Z2 J̄ϕ1Z1

)
= 2BQ2h

s (Z1, Z2) + 2tϕ5∇Z2Z1,

(iv) hl
(
Z2, J̄ϕ1Z1

)
+ hl

(
Z1, J̄ϕ1Z2

)
= 2nϕ3∇Z2Z1,

(v) hs
(
Z2, J̄ϕ1Z1

)
+ hs

(
Z1, J̄ϕ1Z2

)
= 2nϕ4∇Z2Z1 + 2nϕ5∇Z2Z1 + 2CQ1h

s(Z1, Z2)

+2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2),

for any Z1, Z2 ∈ Γ(Rad(TN)).
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Proof. Consider Z1, Z2 ∈ Γ(Rad(TN)), then using Eqs.(3.23), (3.26), (3.27), (3.28) and

(3.29), we have

ϕ1(∇Z1 J̄ϕ1Z2) + ϕ1(∇Z2 J̄ϕ1Z1) = J̄ϕ2[Z1, Z2] + 2J̄ϕ2∇Z2Z1, (3.30)

ϕ4(∇Z1 J̄ϕ1Z2) + ϕ4(∇Z2 J̄ϕ1Z1) = 2BQ1h
s(Z1, Z2) + tϕ4[Z1, Z2] + 2tϕ4∇Z2Z1, (3.31)

ϕ5(∇Z1 J̄ϕ1Z2) + ϕ5(∇Z2 J̄ϕ1Z1) = 2BQ2h
s(Z1, Z2) + tϕ5[Z1, Z2] + 2tϕ5∇Z2Z1, (3.32)

hl(Z2, J̄ϕ1Z1) + hl(Z1, J̄ϕ1Z2) = nϕ3[Z1, Z2] + 2nϕ3∇Z2Z1 (3.33)

and

2CQ1h
s(Z1, Z2) + 2CQ2h

s(Z1, Z2) + 2CQ3h
s(Z1, Z2) + nϕ4[Z1, Z2] + 2nϕ4∇Z2Z1

+ nϕ5[Z1, Z2] + 2nϕ5∇Z2Z1 = hs(Z2, J̄ϕ1Z1) + hs(Z1, J̄ϕ1Z2). (3.34)

Then the result follows from Eqs. (3.30), (3.31), (3.32), (3.33) and (3.34). □

Theorem 3.3. For a pw.bi-s.l.s. N of N̄ , the distribution J̄Rad(TN) is involutive, if and

only if

(i) ϕ2
(
∇Z1 J̄ϕ2Z2

)
+ ϕ2

(
∇Z2 J̄ϕ2Z1

)
= 2J̄ϕ1∇Z2Z1,

(ii) ϕ4
(
∇Z1 J̄ϕ2Z2

)
+ ϕ4

(
∇Z2 J̄ϕ2Z1

)
= 2BQ1h

s (Z1, Z2) + 2tϕ4∇Z2Z1,

(iii) ϕ5
(
∇Z1 J̄ϕ2Z2

)
+ ϕ5

(
∇Z2 J̄ϕ2Z1

)
= 2BQ2h

s (Z1, Z2) + 2tϕ5∇Z2Z1,

(iv) hl
(
Z2, J̄ϕ2Z1

)
+ hl

(
Z1, J̄ϕ2Z2

)
= 2nϕ3∇Z2Z1,

(v) hs
(
Z2, J̄ϕ2Z1

)
+ hs

(
Z1, J̄ϕ2Z2

)
=2nϕ4∇Z2Z1 + 2nϕ5∇Z2Z1 + 2CQ1h

s(Z1, Z2)

+2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2),

where Z1, Z2 ∈ Γ(J̄Rad(TN)).

Proof. Let Z1, Z2 ∈ Γ(J̄(Rad(TN)), then using Eqs.(3.24), (3.26), (3.27), (3.28) and (3.29),

we have

ϕ2
(
∇Z1 J̄ϕ2Z2

)
+ ϕ2

(
∇Z2 J̄ϕ2Z1

)
= J̄ϕ1[Z1, Z2] + 2J̄ϕ1∇Z2Z1, (3.35)

ϕ4
(
∇Z1 J̄ϕ2Z2

)
+ ϕ4

(
∇Z2 J̄ϕ2Z1

)
= 2BQ1h

s (Z1, Z2) + tϕ4[Z1, Z2] + 2tϕ4∇Z2Z1, (3.36)

ϕ5
(
∇Z1 J̄ϕ2Z2

)
+ ϕ5

(
∇Z2 J̄ϕ2Z1

)
= 2BQ2h

s (Z1, Z2) + tϕ5[Z1, Z2] + 2tϕ5∇Z2Z1, (3.37)

hl
(
Z2, J̄ϕ2Z1

)
+ hl

(
Z1, J̄ϕ2Z2

)
= nϕ3[Z1, Z2] + 2nϕ3∇Z2Z1 (3.38)
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and

nϕ4[Z1, Z2] + 2nϕ4∇Z2Z1 + nϕ5[Z1, Z2] + 2nϕ5∇Z2Z1 + 2CQ1h
s(Z1, Z2)

+ 2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2) = hs
(
Z2, J̄ϕ2Z1

)
+ hs

(
Z1, J̄ϕ2Z2

)
. (3.39)

The result follows from Eqs. (3.35), (3.36), (3.37), (3.38) and (3.39). □

Theorem 3.4. For a pw.bi-s.l.s. N of N̄ , the distribution J̄(ltr(TN)) is involutive, if and

only if

(i) ϕ1(Anϕ3Z2Z1) + ϕ1(Anϕ3Z1Z2) + 2J̄ϕ2∇Z2Z1 = 0,

(ii) ϕ2(Anϕ3Z2Z1) + ϕ2(Anϕ3Z1Z2) + 2J̄ϕ1∇Z2Z1 = 0,

(iii) ϕ4(Anϕ3Z2Z1) + ϕ4(Anϕ3Z1Z2) + 2BQ1h
s (Z1, Z2) + 2tϕ4∇Z2Z1 = 0,

(iv) ϕ5(Anϕ3Z2Z1) + ϕ5(Anϕ3Z1Z2) + 2BQ2h
s (Z1, Z2) + 2tϕ5∇Z2Z1 = 0,

(v) Ds(Z1, nϕ3Z2) +Ds(Z2, nϕ3Z1) =2nϕ4∇Z2Z1 + 2nϕ5∇Z2Z1 + 2CQ1h
s(Z1, Z2)

+2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2),

for any Z1, Z2 ∈ Γ(J̄(ltr(TN)).

Proof. Consider Z1, Z2 ∈ Γ(J̄(ltr(TN)), then from Eqs.(3.23), (3.24), (3.26), (3.27) and

(3.29), we have

ϕ1(Anϕ3Z2Z1) + ϕ1(Anϕ3Z1Z2) + J̄ϕ2[Z1, Z2] + 2J̄ϕ2∇Z2Z1 = 0, (3.40)

ϕ2(Anϕ3Z2Z1) + ϕ2(Anϕ3Z1Z2) + J̄ϕ1[Z1, Z2] + 2J̄ϕ1∇Z2Z1 = 0, (3.41)

ϕ4(Anϕ3Z2Z1) + ϕ4(Anϕ3Z1Z2) + 2BQ1h
s (Z1, Z2) + tϕ4[Z1, Z2] + 2tϕ4∇Z2Z1 = 0, (3.42)

ϕ5(Anϕ3Z2Z1) + ϕ5(Anϕ3Z1Z2) + 2BQ2h
s (Z1, Z2) + tϕ5[Z1, Z2] + 2tϕ5∇Z2Z1 = 0 (3.43)

and

nϕ4[Z1, Z2] + 2nϕ4∇Z2Z1 + nϕ5[Z1, Z2] + 2nϕ5∇Z2Z1 + 2CQ1h
s(Z1, Z2)

+ 2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2) = Ds(Z1, nϕ3Z2) +Ds(Z2, nϕ3Z1). (3.44)

Using Eqs. (3.40), (3.41), (3.42), (3.43) and (3.44), the assertion follows directly. □

Theorem 3.5. For a pw.bi-s.l.s. N of N̄ , the distribution D1 is involutive, if and only if

(i) ϕ1 (∇Z1tϕ4Z2) + ϕ1 (∇Z2tϕ4Z1) = ϕ1(Anϕ4Z2Z1) + ϕ1(Anϕ4Z1Z2) + 2J̄ϕ2∇Z2Z1,

(ii) ϕ2 (∇Z1tϕ4Z2) + ϕ2 (∇Z2tϕ4Z1) = ϕ2(Anϕ4Z2Z1) + ϕ2(Anϕ4Z1Z2) + 2J̄ϕ1∇Z2Z1,
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(iii) ϕ5 (∇Z1tϕ4Z2)+ϕ5 (∇Z2tϕ4Z1)=ϕ5(Anϕ4Z2Z1)+ϕ5(Anϕ4Z1Z2)+ 2BQ2h
s (Z1, Z2)+

2tϕ5∇Z2Z1,

(iv) hl (Z2, tϕ4Z1) + hl (Z1, tϕ4Z2) = 2nϕ3∇Z2Z1 −Dl(Z1, nϕ4Z2)−Dl(nϕ4Z1, Z2),

(v) nϕ4∇Z2Z1+nϕ4∇Z1Z2+2nϕ5∇Z2Z1−∇s
Z1
nϕ4Z2−∇s

Z2
nϕ4Z1+2CQ1h

s(Z1, Z2)+

2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2) = hs (Z2, tϕ4Z1) + hs (Z1, tϕ4Z2),

where Z1, Z2 ∈ Γ(D1).

Proof. For Z1, Z2 ∈ Γ(D1), from Eqs.(3.23), (3.24), (3.27), (3.28) and (3.29), we have

ϕ1(Anϕ4Z2Z1) + ϕ1(Anϕ4Z1Z2) + 2J̄ϕ2∇Z2Z1 + J̄ϕ2[Z1, Z2] =ϕ1 (∇Z1tϕ4Z2)

+ ϕ1 (∇Z2tϕ4Z1) , (3.45)

ϕ2(Anϕ4Z2Z1) + ϕ2(Anϕ4Z1Z2) + 2J̄ϕ1∇Z2Z1 + J̄ϕ1[Z1, Z2] =ϕ2 (∇Z1tϕ4Z2)

+ ϕ2 (∇Z1tϕ4Z2) , (3.46)

ϕ5 (∇Z1tϕ4Z2) + ϕ5 (∇Z2tϕ4Z1) = ϕ5(Anϕ4Z2Z1) + ϕ5(Anϕ4Z1Z2) + tϕ5[Z1, Z2]

+ 2BQ2h
s (Z1, Z2) + 2tϕ5∇Z2Z1, (3.47)

nϕ3[Z1, Z2] + 2nϕ3∇Z2Z1 −Dl(Z1, nϕ4Z2)−Dl(nϕ4Z1, Z2) =h
l (Z2, tϕ4Z1)

+ hl (Z1, tϕ4Z2) (3.48)

and

nϕ4∇Z2Z1 + nϕ4∇Z1Z2 + 2nϕ5∇Z2Z1 −∇s
Z1
nϕ4Z2 −∇s

Z2
nϕ4Z1 + 2CQ1h

s(Z1, Z2)+

nϕ5[Z1, Z2] + 2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2) = hs (Z2, tϕ4Z1) + hs (Z1, tϕ4Z2) . (3.49)

Then the assertion follows from Eqs. (3.45), (3.46), (3.47), (3.48) and (3.49). □

Theorem 3.6. For a pw.bi-s.l.s. N of N̄ , the distribution D2 is involutive, if and only if

(i) ϕ1 (∇Z1tϕ5Z2) + ϕ1 (∇Z2tϕ5Z1) = ϕ1(Anϕ5Z2Z1) + ϕ1(Anϕ5Z1Z2) + 2J̄ϕ2∇Z2Z1,

(ii) ϕ2 (∇Z1tϕ5Z2) + ϕ2 (∇Z2tϕ5Z1) = ϕ2(Anϕ5Z2Z1) + ϕ2(Anϕ5Z1Z2) + 2J̄ϕ1∇Z2Z1,

(iii) ϕ4 (∇Z1tϕ5Z2) + ϕ4 (∇Z2tϕ5Z1) = ϕ4(Anϕ5Z2Z1) + ϕ4(Anϕ5Z1Z2) + 2BQ1h
s (Z1, Z2)

+ 2tϕ4∇Z2Z1,

(iv) hl (Z2, tϕ5Z1) + hl (Z1, tϕ5Z2) = 2nϕ3∇Z2Z1 −Dl(Z1, nϕ5Z2)−Dl(nϕ5Z1, Z2),

(v) nϕ5∇Z2Z1 + nϕ5∇Z1Z2 + 2nϕ4∇Z2Z1 −∇s
Z1
nϕ5Z2 −∇s

Z2
nϕ5Z1 + 2CQ1h

s(Z1, Z2)

+ 2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2) = hs (Z2, tϕ4Z1) + hs (Z1, tϕ4Z2),
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for any Z1, Z2 ∈ Γ(D2).

Proof. Let Z1, Z2 ∈ Γ(D2). Using Eqs.(3.23), (3.24), (3.27), (3.28) and (3.29), we have

ϕ1(Anϕ5Z2Z1) + ϕ1(Anϕ5Z1Z2) + 2J̄ϕ2∇Z2Z1 + J̄ϕ2[Z1, Z2] =ϕ1 (∇Z1tϕ5Z2)

+ ϕ1 (∇Z2tϕ5Z1) , (3.50)

ϕ2(Anϕ5Z2Z1) + ϕ2(Anϕ5Z1Z2) + 2J̄ϕ1∇Z2Z1 + J̄ϕ1[Z1, Z2] =ϕ2 (∇Z1tϕ5Z2)

+ ϕ2 (∇Z2tϕ5Z1) , (3.51)

ϕ4 (∇Z1tϕ5Z2) + ϕ4 (∇Z2tϕ5Z1) = ϕ4(Anϕ5Z2Z1) + ϕ4(Anϕ5Z1Z2) + tϕ4[Z1, Z2]

+ 2BQ1h
s (Z1, Z2) + 2tϕ4∇Z2Z1, (3.52)

nϕ3[Z1, Z2] + 2nϕ3∇Z2Z1 −Dl(Z1, nϕ5Z2)−Dl(nϕ5Z1, Z2) =h
l (Z2, tϕ5Z1)

+ hl (Z1, tϕ5Z2) (3.53)

and

nϕ5∇Z2Z1 + nϕ5∇Z1Z2 + 2nϕ4∇Z2Z1 −∇s
Z1
nϕ5Z2 −∇s

Z2
nϕ5Z1 + 2CQ1h

s(Z1, Z2)+

nϕ4[Z1, Z2] + 2CQ2h
s(Z1, Z2) + 2CQ3h

s(Z1, Z2) = hs (Z2, tϕ5Z1) + hs (Z1, tϕ5Z2) . (3.54)

The result follows from Eqs. (3.50), (3.51), (3.52), (3.53) and (3.54). □

We now give a necessary and sufficient condition for the induced connection on a pw.bi-

s.l.s. N to be a metric connection.

Theorem 3.7. Assume that N is a pw.bi-s.l.s. of N̄ , then ∇ is a metric connection on

N , if and only if for each Z ∈ Γ(TN) and ξ ∈ Γ(Rad(TN)), we have

(i) ∇Z J̄ξ +∇J̄ξZ ∈ ΓJ̄(Rad(TN)),

(ii) ∇J̄ξtZ −AnZ J̄ξ ∈ Γ(Rad(TN)),

(iii) Bh(Z, J̄ξ) = 0.

Proof. Consider Z ∈ Γ(TN) and ξ ∈ Γ(Rad(TN)). Now, by Eqs. (2.13), we have

∇Zξ = −∇Z J̄
2ξ = −J̄∇Z J̄ξ +∇J̄ξJ̄Z − J̄∇J̄ξZ.
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Then using Eqs. (2.3), (3.15) and (3.16), we get

−J̄(∇Z J̄ξ +∇J̄ξZ) +∇J̄ξtZ + h(J̄ξ, tZ)−AnZ J̄ξ +∇t
J̄ξnZ − 2Bh(Z, J̄ξ)− 2Ch(Y, J̄ξ)

= ∇Zξ + h(Z, ξ),

Comparing tangential components on both sides of above equation, we derive

∇Zξ = −t(∇Z J̄ξ +∇J̄ξZ) +∇J̄ξtZ −AnZ J̄ξ − 2Bh(Z, J̄ξ).

Hence, ∇Zξ ∈ Γ(Rad(TN)), if and only if the conditions (i), (ii) and (iii) are satisfied. □

Lemma 3.3. Let N be a pw.bi-s.l.s. of N̄ and (θj)p, (j = 1, 2) be the slant angle. Then,

for a unit vector Z ∈ Γ(Dj)p, we have

tZ = cos(θj)p(Z)Z̄ (3.55)

where Z̄ represents a unit vector in (Dj)p such that g(Z̄, Z) = 0.

Proof. Let Z ∈ Γ(Dj)p, (j = 1, 2) such that g(Z,Z) = 1, then we have

cos(θj)p(Z) =
|tZ|
|J̄Z|

=
|tZ|
|Z|

= |tZ|. (3.56)

Now, define Z̄ =
tZ

|tZ|
, then clearly |Z̄| = 1 and tZ = |tZ|Z̄. Next from Eq. (3.56), we have

tZ = cos(θj)p(Z)Z̄.

We know that for an indefinite nearly Kähler manifold, g(J̄Z, Z) = 0. Using Lemma(3.1) and

Eq.(3.15), we get g(tZ, Z) = 0. Further, we have g(Z̄, Z) = g

(
tZ

|tZ|
, Z

)
=

1

|tZ|
g(tZ, Z) = 0,

which proves the lemma.

□

Definition 3.2. A q-lightlike submanifold N of an indefinite nearly Kähler manifold N̄ with

index 2q is said to be a bi-slant lightlike submanifold if

(i) J̄(Rad(TN)) is a distribution on N such that J̄(Rad(TN)) ∩Rad(TN)={0}.

(ii) There exists non-degenerate orthogonal distributions D1 and D2 on N such that

S(TN) = (J̄ ltr(TN)⊕ J̄Rad(TN)) ⊥ D1 ⊥ D2.

(iii) J̄D1 ⊥ D2 and J̄D2 ⊥ D1.

(iv) The distribution Dj is slant with slant angle θj (for j = 1, 2) i.e, for each p ∈ N and

non-zero tangent vector field Z ∈ (Dj)p, the angle (θj)p between J̄Z and the vector

space (Dj)p is independent of choice of Z ∈ Γ(Dj)p and p ∈ N .



452 A. SHRIVASTAVA, V. A. KHAN, AND S. KUMAR

If Dj ̸= {0} and θj ̸= 0, π/2, then, the bi-slant lightlike submanifold is said to be proper.

Next, we provide conditions for proper pw.bi-s.l.s. N of N̄ to be a bi-slant lightlike

submanifold.

Theorem 3.8. A proper pw.bi-s.l.s. N of N̄ is a bi-slant lightlike submanifold of N̄ , if

and only if,

g(AnZjY, Z̄j) + g(AnY Zj , Z̄j) = 2g(AnZ̄j
Y, Zj) + g((∇Zj t)Y, Z̄j),

where for p ∈ U ⊂ N , Zj ∈ Γ(Dj)p is a unit vector field, Z̄j ∈ Γ(Dj)p is a unit vector field

such that g(Z̄j , Zj) = 0 for j = 1, 2 and Y ∈ Γ(TN).

Proof. Assume N be a proper pw.bi-s.l.s. of N̄ and Zj ∈ Γ(Dj)p for p ∈ U ⊂ N , be unit

vector field. For Y ∈ Γ(TN), using Eqs. (3.15), (2.4), (2.5), (2.7) and (3.55), we have

∇Y J̄Zj =− sin(θj)p(Z)Y ((θj)p(Z))Z̄j + cos(θj)p(Z)(∇Y Z̄j + hl(Y, Z̄j) + hs(Y, Z̄j))

−AnZjY +∇s
Y nZj +Dl(Y, nZj) (3.57)

aand

∇Zj J̄Y =∇Zj tY + hl(Zj , tY ) + hs(Zj , tY )−AnY Zj +∇l
Zj
L(nY ) +∇s

Zj
S(nY )

+Dl(Zj , S(nY )) +Ds(Zj , L(nY )). (3.58)

Again, using Eqs. (2.4), (3.15) ans (3.16), we get

J̄(∇ZjY ) + J̄(∇Y Zj) =t∇ZjY + t∇Y Zj + n∇ZjY + n∇Y Zj + 2Bhl(Zj , Y )

+ 2Bhs(Zj , Y ) + 2Chs(Zj , Y ). (3.59)

As N̄ is an indefinite nearly kähler manifold, therefore, using Eq. (2.13), we get

∇Y J̄Zj +∇Zj J̄Y = J̄(∇ZjY ) + J̄(∇Y Zj).

Using Eqs. (3.57), (3.58) and (3.59) , comparing tangential parts of resulting equation and

taking inner product with respect to Z̄j ∈ Γ(Dj)p, we have

− sin(θj)p(Z)Y ((θj)p(Z)) + cos(θj)p(Z)g(∇Y Z̄j , Z̄j)− g(AnZjY, Z̄j)− g(AnY Zj , Z̄j)

+ g(∇Zj tY, Z̄j) = g(t∇ZjY, Z̄j) + g(t∇Y Zj , Z̄j) + 2g(Bhl(Zj , Y ), Z̄j) + 2g(Bhs(Zj , Y ), Z̄j).

(3.60)
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Next from Eq. (2.12), we have (∇Y g)(Z̄j , Z̄j) = 0, which gives g(∇Y Z̄j , Z̄j) = 0. Then

consider,

g(t∇Y Zj , Z̄j) = g

(
t∇Y Zj ,

tZj

|tZj |

)
=

1

|tZj |
g(t∇Y Zj , tZj)

=
1

|tZj |
cos2(θj)p(Z)g(∇Y Zj , Zj)

= 0. (3.61)

Also, from Eq. (2.8), we have

2g(Bhs(Y, Zj), Z̄j) = −2ḡ(hs(Y,Zj), J̄ Z̄j) = −2ḡ(hs(Y, Zj), nZ̄j)

= −2g(AnZ̄j
Y, Zj). (3.62)

Now, using (3.61) and (3.62) along with the fact that g(∇Y W̄ , W̄ ) = 0 in (3.60), we have

−sin(θj)p(Z)Y ((θj)p(Z)) =g(AnZjY, Z̄j) + g(AnY Zj , Z̄j)− g((∇Zj t)Y, Z̄j)

− 2g(AnZ̄j
Y,Zj), (3.63)

As N is proper pw.bi.s.l.s. of N̄ , N is a bi-slant lightlike submanifold iff Y ((θj)p(Z)) = 0

i.e, θj is independent of choice of p ∈ N which proves the theorem. □

Theorem 3.9. Assume N be a proper pw.bi-s.l.s. of N̄ . If

(i) there exists tr(TN) which is parallel along TN with respect to metric connection ∇.

(ii) t is parallel with respect to induced connection ∇ on N .

Then, N becomes a bi-slant lightlike submanifold of N̄ .

Proof. Assume that Y ∈ Γ(TN), Zj ∈ Γ(Dj)p for j = 1, 2, where p ∈ U ⊂ N . Then,

using Lemma (3.1), {nZj , nZ̄j}∈ Γ(S(TN⊥)) ⊂ Γ(tr(TN)). Since tr(TN) is parallel along

TN with respect to metric connection ∇, we have, {∇Y nZj , ∇Y nZ̄j}∈ Γ(tr(TN)) which

implies AnZjY = AnZ̄j
Y = 0. Similarly, using the fact that tr(TN) is parallel along TN

with respect to metric connection ∇ and Eq.(2.5), we get AnY Zj = 0. Also, by condition

(ii), (∇Zj t)Y = 0. As N is proper pw.bi.s.l.s. of N̄ , from Eq. (3.63), Y ((θj)p(Z)) = 0 i.e,

θj is independent of choice of p ∈ N which proves the theorem. □

Definition 3.3. [7] A lightlike submanifold (N, g) of a semi-Riemannian (N̄ , ḡ) is called

totally umbilical, if there exist a transversal curvature vector field H ∈ Γ(tr(TN)) on N such
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that

h(Z1, Z2) = Hḡ(Z1, Z2), (3.64)

for Z1, Z2 ∈ Γ(TN). Using Eqs. (2.4) and (2.7), clearly N is totally umbilical, if and only

if there exist smooth vector fields H l ∈ Γ(ltr(TN)) and Hs ∈ Γ(S(TN⊥)) such that

hl(Z1, Z2) = H lg(Z1, Z2), h
s(Z1, Z2) = Hsg(Z1, Z2), D

l(Z1, V ) = 0, (3.65)

for Z1, Z2 ∈ Γ(TN) and V ∈ Γ(S(TN⊥)).

Theorem 3.10. Assume that N be a totally umbilical proper pw.bi-s.l.s. of N̄ . Then N

becomes a bi-slant lightlike submanifold of N̄ , if Hs ∈ Γ(µp).

Proof. Let Z ∈ Γ(Dj)p for some j = 1, 2 and p ∈ U ⊂ N . Then, using Eq. (3.64) and

Corollary (3.1), we have

∇tZtZ = ∇tZtZ + cos2(θj)pg(Z,Z)H.

Now, applying J̄ on both sides of above equation and using Eqs.(2.7), (3.15) and Theorem

(3.1), we get,

sin2(θj)ptZ(θj)pZ − cos2(θj)p∇tZZ −AntZtZ +∇s
tZntZ +Dl(tZ, ntZ) =

cos2(θj)pg(Z,Z)(J̄H
l + J̄Hs) + t∇tZtZ + n∇tZtZ. (3.66)

Comparing transversal components of above equation and taking the inner product of result-

ing expression with ntZ, we have

cos2(θj)pg(Z,Z)ḡ(CH
s, ntZ) + ḡ(n∇tZtZ, ntZ) = ḡ(∇s

tZntZ, ntZ). (3.67)

Using the fact that ∇̄ is a metric connection on N̄ with respect to ḡ along with Eq.(2.7) and

Corollary (3.1), we have

ḡ(∇s
tZntZ, ntZ) =

1

2
(sin2(θj)pg(tZ, tZ)tZ(θj)p + sin2(θj)p∇tZ ḡ(tZ, tZ)). (3.68)

Further using Eq.(3.68) in Eq. (3.67) along with Corollary (3.1) and hypothesis that Hs ∈

Γ(µp), we acquire

sin2(θj)pḡ(∇tZtZ, tZ) =
1

2
(sin2(θj)pg(tZ, tZ)tZ(θj)p + sin2(θj)p∇tZ ḡ(tZ, tZ)). (3.69)

As ∇ is metric connection on N̄ with respect to ḡ, thus we have

∇tZ ḡ(tZ, tZ) = 2ḡ(∇tZtZ, tZ). (3.70)
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Next using Eq.(3.70) in Eq.(3.69), we get,

sin2(θj)pg(tZ, tZ)tZ(θj)p = 0.

Since g is non-degenerate on Γ(Dj)p and N is proper pw.bi-s.l.s., thus we conclude that

tZ(θj)p=0; this shows that θj is independent of choice of p ∈ N which proves the result. □

Definition 3.4. A lightlike submanifold (N, g,∇) of (N̄ , ḡ,∇) is called totally geodesic if any

geodesic of N is a geodesic of N̄ . Using Eq.(2.4), (N, g,∇) is totally geodesic in (N̄ , ḡ,∇)

if and only if the second fundamental form vanishes on N i.e, hl(Z1, Z2) = hs(Z1, Z2) = 0

∀Z1, Z2 ∈ Γ(TN).

Theorem 3.11. Assume N is a totally umbilical pw.bi-s.l.s. of N̄ with Hs ∈ Γ(µ) and

∇s
ZV ∈ Γ(µ) for V ∈ Γ(S(TN⊥)) and Z ∈ Γ(Dj)p for j=1,2. Then, N is totally geodesic in

N̄ .

Proof. Let Z ∈ Γ(Dj)p for some j = 1, 2 and p ∈ N . Then from Eq. (2.13), we have

∇̄Z J̄Z = J̄∇̄ZZ. Further using Eqs. (2.4), (2.7), (3.15) and (3.16), we obtain

∇ZtZ + hl(Z, tZ) + hs(Z, tZ)−AnZZ+D
l(Z, nZ) +∇s

ZnZ =

t∇ZZ + n∇ZZ+Bh
l(Z,Z) +Bhs(Z,Z) + Chs(Z,Z). (3.71)

On comparing the tangential components on both sides of above equation and using Eq.(3.65),

we get

∇ZtZ −AnZZ = t∇ZZ + g(Z,Z)BH l + g(Z,Z)BHs.

taking inner product with J̄ξ ∈ Γ(Rad(TN)), where ξ ∈ Γ(Rad(TN)), we get

ḡ(∇ZtZ, J̄ξ)− ḡ(AnZZ, J̄ξ) =ḡ(t∇ZZ, J̄ξ) + g(Z,Z)ḡ(BH l, J̄ξ)

+ g(Z,Z)ḡ(BHs, J̄ξ). (3.72)

Now, using Eqs.(2.13), (3.15), (2.12) and (3.16), we have

ḡ(t∇ZZ, J̄ξ) = 0 = ḡ(BHs, J̄ξ) = ḡ(AnZZ, J̄ξ). (3.73)
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Also,

ḡ(∇ZtZ, J̄ξ) = ḡ(∇ZtZ, J̄ξ) =− ḡ(∇Z J̄ tZ, J̄ξ)

= −ḡ(∇Zt
2Z, ξ)− ḡ(∇ZntZ, ξ)

= ḡ(hl(Z, t2Z), ξ)

= cos2θp(Z)g(Z,Z)ḡ(H
l, ξ). (3.74)

Using Eqs.(3.16) and (2.13), we get

ḡ(BH l, J̄ξ) = ḡ(H l, ξ). (3.75)

Now, using Eqs.(3.73), (3.74) and (3.75) in (3.72), we have

g(Z,Z)ḡ(H l, ξ)(1 + cos2(θj)p(Z)) = 0.

As g is non-degenerate on Γ(Dj)p, therefore one has ḡ(H l, ξ) = 0 which further implies that

H l = 0. (3.76)

Secondly, On comparing the transversal components of Eq.(3.71) and then considering the

inner product of resulting part with J̄Hs, we get

ḡ(∇s
ZnZ, J̄H

s) = g(Z,Z)ḡ(Hs, Hs). (3.77)

As ∇ is a metric connection, we have (∇Z ḡ)(nZ, J̄H
s) = 0), which on using Eq. (2.7)

together with hypothesis Hs ∈ Γ(µ) and ∇s
ZV ∈ Γ(µ), for V ∈ Γ(S(TN⊥)) yields that

ḡ(∇s
ZnZ, J̄H

s) = 0. (3.78)

Then using Eq.(3.78) in Eq.(3.77), we get

g(Z,Z)ḡ(Hs, Hs) = 0.

As the slant distribution is non-degenerate, therefore,

Hs = 0. (3.79)

Thus, the proof follows. □
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4. Totally Geodesic Foliations Determined by Distributions

In this section, we investigate the conditions for foliations determined by distributions

Rad(TN), D1 and D2 to be totally geodesic.

Theorem 4.1. Assume N be a pw.bi-s.l.s. of N̄ . Then, Rad(TN) defines a totally geodesic

foliation if and only if

g(Anϕ4WZ1 +Anϕ5WZ1, tZ2) = g(∇Z1tW +∇Z1tW, tZ2),

for Z1, Z2 ∈ Γ(Rad(TN)) and W ∈ Γ(S(TN)).

Proof. In order to show that Rad(TN) defines a totally geodesic foliation, it is sufficient to

show that ∇Z1Z2 ∈ Γ(Rad(TN)) for Z1, Z2 ∈ Γ(Rad(TN)). Using the fact that ∇ is a metric

connection along with Eq.(2.13) and (2.4), for Z1, Z2 ∈ Γ(Rad(TN)) and W ∈ Γ(S(TN)),

we get

g(∇Z1Z2,W ) = −ḡ(∇Z1 J̄W, J̄Z2)− ḡ(∇W J̄Z1, J̄Z2) + ḡ(J̄∇WZ1, J̄Z2). (4.80)

Moreover, using Eqs.(3.18) and (3.22) in Eq.(4.80), we get

g(∇Z1Z2,W ) = ḡ(∇Z1tW +∇W tZ1 −Anϕ4WZ1 −Anϕ5WZ1, tZ2),

which proves the theorem. □

Theorem 4.2. Assume N be a pw.bi-s.l.s. of N̄ . Then, D1 defines a totally geodesic

foliation if and only if

(i) ∇Z1 J̄W + ∇W J̄Z1 has no components along D1, S(TN
⊥) and ∇WZ1 has no com-

ponent along D1.

(ii) ANZ1 has no component along D1.

(iii) ∇Z1W
′ has no component along D1.

(iv) ∇Z1V has no component along D1.

for Z1 ∈ Γ(D1), N ∈ Γ(ltr(TN)), W ′ ∈ ΓJ̄(ltr(TN)), V ∈ ΓJ̄(Rad(TN)) and W ∈ Γ(D2).

Proof. Assume Z1, Z2 ∈ Γ(D1). To show that ∇Z1Z2 ∈ Γ(D1), it is sufficient to show that

∇Z1Z2 has no components along Rad(TN), J̄Rad(TN), J̄ ltr(TN) and D2. For W ∈ Γ(D2),

using the fact that ∇ is a metric connection along with Eqs.(2.4) and (2.13), we have

ḡ(∇Z1Z2,W ) = −ḡ(∇Z1 J̄W +∇W J̄Z1, J̄Z2) + ḡ(∇WZ1, Z2). (4.81)
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For N ∈ Γ(ltr(TN)), using the fact that ∇ is a metric connection along with Eqs.(2.4)

and (2.6), we have

ḡ(∇Z1Z2, N) = ḡ(ANZ1, Z2). (4.82)

Also, forW ′ ∈ Γ(J̄ ltr(TN)), using the fact that∇ is a metric connection along with Eqs.(2.4),

we have

ḡ(∇Z1Z2,W
′) = −ḡ(∇Z1W

′, Z2). (4.83)

Now, consider V ∈ ΓJ̄Rad(TN), using the fact that ∇ is a metric connection along with

Eqs.(2.4), we have

ḡ(∇Z1Z2, V ) = −ḡ(∇Z1V,Z2). (4.84)

hence, the result follows from Eqs.(4.81), (4.82), (4.83) and (4.84). □

Following the same procedure as above, it can easily be shown that

Theorem 4.3. Assume N be a pw.bi-s.l.s. of N̄ . Then, D2 defines a totally geodesic

foliation if and only if

(i) ∇Z1 J̄W + ∇W J̄Z1 has no components along D2, S(TN
⊥) and ∇WZ1 has no com-

ponent along D2.

(ii) ANZ1 has no component along D2.

(iii) ∇Z1W
′ has no component along D2.

(iv) ∇Z1V has no component along D2.

for Z1 ∈ Γ(D2), N ∈ Γ(ltr(TN)), W ′ ∈ ΓJ̄(ltr(TN)), V ∈ ΓJ̄(Rad(TN)) and W ∈ Γ(D1).
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A SOLITONIC STUDY ON PARA-SASAKIAN MANIFOLDS ADMITTING

SEMI-SYMMETRIC NONMETRIC CONNECTION
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Abstract. In this paper we have introduced a new semi-symmetric nonmetric connection

(briefly, SSNM-connection) and established its existence on para-Sasakian manifold. We

obtain Riemannian curvature tensor, Ricci tensor, scalar curvature etc. with respect to the

SSNM-connection and studied the properties of para-Sasakian manifold with the help of

this connection. We also study η-Einstein soliton on para-Sasakian manifolds with respect

to this connection and prove that a para-Sasakian manifold admitting η-Einstein soliton

with respect to the SSNM-connection is a generalized η-Einstein manifold. Further, we

investigate η-Einstein soliton on para-Sasakian manifolds satisfying R.S = 0, S.R = 0 and

R.R = 0, where R and S are Riemannian curvature tensor and Ricci tensor with respect to

the SSNM-connection, respectively. At last, some conclusions are made after observing all

the results and an example of 3-dimensional para-Sasakian manifold admitting the SSNM-

connection is given in which all the results can be verified easily.

Keywords: Para-Sasakian manifold, Semi-symmetric nonmetric connection, Einstein soli-

ton, η-Einstein soliton.
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1. Introduction

In 1979, the notion of para-Sasakian (briefly, P-Sasakian) and special para-Sasakian (briefly,

SP-Sasakian) manifolds were introduced by Sato and Matsumoto [26]. Later, Adati and Mat-

sumoto investigate some interesting results on P-Sasakian manifolds and SP-Sasakian man-

ifolds in [1]. The properties of para-Sasakian manifold have been studied by many authors.

For instance, we see [2, 16, 17, 19, 21, 25, 28] and their references.
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In 1924, Friedmann and Schouten gave the notion of semi-symmetric connection on a

differentiable manifold. A linear connection on a differentiable manifold M is said to be

semi-symmetric if its torsion tensor T satisfies

T (Λ1,Λ2) = π(Λ2)Λ1 − π(Λ1)Λ2, (1.1)

for all Λ1, Λ2 ∈ χ (M) , where χ (M) is the set of all vector fields on M and π is a 1-form

associated with the vector field P given by

π(Λ1) = δ(Λ1, P ),

where δ is a metric on M . In 1932, Hayden [14] introduced the semi-symmetric metric

connection on a Riemannian manifold and later it was named as Hayden connection. A

linear connection ∇ is said to be metric connection if

(∇Λ1δ) (Λ2,Λ3) = 0, (1.2)

otherwise it is nonmetric. A systematic study of semi-symmetric metric connection was

initiated by Yano [31] in 1970. He proved that a Riemannian manifold with respect to

the semi-symmetric metric connection has vanishing curvature tensor if and only if it is

conformally flat. The study of semi-symmetric metric connection was further developed by

Amur and Puzara [4], Binh [5], De [11], Ozgur and Sular [20], Singh and Pandey [27] and

many others.

On the other hand, semi-symmetric nonmetric connetion whose torsion is given by (1.1)

was introduced by Agashe and Chafle [3] in 1992. They showed that a Riemannian manifold

is projectively flat if it’s curvature tensor with respect to the SSNM-connection vanishes.

This linear connection was further developed by many researchers such as Chaubey and

Ojha [9], De and Kamilya [12], De, Han and Zhao [13], Prasad and Singh [22], Prasad and

Verma [23] and many others. Recently, in [10], Chaubey and Yieldiz defined a new type of

SSNM-connection on Remannian manifolds. They investigated various curvature properties

of Riemannian manifold with respect to the SSNM-connection and studied Ricci soliton on

Riemannian manifold with respect to this connection. Motivated by their studies, here the

SSNM-connection has been introduced on para-Sasakian manifold to study some properties

and explore η-Einstein soliton on this manifold.

R. S. Hamilton was the first who introduced the notion of Ricci flow in the early 1980s.

His [15] observation on Ricci flow was that it is a tool by which the formation of a manifold
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can be simplified. It is the process which deforms the metric of a differentiable manifold by

smoothing out the irregularities. The equation of Ricci flow is given by

∂δ

∂t
= −2S, (1.3)

where δ is a Riemannian metric, S is Ricci curvature tensor and t being the time. The solitons

for the Ricci flow is the self similar solutions of the above partial differential equation, where

the metrices at various times differ by a diffeomorphism of the manifold. A triple (δ, V, λ) is

used to represent a Ricci soliton regard to Ricci flow, where V is a smooth vector field and

λ is a scalar, which satisfies the equation

LV δ + 2S + 2λδ = 0, (1.4)

where LV δ denotes the Lie derivative of δ along the vector field V . A Ricci soliton is said

to be shrinking if λ < 0, steady if λ = 0 and expanding if λ > 0. The vector field V is

called potential vector field and if it is a gradient of a differentiable function, then the Ricci

soliton (δ, V, λ) is said to be a gradient Ricci soliton and the associated differentiable function

is named as potential function. Ricci soliton was further studied by many researchers. For

instance, we see [8, 18, 24, 29, 30] and their references.

Catino and Mazzieri [7] in 2016 first introduced the notion of Einstein soliton as a gener-

alization of Ricci soliton. An almost contact manifold M with structure (ϕ, ς, η, δ) is said to

have an Einstein soliton (δ, V, λ) if

LV δ + 2S + (2λ− r)δ = 0, (1.5)

holds, where r being the scalar curvature. The Einstein soliton (δ, V, λ) is said to be shrinking,

steady, expanding according as λ < 0, λ = 0, λ > 0, respectively. Einstein soliton creates

some self-similar solutions of the Einstein flow equation given by

∂δ

∂t
= −2S + rδ. (1.6)

Again as a generalization of Einstein soliton, the η-Einstein soliton on a Riemannian

manifold M (ϕ, ς, η, δ) was introduced by Blaga [6] and it is given by

LV δ + 2S + (2λ− r)δ + 2βη ⊗ η = 0, (1.7)

where, β is some constant. When β = 0 the notion of η-Einstein soliton simply reduces

to the notion of Einstein soliton. And when β ̸= 0, the data (δ, V, λ, β) is called proper
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η-Einstein soliton on M. The η-Einstein soliton is called shrinking if λ < 0, steady if λ = 0,

and expanding if λ > 0.

Definition 1.1. A para-Sasakian manifold M is called an η-Einstein manifold if its Ricci

tensor is of the form

S (Λ2,Λ3) = l1δ (Λ2,Λ3) + l2η (Λ2) η (Λ3) ,

for all Λ2, Λ3 ∈ χ (M) , where l1, l2 are scalars.

Definition 1.2. A para-Sasakian manifold M is called a generalized η-Einstein manifold if

its Ricci tensor is of the form

S (Λ2,Λ3) = k1δ (Λ2,Λ3) + k2η (Λ2) η (Λ3) + k3δ (Λ2, ϕΛ3) ,

for all Λ2, Λ3 ∈ χ (M) , where k1, k2 and k3 are scalars.

This paper is structured as follows:

First two sections of the paper has been kept for introduction and preliminaries. In

Section-3, we introduce semi-symmetric nonmetric connection (∇) on para-Sasakian man-

ifolds. In Section-4, we study η-Einstein soliton on para-Sasakian manifold with re-

spect to ∇. Section-5 deals with η-Einstein soliton on para-Sasakian manifold satisfying

R(ς,Λ1).S = 0. Section-6 concerns with η-Einstein soliton on para-Sasakian manifold sat-

isfying S(ς,Λ1).R = 0. Section-7 contains η-Einstein soliton on para-Sasakian manifold

satisfying R(ς,Λ1).R = 0. Section-8 contains a non trivial example of three dimensional

para-Sasakian manifold admitting semi-symmetric non metric connection.

2. Preliminaries

Let M be an n-dimensional differentiable manifold with structure (ϕ, ς, η), where η is a

1-form, ς is the structure vector field, ϕ is a (1, 1)-tensor field satisfying [26]

ϕ2 (Λ1) = Λ1 − η (Λ1) ς, η(ς) = 1, (2.8)

ϕ (ς) = 0, η ◦ ϕ = 0, (2.9)

for all vector field Λ1 on M is called almost paracontact manifold. If an almost paracontact

manifold M with structure (ϕ, ς, η) admits a pseudo-Riemannian metric δ such that [32]

δ (ϕΛ1, ϕΛ2) = −δ (Λ1,Λ2) + η (Λ1) η (Λ2) , (2.10)
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then we say that M is an almost paracontact metric manifold with an almost paracontact

metric structure (ϕ, ς, η, δ). From (2.10) one can deduce that

δ (Λ1, ϕΛ2) = −δ (ϕΛ1,Λ2) , (2.11)

δ(Λ1, ς) = η(ς). (2.12)

An almost paracontact metric structure of M becomes a paracontact metric structure [32] if

δ (Λ1, ϕΛ2) = dη(Λ1,Λ2),

for all vector fields Λ1, Λ2 on M, where

dη(Λ1,Λ2) =
1

2
{Λ1η(Λ2)− Λ2η(Λ1)− η([Λ1,Λ2])} .

The manifold M is called a para-Sasakian manifold if

(∇Λ1ϕ) Λ2 = −δ (Λ1,Λ2) ς + η (Λ2) Λ1, (2.13)

for any smooth vector fields Λ1, Λ2 on M .

In a para-Sasakian manifold the following relations also hold [32]

(∇Λ1η) Λ2 = δ (Λ1, ϕΛ2) ,∇Λ1ς = −ϕΛ1, (2.14)

η (R (Λ1,Λ2) Λ3) = δ(Λ1,Λ3)η (Λ2)− δ (Λ2,Λ3) η (Λ1) , (2.15)

R (Λ1,Λ2) ς = η (Λ1) Λ2 − η (Λ2) Λ1, (2.16)

R(ς,Λ1)Λ2 = −δ(Λ1,Λ2)ς + η (Λ2) Λ1, (2.17)

R(Λ1, ς)Λ2 = δ(Λ1,Λ2)ς − η (Λ2) Λ1, (2.18)

R(ς,Λ1)ς = Λ1 − η (Λ1) ς, (2.19)

S (Λ1, ς) = − (n− 1) η (Λ1) , (2.20)

S (ς, ς) = − (n− 1) , Qς = − (n− 1) ς, (2.21)

S (ϕΛ1, ϕΛ2) = S (Λ1,Λ2) + (n− 1)η (Λ1) η (Λ2) , (2.22)

for any smooth vector fields Λ1, Λ2 and Λ3 on M.

3. Semi-symmetric nonmetric connection on para-Sasakian manifolds

In this section we get the relation between SSNM-connection and Levi-Civita connection

on para-Sasakian manifoldM . Then we obtain Riemannian curvature tensor, Ricci curvature
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tensor, Ricci operator and scalar curvature of M with respect to the SSNM-connection. We

also establish here the first Bianchi identity with respect to SSNM-connection on M.

Let M (ϕ, ς, η, δ) be an n-dimensional para-Sasakian manifold equipped with Levi-Civita

connection ∇ corresponding to the Riemannian metric δ. Let a linear connection ∇ on M be

defined by

∇Λ1Λ2 = ∇Λ1Λ2 +
1

2
[η (Λ2) Λ1 − η (Λ1) Λ2] , (3.23)

for all Λ1, Λ2 ∈ χ (M) .

Using the fact that ∇ is a metric connection, we have from (3.23) that

(
∇Λ1δ

)
(Λ2,Λ3) =

1

2
[δ (Λ1,Λ2) η (Λ3) + δ (Λ1,Λ3) η (Λ2)]

−δ (Λ2,Λ3) η (Λ1) , (3.24)

for all Λ1, Λ2, Λ3 ∈ χ (M) . Therefore ∇ is a nonmetric connection on M. The torsion tensor

of ∇ is given by

T (Λ1,Λ2) = η (Λ2) Λ1 − η (Λ1) Λ2. (3.25)

Suppose that the connection ∇ defined onM is connected with the Levi-Civita connection

∇ by the relation

∇Λ1Λ2 = ∇Λ1Λ2 +H (Λ1,Λ2) , (3.26)

where H (Λ1,Λ2) is a tensor field of type (1, 1). By definition of torsion tensor, we have

T (Λ1,Λ2) = H (Λ1,Λ2)−H (Λ2,Λ1) . (3.27)

In view of (3.25) and (3.26) we have

δ (H (Λ1,Λ2) ,Λ3) + δ (H (Λ1,Λ3) ,Λ2) =
1

2
δ (Λ1,Λ2) η (Λ3) +

1

2
δ (Λ1,Λ3) η (Λ2)

−δ (Λ2,Λ3) η (Λ1) , (3.28)

δ (H (Λ2,Λ1) ,Λ3) + δ (H (Λ2,Λ3) ,Λ1) =
1

2
δ (Λ2,Λ1) η (Λ3) +

1

2
δ (Λ2,Λ3) η (Λ1)

−δ (Λ1,Λ3) η (Λ2) , (3.29)

δ (H (Λ3,Λ1) ,Λ2) + δ (H (Λ3,Λ2) ,Λ1) =
1

2
δ (Λ3,Λ1) η (Λ2) .+

1

2
δ (Λ2,Λ3) η (Λ1)

−δ (Λ1,Λ2) η (Λ3) . (3.30)
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In view of (3.27), (3.28), (3.29) and (3.30), we have

δ
(
T (Λ1,Λ2) ,Λ3

)
+ δ

(
T (Λ3,Λ1) ,Λ2

)
+ δ

(
T (Λ3,Λ2) ,Λ1

)
= δ (H (Λ1,Λ2) ,Λ3)− δ (H (Λ2,Λ1) ,Λ3) + δ (H (Λ3,Λ1) ,Λ2)

−δ (H (Λ1,Λ3) ,Λ2) + δ (H (Λ3,Λ2) ,Λ1)− δ (H (Λ2,Λ3) ,Λ1)

= 2δ (H (Λ1,Λ2) ,Λ3)− 2δ (Λ1,Λ2) η (Λ3)

+δ (Λ2,Λ3) η (Λ1)− δ (Λ1,Λ3) η (Λ2) . (3.31)

Setting

δ
(
T (Λ3,Λ1) ,Λ2

)
= δ (T ∗ (Λ1,Λ2) ,Λ3) , (3.32)

δ
(
T (Λ3,Λ2) ,Λ1

)
= δ (T ∗ (Λ2,Λ1) ,Λ3) , (3.33)

in (3.31), we get

δ
(
T (Λ1,Λ2) ,Λ3

)
+ δ (T ∗ (Λ1,Λ2) ,Λ3) + δ (T ∗ (Λ2,Λ1) ,Λ3)

= 2δ (H (Λ1,Λ2) ,Λ3)− 2δ (Λ1,Λ2) η (Λ3)

+δ (Λ2,Λ3) η (Λ1)− δ (Λ1,Λ3) η (Λ2) , (3.34)

which implies that

2H (Λ1,Λ2) =
1

2

[
T (Λ1,Λ2) + T ∗ (Λ1,Λ2) + T ∗ (Λ2,Λ1)

]
+δ (Λ1,Λ2) ς +

1

2
[η (Λ2) Λ1 − η (Λ1) Λ2] . (3.35)

From (3.25), (3.32) and (3.33), it follows that

T ∗ (Λ1,Λ2) = −δ (Λ1,Λ2) ς + η (Λ1) η (Λ2) , (3.36)

T ∗ (Λ2,Λ1) = −δ (Λ1,Λ2) ς + η (Λ1) η (Λ2) . (3.37)

Substituting (3.25), (3.36) and (3.37) in (3.35), we obtain

H (Λ1,Λ2) =
1

2
[η (Λ2) Λ1 − η (Λ1) Λ2] . (3.38)

In reference to (3.26) and (3.38), we can easily bring out the equation (3.23).

Theorem 3.1. There exists a unique semi-symmetric nonmetric connection ∇ on a para-

Sasakian manifold M given by (3.23).
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On para-Sasakian manifold the connection ∇ has the following properties

(
∇Λ1η

)
Λ2 = −1

2
δ (ϕΛ1, ϕΛ2) , (3.39)

∇Λ1ς = −ϕΛ1 +
1

2
[Λ1 − η (Λ1) ς] , (3.40)

for all Λ1, Λ2 ∈ χ (M) .

Let R be the Riemannian curvature tensor with respect to SSNM-connection on a para-

Sasakian manifold defined as

R(Λ1,Λ2)Λ3 = ∇Λ1∇Λ2Λ3 −∇Λ2∇Λ1Λ3 −∇[Λ1,Λ2]Λ3. (3.41)

In reference of (2.13), (2.14) and (3.23) we have

∇Λ1∇Λ2Λ3 = ∇Λ1∇Λ2Λ3 +
1

2
[δ (Λ1, ϕΛ3) Λ2 + η (∇Λ1Λ3) Λ2 + η (Λ3)∇Λ1Λ2]

−1

2
[δ (Λ1, ϕΛ2) Λ3 + η (∇Λ1Λ2) Λ3 + η (Λ2)∇Λ1Λ3]

+
1

2
[η (∇Λ2Λ3) Λ1 − η (Λ1)∇Λ2Λ3]

+
1

4
[η (Λ1) η (Λ2) Λ3 − η (Λ1) η (Λ3) Λ2] , (3.42)

∇[Λ1,Λ2]Λ3 = ∇[Λ1,Λ2]Λ3 +
1

2
[η (Λ3)∇Λ1Λ2 − η (Λ3)∇Λ2Λ1]

+
1

2
[η (∇Λ2Λ1) Λ3 − η (∇Λ1Λ2) Λ3] . (3.43)

Interchanging Λ1 and Λ2 in (3.42) and using it along with (3.42) and (3.43) in (3.41) we get

R(Λ1,Λ2)Λ3 = R(Λ1,Λ2)Λ3 +
1

2
[δ (Λ1, ϕΛ3) Λ2 − δ (Λ2, ϕΛ3) Λ1 − 2δ (Λ1, ϕΛ2) Λ3]

+
1

4
[η (Λ2) Λ1 − η (Λ1) Λ2] η (Λ3) , (3.44)

for all Λ1, Λ2, Λ3 ∈ χ (M) .

Writing the equation (3.44) by cyclic permutations of Λ1, Λ2 and Λ3 and using first Bianchi

identity with respect to Levi-Civita connection we get

R(Λ1,Λ2)Λ3+R(Λ2,Λ3)Λ1+R(Λ3,Λ1)Λ2 = 2 [δ (Λ1, ϕΛ3) Λ2 − δ (Λ2, ϕΛ3) Λ1 − δ (Λ1, ϕΛ2) Λ3] .

Proposition 3.1. The SSNM-connection satisfies first Bianchi identity if and only if

δ (Λ1, ϕΛ3) Λ2 = δ (Λ2, ϕΛ3) Λ1 + δ (Λ1, ϕΛ2) Λ3,

holds for all Λ1, Λ2 and Λ3 ∈ χ (M) .
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Taking inner product of (3.44) with a vector field Λ and contracting over Λ1 and Λ we get

S(Λ2,Λ3) = S(Λ2,Λ3)−
1

2
(n− 3)δ(Λ2, ϕΛ3)

+
1

4
(n− 1)η (Λ2) η (Λ3) , (3.45)

where S denotes Ricci tensor with respect to ∇.

Lemma 3.1. LetM be an n-dimensional para-Sasakian manifold admitting SSNM-connection,

then

η
(
R(Λ1,Λ2)Λ3

)
= δ(Λ1,Λ3)η (Λ2)− δ(Λ2,Λ3)η (Λ1)− δ(Λ1, ϕΛ2)η (Λ3)

1

2
[δ(Λ1, ϕΛ3)η (Λ2)− δ(Λ2, ϕΛ3)η (Λ1)] , (3.46)

R(Λ1,Λ2)ς =
3

4
[η (Λ1) Λ2 − η (Λ2) Λ1]− δ (Λ1, ϕΛ2) ς, (3.47)

R(ς,Λ2)Λ3 = −δ(Λ2,Λ3)ς −
1

2
δ(Λ2, ϕΛ3)ς

+
3

4
η (Λ3) Λ2 +

1

4
η (Λ2) η (Λ3) ς, (3.48)

R(Λ1, ς)Λ3 = δ(Λ1,Λ3)ς +
1

2
δ (Λ1, ϕΛ3) ς

−3

4
η (Λ3) Λ1 −

1

4
η (Λ1) η (Λ3) ς, (3.49)

QΛ1 = QΛ1 −
1

2
(n− 3)ϕΛ1 +

1

4
(n− 1)η (Λ1) ς, (3.50)

S(Λ1, ς) = −3

4
(n− 1)η (Λ1) , (3.51)

Qς = −3

4
(n− 1)ς, (3.52)

r = r +
1

4
(n− 1)− 1

2
(n− 3)ψ, (3.53)

for all Λ1, Λ2 and Λ3 ∈ χ (M) , where ψ = trace(ϕ) and R, Q, r denote Riemannian

curvature tensor, Ricci operator, scalar curvature with respect to ∇, respectively.

Eigen value of Ricci operator with respect to SSNM-connection corresponding to the eigen

vector is −3
4(n− 1).

4. η-Einstein soliton on para-Sasakian manifold with respect to

SSNM-connection

In this section we find the condition of η-Einstein soliton on a para-Sasakian manifold M

to be invariant under SSNM-connection. Further, we study η-Einstein soliton on M with
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respect to SSNM-connection in which the potential vector field being pointwise collinear with

the structure vector field of M .

The equation (1.7) with respect to SSNM-connection takes the form

0 =
(
LV δ

)
(Λ1,Λ2) + 2S(Λ1,Λ2) + (2λ− r)δ(Λ1,Λ2) + 2βη(Λ1)η(Λ2), (4.54)

for all Λ1, Λ2, Λ3, V ∈ χ (M) . Expanding LV and using (3.45), (3.53) in (4.54) we get

0 = δ(∇Λ1V,Λ2) + δ(Λ1,∇Λ2V ) + 2S(Λ1,Λ2)

+(2λ− r)δ(Λ1,Λ2) + 2βη(Λ1)η(Λ2)

= (LV δ) (Λ1,Λ2) + 2S(Λ1,Λ2) + (2λ− r)δ(Λ1,Λ2) + 2βη(Λ1)η(Λ2)

+

[
η(V )− 1

4
(n− 1) +

1

2
(n− 3)ψ

]
δ(Λ1,Λ2)−

1

2
δ(V,Λ2)η(Λ1)

−1

2
δ(V,Λ1)η(Λ2)− (n− 3)δ(Λ1, ϕΛ2) +

1

2
(n− 1)η(Λ1)η(Λ2). (4.55)

Theorem 4.1. An η-Einstein soliton (δ, V, λ, β) on a para-Sasakian manifold M to be in-

variant under SSNM-connection if and only if

0 =

[
η(V )− 1

4
(n− 1) +

1

2
(n− 3)ψ

]
δ(Λ1,Λ2)−

1

2
δ(V,Λ2)η(Λ1)

−1

2
δ(V,Λ1)η(Λ2)− (n− 3)δ(Λ1, ϕΛ2) +

1

2
(n− 1)η(Λ1)η(Λ2),

holds for Λ1, Λ2, Λ3, V ∈ χ (M) .

Consider the distribution D on M as D = ker η. If V ∈ D, then

η (V ) = 0.

Taking covariant derivative with respect to ς and using (∇ςη)V = 0, we get

η (∇ςV ) = 0. (4.56)

In view of (3.23) and (4.56) we have

η
(
∇∗

ςV
)
= 0. (4.57)

After expanding the Lie derivative in (4.54) we get

0 = δ(∇Λ1V,Λ2) + δ(Λ1,∇Λ2V ) + 2S(Λ1,Λ2)

+(2λ− r)δ(Λ1,Λ2) + 2βη (Λ1) η (Λ2) . (4.58)
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Setting Λ1 = Λ2 = ς and using (3.45), (3.53) and (4.57) in (4.58) we obtain

r = 2 (λ+ β)− 7

4
(n− 1) +

1

2
(n− 3)ψ, (4.59)

where trace(ϕ) = ψ.

Theorem 4.2. Let M be a para-Sasakian manifold admitting η-Einstein soliton (δ, V, λ, β)

with respect to SSNM-connection such that V ∈ D, then scalar curvature of M is given by

(4.59).

Setting V = ς in (4.54) we get

0 = δ(∇Λ1ς,Λ2) + δ(Λ1,∇Λ2ς) + 2S(Λ1,Λ2)

+(2λ− r)δ(Λ1,Λ2) + 2βη(Λ1)η(Λ2). (4.60)

Using (3.40) and (4.60) we obtain

S(Λ1,Λ2) = −1

2
(2λ− r + 1)δ(Λ1,Λ2)−

1

2
(2β − 1) η(Λ1)η(Λ2). (4.61)

Using (3.45) and (3.53) in (4.61) we get

S(Λ1,Λ2) = kδ(Λ1,Λ2) + lη(Λ1)η(Λ2) +mδ(Λ1, ϕΛ2), (4.62)

where

k = −1

2

[
2λ− r − 1

4
(n− 5) +

1

2
(n− 3)ψ

]
,

l = −1

4
[4β + n− 3)] ,

m = −1

2
(n− 3).

Corollary 4.1. If a para-Sasakian manifold M admits η-Einstein soliton (δ, ς, λ, β) with

respect to SSNM-connection, then M is generalized η-Einstein.

Corollary 4.2. If a para-Sasakian manifoldM contains an η-Einstein soliton (δ, ς, λ, β) with

respect to SSNM-connection such that the structure vector field ς be parallel i.e., ∇Λ1ς = 0,

then M is generalized η-Einstein manifold.

Setting Λ2 = ς and using (3.51) and (3.53) in (4.61) we have

r = 2(λ+ β)− 7

4
(n− 1) +

1

2
(n− 3)ψ, (4.63)

where trace(ϕ) = ψ.
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Corollary 4.3. If a para-Sasakian manifold M admits η-Einstein soliton (δ, ς, λ, β) with

respect to SSNM-connection, then the scalar curvature of M is given by (4.63).

Putting β = 0 and ψ = 0 in (4.63) we get

λ =
1

2
r +

7

8
(n− 1).

Corollary 4.4. Let a para-Sasakian manifold M contain an Einstein soliton (δ, ς, λ) with

respect to SSNM-connection, then the soliton is shrinking, steady or expanding if

r < −7

4
(n− 1), r = −7

4
(n− 1), r > −7

4
(n− 1),

respectively, provided trace(ϕ) = 0.

5. η-Einstein soliton on para-Sasakian satisfying R(ς,Λ1).S = 0

The condition that must be satisfied by S is

S(R(ς,Λ1)Λ2,Λ3) + S(Λ2, R(ς,Λ1)Λ3) = 0, (5.64)

for all Λ1, Λ2, Λ3 ∈ χ (M) .

Using (3.48) and replacing the expression of S from (4.61) in (5.64) we get

0 =
1

2
[2(λ+ β)− r] [δ(Λ1,Λ2)η (Λ3) + δ(Λ1,Λ3)η (Λ2)]

+
1

4
[2(λ+ β)− r] [δ(Λ1, ϕΛ2)η (Λ3) + δ(Λ1, ϕΛ3)η (Λ2)]

−3

8
[2λ− r + 1] [δ(Λ1,Λ2)η (Λ3) + δ(Λ1,Λ3)η (Λ2)]

−1

4
[2λ+ 8β − r − 3] η (Λ1) η (Λ2) η (Λ3) . (5.65)

Setting Λ3 = ς in (5.65) we get

0 =
1

2
[2(λ+ β)− r] [δ(Λ1,Λ2) + η (Λ1) η (Λ2)]

+
1

4
[2(λ+ β)− r] [δ(Λ1, ϕΛ2)]

−3

8
[2λ− r + 1] [δ(Λ1,Λ2) + η (Λ1) η (Λ2)]

−1

4
[2λ+ 8β − r − 3] η (Λ1) η (Λ2) . (5.66)
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Contracting (5.66) over Λ1 and Λ2 we get

0 =
1

4
(n− 1 + 2ψ)λ+

1

2
[2(n− 1) + ψ]β

−1

8
[n− 1 + 2ψ]

[
r +

1

4
(n− 1)− 1

2
(n− 3)ψ

]
−3

8
(n− 1), (5.67)

where trace(ϕ) = ψ.

Theorem 5.1. Let a para-Sasakian manifold M admits η-Einstein soliton (δ, ς, λ, β) with

respect to SSNM-connection. If M satisfies the equation R(ς,Λ1).S = 0, then the soliton

constants are given by the equation (5.67).

Setting β = ψ = 0 in (5.67) we obtain

2λ = r +
1

4
(n+ 11).

Corollary 5.1. Let a para-Sasakian manifold M contain an Einstein soliton (δ, ς, λ) with

respect to SSNM-connection. If M satisfies the equation R(ς,Λ1).S = 0, then the soliton is

shrinking, steady or expanding if

r < −1

4
(n+ 11), r = −1

4
(n+ 11), r > −1

4
(n+ 11),

respectively, provided trace(ϕ) = 0.

6. η-Einstein soliton on para-Sasakian satisfying S(ς,Λ1).R = 0

The condition that must be satisfied by S is

0 = S(Λ1, R(Λ2,Λ3)Λ4)ς − S(ς, R(Λ2,Λ3)Λ4)Λ1

+S(Λ1,Λ2)R(ς,Λ3)Λ4 − S(ς,Λ2)R(Λ1,Λ3)Λ4

+S(Λ1,Λ3)R(Λ2, ς)Λ4 − S(ς,Λ3)R(Λ2,Λ1)Λ4

+S(Λ1,Λ4)R(Λ2,Λ3)ς − S(ς,Λ4)R(Λ2,Λ3)Λ1, (6.68)

for all Λ1, Λ2, Λ3, Λ4 ∈ χ (M) . Taking inner product with ς the relation (6.68) becomes

0 = S(Λ1, R(Λ2,Λ3)Λ4)− S(ς, R(Λ2,Λ3)Λ4)η(Λ1)

+S(Λ1,Λ2)η(R(ς,Λ3)Λ4)− S(ς,Λ2)η(R(Λ1,Λ3)Λ4)

+S(Λ1,Λ3)η(R(Λ2, ς)Λ4)− S(ς,Λ3)η(R(Λ2,Λ1)Λ4)

+S(Λ1,Λ4)η(R(Λ2,Λ3)ς)− S(ς,Λ4)η(R(Λ2,Λ3)Λ1). (6.69)
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Setting Λ4 = ς in (6.69) we obtain

0 = S(Λ1, R(Λ2,Λ3)ς)− S(ς, R(Λ2,Λ3)ς)η(Λ1)

+S(Λ1,Λ2)η(R(ς,Λ3)ς)− S(ς,Λ2)η(R(Λ1,Λ3)ς)

+S(Λ1,Λ3)η(R(Λ2, ς)ς)− S(ς,Λ3)η(R(Λ2,Λ1)ς)

+S(Λ1, ς)η(R(Λ2,Λ3)ς)− S(ς, ς)η(R(Λ2,Λ3)Λ1). (6.70)

Using (3.46), (3.47), (3.49), (4.61) in (6.70) we get

0 =
3

8
[(2λ− r + 1)δ(Λ1,Λ2) + (2β − 1)η(Λ1)η(Λ2)] η(Λ3)

−3

8
[(2λ− r + 1)δ(Λ1,Λ3)− (2β − 1)η(Λ1)η(Λ3)] η(Λ2)

+

(
λ+ β − r

2

)
[δ(Λ1,Λ2)η(Λ3)− δ(Λ1,Λ3)η(Λ2)] . (6.71)

Setting Λ1 = ς in (6.71) we get

β =
1

2
. (6.72)

In view of (4.63) and (6.72) we get

λ = r +
1

8
(7n− 11)− 1

4
(n− 3)ψ, (6.73)

where trace (ϕ) = ψ.

Theorem 6.1. Let a para-Sasakian manifold M admits η-Einstein soliton (δ, ς, λ, β) with

respect to SSNM-connection. If M satisfies the equation S(ς,Λ1).R = 0, then the soliton

constants are given by equations (6.72) and (6.73).

Corollary 6.1. There exists no Einstein soliton with respect to SSNM-connection on M

satisfying S(ς,Λ1).R = 0.

7. η-Einstein soliton on para-Sasakian satisfying R(ς,Λ1).R = 0.

The condition must be satisfied by R is

0 = R(ς,Λ1)R(Λ2,Λ3)Λ4 −R(R(ς,Λ1)Λ2,Λ3)Λ4

−R(Λ2, R(ς,Λ1)Λ3)Λ4 −R(Λ2,Λ3)R(ς,Λ1)Λ4. (7.74)



474 A. MANDAL

Using (3.44), (3.46), (3.47) and (3.48) in (7.74) we get

0 = −δ(Λ1, R(Λ2,Λ3)Λ4)ς −
1

2
δ(Λ1, ϕR(Λ2,Λ3)Λ4)ς +

3

4
η(R(Λ2,Λ3)Λ4)Λ1

+
1

4
η(R(Λ2,Λ3)Λ4)η(Λ1)ς −

3

4
η(Λ1)R(Λ1,Λ3)Λ4 −

3

4
η(Λ4)R(Λ2,Λ3)Λ1

−δ(Λ1,Λ2)

[
δ(Λ3,Λ4)ς +

1

2
δ(Λ3, ϕΛ4)ς −

3

4
η(Λ4)Λ3 −

1

4
η(Λ3)η(Λ4)ς

]
−1

2
δ(Λ1, ϕΛ2)

[
δ(Λ3,Λ4)ς +

1

2
δ(Λ3, ϕΛ4)ς −

3

4
η(Λ4)Λ3 −

1

4
η(Λ3)η(Λ4)ς

]
+
1

4
η(Λ1)η(Λ2)

[
δ(Λ3,Λ4)ς +

1

2
δ(Λ3, ϕΛ4)ς −

3

4
η(Λ4)Λ3 −

1

4
η(Λ3)η(Λ4)ς

]
−3

4
[η(Λ3)Λ2 − η(Λ2)Λ3]

[
δ(Λ1,Λ4) +

1

2
δ(Λ1, ϕΛ4)−

1

4
η(Λ4)η(Λ1)

]

−δ(Λ2, ϕΛ3)

[
δ(Λ1,Λ4)ς +

1

2
δ(Λ1, ϕΛ4)ς −

1

4
η(Λ4)η(Λ1)ς

]
− 3

4
η(Λ3)R(Λ2,Λ1)Λ4

+δ(Λ1,Λ3)

[
δ(Λ2,Λ4)ς +

1

2
δ(Λ2, ϕΛ4)ς −

3

4
η(Λ4)Λ2 −

1

4
η(Λ2)η(Λ4)ς

]
+
1

2
δ(Λ1, ϕΛ3)

[
δ(Λ2,Λ4)ς +

1

2
δ(Λ2, ϕΛ4)ς −

3

4
η(Λ4)Λ2 −

1

4
η(Λ2)η(Λ4)ς

]
−1

4
η(Λ1)η(Λ3)

[
δ(Λ2,Λ4)ς +

1

2
δ(Λ2, ϕΛ4)ς −

3

4
η(Λ4)Λ2 −

1

4
η(Λ2)η(Λ4)ς

]
. (7.75)

Setting V = ς in (7.75) we get

0 = −3

4
δ(Λ1,Λ3)η(Λ2)ς +

3

4
δ(Λ1,Λ2)η(Λ3)ς +

3

4
δ(Λ2, ϕΛ3)η(Λ1)ς

−3

8
δ(Λ1, ϕΛ3)η(Λ2)ς +

3

8
δ(Λ1, ϕΛ2)η(Λ3)ς −

3

4
δ(Λ2, ϕΛ3)Λ1

+
3

4

[
δ(Λ1,Λ2) +

1

2
δ(Λ1, ϕΛ2)−

1

4
η(Λ1)η(Λ2)

]
[−η(Λ3)ς + Λ3]

−3

4

[
3

4
{η(Λ1)Λ3 − η(Λ3)Λ1} − δ(Λ1, ϕΛ3)ς

]
η(Λ2)

+
3

4

[
3

4
{η(Λ2)Λ3 − η(Λ3)Λ2} − δ(Λ2, ϕΛ3)ς

]
η(Λ1)−

3

4
R(Λ2,Λ3)Λ1

+
3

4

[
δ(Λ1,Λ3) +

1

2
δ(Λ1, ϕΛ3)−

1

4
η(Λ1)η(Λ3)

]
[−η(Λ2)ς + Λ2]

−3

4

[
3

4
{η(Λ2)Λ1 − η(Λ1)Λ2} − δ(Λ2, ϕΛ1)ς

]
η(Λ3). (7.76)
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Taking inner product of (7.76) with a vector field Λ5 we get

0 = −3

4
δ(Λ1,Λ3)η(Λ2)η(Λ5) +

3

4
δ(Λ1,Λ2)η(Λ3)η(Λ5) +

3

4
δ(Λ2, ϕΛ3)η(Λ1)η(Λ5)

−3

8
δ(Λ1, ϕΛ3)η(Λ2)η(Λ5) +

3

8
δ(Λ1, ϕΛ2)η(Λ3)η(Λ5)−

3

4
δ(Λ2, ϕΛ3)δ(Λ1,Λ5)

+
3

4

[
δ(Λ1,Λ2) +

1

2
δ(Λ1, ϕΛ2)−

1

4
η(Λ1)η(Λ2)

]
[−η(Λ3)η(Λ5) + δ(Λ3,Λ5)]

−3

4

[
3

4
{η(Λ1)δ(Λ3,Λ5)− η(Λ3)δ(Λ1,Λ5)} − δ(Λ1, ϕΛ3)η(Λ5)

]
η(Λ2)

+
3

4

[
3

4
{η(Λ2)δ(Λ3,Λ5)− η(Λ3)δ(Λ2,Λ5)} − δ(Λ2, ϕΛ3)η(Λ5)

]
η(Λ1)

+
3

4

[
δ(Λ1,Λ3) +

1

2
δ(Λ1, ϕΛ3)−

1

4
η(Λ1)η(Λ3)

]
[−η(Λ2)η(Λ5) + δ(Λ2,Λ5)]

−3

4

[
3

4
{η(Λ2)δ(Λ1,Λ5)− η(Λ1)δ(Λ2,Λ5)} − δ(Λ2, ϕΛ1)η(Λ5)

]
η(Λ3)

−3

4
δ(R(Λ2,Λ3)Λ1,Λ5). (7.77)

Contracting (7.77) over Λ2 and Λ5 we obtain

S(Λ1,Λ3) = −(n− 1)

[
δ(Λ1,Λ3) +

1

2
η(Λ1)η(Λ3) +

1

2
δ(Λ1, ϕΛ3)

]
. (7.78)

Using (4.61) in (7.78) we get

0 =
1

2
(2λ− r + 1)δ(Λ1,Λ2) +

1

2
(2β − 1) η(Λ1)η(Λ2)

−(n− 1)

[
δ(Λ1,Λ3) +

1

2
η(Λ1)η(Λ3) +

1

2
δ(Λ1, ϕΛ3)

]
. (7.79)

Setting Λ2 = ς in (7.79) we have

2(λ+ β) = r +
13

4
(n− 1)− 1

2
(n− 3)ψ, (7.80)

where trace (ϕ) = ψ.

Theorem 7.1. Let a para-Sasakian manifold M admits η-Einstein soliton (δ, ς, λ, β) with

respect to SSNM-connection. If M satisfies the equation R(ς,Λ1).R = 0, then the relation

between the soliton constants are given by equation (7.80).

Setting β = 0 in (7.80) we get

λ =
1

2
r +

13

8
(n− 1)− 1

4
(n− 3)ψ.
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Corollary 7.1. Let a para-Sasakian manifold M contain an Einstein soliton (δ, ς, λ) with

respect to SSNM-connection. If M satisfies the equation R(ς,Λ1).R = 0, then the soliton is

shrinking, steady and expanding if

r < −13

4
(n− 1), r = −13

4
(n− 1), r > −13

4
(n− 1),

respectively, provided trace(ϕ) = 0.

8. Example of para-Sasakian manifold admitting SSNM-connection

Let us consider 3-dimensional manifold

M3 =
{
(x, y, z) ∈ R3

}
,

where (x, y, z) are the standard co-ordinates in R3.We choose the linearly independent vector

fields

E1 = ex
∂

∂y
,E2 = ex

(
∂

∂y
− ∂

∂z

)
, E3 = − ∂

∂x
.

Let g be the pseudo Riemannian metric defined by g (Ei, Ej) = 0, if i ̸= j for i, j = 1, 2, 3,

and g (E1, E1) = −1, g (E2, E2) = −1, g (E3, E3) = 1

Let η be the 1-form defined by η (X) = g (X,E3) for any X ∈ χ
(
M3

)
. Let ϕ be the (1, 1)

tensor field defined by

ϕE1 = E1, ϕE2 = E2, ϕE3 = 0. (8.81)

trace(ϕ) =

3∑
i=1

g(Ei, ϕEi) = −2 (8.82)

Let X, Y, Z ∈ χ
(
M3

)
be given by

X = x1E1 + x2E2 + x3E3,

Y = y1E1 + y2E2 + y3E3,

Z = z1E1 + z2E2 + z3E3.

Then, we have

g (X,Y ) = x1y1 + x2y2 + x3y3,

η (X) = x3,

g (ϕX, ϕY ) = x1y1 + x2y2.
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Using the linearity of g and ϕ, η (E3) = 1, ϕ2X = X − η (X)E3 and g (ϕX, ϕY ) =

−g (X,Y ) + η (X) η (Y ) for all X, Y ∈ χ (M). We have

[E1, E2] = 0, [E1, E3] = −E1, [E2, E3] = E2,

[E2, E1] = 0, [E3, E1] = E1, [E3, E2] = −E2.

Let the Levi-Civita connection with respect to g be ∇, then using Koszul formula we get the

following 
∇E1

E1 ∇E1
E2 ∇E1

E3

∇E2
E1 ∇E2

E2 ∇E2
E3

∇E3
E1 ∇E3

E2 ∇E3
E3

 =


−E3 0 −E1

0 E3 −E2

0 0 0

 .

From the above results we see that the structure (ϕ, ξ, η, g) satisfies

(∇Xϕ)Y = −g (X,Y ) ξ + η (Y )X,

for all X, Y ∈ χ
(
M3

)
, where η (ξ) = η (E3) = 1. Hence M3 (ϕ, ξ, η, g) is a para-Sasakian

manifold.

The components of Riemannian curvature tensor of M3 are given by
R(E1, E2)E2 R(E1, E3)E3 R(E1, E2)E3

R(E2, E1)E1 R(E2, E3)E3 R(E2, E3)E1

R(E3, E1)E1 R(E3, E2)E2 R(E3, E1)E2

 =


−E1 −E1 0

E2 E2 0

E3 E3 0

 .

The components of Ricci curvature tensor of M3 are given by

S(E1, E1) = S(E3, E3) = 0, S(E2, E2) = 2. (8.83)

Therefore the scalar curvature of M3 is

r =
3∑

i=1

S(Ei, Ei) = 2. (8.84)

Using (3.23) we have the following values of ∇ :
∇E1

E1 ∇E1
E2 ∇E1

E3

∇E2
E1 ∇E2

E2 ∇E2
E3

∇E3
E1 ∇E3

E2 ∇E3
E3

 =


−E3 0 −1

2E1

0 E3 −1
2E2

1
2E1

1
2E2 0

 .

By the help of (3.41) and above matrix we get the components of Riemannian curvature

tensor of M3 with respect to SSNM-connection as follows
R(E1, E2)E1 R(E1, E3)E1 R(E2, E3)E1

R(E1, E2)E2 R(E1, E3)E2 R(E2, E3)E2

R(E1, E2)E3 R(E1, E3)E3 R(E2, E3)E3

 =


−1

2E2 −3
2E3 0

−1
2E1 0 −1

2E3

0 −1
4E1

1
4E2

 .
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The components of Ricci curvature tensor of M3 with respect to SSNM-connection are

given by

S(E1, E1) = S(E2, E2) = 1, S(E3, E3) =
1

2
. (8.85)

Therefore the scalar curvature of M3 with respect to SSNM-connection is

r =
3∑

i=1

S(Ei, Ei) =
5

2
. (8.86)

In view of (8.82), (8.84) and (8.86) we have

r =
5

2

= 2 +
1

4
(3− 1)− 1

2
(3− 3).(−2)

= r +
1

4
(n− 1)− 1

2
(n− 3)ψ,

which verifies the relation (3.53). Similarly, we can verify all the results obtained.

9. Conclusion

From the results obtained in this paper we can conclude that if a para-Sasakian manifold

M(ϕ, ς, η, δ) admits η-Einstein soliton (δ, ς, λ, β) with respect to semi-symmetric nonmetric

connection, then M is generalized η-Einstein manifold. We also conclude that if a para-

Sasakian manifold M admitting η-Einstein soliton (δ, ς, λ, β) with respect to semi-symmetric

nonmetric connection satisfies R.S = 0, S.R = 0 and R.R = 0, then the soliton constants

depend on scalar curvature of M and trace of the function ϕ on M
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Abstract. In this manuscript, we study the hypercyclicity of weighted composition oper-

ators defined on the set of holomorphic complex functions on a connected Stein n-manifold

M. We show that a weighted composition operator Cψ,ω (associated to a holomorphic self-

map ψ and a holomorphic function ω on M) is hypercyclic with respect to an increasing

sequence (nl)l of natural numbers if and only if at every p ∈ M we have ω(p) ̸= 0 and the

self-map ψ is injective without any fixed points in M, ψ(M) is a Runge domain and for

every M-convex compact subset C ⊂ M there is a positive integer number k such that the

sets C and ψ[nk](C) are separable in M.
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1. Introduction

Let U be a domain in the complex plane C, and H(U) be the space of holomorphic complex

functions in U. The space H(U) is endowed with the topology of locally uniform convergence,

under which it becomes a complete separable metric space. We are interested in proving the

existence of dense orbits for composition operators on H(U). If ψ is a holomorphic self-map

on U, then the composition operator associated to ψ is defined as Cψ(f) = f ◦ ψ for every

f ∈ H(U).
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The first step has been taken in 1929 by Birkhoff ([7]) when he proved that there exists an

entire function λ : C 7→ C such that {λ ◦ tn}n∈N forms a dense set in H(C), where {tn}∞n=1

is the sequence of C-automorphisms defined by tn : z 7→ z + n. The function λ is called

universal.

Gethner and Shapiro have studied universal vectors for operators on spaces of holomorphic

functions in 1987 ([13]). In 90s, the subject of cyclic composition operators has been discussed

by many researchers ([8, 9, 10, 14]). In the same decade, some generalizations to hypercyclic

operators have also been studied ([15, 20, 21]).

In 2001, Shapiro studied the dynamics of linear operators ([22]) which followed by Grose-

Erdman in 2003 ([16]). As a concrete example, Bernal-Gonzales has studied the universal

entire functions for affine endomorphisms on Cn in 2005.

A class of linear fractional maps of the ball and its composition operators has been con-

sidered by Bayart in 2007 ([5]). One can find the continuation of research progress on the

hypercyclicity of operators in the references [6, 11, 18, 24]. Between them, the manuscript

[24] has a special importance because it discuss on the hypercyclicity of composition op-

erators associated to some holomorphic self-maps defined on an important class of complex

manifolds namely Stein manifolds. The important properties of Stein manifolds can be found

in [24].

The weighted composition operators associated to some holomorphic self-maps have been

interested in some recent researches (see for instance [1, 2, 3, 4, 23]). Also, in [19], the authors

have studied the dynamics of weighted composition operators on Stein manifolds, where the

maps and functions are defined on a Stein manifold.

In this paper, we consider a holomorphic self-map ψ ∈ O(M) defined on a connected

Stein n-manifold M and a holomorphic function ω ∈ H(M). We study the hypercyclicity of

weighted composition operator Cψ,ω : H(M) → H(M) defined by rule Cψ,ω(f) := ω · (f ◦ ψ)

with respect to an increasing sequence of natural numbers.

We prove that Cψ,ω is hypercyclic if and only if for every p ∈ M , ω(p) ̸= 0 and ψ

is univalent without fixed points in M, ψ(M) is a Runge domain and for every compact

holomorphically convex set C ⊂ M there is an integer n such that C ∩ψ[n](C) = ∅ and their

sum is M-convex.

In the study of hypercyclicity of Cψ,ω, which is connected with some approximation the-

orems, one can use two well-known theorems namely the Runge Theorem and Oka-Weil

Theorem.
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2. Preliminaries

In this section, we present the preliminary concepts and notations from [1, 2, 5, 6, 17, 24].

We denote the family of all open subsets of a given topological space X by Op(X) and

the family of all compact subsets of X by Cp(X). As usual, C(X,Y ) denotes the set of all

continuous maps between two topological spaces X and Y .

Definition 2.1. For every C ∈ Cp(X) and U ∈ Op(Y ), the set of functions f ∈ C(X,Y )

satisfying condition f(C) ⊂ U is denoted by V(C,U). The topology generated by subbase

△ := {V(C,U)|C ∈ Cp(X), U ∈ Op(Y )}

is called the compact-open topology on C(X,Y ).

We note that △ does not always form a base for a topology on C(X,Y ). The compact-open

topology (which is applied in homotopy theory and functional analysis) was introduced by

Ralph Fox in 1945 [12].

A continuous map f ∈ C(X,Y ) is said to be proper if each connected component of f−1(K)

is compact for every K ∈ Cp(Y ).

Definition 2.2. Let X be a topological vector space and {αr : X → X}∞r=1 be a sequence

of continuous self-maps on X.

(1) {αr}∞r=1 is called topologically transitive if for every non-empty U, V ∈ Op(X) there

exists r0 such that αr0(U) ∩ V ̸= ∅.

(2) A point p ∈ X is said to be an universal element for {αr}∞r=1 if the sequence

{αr(p)}∞r=1 of points is dense in X.

(3) A point p ∈ X is said to be an weakly universal element for {αr}∞r=1 if the sequence

{αr(p)}∞r=1 of points is dense in X with respect to the weak topology of X.

(4) The sequence {αr}∞r=1 is said to be universal if it admits a universal element.

(5) The sequence {αr}∞r=1 is said to be weakly universal if it admits a weakly universal

element.

Definition 2.3. Let X be a topological vector space and α : X → X be a continuous

self-map on X.

(1) The iterations of α is defined by α[1] = α, α[2] = α◦α and α[r+1] = α◦α[r] for integer

number r ≥ 2.
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(2) We say that α is hypercyclic with respect to an increasing sequence {rk}∞k=1 ⊂ N if

the sequence {α[rk]}∞k=1 is universal.

(3) We say that α is weakly hypercyclic with respect to an increasing sequence {rk}∞k=1 ⊂ N

if the sequence {α[rk]}∞k=1 is weakly universal.

(4) α is called hypercyclic if it is hypercyclic with respect to the full sequence {r}∞r=1.

(5) α is called weakly hypercyclic if it is hypercyclic with respect to the full sequence

{r}∞r=1.

Here, we recall an essential theorem from [15] which gives a necessary and sufficient con-

dition for topological transitivity of a sequence of continuous linear maps on a separable

Fréchet space using the set of its universal elements. Remember that, a Fréchet space is a

complete locally convex metrizable topological vector space.

Theorem 2.1. Let F be separable Fréchet space and {αr}∞r=1 be a sequence of continuous

self-maps on F. This sequence is topologically transitive if and only if the set of its universal

elements is dense in F. Moreover, in this case the set of universal elements for {αr}∞r=1 is a

dense Gδ-subset of F.

Also, we recall another useful theorem from [15] in this context.

Theorem 2.2. Let F be separable Fréchet space and {αr}∞r=1 be a sequence of continuous

self-maps on F. If αr has dense range in F for each r ∈ N and the sequence {αr}∞r=1 is

commuting (i.e. for every r, s ∈ N, we have αr ◦ αs = αs ◦ αr), then the set of universal

elements of {αr}∞r=1 is empty or dense in F.

The hypercyclicity of a bounded linear map α on a Fréchet space F means that for a vector

v ∈ F, its orbit (i.e. Orb(α,v) = {α[r](v)}∞r=1) is dense in F. By these theorems we get a

corollary that allows us to investigate topological transitivity instead of hypercyclicity. Also,

Theorem 3 in [15] has a similar argument.

Corollary 2.1. Let X be a separable Fréchet space, let α : X → X be a continuous map,

and let {rk}∞k=1 ⊂ N be an increasing sequence. Then, α is hypercyclic w.r.t. {rk}∞k=1 if and

only if the sequence {α[rk]}∞k=1 is topologically transitive.

Now, we introduce the Stein manifold which plays main role in this paper.

Definition 2.4. A complex manifold M of (finite) dimension n is called a Stein manifold, if

it satisfies the following four conditions:
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(1) M admits a compact exhaustion, which means that, there is a sequence (Cr)
∞
r=1 of

compact subsets of M such that M =
⋃∞
r=l Cr and for each r, Cr ⊂ (Cr+1)

0.

(2) ĈM ∈ Cp(M) for every C ∈ Cp(M), where

ĈM := {p ∈ M : |f(p)| ≤ sup
C

|f |,∀f ∈ O(M)}

is the holomorphic hull of C.

(3) H(M) separates points in M, i.e. for each two distinct points p, q ∈ M, there exists

f ∈ H(M) with f(p) ̸= f(q),

(4) For each p ∈ M there exists a map F ∈ O(M,Cn) such that the derivative of F at p

is an isomorphism.

Definition 2.5. Let M be a Stein n-manifold.

(1) A C ∈ Cp(M) is said to be M-convex (equivalently, holomorphically convex) if

ĈM = C.

(2) In special case M = Cn, ĈM is denoted with shorter symbol Ĉ and is called the

polynomial hull of C.

(3) A C ∈ Cp(Cn) is called polynomially convex if C = Ĉ.

For two finite-dimensional complex manifolds M, N, the notation O(M,N) denotes the

set of all holomorphic maps ϕ : M → N. In special cases, we use simple notations O(M) :=

O(M,M) and H(M) := O(M,C). A holomorphic function on an open subset of the complex

plane is called univalent if it is injective.

Definition 2.6.

(1) We say that a sequence of holomorphic maps {ϕk ∈ O(M,N)}∞k=1 is compactly di-

vergent (in O(M,N)) if for each C ∈ Cp(M) and K ∈ Cp(N) there is k0 such that

ϕk(C) ∩K = ∅ for all k ⩾ k0.

(2) The sequence {ϕk ∈ O(M,N)}∞k=1 is said to be run-away (in O(M,N)) if for each

C ∈ Cp(M) and K ∈ Cp(N), there is k0 such that ϕk0(C) ∩ K = ∅. In the case

M = N, it is always enough to consider the situation when C = K.

When M and N admit compact exhaustions, the sequence {ϕk}∞k=1 is run-away if and only

if it has a compactly divergent subsequence.

A holomorphic map f ∈ O(M,N) between to complex manifold is called regular if its

derivative is a monomorphism at each point of M.
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A Runge domain in a Stein Manifold M is a domain U ⊂ M such that every function f ∈

H(U) can be approximated uniformly on U by a sequence of members of H(M). By the well-

known Oka-Weil theorem, on every compact M-convex subset C ⊂ M, every holomorphic

function (i.e. holomorphic on a neighborhood of C) can be approximated uniformly by

functions from H(M).

Remark 2.1. By condition (1) of Definition 2.4, a Stein manifold M has a compact ex-

haustion {Ck}∞k=1 such that
⋃∞
k=l Ck = M and for each k, Ck ⊂ (Ck+1)

0. So, we can take a

sequence of semi-norms {pk : H(M) → R}∞k=1 defined by pk(f) := sup{|f(p)|p ∈ Ck}, which

gives the topology of H(M). So, H(M) with this topology is a separable Fréchet space (see

[23, 24]). This observation allows us to use Corollary 2.1 for the space X = H(M), with M

being a connected Stein manifold.

Remark 2.2. By theorem from [24], a domain U in a connected Stein manifold M is a

Runge domain if and only if every compact subset C ⊂ U satisfies ĈM = ĈU . Also, that

condition is equivalent to equality ĈM ∩ U = ĈU for every compact subset C ⊂ U .

For every locally compact topological space X, the usual compactification with one point

∞X /∈ X is denoted by Xc = X ∪ {∞X}.

It is clear that, if a continuous self-map α defined on a topological vector space X is

hypercyclic, then any universal element of {α[r]}∞r=1 is a hypercyclic vector. Finally, we have

a useful lemma which guarantees that the adjoint operator of a weakly hypercyclic operator

on a topological vector space dose not have any eigenvector.

Lemma 2.1. The adjoint operator of a weakly hypercyclic operator on a topological vector

space does not have any eigenvector.

Proof. Let α be a weakly hypercyclic linear self-map on a topological vector spaceX. Clearly,

α is 1-weakly. Hence, α∗ does not have any eigenvectors by Proposition 3.2 in [11]. □

The following well-known theorems ([24]) characterizes the Runge domains in a Stein

manifold M in the language of holomorphic hulls.

Theorem 2.3. Let U be a Stein manifold which is a domain of a connected Stein manifold

M. Then, the following conditions are equivalent:

(1) The domain U is a Runge domain in M.

(2) ĈM = ĈU for every compact subset C ⊂ U .
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(3) ĈM ∩ U = ĈU for every compact subset C ⊂ U .

Theorem 2.4. Let C and D be two compact subsets of a connected Stein manifold M.

Then the following conditions are equivalent:

(1) C and D are separable in M.

(2) There exist open and disjoint subsets U, V ⊂ M such that ĈM ⊂ U , D̂M ⊂ V and

̂(C ∪D)M ⊂ U ∪ V .

(3) ĈM ∩ D̂M = ∅ and ̂(C ∪D)M = ĈM ∪ D̂M.

In particular, if C and D are disjoint and M-convex, then C ∪D is M-convex if and only if

C and D are separable in M.

Corollary 2.2. Let C and D be two disjoint compact subsets of a connected Stein manifold

M such that C ∪D is M-convex. Then C and D are both M-convex.

3. Main results

In this section, we choose a ψ ∈ O(M) and a weight function ω ∈ H(M) on a connected

Stein n-manifold M. Some necessary conditions for hypercyclicity of the weighted composi-

tion operator Cψ,ω with respect to an increasing sequence of natural numbers {nk}∞k=1 are

presented.

Proposition 3.1. Let {nk}∞k=1 be an increasing sequence of natural numbers, M be a con-

nected Stein n-manifold, ω ∈ H(M) and ψ ∈ O(M). If the weighted composition operator

Cψ,ω is hypercyclic with respect to {nk}∞k=1, then the following conditions hold:

(1) ω ̸= 0 on M and ψ has no fixed point in M.

(2) ψ is injective.

(3) ψ(M) is a Runge domain w.r.t. M.

(4) The sequence {ψ[nk]}∞k=1 is run-away.

Proof.

(1) Remember that H(M) is a separable Fréchet space and the point evaluation linear

functional Ep : H(M) → C (at each point p ∈ M) defined by Ep(h) := h(p) is

continuous. The adjoint of Cψ,ω satisfies the following equality

C∗
ψ,ω(Ep)(h) = Ep ◦Cψ,ω(h) = Ep(ω · (h ◦ ψ)) = ω(p) · (h ◦ ψ)(p).
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So, C∗
ψ,ω has an eigenvalue if ω(p) = 0 or ψ(p) = p and then, in these two cases

Cψ,ω can not be hypercyclic.

(2) Since Cψ,ω is hypercyclic with respect to {nk}∞k=1, it admits a hypercyclic vector

g ∈ H(M). So, for each h ∈ Orb(Cψ,ω, g) there exists a positive integer k such that

h = (C
[nk]
ψ,ω (g)) =

nk−1∏
j=0

C
[j]
ψ (ω) ·C[nk]

ψ g = ω · (
nk−1∏
j=1

ω ◦ ψj) · (g ◦ ψnk).

Assuming ψ(p) = ψ(q) for two distinct points p, q ∈ M, we get 1
ω(p)h(p) =

1
ω(q)h(q)

and then
1

ω(p)
Ep(h) =

1

ω(q)
Eq(h) (3.1)

for every h ∈ Orb(Cψ,ω, g). So, by continuity of 1
ω(p)Ep and

1
ω(q)Eq, it follows that the

equality (3.1) holds for every h ∈ Orb(Cψ,ω, g) = H(M). Therefore, 1
ω(p)Ep =

1
ω(q)Eq

on H(M).

Now, putting g = 1, we get 1
ω(p)Ep(1) =

1
ω(q)Eq(1) which gives ω(p) = ω(q). There-

fore, the equality h(p) = h(q) holds for every g ∈ H(M), which by condition (3) in

Definition 2.4, implies that p = q. So, ψ is injective.

(3) It is enough to prove that the subset of restrictions {h|ψ(M) : h ∈ O(M)} is dense in

O(ψ(M)).

If h ∈ O(ψ(M)), then h◦ψ is holomorphic onM, so there is a subsequence {nlk}∞k=1

of {nk}∞k=1 such that g◦ψ[nlk ] → g◦ψ on M (where, g ∈ H(M) is a hypercyclic vector

for Cψ,ω with respect to {nk}∞k=1). Hence f ◦ψ[nlk−1] → h on ψ(M), as the mapping

ψ is a biholomorphism on its image.

(4) Let K ⊂ M be compact. For each positive integer k, there exists a positive integer

nlk such that |f ◦ ψ[nlk ] − k| ≤ 1
k on K. So, for a big enough k, we have

inf{|f(z)| : z ∈ ψ[nlk ](K)} = inf{|(f ◦ ψ[nlk ])(z)| : z ∈ K} ≥ k − 1

k
> sup{|f(z)| : z ∈ K}.

Hence, ψ[nlk ](K) ∩K = ∅.

□

Remark 3.1. It follows from the equivalence of conditions in Remark 2.2 and theorems 2.3

and 2.4 that ψ maps every M-convex compact C ⊂ M onto an M-convex compact set. Also,

it implies that for any natural number n the set ψ[n](C) is M-convex.

It is natural to ask whether the necessary conditions given by Proposition 3.1 are sufficient.

In [18], it is shown that if M is a simply connected or an infinitely connected planar domain
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or a special type of higher-dimensional Stein manifolds, then the mentioned property holds.

But in general the above necessary conditions are not sufficient, as we can see using a simple

example M = D∗ and ψ(z) = 1
2z then by Theorems 4.6 the operator Cψ is not hypercyclic,

although it satisfies the conditions (1), (2), (3).

Here, we prefer to re-describe the topology of O(M) and the concept of topologically

transitivity of weighted composition operators.

For every K ∈ Cp(M) and f0 ∈ H(M) and positive real number ϵ, the ϵ-neighborhood of

f0 is defined by

NK
ϵ (f0) := {f ∈ H(M) : ∀y ∈ K, |f(y)− f0(y)| < ϵ}.

The family of all such a neighborhoods forms a basis of the topology of H(M).

With the aim of using Corollary 2.1, so let us first clear the topological transitivity of the

sequence (C
[nl]
ψ,ω)l.

Let ψ ∈ O(M) be an injective holomorphic self-map and 0 ̸= ω ∈ H(M). The sequence

(C
[nl]
ψ,ω)

∞
l=1 is topologically transitive if and only if for every ϵ > 0, g, h ∈ H(M) and K ∈

Cp(M) there are natural number k and function f ∈ H(M) such that |f − g| < ϵ and

|C[nk]
ψ,ω (f)− h| < ϵ on K.

As the mapping ψ is injective and ω in non-zero, the above condition has another form:

|f − g| < ϵ on K and |f − [
k−1∏
j=0

Cj
ψ(ω)]

−1 · h ◦ ψ[−nk]| < ϵ on ψ[nk](K). (3.2)

Since M is a Stein manifold, we can restrict to considering only M-convex sets.

Theorem 3.1. Let M be a connected Stein manifold, ψ ∈ O(M), ω ∈ H(M) and the

weighted composition operator Cψ,ω is hypercyclic on O(M). Then for every M-convex

compact subset C ⊂ M , there exists positive integer n such that C ∩ ψ[n](C) = ∅ and the

set C ∪ ψ[n](C) is M-convex.

Proof. Suppose that Cψ,ω is hypercyclic. In view of Corollary 2.1, the condition 3.2 holds.

Fix an M-convex compact set C ⊂ M. By Remark 3.1 we get that the set ψ[n](C) is M-

convex. Using the condition 3.2 for g = 0, h = 1 and ϵ = 1
2 , we get that there are f ∈ O(M)

and k ∈ N such that f(C) ⊂ 1
2D and λ

2 (ψ
[k](C)) ⊂ (1 + 1

2D) where λ = supC [
∏k−1
j=0 C

[j]
ψ (ω)].

This implies that C and λ
2ψ

[k](C) are separable in M, so by Lemma 2.9 in [24], the sum

C ∪ λ
2ψ

[k](C) is M-convex. □
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Theorem 3.2. Let M be a connected Stein manifold, ψ ∈ O(M), ω ∈ H(M) and the

following conditions hold:

(1) for every p ∈ M , ω(p) ̸= 0 and ψ is an injective self-map without fixed point in M.

(2) for every M-convex compact subset C ⊂ M , there exists positive integer n such that

C ∩ ψ[n](C) = ∅ and the set C ∪ ψ[n](C) is M-convex.

Then, the weighted composition operator Cψ,ω is hypercyclic on H(M).

Proof. Assume that {Cn}∞n=1 be an exhaustion of M. Without lose of generality, we can

assume that every Cn isM-convex. Since the compact-open topology onH(M) is independent

of the chosen exhaustion, we can endow H(M) with the topology induced by the semi-norms

on H(M) defined by pn(f) := sup{|f(p)| : p ∈ Cn}. Let U, V ⊂ H(M) be non-empty open

sets and fix f ∈ U and g ∈ V . By definition of compact-open topology of H(M), there is

a closed ball B ⊂ M (with respect to the Carathéodory pseudo-distance as can be seen in

[24]) and a positive real number ϵ such that, every h1 ∈ U satisfies supp∈B |f(p)− h1(p)| < ϵ

and similarly every h2 ∈ V satisfies supp∈B |g(p)− h2(p)| < ϵ.

Now, assume that D be another closed ball such that B ⊂ D◦. Since ψ is an injective

self-map without fixed point on M, then the function f is holomorphic on some neighborhood

of D, and the function g◦(ψ[n0])−1∏n0−1
k=1 (ω◦(ψ[k])−1)

is holomorphic on some neighborhood of ψ[n0](D).

By assumption (2), there exists n0 such that D ∩ ψ[n0](D) = ∅ and the compact set

K := D ∪ψ[n0](D) is M-convex (by Oka-Weil theorem), there exists a holomorphic function

h ∈ H(M) such that supz∈D |f(z)− h(z)| < ϵ and

sup
y∈ψ[n0](D)

| g ◦ (ψ[n0])−1∏n0
k=1(ω ◦ (ψ[k])−1)

(y)− h(y)| < ϵ

M
.

where M := maxy∈ψ[n0](D) |
∏n0
k=1(ω ◦ (ψ[k])−1)(y)|.

Hence supz∈K |f(z)− h(z)| < ϵ and

sup
z∈K

|g(z)− (|Kψ,ω)
[n0]h(z)|

= sup
z∈K

|
n0∏
k=1

(ω ◦ (ψ[k])−1)(y)(
g ◦ (ψ[n0])−1∏n0
k=1(ω ◦ (ψ[k])−1)

(y)− h(y))| < ϵ,

where y := ψ[n0](z). This shows that h ∈ U and (Cψ,ω)
[n0]h ∈ V , so thatCψ,ω is topologically

transitive. Since H(M) is a separable Fréchet space, Cψ,ω is hypercyclic. □

Theorem 3.3. Let M be a connected Stein manifold, ψ ∈ O(M) and ω ∈ H(M) and {nl}∞l=1

be an increasing sequence of positive integer numbers. Then the operator Cψ,ω is hypercyclic
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w.r.t. (nl)l if and only if for every p ∈ M , ω(p) ̸= 0 and ψ is injective without fixed points

in M, ψ(M) is a Runge domain w.r.t. M and for every M-convex compact subset C ⊂ M

there is a positive integer number k such that the sets C and ψ[nk](C) are separable in M.

Proof. Sufficiency in both parts follows from Theorem 3.1 and Theorem 3.2. If the sets C

and ψ[nl](C) are separable in M, since ψ(M) is a Runge domain in M and C is M-convex,

then ψ[nl](C) is M-convex and by a Lemma from [24] their sum is M-convex . Necessity in

both parts follows directly from Theorem 3.1. □
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[7] Birkhoff, G. D. (1929). Démonstration d’un théorème élémentaire sur les fonctions entières. C.R. Acad.

Sci. Paris, 189, 473–475.

[8] Bourdon, P. S., & Shapiro, J. H. (1990). Cyclic composition operators on H2. Proc. Symp. Pure Math.,

51(2), 43–53.

[9] Bourdon, P. S., & Shapiro, J. H. (1997). Cyclic phenomena for composition operators. Mem. Amer. Math.

Soc., 596.

[10] Chan, K. C., & Shapiro, J. H. (1991). The cyclic behavior of translation operators on Hilbert spaces of

entire functions. Indiana Univ. Math. J., 40, 1421–1449.

[11] Feldman, N. S. (2012). n-Weakly hypercyclic and n-weakly supercyclic operators. J. Funct. Anal., 263,

2255–2299.

[12] Fox, R. H. (1945). On topologies for function spaces. Bull. Amer. Math. Soc., 51(6), 429–433.

https://doi.org/10.1090/S0002-9904-1945-08370-0



492 F. PASHAIE, M.R. AZIMI, AND S.M. SHAHIDI

[13] Gethner, R. M., & Shapiro, J. H. (1987). Universal vectors for operators on spaces of holomorphic

functions. Proc. Amer. Math. Soc., 100, 281–288.

[14] Godefroy, G., & Shapiro, J. H. (1991). Operators with dense invariant cyclic vector manifolds. J. Funct.

Anal., 98, 229–269.

[15] Grosse-Erdmann, K. G. (1999). Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N.

S.), 36, 345–381.

[16] Grosse-Erdmann, K. G. (2003). Recent developments in hypercyclicity. Rev. R. Acad. Cien. Serie A.

Mat., 97(2), 273–286.

[17] Grosse-Erdmann, K. G., & Manguillot, A. P. (2011). Linear chaos. Universitext. Springer, London.

[18] Grosse-Erdmann, K. G., & Mortini, R. (2009). Universal functions for composition operators with nonau-

tomorphic symbol. J. Anal. Math., 107, 355–376.

[19] Pashaie, F., Azimi, M. R., & Shahidi, S. M. Dynamics of weighted composition operators on Stein

manifolds. (Submitted).

[20] Salas, H. N. (1995). Hypercyclic weighted shifts. Trans. Amer. Math. Soc., 347, 993–1004.

[21] Shapiro, J. H. (1993). Composition operators and classical function theory. Springer-Verlag, New York.

[22] Shapiro, J. H. (2001). Notes on dynamics of linear operators. http://www.math.msu.edu/shapiro

[23] Yousefi, B., & Rezaei, H. (2007). Hypercyclic property of weighted composition operators. Proc. Amer.

Math. Soc., 135, 3263–3271.

[24] Zajac, S. (2016). Hypercyclicity of composition operators in Stein manifolds. Proc. Amer. Math. Soc.,

144(9), 3991–4000.

Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P.O.Box

55181-83111, Maragheh, Iran.

Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P.O.Box

55181-83111, Maragheh, Iran.

Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P.O.Box

55181-83111, Maragheh, Iran.



International Journal of Maps in Mathematics

Volume 8, Issue 2, 2025, Pages:493-506

E-ISSN: 2636-7467

www.simadp.com/journalmim

ON GENERALIZED CLOSED QTAG-MODULES

AYAZUL HASAN ID ∗, MOHD NOMAN ALI ID , AND VINIT KUMAR SHARMA ID

Abstract. This paper explores the concept of closed modules by utilizing the notion of

h-topology within the context of QTAG-modules. In addition, we delve into the intricate

relationships between different types of submodules and Ulm invariants, shedding light on

their interconnected roles within the closures. This investigation aims to provide a deeper

understanding of these algebraic structures and their dynamic interactions.
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1. Introduction

One of the rapidly developing areas of research in module theory is the study of TAG-

modules. The idea was first introduced by Singh [15] in 1976. Moreover, module theory

has also witnessed a surge of interest in recent research, with the TAG-module being an

intriguing area of investigation, which is one of the variations of torsion Abelian groups in

modules. Over time, many researchers have extensively studied torsion Abelian groups and

its numerous variants, as evidenced by a range of notable studies found in [3, 11, 17].

Consider the following two conditions on a module M over an arbitrary (associative,

unitary) ring R.
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“(i) Every finitely generated submodule of any homomorphic image of M is a direct sum of

uniserial modules.

(ii) Given any two uniserial submodules U1 and U2 of a homomorphic image of M , for

any submodule N of U1, any non-zero homomorphism ϕ : N → U2 can be extended to a

homomorphism ψ : U1 → U2, provided that the composition length d(U1/N) ≤ d(U2/ϕ(N))

holds.”

WhenM over a ring R is a module and satisfies conditions (i) and (ii), it is called a TAG-

module, and when M over a ring R has condition (i) only, it is called a QTAG-module.

Following up on his investigation in [15], Singh [16] published a paper in 1987 titled “Abelian

groups like modules,” which naturally led to the introduction of the concept of QTAG-

module, which has since generated interest in the field of module theory. The study was

then followed by numerous developments on the topic. In recent years, this exploration for

QTAG-modules has regained the interests of some authors, and a lot of interesting results on

QTAG-modules of many torsion Abelian groups have been obtained during the course of this

quest (see, for example, [1, 2, 9, 10] and the references cited therein). Many such advances

in the theory of torsion Abelian groups exhibit characteristics of the earlier developments,

which is not surprising. The current work contributes to the understanding of the structure

of QTAG-modules and is a logical extension of the studies carried out in [18]. Another

useful source on the explored subject is [4] (see [19], too) as well. For some other interesting

generalizations of the topic mentioned here, the reader can see in [5, 6].

2. Preliminaries

Throughout the present paper, unless specified something else, let us assume that all

rings R into consideration are associative with unity and modules M are unital QTAG-

modules, written additively, as is the custom when studying them. All other not explicitly

explained herein notions and notations are well-known and mainly follow those from [7] and

[8]. A module M is called uniform if the intersection of any two of its nonzero submodules is

nonzero. An element a inM is called uniform if aR is a nonzero uniform module. Standardly,

the decomposition length of any module M with a unique decomposition series is denoted

by d(M). In addition, the exponent of a uniform element a of M , denoted by the symbol

e(a), is equal to d(aR). As usual, for such a module M , we state the height of a in M as

HM (a) = sup{d(bR/aR) : b ∈ M, a ∈ bR and b uniform}. Likewise, for k ≥ 0, Hk(M) =

{a ∈M | HM (a) ≥ k} represents the submodule of M that is generated by the elements that
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have at least k heights. The module M is h-divisible if M =M1 = ∩∞
k=0 Hk(M), where M1

is the submodule of M generated by uniform elements of M of infinite height. The module

M is h-reduced if it does not contain any h-divisible submodule. The topology of M , which

admits as a base of neighborhoods of zero, is known as the h-topology. This topology has the

submodules Hk(M) for some k. In this fashion, a submodule S of M is named the closure in

M if S = ∩∞
k=0(S +Hk(M)). With this in hand, we say that a submodule S of M is closed

with respect to the h-topology provided that S = S and h-dense in M if S =M . By closed

module M , we mean those modules which do not have any element of infinite height and has

a limit in M for every Cauchy sequence. Moreover, the sum of all the simple submodules of

M is called the socle of M , denoted by Soc(M).

Furthermore, we assemble some basic concepts which are crucial in the following devel-

opment. For pertinent results related to these concepts, we refer the reader to [13, 14] (see

[12] too). By analogy, for every ordinal σ, one can define the infinite height Hσ(M) as

follows: Hσ(M) = H1(Hσ−1(M)) if σ is non-limit, or Hσ(M) = ∩γ<σHγ(M) otherwise.

Usually, Hσ(M) denotes the submodule consisting of all elements of M with height ≥ σ.

This submodule is also called σth-Ulm submodule of M . In particular, Hω(M) will be the

first Ulm submodule of M , i.e., the set of elements of infinite height. A submodule S of M

is said to be σ-pure if, for all ordinal γ, there exists an ordinal σ (depending on S) such that

Hγ(M)∩S = Hγ(S). Besides, a submodule S ofM is termed isotype, if it is σ-pure for every

ordinal σ. The cardinality of the minimal generating set of M is denoted by the symbol

g(M). For all ordinals σ, fM (σ) = g
(
Soc(Hσ(M))/Soc(Hσ+1(M))

)
is called the σth-Ulm

invariant of M .

Finally, the project is organized as follows. In the previous section, we have explored the

subject’s background. The current section, i.e. here, looks at the topics’s related notions.

The study of generalized closed modules is discussed in the next section, and important

results and distinctive properties of closures as well as Ulm invariants are presented. In the

final section, we list some interesting left-open questions.

3. Main results

It is well-known that the direct sum of countably generated modules and the closed modules

are determined up to isomorphism by their Ulm invariants. The latter type of modules can

be characterized as the closed submodule of the closure of a direct sum of uniserial modules.

This closure is considered with respect to an h-topology (cf. [1]) which is defined for modules



496 A. HASAN, M. N. ALI, AND V. K. SHARMA

without elements of infinite height. One of the main goals of this article is to extend the

concept of h-topology, and thereby to include modules of arbitrary countable length for

investigating the generalized closed modules.

The following notions are our major tools.

Let γ be an ordinal and M an h-reduced QTAG-module, we define a descending chain of

submodules Hγ(M) by

Hγ(M) =


H1(Hα(M)), if γ = α+ 1

∩α<γHα(M), if γ is a limit ordinal.

Since all modules are assumed to be h-reduced, there is an ordinal β such that Hγ(M) = 0 for

γ ≥ β. The smallest such β is usually referred to as the length of M . When length(M) ≤ ω,

M is said to contain no elements of infinite height.

Let η be the first limit ordinal greater than or equal to the length of a QTAG-module M .

Then a h-topology can be constructed using the submodules Hγ(M), for γ < η, as a base for

the neighborhoods of the identity. This extension of the h-topology is known as the natural

topology.

We start here with a new useful criterion for a submodule to be isotype.

Proposition 3.1. Suppose that γ is an ordinal. Then a submodule S is an isotype submodule

of a QTAG-module M if Hγ(M) ∩ S ⊂ Hγ(S) implies Hγ+1(M) ∩ S ⊂ Hγ+1(M).

Proof. The proof is by induction on γ in conjunction with Hγ(M) ∩ S ⊃ Hγ(S). Clearly, if

γ is a limit ordinal and Hα(M) ∩ S = Hα(S) for all α < γ, then

Hγ(M) ∩ S = (∩α<γHα(M)) ∩ S,

= ∩α<γHα(S),

= Hγ(S),

which allows us to infer that S is isotype in M for each ordinal γ. □

In light of the previous construction, we obtain the following.

Proposition 3.2. Let N be a submodule of a QTAG-module M of countable length β. Then

there exists an isotype submodule S of M such that N ⊂ S ⊂M and g(N) = g(S).

Proof. Foremost, we construct inductively a chain of submodules Sk such that S = ∪Sk

for some positive integer k. Now, we set So = N , then there exist equations x′ = y with
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d(xR/x′R) = 1 for some x ∈ M and y ∈ Hγ+1(M) ∩ Sk−1. However, we observe that these

equations do not have a solution for x ∈ S. Among all such equations, let T γ,k be one

solution of Hγ(M), for each ordinal γ < β. In fact, denote by T k the module generated by

the elements of ∪γ<βT
γ,k and define Sk = Sk−1 + T k.

Next, assume that Hγ(M) ∩ S = Hγ(S) and choose y ∈ Hγ+1(M) ∩ S such that y ∈ Sk.

Then by the definition of T γ,k+1, there exists an element z such that z ∈ T γ,k+1 and z′ = y

where d(zR/z′R) = 1. By hypothesis on Hγ(M), we have T γ,k+1 ⊂ (Hγ(M) ∩ S) and

Hγ(M)∩S = Hγ(S). Therefore, we obviously observe that y ∈ Hγ+1(S) and Hγ+1(M)∩S ⊂

Hγ+1(S). By appealing to the same reasoning as in Proposition 3.1, one may infer that the

assertion follows. □

The following technicality is pivotal.

Proposition 3.3. Let M be a QTAG-module. If M is the closure of M , then M is isotype

in M .

Proof. Suppose that Hγ(M)∩M = Hγ(M) and choose x ∈ Hγ+1(M)∩M . Then there exists

a uniform element y ∈ Hγ(M) such that x = y′ where d(yR/y′R) = 1. If {yk} is a sequence

in M , then its limit y is also an element of M and yk − y is an element of Hγ(M) for every

k. This, in turn, implies that yk ∈ Hγ(M) ∩M = Hγ(M). Therefore, y′k − x and y′k are in

Hγ+1(M) such that d(ykR/y
′
kR) = 1. Hence, it consequently follows that x ∈ Hγ+1(M), and

the result follows from Proposition 3.1. □

The next statement is pretty simple but useful.

Proposition 3.4. Let S be an isotype submodule of a QTAG-module M which is h-dense

in M . Then S and M have equal lengths.

Proof. Let β1 and β2 be the lengths of S and M , respectively. Clearly β1 ≤ β2. Now, if x is

a nonzero uniform element of Hγ(M) for γ < β1 and {yk} is a sequence in S converging to

x, then yk − x ∈ Hγ(M) for every k. This gives that yk ∈ Hγ(M)∩S = Hγ(S) = 0 for every

k and means that Hγ(M) = 0 for all γ ≥ β1. Consequently, as early checked, β1 = β2. The

proof is over. □

We now will explore the closureness for the submodule classes.

Theorem 3.1. Suppose M is a QTAG-module and γ is an ordianl. If M is the closure of

M , then Hγ(M) = Hγ(M).



498 A. HASAN, M. N. ALI, AND V. K. SHARMA

Proof. Let x be a uniform element of Hγ(M) with a sequence {xk} in M converging to x.

Then there exists an integer t such that xk − x ∈ Hγ(M) for k ≥ t. Setting yk = xt+k.

Indeed, this gives a sequence in Hγ(M) converging to x. Thereby, because of the closureness

of M , it follows at one that Hγ(M) ⊂ Hγ(M).

Turning to the opposite part-half, we shall prove at first by induction on γ. First, if γ = 0,

it is obvious to assume the result holds for α < γ. Now, we have two cases to consider. First,

if γ is a limit ordinal, then

Hγ(M) = ∩α<γHα(M),

⊂ ∩α<γHα(M),

= ∩α<γHα(M),

= Hγ(M),

so that Hγ(M) ⊂ Hγ(M), and we are done. For the remaining case, if γ is not a limit

ordinal, then we write γ = α + 1 and choose a sequence of ordinals γk with length of M as

a supremum such that γk+1 > γk > γ. Let x ∈ Hγ(M), we observe that a subsequence of

sequence in Hγ(M) converging to x, and we obtain a sequence {xk} in Hγ(M) such that

lim
k→∞

xk = x and xk+1 − xk ∈ Hγk+1+1(M)

for each k. Suppose a ∈ Hα(M) such that a′ = u where d(aR/a′R) = 1 and choose z ∈

Hβ(M) such that z′ = v−a′ where d(zR/z′R) = d(aR/a′R) = 1. Setting b = z+a. This gives

that b′ = v, b− a = z ∈ Hβ(M), and b ∈ Hα(M) where d(bR/b′R) = 1. On continuing same

process in this manner, one may see that there exists a sequence {zk} in Hα(M) such that

z′k = xn where d(zkR/z
′
kR) = 1. Let c be the limit of {zk} in Hα(M). Then c ∈ Hα(M) and

c′ = x ∈ Hγ(M) where d(cR/c′R) = 1. Thus, Hγ(M) ⊂ Hγ(M), and the result follows. □

The next two statements are worthy of noticing.

Corollary 3.1. Suppose M is a QTAG-module and γ is an ordinal such that length of M

is greater than γ. Then M =M +Hγ(M).

Proof. First, we take x ∈ M , and let {xn} be a sequence in M which converges to x. Then

there exists an integer t such that xt − xk ∈ Hγ(M) for k > t and length (M) > γ. By

setting yk = xt − xt+k, one may see that a sequence in Hγ(M). Let y be the limit of {yk} in

Hγ(M). Then x = xt − y, and we are done. □
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Corollary 3.2. Suppose M is a QTAG-module and γ is an ordinal. Then M is closed if

and only if Hγ(M) is closed, provided length of M > γ.

Proof. Assume that M is closed; i.e., M = M . In accordance with Theorem 3.1, we subse-

quently deduce that

Hγ(M) = Hγ(M) = Hγ(M)

for each ordinal γ. This allows us to infer that Hγ(M) is closed, thus completing the first

half.

Conversely, we presume now that Hγ(M) is closed for some γ < length(M). Hence,

Hγ(M) = Hγ(M) and so in conjunction with Corollary 3.1, we get

M =M +Hγ(M) =M +Hγ(M).

Consequently, it is plainly seen that M is closed, and we are finished. □

Our next example show that in the above corollaries, the requirement that length ofM > γ

cannot be removed.

Example 3.1. Let

f : Soc(M/Hγ(M)) → Hγ(M)/Hγ+1(M)

be a homomorphism such that ker(f) =M/Hγ(M). Let S be a submodule of Soc(M/Hγ(M)),

then f : Soc(M/Hγ(M)) → Hγ(M)/Hγ+1(M) is an isomorphism. Obviously, Hγ(M) ∈ M ,

and S = Σγ≤k<t(xt − yk), for some integers t and k. Now, for every ordinal γ, let Kγ be a

submodule of Hγ(M) and Lγ the image of Kγ in M/Hγ(M). Then, U = Σγ+ω≤k<t(xt − yk)

is a direct sum of uniserial modules. Since S ∩ U = 0, we have S + U ≤ Σγ+t≤γ+ω xt and

S + U ≤ Σγ+k≤γ+ω yk. Putting these inequalities together, we obtain the desired claim.

We come now to our main theorem on closed modules.

Theorem 3.2. Let Mi (i ∈ I) be a system of QTAG-modules. Then M = ⊕i∈IMi is closed

if and only if there exists an ordinal γ < length(M) such that the family F = {i ∈ I :

length(Mi) > γ} is of nonzero finite cardinality and for each i ∈ F , Mi is closed.

Proof. To prove necessity, let M be a closed module. If there is no γ such that F has

nonzero finite cardinality, then there exists an increasing sequence βik < length(Mik) such

that limk→∞ βik = length(Mik). Choose 0 ̸= xik ∈ Soc(Hβik
(Mik)) and let yt = ⊕t

k=1xik .
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However, if {yt} is a sequence inM , then one sees that y is an element ofM and y = ⊕i∈Jxi,

where J is a finite subset of I. Let r be an integer such that ir ∈ F . For t > r, we have

HM (y −⊕t
k=1xik) = min{HMi(ϕi(y −⊕t

k=1xik))} ≤ HMik
(xik),

where ϕi :M →Mi is the projection map. Thus, HM (y − yt) ≤ HMi(xik) for some t, which

is an absurd, so we pursued the contradiction. Therefore, there exists an ordinal γ such that

F has the proper cardinality.

Let {xki0} be a sequence in Mi0 for i0 ∈ F , and since M is closed, one verifies that the

sequence has a limit in M , say y = xi0 + ⊕i∈I−i0xi. But HM (x − xki0) ≤ HM (xi) implies

xi = 0 for i ∈ I − i0, and besides, that limk→∞HM (x− xki0) = HM (0), which is greater than

the height of any nonzero element of M . So, it follows that x ∈Mi0 . This surely means that

Mi is closed for i ∈ F , as wanted.

To show now the truthfulness of sufficiency, let us assume that F has cardinality a positive

integer with each Mi, for i ∈ F , closed. In order to show that M is closed, it suffices to show

that every bounded sequence in M has a limit in M . In order to do this, suppose {yk} is

such a sequence and let yk = ⊕i∈Ix
k
i , then {xki } is a sequence in the h-topology induced in

Mi by the natural topology of M . In case that i ∈ I − F , we can observe that the induced

h-topology is discrete. So, for some k, we find {xki } is constant and has a limit xi. But, in

this case, i ∈ F , we then can identify that the induced h-topology is either discrete or the

natural topology of Mi. And since Mi is closed, there exists a limit xi in Mi, and hence

y = ⊕i∈Ixi is the limit of {yk}. The proof is completed. □

The following gives a great deal of information about the Ulm invariants.

Theorem 3.3. Let S be an isotype submodule of a QTAG-module M which is h-dense in

M . Then M and S have the same Ulm invariants.

Proof. Let the injection S →M induces a map

ϕ : (Hγ(S) ∩ Soc(S))/(Hγ+1(S) ∩ Soc(S)) → (Hγ(M) ∩ Soc(M))/(Hγ+1(M) ∩ Soc(M))

for every ordinal γ. Then

(Hγ(M) ∩ Soc(S)) ∩Hγ+1(M) ∩ Soc(M) = (Hγ(S) ∩Hγ+1(M)) ∩ Soc(S),

= (S ∩Hγ+1(M)) ∩ Soc(S),

= Hγ+1(S) ∩ Soc(S),
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and so ϕ is a monomorphism. This shows that fS(γ) ≤ fM (γ).

On the other hand, if x is any uniform element of Hγ(M)∩Soc(M), there exists a sequence

{xk} in S such that it has x as a limit. By adding terms and constructing subsequences, let

us assume that all the elements of {xk} are in S such that e(xk) = 1. Then, for some k, we

have xk − x ∈ (Hγ+1(M) ∩ Soc(M)) which yields

ϕ(xk + (Hγ+1(S) ∩ Soc(S))) = x+ (Hγ+1(M) + Soc(M)),

and ϕ is an epimorphism. Thus, fS(γ) = fM (γ) for each ordinal γ. □

Mimicking the method demonstrated above, we record the following consequence.

Corollary 3.3. If S is an isotype, h-dense submodule of a QTAG-module M , then

M/Hγ(M) ∼= S/Hγ(S)

for all γ < length(M).

We are now ready to give our desired example.

Example 3.2. Let U and V be the QTAG-modules having same Ulm invariants and

length ω + 1. In fact, as U and V are direct sum of uniserial modules, we have that

(Soc(U) + Hω(U))/Hω(U) is countably generated and (Soc(V ) + Hω(V ))/Hω(V ) is not

countably generated. Indeed, there exists a countably generated module P of length ω2

with fγ(P ) = 1 for all ordinals γ < ω2. Applying Corollary 3.3 appointed above, and the

countability of P , we see that P/Hω(P ) is countably generated, where P is the closure of

P in U and V , respectively. Let us decompose M = P ⊕ U and S = P ⊕ V . Then M and

S are closed modules with same Ulm invariants. Therefore, (Soc(M) +Hω(M))/Hω(M) is

countably generated and (Soc(S)+Hω(S))/Hω(S) is not countably generated. Consequently,

M ≁= S, as claimed.

Remark 3.1. Since an isomorphism between two closed modulesM and S carried Soc(Hγ(M))

isomorphically to Soc(Hγ(S)) for each ordinal γ. Therefore, the natural topological structure

is preserved by isomorphisms, and such maps are actually homomorpshims.

We continue with the significant characterization of a closed module.

Theorem 3.4. A closed QTAG-module containing a direct sum of countably generated mod-

ules which form an isotype, h-dense submodule is determined up to isomorphism by its Ulm

invariants.
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Proof. Let M1 and M2 be two closed QTAG-modules having the same Ulm invariants and

containing submodules S1 and S2 possessing the desired properties. By hypothesis and

consulting with Theorem 3.3, we inspect that fS1(γ) = fM1(γ) = fM2(γ) = fS2(γ) for each

ordinal γ. However, it is easily verified that M1 is isomorphic to M2. In fact, since M1 and

M2 are the direct sum of countably generated modules, we detect that S1 is isomorphic to

S2, and we are done. □

The above theorem leads to the analysis of determining which closed modules contain a

h-dense, isotype submodule, which is a direct sum of countably generated modules.

Analysis. In accordance with [1], we construct a closed module without elements of infinite

height. In fact, for a closed module of length less than or equal to the first countable ordinal

ω, any of its basic submodules is the h-dense, isotype submodule. However, this is not valid

for closed modules of greater length. Letting M be a closed module of countable length β

containing the h-dense, isotype submodule. According to Corollary 3.3, it is plainly seen that

M/Hγ(M) must be a direct sum of countably generated modules for all γ < β. If M/Hγ(M)

is countably generated for all γ < β, the situation is the following.

Theorem 3.5. Let M be a QTAG-module such that M/Hγ(M) is countably genrated for

some ordinal γ. Then there exists a countably generated, h-dense, and isotype submodule S

of M , provided length of M > γ.

Proof. Let us assume that length(M) = β. If γ ≥ β, we are done. For the remaining

case γ < β, we choose a set of representatives {xγ,k}k∈Z+ of the countably generated module

M/Hγ(M) and let F = ∪γ<β{xγ,k}k∈Z+ . Since β is countable, we obtain that F is countable,

and then F generates a countably generated module in M . Having in mind Proposition 3.2,

one infers that a countably generated isotype submodule S of M containing F .

Now we choose x ∈M and constructing a sequence in F converging to x. After this, let us

find a sequence {γt} of ordinals whose limit is β. Then for each t choose the representative

xt from {xγt,k}k∈Z+ such that x is in the same coset as xt modulo Mγt . Since the ordinals

γt converge to β, we have limt→∞ xt = x and the proof is completed. □

So, the leitmotif of this article is the utilization of the above material to explore the

countability of quotient modules as follows: If the QTAG-module M has a countable length

β and M/Hγ(M) is countably generated, for some ordinal γ < β. This state is known as the

countability property. Therefore, we have the following direct consequences of Theorems 3.4

and 3.5, respectively.
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Corollary 3.4. Closed QTAG-modules with the countability property are determined up to

isomorphism by their Ulm invariants.

Corollary 3.5. If M is a closed QTAG-module with the countability property, then M is

determined up to isomorphism by its Ulm invariants.

We continue with an observation on the above two corollaries.

Example 3.3. Let M be a QTAG-module such that M = ⊕γSoc(Hγ(M)) is the decom-

position of a closed module, then M is determined by its Ulm invariants if and only if

Soc(Hγ(M)) is determined by its Ulm invariants. It is readily checked that for every sub-

module S of Soc(Hγ(M)), we get that Hom(S,⊕γSoc(Hγ(M))) = 0, which is an essential

submodule of M . This means that countability property is not sufficient in order to find an

isomorphism. In accordance with Theorem 3.5, one may see that there exists a countably

generated, h-dense, and isotype submodule L of M such that it is a direct sum of uniserial

modules, which is a closed QTAG-module, as required.

We will now argue the following theorem.

Theorem 3.6. Suppose that M1 is a QTAG-module with the countability property and that

M2 is a countably generated with fγ(M1) = fγ(M2) for some ordinal γ. Then M1 can be

embedded as an isotype submodule S of M2 such that M1 ⊃M2.

Proof. The existence of a countably generated, h-dense, isotype submodule S of M1 is guar-

anteed by Theorem 3.5, so hypothesis M2 does exist. S and M1 can considered submodules

of S by means of the standard topological map that embeds a space in its closure. The

h-denseness of M1 in S follows from the fact that S ⊂ M1 ⊂ S. By applying Proposition

3.1, the isotype property of M1 can be demonstrated. Due to the equality of Ulm invariants,

S and M2 are isomorphic, and this map can be extended to S and M2 to give the desired

embedding map. □

The following lemma determines the cardinality of a closed module that meets the count-

ability property.

Lemma 3.1. Suppose M is a countably generated QTAG-module. If M is the closure of M ,

then g(M) = 2ℵ0.

Proof. Since g(M) = ℵ0, we obtain the number of Cauchy sequences in M ≤ 2ℵ0 and thus

g(M) ≤ 2ℵ0 . So, what remains to show is the inequality g(M) ≥ 2ℵ0 . For this purpose,



504 A. HASAN, M. N. ALI, AND V. K. SHARMA

choose a sequence of ordinals γk with a length ofM as a supremum such that Soc(Hγk(M)) ⊂

Soc(Hγk+1(M)) for some k ≥ 0. Then, there exists a sequence {xk} of elements in M such

that xk ∈ Soc(Hγk(M))− Soc(Hγk+1(M)).

Let A = (a1, a2, . . . ) be the set of all ℵ0 tuples, where ak is 0 and 1. Now, define a map

f : A → M such that f(A) = lim yk where yk = ⊕k
n=1anxn. Let a and a′ be two distinct

elements of A with r the first n such that an ̸= a′n. Then, for k > r, we have

yk − y′k = xr +⊕k
n=r+1(anxk − a′kxk) ̸∈ Hγ+1(M).

Therefore, f(a) ̸= f(a′). This gives that f is one-one and means that 2ℵ0 = g(A) ≤ g(M),

as promised. □

We finish off with a statement which explores when a direct sum of countably generated

modules has a length equal to ω1, the first uncountable ordinal.

Theorem 3.7. Let Mi (i ∈ I) be a system of QTAG-modules, and let M = ⊕i∈IMi be

the direct sum of countably generated modules. Then M is a closed module under natural

topology, provided length(M) = ω1.

Proof. Let J be the set of countable ordinals, and let {xα}α∈J be a Cauchy sequence. Then

for each i ∈ I, one sees that {ϕi(xα)}α∈J is a Cauchy sequence, where ϕi : M → Mi is the

projection map. Therefore, for every ordinal γi, there will exist αi ∈ J such that

ϕi(xα)− ϕi(xβ) ∈Mγi ∩Miγi
= 0

and γi = length(Mi), for α, β > αi.

Let us assume in a way of contradiction that the set F = {i ∈ I : xi ̸= 0} is not finite.

Then there exists a sequence {ik}k∈Z+ in F such that η = limk→∞{αik} where η is any

countable ordinal. If, however, a countable ordinal α > η, then ϕik(xα) = xik ̸= 0 for some k,

thus contradicting to our choice. So, F is a finite set. Letting σ be the countable ordinal with

a countable ordinal ασ such that xα − xβ ∈ Mσ for α, β > ασ. Thus, ϕi(xα)− ϕi(xβ) ∈ Mσ

for each i ∈ I. In case that i ∈ F and β > αi, we can observe that ϕi(xβ) = xi, and

that ϕi(xα) − xi ∈ Mσ for all α > ασ. But in this case, i ̸∈ F and β > αi, we may

deduce that ϕi(xβ) = 0, and that ϕi(xαi) ∈ Mσ for all α > ασ. Finally, in the remaining

case, it can be inferred that xα = ⊕i∈Fxi ∈ Mσ for all α > ασ. This surely means that

limxα = ⊕i∈Fxi ∈ M . Consequently, every Cauchy sequence in M converges in M , as

formulated. □
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4. Conclusion and Open problems

In this project, we examined different types of submodules and Ulm invariants via the

notions of h-topology and closed modules. The intriguing properties of these notions and

their interrelationships are explored, and some connections are investigated between the σth-

submodules and the closures existing in the literature (see, for example, Theorem 3.1, etc.).

We further revealed that a necessary and sufficient condition for a direct sum of QTAG-

modules to be closed modules can be developed in terms of a direct summands, as detailed

in Theorem 3.2. Moreover, we demonstrated that if a direct sum of countably generated

modules has a length equal to ω1, the first uncountable ordinal, then the module is a closed

module under the natural topology, which occurred in Theorem 3.7.

In future work, we will study certain invariants by utilizing closed modules and h-topology

via QTAG-modules. Also, we will generate a new countability property from QTAG-modules

and other types of submodules in the literature. We close the work with certain challenging

problems which are worthwhile for a further study.

Problem 4.1. Find the necessary (and sufficient) conditions under which a direct sum of a

closed module is again a closed module?

Problem 4.2. Can closed modules be characterized by certain Ulm invariants?

Problem 4.3. Is it true that everyQTAG-module of countable length γ with the countability

property is isotype?

Problem 4.4. For a QTAG-module M of countable type, does it follow that M ⊕M is a

closed module?
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Abstract. A mapping of the form ϱ : N −→ [0,∞) satisfying limn→∞ ϱ(n) = ∞ and

limn→∞
n

ϱ(n)
̸= 0 is called a weight function. By incorporating weight functions into the

statistical framework, we come up with a new notion called weighted statistical compact-

ness that extends the traditional notion of compactness. The paper involves studying the

compactness properties via sequences and relationship between compactness variations. We

also look into the nature of weighted statistical compactness with in sub-space and under

open continuous onto maps. Weighted statistical compactness has also been given a finite

intersection-like characterization.

Keywords: Countable compactness, s-compactness, Asymptotic density, Weighted density,

Finite intersection property.
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1. Introduction

A group of points in a topological space are called dense when they are widely distributed

throughout the space. The distances between the points are often used to calculate this

density in a metric space. To determine the natural density (also known as asymptotic

density) of a subset A ⊆ N, one can measure how closely spaced out the points in A are in

N, N being all natural numbers set. It is described as

δ(A) = lim
n→∞

1

n
|{k ≤ n : k ∈ A ⊆ N}|.
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H. Fast [11], Schoenberg [13] expanded the sense of conventional convergence to statistical

convergence by utilizing the concept of asymptotic density. In a space X, a sequence {zn}

converges statistically to a point z if the natural density of the collection {n ∈ N : zn ∈ U}

(i.e., the part of the sequence’s elements that fall within U) converges to 1 as n tends to

infinity for every open set U containing z. i.e., δ({n ∈ N : zn ∈ U}) = 1 or equivalently,

δ({n ∈ N : zn ̸∈ U}) = 0 [12]. In 2012, Bhunia et al. [9] strengthened the idea that real se-

quences s-converge by using asymptotic density of order α, where 0 < α < 1. sα-convergence

restricts the notion of statistical convergence in topology. It introduces a parameter α that

is important in characterizing the specific convergence behavior of sequences. Here, α rep-

resents a parameter influencing the convergence rate of sub-sequences, providing a more

nuanced understanding of convergence than is achievable with traditional reasoning. A se-

quence {yn}, sα-converges to a point y in a space X if each open set U that contains y,

produces

δα({n ∈ N : xn /∈ U}) = lim
n→∞

|{n ∈ N : xn /∈ U}|
nα

= 0.

Compactness and other covering features have been a very interesting topic for many

mathematicians [4, 5, 6, 7] for a long period of time. Compactness in a topological space

is a fundamental property that encapsulates what it means to be ‘finite’ in a general sense.

Compact topological spaces are those that have a finite sub-cover for every open cover.

Stated differently, regardless matter how we choose to cover the space, there is always a

finite number of open sets that cover the entire space. Compactness has many implications

and applications in the mathematical domains of analysis, geometry, and topology, to name a

few. The notions of boundedness and finiteness are naturally extended from metric spaces to

more general topological spaces. Other types of compactness, such as sequentially compact

space, pseudo-compact space, and St-compact space, sα-compact space [2, 3, 8] have been

studied by many authors.

A mapping ϱ defined in the form ϱ : N −→ [0,∞) such that limn→∞ ϱ(n) = ∞ and

limn→∞
n
ϱ(n) ̸= 0 is called a weight function [1]. For example, h : N −→ [0,∞) such that

h(n) = nα, where 0 < α ≤ 1, ϱ : N −→ [0,∞) such that ϱ(n) = log(1 + n) are weight

functions. Adem et al. [1] studied the concept of weighted convergence for real sequences.

A sequence {yn} is said to sϱ-converge to the point y in a space X if each neighborhood U

of y produces

δϱ({n ∈ N : xn /∈ U}) = lim
n→∞

|{n ∈ N : xn /∈ U}|
ϱ(n)

= 0.
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In this paper, we continue our study of the weighted density in order to identify a topo-

logical property related to compactness.

2. Preliminaries

This part provides a quick overview of the basic tools and mathematical ideas needed to

understand the main conclusions. Unless otherwise indicated, this paper does not presuppose

any separation axioms; a space will refer to a topological space in this paper. We refer to

[10] for further concepts and symbols.

Definition 2.1. [10] If each open covering of a space X posses a finite sub-cover, then that

space is said to be countably compact.

Definition 2.2. [10] A countable family F = {Fs}s∈N whose elements are subsets of a set

X is stated to have finite intersection property (FIP), if
⋂n
i=1 Fsi ̸= ∅ and F ̸= ∅ for every

finite set {s1, s2, s3, . . . , sn} ⊆ N.

Theorem 2.1. [10] Every collection of closed subsets of a space X having FIP produces

non-empty intersection if and only if X is compact.

Definition 2.3. [8] A statistical compact (or s-compact) space is a topological space X in

which every countable open cover U = {Un : n ∈ N} posses a sub-cover V = {Umk
: k ∈ N}

for which δ ({mk : Umk
∈ V}) = 0.

Definition 2.4. [8] A countable family F = {Fs}s∈N whose elements are subsets of a set

X is stated to have δr-intersection property if
⋂
n∈S Fn ̸= ∅ for every subset S ⊆ N with

δ(S) = r and F ̸= ∅.

Theorem 2.2. [8] Every collection of closed subsets of a space X having δ0-intersection

property produces non-empty intersection if and only if X is s-compact.

3. sϱ-Compact space

Using the concept of weighted density, we want to find a covering criteria that lies some-

where between countable compactness and statistical compactness.

Definition 3.1. Let X be a space with the weight function ϱ. If every countable open covering

P = {Pn : n ∈ N} of X posses a sub cover Q = {Pnk
: k ∈ N} for which δϱ({nk ∈ N : Pnk

∈

Q}) = 0, then X is stated as a weighted statistical compact space (or shortly sϱ-compact

space).
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Theorem 3.1. Every countably compact space is an sϱ-compact space.

Proof. Let X be a countably compact space. Then, every countable open cover P = {Pn :

n ∈ N} has a finite sub cover Q = {Pn1 , Pn2 , Pn3 , . . . , Pnk
}. As the sub cover is a finite, the

set {n1, n2, · · · , nk} ⊆ N is finite having weighted density zero. Hence, the space X is an

sϱ-compact space. □

Example 3.1. There exists a non-compact, sϱ-compact space.

Let X = {(a, b) : a2 + b2 < 1} and τ = {An = {(a, b) : a2 + b2 < 1 − 1
n} : n ∈ N} ∪ {∅, X}.

Clearly, X is a topological space. Consider the weight function ϱ : N → [0,∞) such that

ϱ(n) = log(1 + n). For an arbitrary countable open cover U = {Un : n ∈ N}, we can choose

a sub sequence V = {Unk
: k ∈ N} such that Un1 = U1 and Unk+1

⊇ Unk
for all k ∈ N. So V

is an increasing sub sequence of U that covers X. Now, we choose a sub sequence W of V

as W = {Un
kk

: k ∈ N}. It is clear that
⋃
W = X and

δϱ({nk ∈ N : Unk
∈ W}) = lim

k→∞

|{kk : k ∈ N}|
log(1 + kk)

= lim
k→∞

k

log(1 + kk)
= lim

k→∞

1 + kk

kk(1 + logk)
= 0.

But W is a sub sequence of V and V is a sub sequence of U . So, W is a sub cover of U

such that δϱ({nk ∈ N : Unk
∈ W}) = 0. Thus, X is an sϱ compact space.

Now, consider the open cover A = {An = {(a, b) : a2 + b2 < 1− 1
n} : n ∈ N} and if possible

suppose that it has a finite sub cover A′ = {An1 , An2 , An3 , . . . , Ank
}. We take nmax =

max{n1, n2, n3, . . . , nk}. Therefore,
⋃

A′ = Anmax = {(a, b) : a2 + b2 < (1 − 1
nmax

)}. The

portion {(a, b) : (1− 1
nmax

) ≤ a2 + b2 < 1} remains uncovered, which is a contradiction. So,

A can not have a finite sub cover. Thus, (X, τ) is not compact.

Theorem 3.2. Every sϱ-compact space is an s-compact space.

Proof. Let X be a space having sϱ-compactness. Then, every countable open covering P =

{Pn : n ∈ N} of X posses a sub cover Q = {Pnk
: k ∈ N} such that δϱ({nk ∈ N : Pnk

∈ Q}) =

0. But δ({nk ∈ N : Pnk
∈ Q}) ≤ δϱ({nk ∈ N : Pnk

∈ Q}) = 0. So, X is a statistical compact

space. Hence, every sϱ-compact space is an s-compact space. □

Open Problem 3.3. Does there exists a topological space which is statistical compact but

not sϱ-compact?
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Statistical Compactness

sϱ-Compactness

Countable Compactness

/

?

Figure 1. The relationship between compactness variations.

Theorem 3.4. sϱ-compactness is a closed hereditary property.

Proof. Let (X, τ) be a sϱ-compact topological space and (B, τB) be a closed sub-space of X

and let U = {Un ∈ τB : n ∈ N} be a covering of (B, τB).

Therefore, B =
⋃
n∈N

Un =
⋃

U .

Now, for every n ∈ N, we can find a τ -open set Vn for which Un = B ∩ Vn.

Therefore, B =
⋃
n∈N

Un ⊆
⋃
n∈N

Vn.

Consider W = {Wn : n ∈ N}, where

Wn =


X \B if n = 1,

Vn−1 otherwise,

So, W = {Wn : n ∈ N} is a countably infinite cover of the sϱ-compact space X. So, we can

find a sub cover P = {Wnk
: k ∈ N} having δϱ({nk : Wnk

∈ P}) = 0. Let PB = {B ∩Wnk
:

k ∈ N}, then U have a sub cover PB covering B. Now, if W1 /∈ P, then {nk : Wnk
∈ P} =

{nk : B ∩Wnk
∈ PB} and δϱ({nk : Wnk

∈ P}) = δϱ({nk : B ∩Wnk
∈ PB}) = 0. If W1 ∈ P,

then |{nk : Wnk
∈ P}| = |{nk : B ∩Wnk

∈ PB}| − 1.

So, δϱ({nk : Wnk
∈ P}) = δϱ({nk : B ∩Wnk

∈ PB}) = 0.

Hence, (B, τB) is an sϱ-compact space.

□

Theorem 3.5. If B ⊆ X and (B, τB) is an sϱ-compact closed sub-space of a topological space

X, then for every family of open sets {Wn : n ∈ N} of X such that B ⊆
⋃
Wn for all n ∈ N

there exists a subset P ⊆ N with δϱ(P ) = 0 such that B ⊆
⋃
n∈P Wn.
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Proof. Let {Wn : n ∈ N} be a family of open subsets of X ensuring
⋃
n∈NWn ⊇ B. Then,

B =
⋃
n∈N(B ∩Wn), which implies that B is covered by {B ∩Wn : n ∈ N}, a collection of

τB-open sets. Also, (B, τB) is an sϱ-compact space. Therefore, there exists a set P ⊆ N with

δϱ(P ) = 0 such that B =
⋃
n∈P (B ∩Wn). Thus, B ⊆

⋃
n∈P Wn. Hence, for every family of

open sets {Wn : n ∈ N} of X such that B ⊆
⋃
Wn for all n ∈ N there exists a subset P ⊆ N

with δϱ(P ) = 0 such that B ⊆
⋃
n∈P Wn. □

Theorem 3.6. Let W be an open subset of a topological space X and consider the weight

function ϱ. If a family {Gm : m ∈ N} of closed subsets of X consists at least one sϱ-compact

set (say Gm0) such that
⋂
m∈NGm ⊆ W , then there exists P ⊆ N with δϱ(P ) = 0 and⋂

m∈P Gm ⊆ W ∪Gc
m0

.

Proof. Let Gm0 be an sϱ-compact set in the family {Gm : m ∈ N}. As W ∈ τ is open, so W c

is closed. Thus, W c∩Gm0 = Gm0\W . Since Gm0\W ⊆ Gm0 and Gm0 is an sϱ-compact set so

by Theorem 3.4, Gm0 \W is an sϱ-compact set. Let B = Gm0 \W . {Wm = X \Gm : m ∈ N}

is family of open sets.

Now,
⋃
m∈N

Wm =
⋃
m∈N

(X \Gm) = X \
⋂
m∈N

Gm.

and X \
⋂
m∈N

Gm ⊇ X \W ⊇ Gm0 \W = B.

So, B ⊆
⋃
m∈NWm. But, B = Gm0 \W is an sϱ-compact space. Therefore, by Theorem 3.5,

there exists P ⊆ N with δϱ(P ) = 0 such that B ⊆
⋃
m∈P Wm. So, Gm0\W = (X\W )∩Gm0 ⊆⋃

m∈P Wm.

Thus, (X \W ) ∩ (X \Gc
m0

) ⊆
⋃
m∈P

X \Gm = X \
⋂
m∈P

Gm.

Therefore, X \ (W ∪Gc
m0

) ⊆ X \
⋂
m∈P

Gm.

Hence,
⋂
m∈P Gm ⊆ W ∪Gc

m0
. □

Theorem 3.7. Let {(Xm, τm) : m = 1, 2, · · · , s} be a finite collection of sϱ-compact sub-

spaces of X such that X =
⋃s
m=1Xm. Then, X is an sϱ-compact space.

Proof. Let (Xm, τm) be an sϱ-compact sub-space of X for m = 1, 2, 3, . . . , s such that X =⋃s
m=1Xm and let W = {Wn : n ∈ N} be a countable open cover of X. Then, Wm =

{Xm ∩Wn : n ∈ N} are countable open covers of (Xm, τm) where m = 1, 2, · · · , s. Therefore,
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there exist Vm = {Xm ∩ Wnk
: k ∈ N} for every Wm of (Xm, τm) such that δϱ({nk ∈ N :

Xm ∩Wnk
∈ Vm}) = 0.

Now,

δϱ(
s⋃

m=1

{nk ∈ N : Xm ∩Wnk
∈ Vm}) ≤

s∑
m=1

δϱ({nk ∈ N : Xm ∩Wnk
∈ Vm) = 0.

Also,
⋃s
m=1 Vm are covers of X. So, X ⊆

⋃s
m=1 Vm ⊆

⋃s
m=1{Wnk

: k ∈ N and Xm ∩Wnk
∈

Vm} = P. Thus, P is a sub cover of W such that δϱ({nk : Wnk
∈ P}) = 0. Hence, X is an

sϱ-compact space. □

Theorem 3.8. sϱ-compactness is preserved under surjective open continuous mapping.

Proof. Consider a surjective map f : (X, τ) −→ (Y, σ) which is both open and continuous,

where X is an sϱ-compact space, ϱ being a weight function.

Suppose that A = {An}n∈N is a random covering of Y , A being countable and ele-

ments of A being open. Then, Y =
⋃
n∈NAn. So, f−1(Y ) = f−1(

⋃
n∈NAn). Thus,

X =
⋃
n∈N f−1(An). So, X is covered by {f−1(An) : n ∈ N}, which is an open covering ( f

being continuous and A = {An}n∈N being open). Also, X is an sϱ-compact space. There-

fore, we will get a countable sub covering {f−1(Ank
)}k∈N of X having δϱ({nk : k ∈ N}) = 0.

Therefore,
⋃
nk∈N{f

−1(Ank
)} = X that implies f(

⋃
nk∈N{f

−1(Ank
)}) = f(X) = Y . i.e.,

Y =
⋃
nk∈N{Ank

}. Thus, Y is covered by {Ank
}k∈N which is a subset of {An}n∈N with

δϱ({nk : k ∈ N}) = 0.

Hence, Y also have the sϱ-compactness property. □

Under the effect of weighted statistical density, now we search for a finite intersection like

attributes for sϱ compactness.

Definition 3.2. A countable family D = {Dn : n ∈ N} ⊆ P(X) is stated to posses ϱ∆r-

intersection property (ϱ∆r-IP) if D ̸= ∅ and for each P ⊆ N having δϱ(P ) = r, gives⋂
n∈P Dn ̸= ∅.

Theorem 3.9. Every countable collection of closed subsets of X having ϱ∆0-IP produces

non-empty intersection if the space X is sϱ-compact and vice versa.

Proof. Let X be a space having sϱ-compactness and D = {Dn : n ∈ N} be an arbitrary

family of closed subsets of X with ϱ∆0-intersection property .

If possible, let us consider
⋂
n∈NDn = ∅ and Fn = X \ Dn. Then, X = X \

⋂
n∈NDn =
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n∈NX \ Dn =

⋃
n∈N Fn. Therefore, X is covered by {Fn}n∈N, elements of the collection

{Fn}n∈N being open sets. But X is an sϱ-compact space. Thus, we can obtain a P ⊆ N

having δϱ(P ) = 0 and
⋃
n∈P Fn = X. Now,

X =
⋃
n∈P

Fn =
⋃
n∈P

X \Dn = X \
⋂
n∈P

Dn.

Therefore,
⋂
n∈P Dn = ∅, that leads to a contradiction. So, D = {Dn : n ∈ N} has g∆0-

intersection property.

Conversely, let W = {Wn : n ∈ N} be a countable open cover of X. Now, D = {Dn =

X \Wn : n ∈ N} is a countable family of closed sets. Now,

⋂
n∈N

Dn =
⋂
n∈N

(X \Wn) = X \
⋃
n∈N

Wn = ∅.

By contra positive process of our assumption it does not have ϱ∆0-intersection property.

Therefore, there exists P ⊆ N with δϱ(P ) = 0 and
⋂
n∈P Dn = ∅. So,

⋂
n∈P (X \Wn) = ∅ i.e.,

X \
⋃
n∈P Wn = ∅. Thus, X =

⋃
n∈P Wn.

Hence, X is an sϱ-compact space. □

4. Conclusion remarks

sϱ compact space serves as an intermediate between countable compactness and statisti-

cal compactness. This compactness property is preserved under closed sub-space and open

continuous surjection. sϱ compactness can be characterized in terms of families of closed sets

by means of ϱ∆0 intersection property.
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Abstract. The object of the present paper is to study some curvature conditions on Ken-

motsu manifolds. Initially, we analyze the condition ξ-Me projective flat and φ-Me semi-

symmetric on Kenmotsu manifolds coupled with an η-ρ-Einstein soliton. Subsequently, we

elaborate the conditions Me · R=0, Me ·Me=0 and Me · Q=0 on Kenmotsu manifolds in

view of an η-ρ-Einstein soliton, where Me is the extended M-projective curvature tensor.
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1. Introduction

The product of an almost contact manifold M and the real line R carries a natural almost

complex structure. However if one takes M to be an almost contact metric manifold and

supposes that the product metric G on M × R is Kaehlerian, then the structure on M is

cosymplectic [15] and not Sasakian. On the other hand Oubina [18] pointed out that if

the conformally related metric e2tG, t being the coordinate on R, is Kaehlerian, then M

is Sasakian and conversely. In [22], S. Tanno classified connected almost contact metric
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manifolds whose automorphism groups possess the maximum dimension. For such a manifold

M, the sectional curvature of plane sections containing ξ is a constant, say c. If c > 0, M is a

homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is the product

of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature. If

c < 0, M is a warped product space R×f Cn. In 1972, Kenmotsu studied a class of contact

Riemannian manifolds that satisfy specific conditions [17]. We call it Kenmotsu manifold. If

a Kenmotsu manifold satisfies the conditionR(X,Y )·R=0, it must have a constant curvature

of -1, where R denotes the Riemannian curvature tensor and R(X,Y ) refers to the tensor

algebra derivation at each point in the tangent vectors X,Y. Kenmotsu manifolds have been

studied by many authors such as (see, [3], [4], [20], [12], [19], [8], [9], [21], [13],[11],[10],[24],[31])

and many others. The metric g on (M, g) is called a ρ-Einstein soliton if there is a smooth

vector field V such that [2]:

S +
1

2
LVg = (γ1 + ρr)g, (1.1)

where LV and r denote the Lie derivative and Ricci scalar respectively, where ρ ̸= 0, γ1 ∈ R.

As usual ρ-Einstein soliton is steady for γ1=0, shrinking for γ1 > 0 and expanding for γ1 < 0.

A new type of soliton called η-ρ -Einstein soliton which is a generalization of ρ-Einstein soliton

given by

S +
1

2
LVg = (γ1 + ρr)g + γ2η ⊗ η, (1.2)

where γ1, γ2 ∈ R. Analogous to equation (1.2), we recall η-ρ-Einstein soliton and so equation

(1.2) takes the form

S +Hess(ψ) = (γ1 + ρr)g + γ2η ⊗ η. (1.3)

As η-ρ-Einstein soliton (or gradient η-ρ-Einstein soliton) can be classified as (i) ρ-Einstein

soliton (or gradient ρ-Einstein soliton) [2] if γ2=0, (ii) η-Einstein soliton (or gradient η-

Einstein soliton) [14] if ρ=1
2 , (iii) η-traceless Ricci soliton (or gradient η-traceless Ricci soli-

ton) if ρ= 1
2n+1 , (iv) η-Schouten soliton (or gradient η-Schouten soliton) [23] if ρ= 1

4n . In this

sequel many authors have been studied Kenmostu manifold with reference to different type

of solitons (see,[5], [6], [7], [27], [26], [29],[28],[32],[30]) and many others.

More specific, the Lie derivative (Lξg)(H1, H2) given by

(Lξg)(H1, H2) = g(∇H1ξ,H2) + g(H1,∇H2ξ). (1.4)

The work of the paper is organized as follows: After the introduction, in section 2, we

carried out the basic exposition on Kenmotsu manifold. In section 3, we analyze ξ-Me
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projectively flat Kenmotsu manifold and deduce the interesting result coupled with an η-

ρ-Einstein soliton. In section 4 we take up φ-Me semi-symmetric in Kenmotsu manifold

admitting an η-ρ-Einstein soliton. Again in section 5, 6 and 7 we discuss the some curvature

conditions namely, Me · R=0, Me · Me=0 and Me · Q=0 on such manifold and we verifies

the results by suitable example. The conclusion of the work is given in the last section 8.

2. Preliminaries

Let (M2n+1, φ, ξ, η, g) be an (2n + 1)-dimensional almost contact metric manifold, where

φ is a (1, 1)-tensor field, ξ is the structure vector field, η is a 1-form and g is the Riemannian

metric. It is well known that the (φ, ξ, η, g) structure satisfies the conditions [1]:

φ2H1 = −H1 + η(H1)ξ, η(ξ) = 1, φξ = 0, (2.5)

g(H1, ξ) = η(H1), η(φH1) = 0, (2.6)

g(φH1, φH2) = g(H1, H2)− η(H1)η(H2), (2.7)

g(φH1, H2) = −g(H1, φH2), (2.8)

for any H1, H2 ∈ χ(M). If moreover

(∇H1φ)H2 = g(φH1, H2)ξ − η(H2)φH1, (2.9)

∇H1ξ = H1 − η(H1)ξ, (2.10)

where ∇ denotes the Levi-Civita connection on (M2n+1, g), then (M2n+1, φ, ξ, η, g) is called

a Kenmotsu manifold. In this case, it is well known that [17]:

R(H1, H2)H3 = g(H1, H3)H2 − g(H2, H3)H1, (2.11)

R(H1, H2)ξ = η(H1)H2 − η(H2)H1, (2.12)

R(H1, ξ)H3 = g(H1, H3)ξ − η(H3)H1, (2.13)

R(ξ,H2)H3 = η(H3)H2 − g(H2, H3)ξ, (2.14)

S(φX,φY ) = S(X,Y ) + 2nη(X)η(Y ), (2.15)

S(H1, ξ) = −2nη(H1), (2.16)

S(ξ, ξ) = −2n, (2.17)

Qξ = −2nξ, (2.18)
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∀ H1, H1 ∈ χ(M). According to [25], the M-projective curvature tensor and the extended

M-projective curvature tensor Me on (M2n+1, g) are defined by

M(H1, H2)H3 = R(H1, H2)H3 −
1

4n
[S(H2, H3)H1 − S(H1, H3)H2

+ g(H2, H3)QH1 − g(H1, H3)QH2], (2.19)

Me(H1, H2)H3 = M(H1, H2)H3 − η(H1)M(ξ,H2)H3

− η(H2)M(H1, ξ)H3 − η(H3)M(H1, H2)ξ, (2.20)

for any H1, H2, H3 ∈ χ(M). Now using the Eq. (2.12), (2.13),(2.14),(2.16), (2.17) and (2.18)

we get from (2.19) that

M(H1, H2)ξ = η(H1)H2 − η(H2)H1

− 1

4n
[2nη(H1)H2 − 2nη(H2)H1 + η(H2)QH1

− η(H1)QH2], (2.21)

M(ξ,H2)H3 = η(H3)H2 − g(H2, H3)ξ

− 1

4n
[S(H2, H3)ξ + 2nη(H3)H2 − 2ng(H2, H3)ξ

− η(H3)QH2], (2.22)

M(H1, ξ)H3 = g(H1, H3)ξ − η(H3)H1

− 1

4n
[−2nη(H3)H1 − S(H1, H3)ξ + η(H3)QH1

+ 2ng(H1, H3)ξ]. (2.23)

Also, taking H3=ξ in (2.20) we yield

Me(H1, H2)ξ = −η(H1)M(ξ,H2)ξ − η(H2)M(H1, ξ)ξ. (2.24)

For fix H1=ξ in (2.21) along with (2.5) and (2.18), we get

M(ξ,H2)ξ =
1

2
H2 +

1

4n
QH2. (2.25)

Again by substituting H2=ξ in (2.21) and using (2.5) and (2.18), we have

M(H1, ξ)ξ = −1

2
H1 −

1

4n
QH1. (2.26)
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Using (2.25) and (2.26) in (2.24), we obtain

Me(H1, H2)ξ = −1

2
η(H1)H2 −

1

4n
η(H1)QH2 +

1

2
η(H2)H1 +

1

4n
η(H2)QH1. (2.27)

Taking H1=ξ in (2.27) and using (2.5) and (2.18), we get

Me(ξ,H2)ξ = −1

2
H2 −

1

4n
QH2. (2.28)

Again taking H1=ξ in (2.20) and using (2.5), we obtain

Me(ξ,H2)H3 = −η(H2)M(ξ, ξ)H3 − η(H3)M(ξ,H2)ξ. (2.29)

For fix, H2=ξ in (2.22) and using (2.6), (2.16) and (2.18), we yield

M(ξ, ξ)H3 = 0. (2.30)

With the help of (2.25) and (2.30), Eq.(2.29) reduces to

Me(ξ,H2)H3 = −1

2
η(H3)H2 −

1

4n
η(H3)QH2. (2.31)

Similarly, one can get

Me(H1, ξ)H3 =
1

2
η(H3)H1 +

1

4n
η(H3)QH1. (2.32)

Definition 2.1. An almost contact manifold (M2n+1, g) is said to be an η-Einstein if its

Ricci tensor S has the form

S = Ag + Bη ⊗ η, (2.33)

where A and B are constants. If B=0, then it is identified as Einstein and if A=0, it is know

as special type of η-Einstein.

3. ξ-Me-projectively flat Kenmotsu Manifolds

Definition 3.1. An (2n+ 1)-dimensional manifold is said to be ξ-Me projectively flat if it

fulfills the condition

Me(H1, H2)ξ = 0, (3.34)

for all H1, H2 ∈ χ(M).

Theorem 3.1. A ξ-Me projectively flat Kenmotsu manifold (M2n+1, g) is an Einstein man-

ifold.
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Proof. Let (M2n+1, g) be ξ-Me projectively flat. Then from (2.20), we have

η(H1)M(ξ,H2)ξ + η(H2)M(H1, ξ)ξ = 0. (3.35)

Using (2.23) and H3=ξ in (2.22), we obtain from (3.35) that

η(H1)[η(ξ)H2 − g(H2, ξ)ξ −
1

4n
{S(H2, ξ)ξ + 2nη(ξ)H2 − 2ng(H2, ξ)ξ − η(ξ)QH2}]

+ η(H2)[g(H1, ξ)ξ − η(ξ)H1 −
1

4n
{−S(H1, ξ)ξ

− 2nH1 + η(ξ)QH1 + 2ng(H1, ξ)ξ}] = 0. (3.36)

With the help of (2.5), (2.6) and (2.16), Eq. (3.36), reduces to

1

2
{η(H1)H2 − η(H2)H1} −

1

4n
{η(H2)QH1 − η(H1)QH2} = 0. (3.37)

Taking H2=ξ in (3.37) we yield

QH1 = −2nH1, (3.38)

which implies

S(H1, H4) = −2ng(H1, H4). (3.39)

□

Thus the Theorem 3.1 is completed.

Theorem 3.2. Let (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is expanding, steady, or shrinking as r < −2n
ρ , r = −2n

ρ ,

or r > −2n
ρ .

Proof. Also from (1.2), we have

S(H1, H2) +
1

2
(LVg)(H1, H2) = (γ1 + ρr)g(H1, H2) + γ2η(H1)η(H2). (3.40)

Taking trace after putting H1=H2=ei, 1 ≤ i ≤ 2n+ 1 in (3.40), we get

S(ei, ei) +
1

2
(LVg)(ei, ei) = (γ1 + ρr)g(ei, ei) + γ2η(ei)η(ei). (3.41)

Using (3.39) in (3.41), we obtain

divV = (2n+ γ1 + ρr)(2n+ 1) + γ2. (3.42)

If V is solenoidal, i.e., divV=0, then (3.42) implies that

γ1 = −[2n+
γ2

(2n+ 1)
+ ρr]. (3.43)

□
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So the proof of Theorem 3.2 is finished. Utilizing the Theorem 3.2, we state the following

Corollary.

Corollary 3.1. If a ξ-Me protectively flat Kenmotsu manifold admits an η-ρ-Einstein soliton

then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 3.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is expanding, steady, or shrinking as r < −4n, r = −4n,

or r > −4n.

Corollary 3.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g). Then V is

solenoidal if and only if it is expanding, steady, or reducing as r < −2n(2n + 1), r =

−2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 3.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is growing, steady, or shrinking as r < −8n2, r = −8n2,

or r > −8n2.

Again, if V=grad(f), where f is a smooth function on (M2n+1, g). Then from equation (3.42)

we yield the following result.

Theorem 3.3. If the metric g of a (M2n+1, g) satisfies an η-ρ-Einstein soliton (g,V, ρ, γ1, γ2),

where V is gradient of smooth function f , then the Laplace equation satisfied by f is as follows

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

4. φ-Me semi-symmetric on Kenmotsu manifold

Definition 4.1. An (2n+ 1)-dimensional manifold is said to be φ-Me semi-symmetric if it

fulfills the criterion

Me(H1, H2) · φ = 0, (4.44)

for all H1, H2 ∈ χ(M).

Theorem 4.1. A φ-Me semi-symmetric Kenmotsu manifold (M2n+1, g) is an Einstein man-

ifold.
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Proof. The condition Me(H1, H2) · φ=0 on (M2n+1, g) from (2.20) implies that

(Me(H1, H2) · φ)H3 = Me(H1, H2)φH3 − φMe(H1, H2)H3 = 0. (4.45)

for any vector fields H1, H2, H3 ∈ χ(M).

Since form (2.20) we have

Me(H1, H2)φH3 = M(H1, H2)φH3 − η(H1)M(ξ,H2)φH3

− η(H2)M(H1, ξ)φH3 − η(φH3)M(H1, H2)ξ. (4.46)

Using (2.6), (2.11), (2.19), (2.22), and (2.23) in (4.46), we get

Me(H1, H2)φH3 = g(H1, φH3)H2 − g(H2, φH3)H1

− 1

4n
{S(H2, φH3)H1 − S(H1, φH3)H2 + η(H2)QH1 − η(H1)QH2}

− η(H1)[−g(H2, φH3)ξ −
1

4n
{S(H2, φH3)ξ − 2ng(H2, φH3)ξ}]

− η(H2)[g(H1, φH3)ξ −
1

4n
{−S(H1, φH3)ξ + 2ng(H1, φH3)ξ}]. (4.47)

Again,

φMe(H1, H2)H3 = φM(H1, H2)H3 − η(H1)φM(ξ,H2)H3

− η(H2)φM(H1, ξ)H3 − η(H3)φM(H1, H2)ξ. (4.48)

Using (2.5), (2.11), (2.12), (2.19), (2.21), (2.22), and (2.23) in (4.48), we have

φMe(H1, H2)H3 = g(H1, H3)φH2 − g(H2, H3)φH1

− 1

4n
{S(H2, H3)φH1 − S(H1, H3)φH2 + g(H2, H3)QφH1 − g(H1, H3)QφH2}

− η(H1)[η(H3)φH2 −
1

4n
{2nη(H3)φH2 − η(H3)SφH2}]

− η(H2)[−η(H3)φH1 −
1

4n
{−2nη(H3)φH1 + η(H3)QφH1}]

− η(H3)[η(H1)φH2 − η(H2)φH1]

+
η(H3)

4n
{2nη(H1)φH2 − 2nη(H2)φH1 + η(H2)QφH1 − η(H1)QφH2}.

(4.49)



524 A. KUSHWAHA, S. K. YADAV, AND B. P.SINGH

Using (4.47) and (4.48) in (4.45), we get

g(H1, φH3)H2 − g(H2, φH3)H1

− 1

4n
{S(H2, φH3)H1 − S(H1, φH3)H2 + η(H2)QH1 − η(H1)QH2}

− η(H1)[−g(H2, φH3)ξ −
1

4n
{S(H2, φH3)ξ − 2ng(H2, φH3)ξ}]

− η(H2)[g(H1, φH3)ξ −
1

4n
{−S(H1, φH3)ξ + 2ng(H1, φH3)ξ}]

− [g(H1, H3)φH2 − g(H2, H3)φH1]

+
1

4n
[S(H2, H3)φH1 − S(H1, H3)φH2]

+
1

4n
[g(H2, H3)QφH1 − g(H1, H3)QφH2]

+ η(H1)[η(H3)φH2 −
1

4n
{2nη(H3)φH2 − η(H3)QφH2}]

+ η(H2)[−η(H3)φH1 −
1

4n
{−2nη(H3)φH1 + η(H3)QφH1}]

+ η(H3)[η(H1)φH2 − η(H2)φH1]

− η(H3)

4n
[2nη(H1)φH2 − 2nη(H2)φH1 + η(H2)QφH1 − η(H1)QφH2] = 0.

(4.50)

Taking H2=ξ in (4.50) and using (2.5), (2.6), (2.16), (2.18), we have

1

4n
{2S(H1, φH3)ξ − 2ng(H1, φH3)ξ − 2nη(H3)φH1 + η(H3)QφH1}

+ η(H3)φH1 = 0. (4.51)

For fix, H3 = ξ in (4.51) and using (2.5), we obtain

QφH1 = −2nφH1. (4.52)

Replacing H1 by φH1 in (4.52) and using (2.5), (2.18), one can get

QH1 = −2nH1, (4.53)

which implies that

S(H1, H4) = −2ng(H1, H4). (4.54)

□

Therefore, the Theorem 4.1 is completed.

Like wise section 3, we reflect the following result:
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Theorem 4.2. Let (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ ,

or r > −2n
ρ .

Corollary 4.1. If a φ-Me semi-symmetric Kenmotsu manifold admits an η-ρ-Einstein soli-

ton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 4.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on φ-Me semi-symmetric Ken-

motsu manifold. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 4.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on φ-Me semi-symmetric Ken-

motsu manifold. Then V is solenoidal if and only if it is expanding, steady or shrinking as

r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 4.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on φ-Me semi-symmetric Ken-

motsu manifold. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 4.3. If the metric g of a (2n+ 1)-dimensional φ-Me semi-symmetric Kenmotsu

manifold admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of smooth function

f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

5. Kenmotsu manifold satisfying the condition Me · R=0

Theorem 5.1. If a (2n+ 1)-dimensional Kenmotsu manifold satisfying the condition Me ·

R=0, then (M2n+1, g) is an Einstein manifold.

Proof. Let (M2n+1, g) satisfies the condition Me · R=0. Then from [11], we have

Me(ξ, U)R(H1, H2)H3 − R(Me(ξ, U)H1, H2)H3

− R(H1,Me(ξ, U)H2)H3

− R(H1, H2)Me(ξ, U)H3 = 0. (5.55)

Taking H3=ξ in (5.55) and using (2.12), we get

η(Me(ξ, U)H1)H2 − η(Me(ξ, U)H2)H1 +R(H1, H2)Me(ξ, U)ξ = 0. (5.56)
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Using (2.28), (2.31) in (5.56) and then using (2.6), (2.11), (2.16), we obtain

1

2
{g(H1, U)H2 − g(H2, U)H1}+

1

4n
{S(H1, U)H2 − S(H2, U)H1} = 0. (5.57)

Replacing H2=ξ in (5.57), using (2.6) and (2.16), we yield

S(H1, U)ξ + 2ng(H1, U)ξ = 0. (5.58)

Taking the inner product of (5.58) with ξ and using (2.5), we obtain

S(H1, U) = −2ng(H1, U). (5.59)

□

So, the proof of the Theorem 5.1 is completed.

Therefore, as section 4, we state that

Theorem 5.2. If (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on a (2n+1)-dimensional Ken-

motsu manifold satisfying the condition Me · R=0. Then V is solenoidal if and only if the

soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ , or r > −2n
ρ .

Corollary 5.1. If a (2n+ 1)-dimensional Kenmotsu manifold satisfying the condition Me ·

R=0 admits an η-ρ-Einstein soliton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 5.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g) satisfying the

condition Me · R=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 5.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g) satisfying the

condition Me · R=0. Then V is solenoidal if and only if it is expanding, steady or shrinking

as r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 5.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g) satisfying the

condition Me · R=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 5.3. If the metric g of a (2n+ 1)-dimensional Kenmotsu manifold satisfying the

condition Me ·R=0 admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of smooth

function f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.
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6. Kenmotsu Manifold satisfying the condition Me · Me=0

Theorem 6.1. If a (2n + 1)-dimensional Kenmotsu manifold satisfies the condition Me ·

Me=0, then (M2n+1, g) is an Einstein manifold.

Proof. The condition Me · Me=0 on (M2n+1, g) implies that

Me(ξ, U)Me(H1, H2)H3 − Me(Me(ξ, U)H1, H2)H3

− Me(H1,Me(ξ, U)H2)H3

− Me(H1, H2)Me(ξ, U)H3 = 0. (6.60)

Taking H3=ξ in (6.60), we get

Me(ξ, U)Me(H1, H2)ξ − Me(Me(ξ, U)H1, H2)ξ

− Me(H1,Me(ξ, U)H2)ξ

− Me(H1, H2)Me(ξ, U)ξ = 0. (6.61)

Using (2.27), (2.28) and (2.31) in (6.61), we have

−1

2
η(H1)Me(ξ, U)H2 − 1

4n
η(H1)Me(ξ, U)QH2 +

1

2
η(H2)Me(ξ, U)H1

+
1

4n
η(H2)Me(ξ, U)QH1 +

1

2
η(H1)Me(U,H2)ξ

+
1

4n
η(H1)Me(QU,H2)ξ +

1

2
η(H2)Me(H1, U)ξ

+
1

4n
η(H2)Me(H1,QU)ξ +

1

2
Me(H1, H2)U

+
1

4n
Me(H1, H2)QU = 0. (6.62)

Taking H2=ξ in (6.62) and using (2.5), (2.18), (2.31) and (2.32), we get

− 1

8n
η(QH1)U − 1

16n2
η(QH1)QU +

1

4
η(H1)U +

1

8n
η(H1)QU

+
1

2
η(U)H1 +

1

4n
η(U)QH1 +

1

4n
η(QU)H1

+
1

8n2
η(QU)QH1 = 0, (6.63)

which implies that η(H1) ̸= 0, therefore equation (6.63) turns into

S(U,H4) = −2ng(U,H4). (6.64)

□
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Thus the proof of the Theorem 6.1 is completed.

As per section 5, we reflect the outcome

Theorem 6.2. If (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on a (2n+1)-dimensional Ken-

motsu manifold satisfying the condition Me ·Me=0. Then V is solenoidal if and only if the

soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ , or r > −2n
ρ .

Corollary 6.1. If an (2n+1)-dimensional Kenmotsu manifold satisfying the condition Me ·

Me=0 admits an η-ρ-Einstein soliton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 6.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g) satisfying the

condition Me ·Me=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 6.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g) satisfying the

condition Me ·Me=0. Then V is solenoidal if and only if it is expanding, steady or shrinking

as r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 6.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g) satisfying the

condition Me ·Me=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 6.3. If the metric g of a (2n+ 1)-dimensional Kenmotsu manifold satisfying the

condition Me · Me=0 admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of

smooth function f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

7. Kenmotsu manifold satisfying the condition Me · Q=0

Theorem 7.1. If a (2n+1) dimensional Kenmotsu manifold satisfies the condition Me·Q=0,

then (M2n+1, g) is an Einstein manifold.

Proof. The condition Me · Q=0 on (M2n+1, g) implies that

Me(H1, H2)QH3 −Q(Me(H1, H2)H3) = 0. (7.65)

Taking H2=ξ in (7.65), we get

Me(H1, ξ)QH3 −Q(Me(H1, ξ)H3) = 0. (7.66)
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Using (2.32) in (7.66), we have

1

2
η(QH3)H1 +

1

4n
η(QH3)QH1 −Q[

1

2
η(QH3)H1 +

1

4n
η(QH3)QH1] = 0. (7.67)

By virtue of (2.16), we get from (7.67) that

nη(H3)H1 + η(H3)QH1 +Q(
1

4n
η(H3)QH1) = 0, (7.68)

which implies that

nη(H3)H1 +
1

2
η(H3)QH1 = 0. (7.69)

Now, taking the inner product of (7.69) with H4, we obtain

nη(H3)g(H1, H4) +
1

2
η(H3)S(H1, H4) = 0, (7.70)

which implies that η(H3) ̸= 0, thus from (7.70) we yield

S(H1, H4) = −2ng(H1, H4). (7.71)

□

Thus the Theorem 7.1 is finished.

Following Section 6, we derive:

Theorem 7.2. If (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on a (2n+1)-dimensional Ken-

motsu manifold satisfying the condition Me · Q=0. Then V is solenoidal if and only if the

soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ , or r > −2n
ρ .

Corollary 7.1. If an (2n+1)-dimensional Kenmotsu manifold satisfying the condition Me ·

Q=0 admits an η-ρ-Einstein soliton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 7.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g) satisfying the

condition Me · Q=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 7.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g) satisfying the

condition Me · Q=0. Then V is solenoidal if and only if it is expanding, steady or shrinking

as r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).
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Corollary 7.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g) satisfying the

condition Me · Q=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 7.3. If the metric g of a (2n+ 1)-dimensional Kenmotsu manifold satisfying the

condition Me ·Q=0 admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of smooth

function f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

8. An Example

The notion of Ricci η-parallelity for Sasakian manifolds was introduced by M. Kon [16].

In [8] the authors proved that a three-dimensional Kenmotsu manifold has η-parallel Ricci

tensor if and only if it is of constant scalar curvature. So, we verify the theorem obtained in

[8] by a concrete example.

Let a 3-dimensional manifold M = {(h1, h2, h3) ∈ R3 : h3 ̸= 0}, where (h1, h2, h3) are the

standard coordinates and the linearly independent vector fields in R3 as follows

p1 = eh3
∂

∂h1
, p2 = eh3

∂

∂h2
, p3 = − ∂

∂h3
.

We defined the Riemannian metric g by

g(pi, pj) =


1 0 0

0 1 0

0 0 1

 .
Let φ be a (1, 1) tensor field defined by

φ(p1) = −p2, φ(p2) = p1, φ(p3) = 0.

If η denote the 1-form defined by η(H1) = g(H1, p3) for any H1 ∈ X (M). Then we have

φ2H1 = −H1 + η(H1)p3, η(p3) = 1,

g(φH1, φH2) = g(H1, H2)− η(H1)η(H2),

for any H2 ∈ χ(M). Then for p3=ξ, the structure (φ, ξ, η, g) establish an almost contact

metric structure on M3.

Let ∇ be the Levi-Civita connection with respect to g. We have

[p1, p2] = 0, [p2, p3] = p2, [p3, p1] = −p1.
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Using Koszul’s formula, we can obtain

∇p1p1 = −p1, ∇p2p1 = 0, ∇p3p1 = 0,

∇p1p2 = 0, ∇p2p2 = −p3, ∇p3p2 = 0,

∇p1p3 = p1, ∇p2p3 = p2, ∇p3p3 = 0.

As per above consequence for p3=ξ, the manifold satisfies ∇H1ξ=H1 − η(H1)ξ. Therefore, it

can be classified as a Kenmotsu manifold.

Now, the components of curvature tensor R are as follows

R(p1, p2)p3 = 0, R(p2, p3)p3 = −p2, R(p1, p3)p3 = −p1,

R(p1, p2)p2 = −p1, R(p2, p3)p2 = −p3, R(p1, p3)p2 = 0,

R(p1, p2)p1 = 0, R(p2, p3)p1 = 0, R(p1, p3)p1 = p1.

Also the Ricci tensor S, one can get

S(p1, p1) = S(p2, p2) = S(p3, p3) = −2.

Again, we can easily verify the following

∇H1S(φp1, φp2) = 0, ∇H1S(φp2, φp3) = 0, ∇H1S(φp1, φp1) = 0,

∇H1S(φp1, φp3) = 0, ∇H1S(φp3, φp1) = 0, ∇H1S(φp2, φp2) = 0,

∇H1S(φp2, φp1) = 0, ∇H1S(φp3, φp2) = 0, ∇H1S(φp3, φp3) = 0.

Therefore, we conclude that ∇H1S(φH2, φH3) = 0, for all H1, H2, H3 ∈ χ(M).

So, the Ricci tensor is η-parallel. Also, the scalar curvature of the manifold is -6, then the

Theorems 3.1, 4.1, 5.1, 6.1 and 7.1 are effectively satisfied by this example.

9. Conclusion

As a generalization of ρ-Einstein soliton [2], we study a new type soliton is called an η-

ρ-Einstein soliton and gradient η-ρ-Einstein soliton on a (2n + 1)-dimensional Kenmotsu

manifold admitting extended M-Projective curvature tensor.The study of such new types of

solitons is of significant interest from different fields due to its wide applications in general

relativity, cosmology, quantum field theory, string theory, thermodynamics, mathematical

physics, etc. That is why, we depict some geometrical properties of an η-ρ-Einstein soliton

and gradient η-ρ-Einstein soliton on such manifold.
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Abstract. The dual hesitant fuzzy soft set (DHFSS), a hybrid structure of a dual hesitant

fuzzy set and a soft set, is highly effective in handling membership and non-membership

values using a set of possible values. This article explores an entirely different application

of DHFSS for representing preliminary data involved in decision-making problems. More-

over, an innovative measure for comparing DHFSSs, namely the Dominance Index, which

determines the dominance of one DHFSS over another, is presented. Furthermore, a linear

algebraic approach, integrated with the Dominance Index of a dual hesitant fuzzy element,

is proposed for solving decision-making problems. Finally, a real-life decision-making prob-

lem involving the evaluation of mobile tower work sites based on the performance of their

workers is presented and solved using the proposed method to demonstrate its applicability.
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1. Introduction

The main objectives of research on hesitant fuzzy sets and their related hybrid struc-

tures are the construction of methods for solving Multi-Criteria Decision-Making(MCDM)

problems. Since Torra [1] proposed the hesitant fuzzy set in 2010, many MCDM problems
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have been solved using structures such as hesitant fuzzy sets [2, 3, 4, 5], dual hesitant fuzzy

sets [6, 7, 8], hesitant fuzzy soft sets [9, 10] and dual hesitant fuzzy soft sets [11, 12, 13].

MCDM problems have an inevitable place in most real-life situations. It is understood that

an MCDM problem deals with the evaluation of a set of alternatives based on a set of decision

criteria. This paper provides an innovative method for presenting data of an MCDM problem

using a dual hesitant fuzzy soft set and also develops a method for processing that data, and

thereby arriving at a reliable decision. MCDM problems can be categorized into three types

based on the nature of its criteria, as (i) all categories are crisp, (ii) all are fuzzy, and (iii)

mixed type. Among these, this paper focuses is of the second type because the criteria of

the problem presented here exhibit some hesitancy.

Among those structures handling fuzziness and uncertainty, the dual hesitant fuzzy soft set

seems to be a promising tool in MCDM due to its ability to simultaneously handle fuzziness,

parametrization, hesitancy, and non-membership. As a starting point in developing the

concept of the dual hesitant fuzzy soft set, Y. He [11] developed a method to encompass

and solve decision-making problems using a dual hesitant fuzzy soft set. Further, he also

proposed a technique for ranking the alternatives in the problem. Following this, several

studies [14, 16] have been conducted in the area of including the introduction of process

such as the proposal of concepts like distance [17], similarity [17], aggregation operators [18],

and correlation coefficients [12] for comparing two dual hesitant fuzzy soft sets. Recently,

studies on weighted hesitant fuzzy soft sets [31] have been developed, where a weight vector

is assigned to all possible membership degrees of each element.

Decision-making problems are often associated with uncertainty and imprecision that can-

not be effectively solved using classical fuzzy set models alone. Dual hesitant fuzzy sets

extend hesitant fuzzy sets by considering multiple membership and non-membership val-

ues, thus providing a more comprehensive representation of uncertainty. However, in many

real-world scenarios, decision-making problems involve multiple parameters that must be

evaluated simultaneously. Therefore, considering more flexible and adaptive models is essen-

tial. Soft-set theory offers a parameterized approach that provides a systematic and effective

mechanism for dealing with uncertainty in decision-making. Integrating soft sets into the

dual hesitant fuzzy model enables more efficient modeling of multi-criteria decision prob-

lems, concurrent treatment of multiple attributes and their associated uncertainties, and

improving the flexibility and adaptability of decision models to better reflect the complexity

of the real world.
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Usually, a decision-making problem involves several alternatives, their parameters, and

evaluations corresponding to different parameters of each alternative. The goal is to rank

these alternatives based on assessments. However, in real-life situations, each alternative

may consist of a structure that includes other types of alternatives and their parameters,

making the ranking process more complex. The dominance index is a widely used measure

in decision-making frameworks to compare and evaluate alternatives, particularly in fuzzy

and hesitant fuzzy environments. It determines the extent to which one alternative dominates

another. Early work by Zadeh [32] on fuzzy sets laid the foundation for dominance-based

comparisons, which were later extended to hesitant fuzzy sets and dual hesitant fuzzy sets,

a more refined representation of uncertainty was achieved, leading to the development of the

dominance index for comparing DHFSS elements.

Fuzzy sets [32] and soft set [33] frameworks have made significant progress, leading to the

development of various generalized models that extend traditional approaches to solve more

complex decision-making problems. (2,1)-fuzzy sets [34] introduce a more refined approach

by incorporating weighted aggregate operators, enhancing their applicability in multi-criteria

decision-making (MCDM) methods. Similarly, (3,2)-fuzzy sets [35] extend this concept to

higher dimensions and find application in topology and optimal choice theory, enabling more

sophisticated modeling of uncertainty in decision systems. A further generalization is pro-

vided by (m,n)-fuzzy set [36, 37], which establish a generalized framework for orthopair fuzzy

sets and provide a robust framework for addressing MCDM problems. Furthermore, (a, b)-

fuzzy soft sets [38] represent a new class of fuzzy soft sets that consider multiple attributes,

thus improving the decision-making process by incorporating a broader range of evaluations.

Finally, Kn
m-Rung picture fuzzy sets extend traditional fuzzy models by including multiple

degrees of membership, non-membership, and hesitation. This makes them suitable for cap-

turing complex uncertainties in real-world problems. These contributions pave the way for

more flexible and powerful tools in decision-making and significantly enrich the theoretical

foundations of fuzzy and soft-set frameworks.

After depicting the data using dual hesitant fuzzy soft sets, which are the building blocks of

the problem, the next challenge was to compare the dual hesitant fuzzy elements efficiently.

Here, the authors made use of the fact that a dual hesitant fuzzy set is an extension of

hesitant fuzzy set. After exploring various approaches for comparing hesitant fuzzy elements

like aggregation method [19, 20], entropy method [5, 21] distance and similarity measure

method [22, 23] etc., the authors concluded inclusion measure approach is the most suitable
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one for this purpose. Speaking of the inclusion measure, it has a long history. It has originated

from the so-called relation subset-hood. The inclusion measure is a relation that can be seen

as the fuzzification of the crisp inclusion relation. It is a very useful tool for comparing

objects in a wide range of fields such as fuzzy sets [24], intuitionistic fuzzy sets [25, 26],

hesitant fuzzy sets [27], interval neutrosophic sets [28], etc. Using the techniques of inclusion

measure, the authors have developed a method to quantify the dominance of one object

over another. Since this dominance index fails to satisfy the transitivity condition, only a

pairwise comparison is possible. Here, the authors have modified this approach in accordance

with their purpose. The endogenous cardinalization [29] provided by this approach enables

researchers to quantify each object’s achievement in addition to merely ranking them. In this

paper, the researchers have also depicted an evaluation problem to illustrate the practicability

of their approach.

This paper is organized as follows: The first section discusses some concepts that are

needed for the further sequel. The second and third sections introduces the dual hesitant

fuzzy Maclaurin symmetric mean and the weighted dual hesitant fuzzy Maclaurin symmetric

mean. A partial order and hybrid monotonic inclusion measure for dual hesitant fuzzy

elements are presented in the fourth section. After that, we move on to discussing the

methodology for ranking the objects in an evaluation problem. In the final section, we

present a real-life problem to demonstrate the efficacy of the proposed method.

2. Preliminaries

This section provides essential definitions and background concepts that serve as the foun-

dation for the remainder of this article. Also, throughout this paper, HFS, DHFS, DHFSS and

DHFE stands for hesitant fuzzy set, dual hesitant fuzzy set, dual hesitant fuzzy soft set and

dual hesitant fuzzy element respectively.

2.1. HFS, DHFS, and DHFSS: The following are definitions, associated concepts and supporting

examples for HFS, DHFS, and DHFSS.

Definition 2.1. [1] Let X be a reference set, a hesitant fuzzy set (HFS) E on X is defined

in terms of a function h that when applied to X returns a subset of [0, 1].

To be easily understood, Xu and Xia [15] expressed an HFS by the following mathematical

form:

E = {< x, h(x) > /x ∈ X} ,
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where h(x) is a set of some values in [0, 1], denoting the possible membership degrees of the

element x ∈ X to the set E. For convenience, Xu and Xia [15] called h(x) a hesitant fuzzy

element (HFE).

Definition 2.2. [2] Let X be a fixed set, then a dual hesitant fuzzy set (DHFS) D on X is

described as:

D = {< x, h(x), g(x) >, x ∈ X},

in which h(x) and g(x) are two sets of some values in [0, 1] denoting the possible membership

degrees and nonmembership degrees of the element x ∈ X to the set D, respectively with the

conditions:

0 ≤ γ, η ≤ 1, 0 ≤ γ+ + η+ ≤ 1,

where γ ∈ h(x), η ∈ g(x), γ+ ∈ h+(x) = ∪γ∈h(x)max{γ} and η+ ∈ g+(x) = ∪η∈g(x)max{η},

for all x ∈ X. For convenience, the pair d(x) = (h(x), g(x)) is called a dual hesitant fuzzy

element(DHFE), denoted by d = (h, g).

Denote by DHFS(U), the set of all Dual Hesitant fuzzy sets over U.

Definition 2.3. [3] Let (U, E) be a soft universe and A ⊆ E. A pair Ģ =
(
~F, A
)
is called a Dual

hesitant fuzzy soft set (DHFSS) over U, where ~F is a mapping given by ~F : A → DHFS(U). In

general ~F(e) can be written as,

~F(e) = {< x, h~F(e)(x), g~F(e)(x) > /x ∈ U},

where h~F(e)(x) and g~F(e)(x) are two sets of some values in [0, 1], denoting the possible mem-

bership degrees and non membership degrees that object x holds on parameter e, respectively.

To represent dual hesitant fuzzy soft sets concisely, Y.He [3] proposed a tabular represen-

tation, which is depicted in the following example in detail.

Example 2.1. [3] Let U be a set of four participants performing dance program, which is

denoted by U = {x1, x2, x3, x4}. Let E be a parameter set, where

E = {e1, e2, e3} = {confident, creative, graceful}.

Suppose that there are three judges who are invited to evaluate the membership degrees and

non-membership degrees of a candidate xj to a parameter ei with several possible values in

[0, 1]. Then the tabular representation of dual hesitant fuzzy soft set Ģ =
(
~F, A
)
defined as

below by Table 2.1 gives the evaluation of the performance of candidates by three judges.
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Table 2.1. Tabular Representation of dual hesitant fuzzy soft set Ģ =
(
~F, A
)

U e1 e2 e3

x1 {.6,.7,.8}{.3,.2,.1} {.5,.6,.4}{.4,.3,.2} {.4,.4,.3}{.7,.6,.6}

x2 {.4,.5,.6}{.3,.2,.1} {.5,.4,.3}{.5,.3,.3} {.5,.7,.7}{.3,.2,.2}

x3 {.8,.7,.7}{.2,.1,.1} {.7,.8,.8}{.2,.2,.1} {.5,.6,.7}{.3,.2,.1}

x4 {.3,.4,.4}{.6,.5,.4} {.5,.6,.6}{.4,.3,.2} {.7,.6,.8}{.2,.1,.1}

To compare the DHFEs, Zhu et al.[2] introduced the following comparison laws:

Definition 2.4. [2] The score and accuracy function of a DHFE d = (h, g) are

sd = (1/#h)
∑
γ∈h

γ − (1/#g)
∑
η∈g

η

and

pd = (1/#h)
∑
γ∈h

γ + (1/#g)
∑
η∈g

η

respectively, where #h and #g are the number of elements in h and g respectively, then

i. if sd1 > sd2 , then d1 is superior to d2

ii. if sd1 = sd2 , then

1. if pd1 = pd2 , then d1 is equivalent to d2, denoted by d1 ∼ d2

2. if pd1 > pd2 , then d1 is superior than d2, denoted by d1 ≻ d2

In [2], Zhu et al. proposed the following operational laws for DHFEs :

Definition 2.5. [2] Let d = (h, g), d1 = (h1, g1) and d2 = (h2, g2) be three DHFEs, then

(1) d1 ⊕ d2 =
⋃

γ1∈h1,γ2∈h2,η1∈g1,η2∈g2
{{γ1 + γ2 − γ1γ2}, {η1η2}}

(2) d1 ⊗ d2 =
⋃

γ1∈h1,γ2∈h2,η1∈g1,η2∈g2
{{γ1γ2}, {η1 + η2 − η1η2}}

(3) nd =
⋃

γ∈h,η∈g
{{1− (1− γ)n}, {ηn}}

(4) dn =
⋃

γ∈h,η∈g
{{γn}, {1− (1− η)n}}

The following assumptions are made in the rest of the paper:

* Elements of h and g are arranged in increasing order.

* H denote the set of all finite subsets of [0, 1] whose elements are arranged in increasing

order.

* d = (h, g; l, l
′
) represents a dual hesitant fuzzy element (h, g) ∈ H×H, with l(h) = l

and l(g) = l
′
.
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2.2. The Maclaurin Symmetric Mean. Due to its ability to capture the inter-relationship

among the multi-input arguments, the Maclaurin symmetric mean (MSM), introduced by

Maclaurin [4], has a prominent place in the list of aggregation operators. The MSM is defined

as follows:

Definition 2.6. [4] Let ai, {i = 1, 2, ..., n} be a collection of non-negative real numbers, and

k ∈ {1, 2, . . . , n}. If

MSM (k)(a1, a2, ..., an) =


∑

1≤i1<i2<...<ik≤n

(
k∏

j=1
aij

)
Ck
n


1/k

,

then MSM (k) is called the Maclaurin symmetric mean (MSM), where (i1, i2, ..., ik) traverse

through all the k-tuples combinations of (1, 2, . . . , n), and Ck
n is the binomial coefficient.

In 2015, Quin et al.[5] extend the notion of MSM to hesitant fuzzy environment and defined

hesitant fuzzy Maclaurin symmetric mean (HFMSM) as follows:

Definition 2.7. [4] Let hi, (i = 1, 2, ..., n) be a collection of HFEs and k = 1, 2, ..., n. If

HFMSM (k)(h1, h2, ..., hn) =

 ⊕
1≤i1<i2<...<ik≤n

(
k
⊗
j=1

hij

)
Ck
n


1/k

,

then HFMSM (k) is called the hesitant fuzzy Maclaurin symmetric mean (HFMSM) operator.

3. The Dual Hesitant Fuzzy Maclaurin Symmetric Mean

The evaluation problem we discussed in this paper has dual hesitant fuzzy soft framework.

Meanwhile, we need an aggregation operator that reflect the inter-relationship among the

arguments. As Maclaurin symmetric mean is a right candidate for this purpose, we define

dual hesitant fuzzy Maclaurin symmetric mean in this section as follows.

Definition 3.1. Let dj = (hj, gj), (j = 1, 2, ..., n) be a group of DHFEs and k ∈ {1, 2, ..., n}.

If

DHFMSM (k)(d1, d2, ..., dn) =


⊕

1≤i1<i2<...<ik≤n,ij∈Z, ∀j=1 to k

(
k
⊗
j=1

dij

)
Ckn


1/k

,
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where Ck
n denote the number of combinations of n things taken k at a time. Then DHFMSM (k)

is called the dual hesitant fuzzy Maclaurin symmetric mean (DHFMSM) operator. Here
k
⊗
j=1

dij

reflects the interrelationship among di1 , di2 , ..., dik .

The following theorem exhibits a nice representation for the DHFMSM operator.

Theorem 3.1. Let dj = (hj, gj), (j = 1, 2, ..., n) be a collection of DHFEs and k ∈ {1, 2, ..., n},

then the aggregated value of dj, j = 1, 2, ..., n using the proposed DHFMSM operator is again a

DHFE, given by

DHFMSM (k)(d1, d2, ..., dn) = (h,
−
g),

where,

h =
⋃

γ1∈h1,...,γn∈hn


1−

 ∏
(i1,i2,...,ik)∈S

1−
k∏

j=1

γij

 1

Ckn


1/k


and

g =
⋃

η1∈g1,...,ηn∈gn

1−

1−

 ∏
(i1,i2,...,ik)∈S

1− k∏
j=1

(1− ηij)

 1

Ckn


1/k


where S = {(i1, i2, ..., ik) ∈ Z× Z× ...× Z/1 ≤ i1 < i2 < ... < ik ≤ n} and Ck
n denote the

number of combinations of n things taken k at a time.

Proof. Using the operations of DHFEs given by definition 2.6(1-4), we have

k
⊗
j=1

dij =
⋃

γij∈hij
ηij∈gij




k∏
j=1

γij

 ,

1−
k∏

j=1

(1− ηij)




Eventually, we have

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

dij =
⋃

γi∈hi,ηi∈gi


1−

∏
(i1,i2,...,ik)∈S

1−
k∏

j=1

γij

 ,

 ∏
(i1,i2,...,ik)∈S

1−
k∏

j=1

(1− ηij)




and

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

dij

Ckn
=

⋃
γi∈hi,ηi∈gi


1−

 ∏
(i1,i2,...,ik)∈S

1−
k∏

j=1

γij

1/Ckn
 ,
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(i1,i2,...,ik)∈S

1− k∏
j=1

(1− ηij)


1/Ckn


Therefore, ⊕
1≤i1<...<ik≤n

k
⊗
j=1

dij

Ckn


1/k

=
⋃

γi∈hi,ηi∈gi



1−

 ∏
(i1,...,ik)∈S

1−
k∏

j=1

γij

 1

Ckn


1/k
 ,

1−

1−

 ∏
(i1,...,ik)∈S

1− k∏
j=1

(1− ηij)

 1

Ckn


1/k

.

This completes the proof. □

The weighted dual hesitant fuzzy Maclaurin symmetric mean

In DHFMSM operator, every DHFE receives the same importance. But real-life decision-

making situations demand different priorities for parameters and categories. So we have

to incorporate the concept of weights in DHFMSM operator. Therefore, in this section, we

shall propose the weighted dual hesitant fuzzy Maclaurin symmetric mean operator, which

is defined as follows:

Definition 3.2. Let dj = (hj, gj), (j = 1, 2, ..., n) be a collection of DHFEs and k ∈ {1, 2, ..., n}.

Let w = (w1, w2, ..., wn)
T is the weight vetor, where wj indicates the degree of importance of dj,

satisfying wj ∈ [0, 1], j = 1, 2, ..., n and
n∑

j=1

wj = 1. If

WDHFMSM (k)
w (d1, d2, ..., dn) =


⊕

1≤i1<i2<...<ik≤n

(
k⊗

j=1

(dij)
wij

)
Ckn


1/k

,

then WDHFMSM (k) is called the weighted dual hesitant fuzzy Maclaurin symmetric mean (WDHFMSM)

operator.

According to the operations of DHFEs exhibited in section 2, we can derive the following

theorem.

Theorem 3.2. Let dj = (hj, gj), (j = 1, 2, ..., n) be a collection of DHFEs and k ∈ {1, 2, ..., n},

then the aggregated value of dj, j = 1, 2, ..., n using the WDHFMSM operator is also a DHFE, given
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by

WDHFMSM (k)
w (d1, d2, ..., dn) = (h,

−
g),

where,

h =
⋃

γ1∈h1,...,γn∈hn


1−

∏
(i1,i2,...,ik)∈S

1− k∏
j=1

γ
wij
ij

 1

Ckn


1/k


and

g =
⋃

η1∈g1,...,ηn∈gn

1−

1−
∏

(i1,i2,...,ik)∈S

1− k∏
j=1

(1− ηij)
wij

 1

Ckn


1/k


where S = {(i1, i2, ..., ik) ∈ Z× Z× ...× Z/1 ≤ i1 < i2 < ... < ik ≤ n} .

Here
k⊗

j=1

(dij)
wij reflects the inter-relationship among di1 , di2 , ..., dik .

4. A novel partial order and hybrid monotonic inclusion measures for DHFEs

As previously mentioned, the framework of our evaluation problem is based on dual hes-

itant fuzzy soft sets. To effectively compare such sets, it is necessary to define an order

relation on the set of DHFEs. In [12], Zhang et al. proposed a partial order for hesitant fuzzy

elements (HFEs) using disjunctive semantic interpretation. In this work, we extend their

approach to the dual hesitant fuzzy context.

Definition 4.1. Let d1 = (h1, g1; l1, l
′
1), d2 = (h2, g2; l2, l

′
2) be two DHFEs. We define an

order relation ≤§ between d1 and d2 as follows:

d1 ≤§ d2 iff



hi1 ≤ hi2, ∀ i = 1 · · · l1 if l1 ≤ l2

hl1−l2+i
1 ≤ hi2, ∀ i = 1 · · · l2 Otherwise

and

g
j
1 ≥ g

j
2, ∀ j = 1 · · · l2′ if l

′
1 ≥ l

′
2

g
j
1 ≥ g

l
′
2−l

′
1+j

2 , ∀ j = 1 · · · l′
1 Otherwise

For any two DHFS A and B on X, A⊆§ B iff dA(x) ≤§ dB(x), ∀x ∈ X. The ordered set is

denoted by (DHFS(X),⊆§). We can easily prove the following theorem.
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Theorem 4.1. (H× H , ≤§) is a partially ordered set. Moreover, ⊆§ is a partial order on

DHFS(X).

Proof.

(1) Reflexive: Clearly the reflexive property hold for ≤§ .

(2) Antisymmetric: Let d1 ≤§ d2 and d2 ≤§ d1, where d1 = (h1, g1; l1, l
′
1) and d2 = (h2, g2; l2, l

′
2).

Now, the anti-symmetry of ≤§ can be easily proved using the monotonicity property

of h as well as g and using the definition of ≤§ . To prove d1 = d2, we have to consider

the following four cases:

(i): l1 ≤ l2 and l
′
1 ≥ l

′
2.

(ii): l1 ≤ l2 and l
′
1 ≤ l

′
2.

(iii): l1 ≥ l2 and l
′
1 ≤ l

′
2.

(iv): l1 ≥ l2 and l
′
1 ≥ l

′
2.

Case(i): From d1 ≤§ d2, l1 ≤ l2 l
′
1 ≥ l

′
2, we get, hi1 ≤ hi2, ∀i = 1 · · ·.

l1 and g
j
1 ≥ g

j
2, ∀j = 1 · · · l2′.Also, from d2 ≤§ d1, we get h

l2−l1+i
2 ≤ hi1, ∀ i = 1 · · · l1,

and g
j
2 ≥ g

l
′
1−l

′
2+j

1 , ∀ j = 1 · · · l′
2. By increasing property of h2, it follows that

hi1 ≤ hi2 ≤ hl2−l1+i
2 ≤ hi1, ∀ i = 1 · · · l1.

From this, it is evident that l1 = l2 and hi1 = hi2, ∀ i = 1 · · · l1.

Again by increasing property of g1, we get g
j
1 ≥ g

j
2 ≥ g

l
′
1−l

′
2+j

1 ≥ g
j
1, ∀ j = 1 · · · l′

2.

From the above inequalities, it is clear that l
′
1 = l

′
2 and g

j
1 = g

j
2, ∀ j = 1 · · · l′

1.

Thus we prove d1 = d2. Here we depict only one of the four above cases; others can

be proved similarly.

(3) Transitive: Let d1 ≤§ d2 and d2 ≤§ d3, where d1 = (h1, g1; l1, l
′
1),

d2 = (h2, g2; l2, l
′
2), d3 = (h3, g3; l3, l

′
3). We claim that d1 ≤§ d3. We can easily prove

our claim using the transitivity property of ≤, monotonicity property of h as well as g

and the definition of≤§ . Here we have to consider several cases, but it is only a routine

calculations. So we demonstrate only one case and others are left to the reader.

Suppose l3 ≤ l1 ≤ l2 and l
′
3 ≤ l

′
1 ≤ l

′
2. From d1 ≤§ d2, l1 ≤ l2 and l

′
1 ≤ l

′
2, we get,

hi1 ≤ hi2, ∀ i = 1 · · · l1 and g
j
1 ≥ g

l
′
2−l

′
1+j

2 , ∀ j = 1 · · · l′
1. Also, from d2 ≤§ d3, l3 ≤ l2

l
′
3 ≤ l

′
2, we get, hl2−l3+i

2 ≤ hi3, ∀ i = 1 · · · l3 and g
j
2 ≥ g

j
3, ∀ j = 1 · · · l3′. Applying

the increasing property of h2 and g2 together with the inequality l2 − l3 ≥ l1 − l3,

we get

hl1−l3+i
1 ≤ hl1−l3+i

2 ≤ hl2−l3+i
2 ≤ hi3, ∀ i = 1 · · · l3 and
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g
j
1 ≥ g

l
′
2−l

′
1+j

2 ≥ g
j
2 ≥ g

j
3, ∀ j = 1 · · · l3′. From the observations l1 ≥ l3 and l

′
1 ≥ l

′
3,

transitivity is obvious. Hence the proof.

□

It is well known that a partially ordered set generally contains elements that are not

mutually comparable. The presence of such elements naturally leads to the need for an

inclusion measure. Therefore, we define an inclusion measure on the partially ordered set

(H×H,⩽§). In the following, we first provide an axiomatic definition of the inclusion measure.

According to H. Y. Zhang [41], hybrid monotonicity is essential for a rational generalization

of inclusion measures. Accordingly, we define a hybrid monotonic inclusion measure on

(H×H,⩽§).

Definition 4.2. Let d1, d2 ∈ (H × H,⩽§). A real number Inc(d1, d2) ∈ [0, 1] is called an

HM inclusion measure between d1 and d2, if Inc(d1, d2) satisfies the following properties.

(ID1): Inc(d1, d2) =1 if and only if d1 ≤§ d2

(ID2): If d = 1, then Inc(d, dc) = 0, where 1 = ({1}, {0})

(ID3): If d1 ≤§ d2, then for any d3 ∈ (H×H,⩽§), Inc(d3, d1) ≤ Inc(d3, d2),

Inc(d2, d3) ≤ Inc(d1, d3)

To study the structure of an inclusion measure, axiomatic approach is the best choice.

But, our aim is to use inclusion measure in a decision making problem. So we are more

interested in constructive approach. In the following section, we present a concrete example

for inclusion measure which satisfies our proposed axioms.

Proposition 4.1. For d1 = (h1, g1; l1, l
′
1) and d2 = (h2, g2; l2, l

′
2) ∈ (H×H,⩽§), let

Inc(d1, d2) = s ( dL(d1,d2) )

where sd is the score function of the DHFE d and dL (d1, d2) = (h, g) is a DHFE, called L-

subsethood index of d1 and d2, where,

h =


l1⋃
i=1

IL(h
i
1, h

i
2), if l1 ≤ l2

l2⋃
i=1

IL(h
l1−l2+i
1 , hi2), Otherwise
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and

g =


l
′
1⋃

j=1

IL(g
l
′
2−l

′
1+j

2 , g
j
1), if l

′
1 ≤ l

′
2

l
′
2⋃

j=1

IL(g
j
2, g

j
1), Otherwise

Here, IL(x, y) = min(1, 1− x+ y) is the well-known R-implicator based on Lukasiewicz

t-norm, viz., Lukasiewicz implicator, proposed by [40]. Then Inc(d1, d2) is an HM-inclusion

measure for DHFE.

Proof. We can easily verify the axiomatic requirements (ID1), (ID2) and (ID3) of HM-

inclusion measure for DHFE. Hence Q.E.D. □

The concept of HM-inclusion measure was defined in this section intending to use it in

our evaluation problem, but there we want a DHFE. We know HM-inclusion measure is not a

DHFE. So we have decided to use the L-subset hood index instead of HM-inclusion measure

in the evaluation problem. The necessity of DHFE into the evaluation problem had led us to

take this decision.

In the following section, we discuss our evaluation problem and develop a methodology for

ranking the objects in the problem by make use of the proposed definitions in this paper.

5. A novel methodology for ranking objects in an evaluation problem

The decision-making problem is being described as follows. q objects F1, F2, ..., Fq shall be

compared in our problem. Here each Fi may be a branch of a company or a project under

a vendor. Further to this, each of the q objects will be characterized as the parameterized

collection of subsets of the universal set U, where U consists of categories of workers belonging

to the object Fi. Let U =
{
x1, x2, ..., xn.

}
be the universal set and E =

{
e1, e2, ..., em

}
be the parameter set. Here, E consists of parameters which are defined by experts in the

relevant field. Moreover, the character of parameters of this problem is fuzzy. Also, the

universal set U and the parameter set E are one and the same for all the q objects in this

problem. Nevertheless, the number of workers in each category xs in different Fi may vary.

Also, note that the number of workers in distinct categories xs, s ∈ {1, 2, ..., n} in the same

object Fi may be different. From these observations, we arrived at the conclusion that

the evaluation of categories xs, s ∈ {1, 2, ..., n} for the parameters er, r ∈ {1, 2, ..., m} in the

object Fi, i ∈ {1, 2, ..., q} can be better presented by using an HFE or a DHFE. Since the

provision for assigning negative mark is an added benefit for an assessment procedure, dual
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hesitant fuzzy element seems to be a better representative than hesitant fuzzy element. Thus,

we constructed a dual hesitant fuzzy soft set (Fi, A), i ∈ {1, 2, ..., q} for describing the object

Fi, i ∈ {1, 2, ..., q}. Further, (Fi, A), i ∈ {1, 2, ..., q} can be implicitly described as

(Fi, A) =
{
dFi(er)(xs) =

(
hFi(er)(xs), gFi(er)(xs)

)
/ r = 1, ..., m and s = 1, ..., n.

}
and we denote (Fi, A), i ∈ {1, 2, ..., q} by simply Fi, i ∈ {1, 2, ..., q}. Here hFi(er)(xs) and

gFi(er)(xs) represent the sets of memberships and non-memberships of the workers in the

category xs to the set describing the parameter er, respectively. We develop the following

method for ranking these Fi, i = 1, 2, ..., q by being motivated from the work of Herrero[29].

Step 1:: Consider two objects Fi and Fj. Form the collection of L-subsethood indexes,

viz.,

{dL
(
dFj(er)(xs), dFi(er)(xs)

)
: r = 1, ..., m ; s = 1, ..., n}.

Step 2:: In this step, we fix s. i.e., we consider the category xs. Here a weight vector for

the parameters of this category must be defined by the decision makers, viz., w(s) such

that w(s) =
(
w
(s)
1 , w

(s)
2 , ..., w

(s)
m

)
, w

(s)
r ∈ [0, 1] and

∑m
r=1 w

(s)
r = 1, where w

(s)
r indicates

the importance of the parameter er to the alternative xs. Then using the WDHFMSM

operator and the weight vector w(s), the L-subsethood indexes are aggregated as

follows:
⊕

1≤r1<r2<...<rk≤m

(
k⊗

t=1

[
dL

(
dFj(ert )(xs), dFi(ert )(xs)

)]wrt)
Ckm


1/k

,

which is a DHFE denoted by δ(s)(Fj, Fi).

Step 3:: Repeat step 2 for each xs, s ∈ {1, 2, ..., n} and the collection

{δ(s)(Fj, Fi) : s = 1, ..., n} are formed.

Step 4:: Before proceeding further, the weight vector deciding the importance of cat-

egories should be determined by the decision makers.

Let it be λ = (λ1, λ2, ..., λn) , λs ∈ [0, 1] and
∑n

s=1 λs = 1, where λs indicates the im-

portance of the alternative xs. Note that this weight vector λ is same for all the

objects Fi, i ∈ {1, 2, ..., q}.

The Weighted geometric aggregation mean operator, proposed by Xia[15], could be

used here for final aggregation, viz.,
n⊗

s=1

(
δ(s)(Fj, Fi)

)λs
, which is again a DHFE denoted

by δ(i, j). In our problem, we want to pay more attention to arguments having too

high or too low performance. It justifies our decision of choosing WGM operator.
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Step 5:: Now we find out the status of the DHFE δ(i, j), i.e., S(δ(i,j)), and it is denoted

by D(Fi, Fj). Since D(Fi, Fj) is ultimately derived from L-subsethood index of Fj over

Fi, D(Fi, Fj) gives out the degree of dominance of Fi relative to Fj. Hence it will be

called dominance index of (Fi, A) over (Fj, A).

Step 6:: Repeat steps 1-5 for i, j = 1, 2, 3, ..., q, i ̸= j. Thus we find out all combina-

tions of dominance index and let us denote this collection by P, viz., P = {D(Fi, Fj) :

i, j = 1, 2, ..., q ; i ̸= j}. Then P can be viewed as a comprehensive form of our

evaluation problem.

Here we discuss the following remarks about the dominance index.

Remark 5.1. (i) 0 ≤ D(Fi, Fj) ≤ 1.

(ii) D(Fi, Fj) = 1 ⇒ Fi is completely dominant with respect to Fj in all aspects.

(iii) D(Fi, Fj) = 0 ⇒ Stunning performance by the first object Fi while no performance at

all by the second object Fj. In a real working site, this will never happen. So in this

paper, without loss of generality, we assume D(Fi, Fj) > 0.

(iv) For a fixed j, if D(Fi, Fj) = 1,∀i, i ̸= j, then Fj is inferior to every other objects.

In that case Fj can be eliminated from further evaluation process and can be given

the last rank. This remark shall be used later in this paper.

Besides the above-said properties, this dominance index could be used for the pairwise com-

parison of objects. i.e., D(Fi, Fj) ≤ D(Fj, Fi) ⇒ Fi ≤ Fj or literally, Fj dominates Fi.

We know inclusion measure doesn’t satisfy the transitive relation, and also the dominance

index is derived from inclusion measure. So that, this newly introduced measure ’dominance

index’ is not suitable for the comparison of more than two objects. If this measure is being

utilized in our problem, we need to extend this into more general settings which involve more

than two objects. Towards this aim, some definitions are proposed as follows.

Definition 5.1. Relative dominance of Fi with respect to Fj is given by

R(i, j) =
D(Fi, Fj)∑q

k=1,k ̸=iD(Fk, Fi)
, i, j = 1, 2, 3, ..., q , i ̸= j.

Now, the net dominance of Fi can be defined as the weighted average of its relative

dominance.

Definition 5.2. Net dominance of Fi is given by

N(i) =

q∑
j=1,j̸=i

wjR(i, j), i = 1, 2, 3, ..., q.
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where wj is a measure of the importance of the object Fj, j = 1, 2, 3, ..., q, i ̸= j.

Here we wish to mention one thing. Both N(i) and wi give out the rank of the object

Fi. Initially, both of them are unknown, and our aim is to find the rank of the object Fi

which may be N(i) or wi. If there exist an invariant system of weights (v1, v2, ..., vq) satisfying

(N(1), N(2), ..., N(q)) = (w1, w2, ..., wq) = (v1, v2, ..., vq), and N(i) =
∑q

j=1,j̸=i wjR(i, j),i = 1, ..., q,

then we are succeeded in this journey. This will be achieved by applying a little bit theories

of linear algebra here. For that, a matrix P∗ = [pij] will be constructed as follows:

pij =


D(Fi, Fj), i ̸= j

(q − 1)−
∑q

k=1,k ̸=iD(Fk, Fi), i = j

For the matrix P∗, the following observations have been made.

• P∗ is a positive matrix. This observation results from the properties of dominance

index discussed earlier.

• Each column sum of P∗ is q-1.

• P∗ is an irreducible matrix.

Using the matrix P∗, we can construct an eigenvalue problem P∗X = λX, X =
[
w1 w2 ... wq

]T
,

which is equivalent to the comprehensive form of the problem P. From now on, we consider

this eigenvalue problem instead of P. Such a transformation gives the benefit of solving the

evaluation problem consistently and uniquely. From the characteristics of P∗, it is clear

that q− 1 is the unique dominant eigenvalue of P∗. According to Perron-Frobenius theorem,

the matrix P∗ has a strictly positive eigenvector corresponding to the eigenvalue q− 1, viz.,

V = (v1, v2, ..., vq) with P
∗V = (q− 1)V, where vi =

∑q
j=1,j̸=i(vj ∗ D(Fi, Fj))∑q

k=1,k̸=iD(Fk, Fi)
, i = 1, 2, 3, ..., q.

Also, we know that this eigen vector is unique up to scalar multiplication. So we can make this

eigen vector unique by imposing the condition
∑n

i=1 vi = q. Thus, a unique and consistent

system of weights (v1, v2, ..., vq) satisfying (N(1), N(2), ..., N(q)) = (w1, w2, ..., wq) = (v1, v2, ..., vq)

and N(i) =
∑q

j=1,j̸=i wjR(i, j), i = 1, 2, 3, ..., q have been obtained.

This vector V = (v1, v2, ..., vq) is called the worth vector [29] associated with our evaluation

problem P. Usually, in a ranking method, the decision-maker consider which one is better

than the other; nevertheless, they need not calculate how much better it is. But, here we need

this feature. We think that the differences between preferences are also important. Here,

Herrero’s worth vector provide this feature. Each component of this vector gives the worth

associated with a respective object. In other words, it cardinalizes the objects. According



550 DEEPA V, ATHIRA T M, MANJUNATH A S, AND S. J. JOHN

to Herrero [29], the worth vector provides not only a complete ranking of the objects under

consideration but also an endogenous cardinalization that allows a quantitative estimate of

their differences. We can now use the following observations of Herrero [29].

• vi > vj ⇒ the object Fi is dominant with respect to the object Fj.

• The condition
∑q

i=1 vi = q allows us to identify the objects which are above or below

the average.

• There exist a consistent evaluation function f which associates an evaluation problem

P to its worth vector.i.e., f(P) = V, where V = (v1, v2, ..., vq) satisfying P∗V = (q− 1)V

and
∑q

i=1 vi = q. This function f enable us to handle distinct evaluation problems

consistently and uniquely.

For ranking, we adopt the following steps.

Step 1:: First sort out vi’s in descending order.

Step 2:: Let the sorted vectors be u1, u2, ..., uq.

Step 3:: If ui = vj, then the rank of the object Fj is i. Also, its worth is vj. Repeat

this for every i = 1, 2, 3, ..., q. Thus our evaluation have been completed .

To assess the performance of the proposed method, in the following section, we depict a

problem of continuous evaluation of workers in a mobile tower construction site.

Practical Example. SU Square Projects and Infrastructures (P) Ltd - an ISO 9001: 2008

certified company - is primarily engaged in the construction and maintenance of mobile com-

munication towers for various passive infrastructure providers in the telecom sector in Kerala.

The promoters of the company aim to provide optimal coverage to rural and mountainous

areas throughout Kerala and southern India. To achieve this, they have developed several

strategies to implement targeted and efficient actions.

As part of its business expansion, the company’s promoters have decided to evaluate work-

ers based on a predetermined performance package. The primary objective of this initiative is

to minimize the time required to complete tower installations without compromising quality.

Through this evaluation, they aim to tap into the full potential of each employee. To

foster healthy competition, they have decided to rank the various sites according to worker

performance. In addition, gifts have been included in the package as incentives, directly

linked to site rankings. This initiative has understandably generated interest and enthusiasm

among the workers.
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If this ranking can be cardinalized, that is, expressed in numerical terms, the distribution

of perks can be carried out in a more consistent and objective manner. It is worth recalling

here that our proposed ranking method allows for such cardinalization, thereby enhancing

its practical applicability. As the next step, we proceed to analyze the compatibility of the

problem’s structure with the proposed framework.

Suppose F1, F2, ..., Fq are q sites considered for evaluation. The selection of the appropriate

assessment criteria is an inevitable part of the evaluation process. This selection should be

made by experts in the respective fields. In the background of years of experience, the

promoters select the appropriate parameters for the evaluation. The list of parameters and

their descriptions are given in Table 5.2. Let the set of parameters be denoted by A, that is,

A = {TAT, Quality, Safety, Costing}.

Table 5.2. Parameters List

Parameters Descriptions Notation

Turnaround Time (TAT)
The time taken to complete a particular

project
TAT

Quality of Work Maintaining required quality Quality

Complying with Safety Norms

Every workforce must comply, e.g., wear-

ing safety helmets, safety shoes, using bar-

ricades, signboards, etc.

Safety

Project Costing
Costs incurred for a particular project, in-

cluding material and labor costs
Costing

Next, our discussion turns to the workforce. Each tower-working-site would have needed

different categories of workers. Those categories of workers provided by the promoters are

as shown in Table 5.3.
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Table 5.3. List of categories of workers together with their description

Categories of workers Details about no. of workers Notation Weights

Civil Engineer One engineer per site CE .2

Electrical Engineer One engineer per site EE .25

Mason
Each site will have two, three or four

masons
MN .15

Helper (Mason)

The number of helpers depends

upon the number of masons. A

site requires six masons including

helpers

HM .05

Electrician
Each site will have three electri-

cians.
EN .1

Trainees(Electrician)
For helping electricians,there are

two trainees.
ET .05

Riggers
Normally 6 riggers per site, but for

Roof Top Towers(RTT) it is 7
RS .08

Head load workers for

each site is 10
The number of head load workers HL .07

Concrete Labors
A site requires 20 concrete labors

but RTT needs only 10
CL .05

Here we would like to indicate some important points. From the description of cate-

gories of workers, it is clear that each category may have more than one members. So

to get a better picture, we have to evaluate them individually. Also, note that different

categories may contain a distinct number of deputies. Further, the number of employees

belongs to the same category in two distinct sites may not be the same. These obser-

vations have led us to choose the hesitant fuzzy elements as an appropriate structure for

representing the evaluation of a category based on a parameter. The provision for assign-

ing negative marking is an added benefit for an assessment. So that, the dual hesitant

fuzzy element seems to be the better representative rather than the hesitant fuzzy element.

Thus we arrive at the conclusion that the dual hesitant fuzzy soft set is used for exhibiting

the evaluation details of a mobile tower site. This demonstration shall be described as fol-

lows. Here, U = {CE, EE, MN, HM, EN, ET, RS, HL, CL}, the set of category names of workers, are
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taken as the universal set. The dual hesitant fuzzy soft set (F1, A) represents the evaluation

measurements of F1. This DHFSS can be briefly described as follows. F1 is a mapping given

by F1 : A → DHFS(U). Here, (F1, A) = {F1(TAT), F1(Quality), F1(Safety), F1(Costing)}, where

each F1(.) is a dual hesitant fuzzy set. To get better clarification, we discuss the case of a

particular F1(.), viz., F1(TAT). Here F1(TAT) is a dual hesitant fuzzy set which assigns to each

member of U a dual hesitant fuzzy element. For example, Riggers, RS ∈ U, the corresponding

dual hesitant fuzzy element is dF1(TAT)(RS) = (hF1(TAT)(RS), gF1(TAT)(RS)) where hF1(TAT)(RS) is a

finite subset of [0,1] consisting of either 6 or 7 entries which represents the evaluation given to

Riggers working at F1 for TAT. In other words, hF1(TAT)(RS) gives the membership of Riggers

to the set which describes TAT. Similarly, gF1(TAT)(RS) provides the non-membership of Rig-

gers to the set which describes TAT. We know elements of DHFEs are arranged in increasing

order. Here also, the marks obtained by different Riggers working at F1 could be arranged

in increasing order. Our evaluation is about sites and not about employees. So that, there

is no ambiguity in arranging the marks in this manner.

In a similar manner, we construct F1(Quality), F1(Safety), F1(Costing) and thus formed

(F1, A), denoted by F1 Likewise we build (F2, A) for site F2, (F3, A) for site F3, and (F4, A) for

site F4, which are denoted by F2, F3, F4 respectively. In this way, we have accommodated

successfully all the information provided by the experts. Now, by all means, we have been

convinced that the proposed method is the suitable method for this problem. Thus, we are

moving onto solving the problem using the proposed method.
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Table 5.4. Tabular representation of dual hesitant fuzzy soft set F1 =
(
~F1, A

)
U/E TAT Quality Safety Costing

CE {.9} {.98} {.96} {.97}

{.1} {.101} {.001} {.12}

EE {.85} {.88} {.89} {.84}

{.1} {.01} {.11} {.005}

MN {.91,.92} {.93,.98} {..94,.95} {.99,.992}

{.2} {.1} {.22} {.101}

HM {.85,.86,.868,.869} {.886,.89,.895,.93} {.92,.94,.949,.952} {..981,.983,.985,.989}

{.2} {.13} {.1} {.09}

EN {.9,.92,.923} {..941,.942,.948} {.891,.892,.894} {..86,.864,.865}

{.103} {.141} {.12} {.2}

ET {.92,.95} {.93,.96} {.91,.93} {..98,.99}

{.201} {.138} {.17} {.142}

RS {.91,.92,925,.927, {.96,.964,.967,.972, {.81,.83,.836,.84, {.91,.913,.924,.926,

.93,.934} .974,.98} .847,.85} .929,.93}

{..005} {.02} {.001,.003} {.1}

HL {.71,.714,.719,.723, {.732,.736,.74,.745, {..813,.824,.83,.845, {..91,.913,.915,.95,

.725,.727,.738,.739, .749,.76,.762,.765, .86,.864,.869,.87, .98,.981,.982,.984,

.74,.743} .769,.78} .881,.883} .985,.989}

{.07} {.156} {.1} {.09}

CL {..73,.734,.735,.738, {.81,.814,.815,.82, {.91,.913,.915,.921, {.87,.876,.877,.88,

.739,.741,.742,.746, .834,.836,.838,.841, .924,.926,.928,.929, .884,.886,.887,.89,

.749,.75,.752,.753, .843,.845,.846,.849, .932,.934,.935,.937, .892,.893,.895,.9,

.755,.757,.758,.76, .852,.856,.859,.862, .938,.94,.942,.943, .92,.93,.95,.97,

.762,.763,.765,.768} .864,.868,.87,.89} .944,.945,.946,.95} .972,.975,.977,.979}

{.102} {.18} {.21} {.08}
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Table 5.5. Tabular representation of dual hesitant fuzzy soft set F2 =
(
~F2, A

)
U/E TAT Quality Safety Costing

CE {.8} {..72} {.7} {.8}

{.1} {.2} {.07} {.11}

EE {.6} {.65} {..61} {.63}

{.18} {.121} {.109} {.123}

MN {.7,.72,.74,.746} {..77,.792,.798,.81} {.75,.756,.7567,.761} {.791,.794,.81,.83}

{.28} {.105} {.127} {.174}

HM {..52,.54} {.59,.61} {..61,.63} {.67,.69}

{.108} {.113} {.101} {.161}

EN {..73,.74,.75} {..716,.723,.74} {.74,.743,.745} {..732,.735,.761}

{.28} {.26} {.23} {.21}

ET {.62,.65} {.68,.685} {..645,..672} {.656,.692}

{.102} {.195} {.138} {.124}

RS {.634,.639,.642,.645, {.636,.654,.672,.675, {..621,.628,.634,.637, {..624,.628,.637,.645,

.649,.651,.657} .681,.692,.71} .639,.64,.642} .676,.684,.692}

{.101} {.131} {.159} {.128}

HL {.71,.718,.72,.723, {..76,.762,.763,.771, {.81,.83,.85,.872, {..83,.832,.834,.847,

.727,.734,.74,.749, .772,.78,.794,.799, .876,.88,.882,.884, .849,.852,.853,.855,

.752,.76} .88,.89} .887,.89} .857,.86}

{.197} {.111} {.17} {.09}

CL {..61,.672,.689,.692, {.52,.525,.529,.531, {.61,.68,.694,.712, {.634,.691,.695,.724,

.694,.696,.698,.71, .535,.538,.542,.545, .724,.75,.758,.778, .728,.729,.73,.739,

.72,.726} .549,.559} .79,.81} .743,.745}

{.001} {.007} {.0012} {.0089}
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Table 5.6. Tabular representation of dual hesitant fuzzy soft set F3 =
(
~F3, A

)
U/E TAT Quality Safety Costing

CE {.8} {.82} {.9} {.85}

{.12} {.23} {.116} {.017}

EE {.9} {.92} {.85} {.93}

{.101} {.119} {.181} {.192}

MN {.73,.81,.84,.91} {.82,.85,.87,.89} {.61,.82,.84,.89} {.91,.935,.94,.942}

{.21} {.101} {.10001} {.002}

HM {.812,.823} {.71,.75} {.52,.61} {.92,.95}

{.11} {.15} {.05} {.07}

EN {.93,.941,.95} {.941,.945,.95} {.95,.953,.96} {.936,.939,.95}

{.1002} {.001} {.023} {.008}

ET {.82,.85} {.836,.851} {.72,.75} {.91,.95}

{.071} {.082} {.14} {.21}

RS {.71,.73,.79,.85, {.91,.912,.918,.923, {.81,.815,.819,.821, {.852,.854,.86,.865,

.88,.92,.95} .934,.94,.945} .828,.834,.836} .872,.874,.88}

{.106} {.11} {.105} {.009}

HL {.71,.712,.734,.745, {.81,.812,.815,.832, {.91,.915,.918,.923, {.8,.82,.824,.83,

.82,.832,.838,.84, .86,.865,.881,.92, .927,.932,.938,.941, .835,.839,.85,.853,

.85,.9} .925,.928} .943,.95} .86,.868}

{.006} {.001} {.006} {.08}

CL {.9,.913,.917,.924, {.82,.825,.828,.831, {.71,.72,.724,.73, {.78,.81,.85,.91,

.931,.936,.939,.94, .833,.84,.852,.853, .738,.74,.742,.744, .92,.925,.93,.938,

.948,.95} .864,.87} .75,.752} .942,.945}

{.172} {.025} {.173} {.087}
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Table 5.7. Tabular representation of dual hesitant fuzzy soft set F4 =
(
~F4, A

)
U/E TAT Quality Safety Costing

CE {.6} {.7} {.6} {.9}

{.102} {.189} {.076} {.045}

EE {.95} {.98} {.8} {.92}

{.108} {.009} {.0004} {.153}

MN {.8,.85,.87} {.76,.81,.9} {.9,.91,.93} {.84,.89,.9}

{.11} {.137} {.023} {.001}

HM {.6,.65,.67} {.8,.89,.92} {.92,.94,.96} {.87,.88,.89}

{.1} {.02} {.03} {.132}

EN {.78,.79,.85} {.82,.84,.87} {.74,.78,.79} {.91,.92,.95}

{.076} {.23} {.2} {.13}

ET {.65,.68} {.85,.87} {.91,.94} {.92,.96}

{.122} {.114} {.176} {.13}

RS {.84,.87,.89,.92, {.91,.912,.919,.923, {.71,.73,.74,.752, {.91,.918,.92,.924,

.94,.956,.97} .928,.934,.95} .759,.76,.769,.928, .928,.93,.934}

.934,.95}

{.106} {.12} {.104} {.113}

HL {.65,.676,.685,.694, {.91,.934,.943,.952, {.7,.75,.78,.791, {.9,.923,.941,.949,

.725,.738,.824,.839, .956,.959,.964,.968, .792,.798,.82,.83, .95,.954,.958,.961,

.841,.852} .969,.97} .845,.852} .962,.97}

{.21} {.008} {.2} {..089}

CL {.918,.925,93,.934, {.94,.941,.943,.947, {.71,.78,.79,.794, {.92,.94,.945,.947,

.938,.942,.946,.948, .952,.954,.957,.961, .799,.81,.845,.848, .952,.953,.957,.959,

.951,.953} .962,.964} .849,.852} .962,.963}

{.06} {.087} {.1} {.01}
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Table 5.8. Tabular representation of dual hesitant fuzzy soft set F5 =
(
~F5, A

)
U/E TAT Quality Safety Costing

CE {.4} {.32} {.38} {.42}

{.1} {.07} {.13} {.12}

EE {.2} {.3} {.12} {.45}

{.12} {.04} {.021} {.118}

MN {.31,.342,.36,.41} {.36,.378,.394} {.24,.245,.253,.26} {.41,.423,.445,.45}

{.1} {.17} {.03} {.071}

HM {.2,.45} {.35,.42} {.13,.32} {.34,.39}

{.01} {.12} {.13} {.232}

EN {.42,.435,.44} {.38,.382,.39} {.24,.28,.3} {.45,.49,.53}

{.16} {.13} {.11} {.18}

ET {.51,.56} {.43,.47} {.27,.292} {.53,.58}

{.22} {.14} {.16} {.103}

RS {.23,.274,.282,.287, {.31,.312,.313,.317, {.134,.178,.18,.193, {.42,.43,.436,.442,

.29,.3,.31} .32,.325,.327,.329} .195,.198,.21} .445,.456,.458}

{.006} {.102} {.17} {.023}

HL {.21,.223,.23,.242, {.31,.33,.37,.48, {.12,.124,.127,.132, {.41,.414,.418,.423,

.245,.251,.267,.35, .51,.53,.57,.59,.62} .135,.182,.24,.29, .425,.43,.478,.48,

.4,.42} .3,.34} .482,.485}

{.211} {.108} {.12} {..019}

CL {.34,.345,.348,.352, {.43,.434,.437,.439, {.21,.213,.215,.237, {.13,.17,.19,.21,

.354,.357,.389,.392, .448,.449,.452,.46, .297,.299,.32,.33, .214,.218,.24,.248,

.395,.41} .47,.475} .375,.39} .25,.27}

{.16} {.17} {.012} {.11}
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Table 5.9. Tabular representation of dual hesitant fuzzy soft set F6 =
(
~F6, A

)
U/E TAT Quality Safety Costing

CE {.1} {.01} {.2} {.12}

{.001} {.0007} {.103} {.012}

EE {.05} {.03} {.13} {.15}

{.012} {.004} {.0021} {.107}

MN {.04,.07,.09,.11} {.02,.03,.07,.08} {.04,.05,.09,.11} {.1,.11,.13,.14}

{.009} {.107} {.13} {.061}

HM {.13,.18} {.15,.19} {.13,.17} {.14,.17}

{.009} {.106} {.036} {.152}

EN {.132,.135,.137} {.048,.05,.08} {.14,.148,.152} {.136,.145,.178}

{.034} {.15} {.196} {.007}

ET {.046,.078} {.021,.042} {.091,.098} {.34,.41}

{.002} {.001} {.109} {.121}

RS {.12,.124,.183,.24, {.042,.09,.098,.13, {.012,.017,.019,.034, {.02,.026,.031,.038,

.29,.34,.42} .139,.14,.172} .039,.052} .042,.043,.047}

{.016} {.202} {.107} {.003}

HL {.013,.016,.018,.021, {.024,.026,.028,.029, {.049,.051,.053,.054, {.52,.525,.585,.592,

.023,.026,.031,.034, .032,.034,.036,.038, .061,.08,.123,.137, .61,.618,.624,.63,

.035,.039} .039,.043} .139,.152} .631,.637}

{.101} {.1} {.0012} {.19}

CL {.14,.145,.1452,.151, {.18,.183,.184,.192, {.04,.045,.053,.078, {.2,.22,.234,.247,

.159,.162,.168,.169, .199,.23,.234,.24, .092,.098,.13,.132, .249,.25,.253,.257,

.171,.172} .26,.263} .153,.157} .259,.261}

{.1006} {.1007} {.0124} {.011}
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Table 5.10. Tabular representation of dual hesitant fuzzy soft set F7 =
(
~F7, A

)
U/E TAT Quality Safety Costing

CE {.95} {.99} {.97} {.99}

{.01} {.00002} {.0001} {.0101}

EE {.97} {.99} {.91} {.94}

{.001} {.004} {.0501} {.008}

MN {.94,.95,.96} {.97,.99,.999} {.97,.98,.99} {.997,.998,.999}

{.001} {.107} {.0103} {.0401}

HM {.91,.913,.914} {.912,.913,.915} {.96,.967,.98} {.991,.993,.995}

{.0071} {.0102} {.103} {.0232}

EN {.961,.964,.978} {.97,.973,.975} {.965,.969,.972} {.961,.964,.967}

{.016} {.019} {.011} {.018}

ET {.952,.96} {.961,.972} {.948,.952} {.993,.997}

{.022} {.014} {.016} {.0103}

RS {.967,.968,.969,.97, {.981,.982,.983,.985, {.86,.87,.89,.9, {.964,.966,.967,.97,

.972,.974,.976} .987,.989,.99} .92,.93,.94} .971,.973,.98}

{.003} {.105} {.007} {.0203}

HL {.88,.882,.885,.887, {.961,.963,.967,.969, {.951,.953,.955,.957, {.986,.988,.989,.991,

.89,.892,.895,.897, .971,.973,.975,.977, .958,.96,.963,.965, .992,.994,.995,.997,

.91,.93} .981,.983} .967,.969} .998,.999}

{.011} {.008} {.0102} {.0019}

CL {.951,.953,954,.955, {.962,.963,.964,.965, {.951,.952,.953,.954, {.981,.9823,.983,.9834,

.956,.958,.959,.961, .967,.968,.969,.97, .955,.956,.957,.959, .9835,.984,.9842,.9844,

.962,.964} .971,.972} .962,.967} .9846,.985}

{.00409} {.0024} {.0014} {.0001}
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Table 5.11. Weight vectors which decide the importance of parameters in

each category.

U/E TAT Quality Safety Costing

Civil Engineer .35 .2 .1 .35

Electrical Engineer .35 .2 .1 .35

Mason .3 .25 .15 .3

Helper(Mason) .35 .1 .2 .35

Electrician .3 .2 .2 .3

Trainees(Electrician) .3 .2 .2 .3

Riggers .3 .25 .25 .2

Headload workers .3 .1 .2 .4

Concrete labors .3 .15 .15 .4

The tabular representation of F1, F2, F3, ..., F7 respectively, formed from the information

provided by the promoters, are shown in tables 4, 5, 6, ..., 10. Recall that the weight vector

for categories is shown in the last column of Table 5.3.

i.e., λ = (0.2, 0.25, 0.15, 0.05, 0.1, 0.05, 0.08, 0.07, 0.05).

Table 5.11 provides the weight assigned by experts for the parameters in each category.

In this table, each row represents the weight vector for the respective category in that row.

For example, the first row corresponds to the weight vector w(1) = (0.35, 0.2, 0.1, 0.35) for

civilengineer. That is, for the civilengineer, 0.35 weight is given for TAT, 0.2 for

Quality, 0.1 for Safety, and 0.35 for Costing. Similarly, the fifth row gives the weight

vector w(5) = (0.3, 0.2, 0.2, 0.3) for Electrician, the seventh row provides the weight vector

w(7) = (0.3, 0.25, 0.25, 0.2) for the Riggers, and so on.

Thus the building blocks of the evaluation, namely, weights and evaluations, were ob-

tained. Now the authors proceeded to construct P , the comprehensive form of the problem.

For that passes steps 1 through 6 and calculated D(Fi, Fj), i, j = 1, 2, 3, 4 i ̸= j. Further,

the matrix P ∗ can be constructed by using the comprehensive problem P , which is as shown

below.
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P∗ =



.7263177 .981574 .977197 .976024 1 .981677 .968049

.949087 .4481468 .958576 .960466 1 1 .93128

.986 1 .6628048 .998439 1 1 .977028

.9175843 .9348083 .9285823 .5822471 .9372493 .9372493 .9093323

.7509 .8298589 .7658639 .7717499 .1227487 .9283619 .7206219

.670111 .805612 .706976 .711074 .940002 .1527118 .614004

1 1 1 1 1 1 .8796848



P ∗ instead of P is demonstrated because of limited space. The authors created an eigen-

value problem P ∗X = λX, using this P ∗. From the previous discussion, it is obvious that

6 (that is., q − 1) is the dominant eigenvalue. The objective is to determine an eigen-

vector of this dominant eigenvalue. Here the authors are looking for the unique eigen

vector (v1, v2, ..., vq) satisfying the condition
∑q

i=1 vi = q. There are numerous methods

and corresponding softwares available in the literature for finding out the eigen vector of

an eigen-value problem. Since the authors needed eigenvector corresponding to the domi-

nant eigenvalue, they adopted the power method and developed a C++ program for gen-

erating the required unique eigenvector associated with the dominant eigenvalue 6. The

normalised eigen-vector, namely, the worth vector, calculated by this program is given

as (1.0968442, 1.0348668, 1.09787431.0221596, 0.8260924, 0.7783165, 1.143846). Then, went

through the ranking procedure and obtained the ranking as

F7 > F3 > F1 > F2 > F4 > F5 > F6.

The ranking of sites together with their worth is exhibited in Table 5.12:

Table 5.12. Ranking of Sites

Site: F7 F3 F1 F2 F4 F5 F6

WORTH: 1.1438 1.0979 1.0968 1.0349 1.0222 0.8261 0.7783

RANK: 1 2 3 4 5 6 7

This information will be equipped promoters to distribute perks based on the pre-announced

package ( that is, distribute perk based on their worth) and which will improve the work

quality of employees positively in subsequent.
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Table 6.13. Ranking of Sites after removing Site F7

Site: F3 F1 F2 F4 F5 F6

WORTH: 1.104812 1.097866 1.080376 1.023899 0.878530 0.805518

RANK: 1 2 3 4 5 6

6. Discussion

Let us examine the significance of non-membership values in this problem. To do so,

we exclude all non-membership values and recalculate the worth vector, which now be-

comes (1.089, 1.011452, 1.07204, 1.06576, 0.8835705, 0.7626358, 1.1159). Previously, the worth

of F5 was 0.8261, but after the omission, it is increased to 0.8835705 indicating that non-

membership values contribute to a decrease in worth. These observations clearly highlight

the impact of non-membership values on the overall ranking. Since perks are awarded in

proportion to worth, it is the collective responsibility of all employees at the site to ensure

that no one engages in actions that contribute to non-membership values. Such vigilance

helps minimize the risk of violating strictly prohibited rules.

Next, the authors discuss Remark 5.1. From P ∗, we get D(F7, Fi) = 1, ∀i ̸= 7, which

implies that F7 is completely dominant with respect to Fi, ∀i ̸= 7 in all aspects. By our

earlier calculations, the rank of F7 is one. This result coincides with remark 5.1(iii). To

verify the second statement of remark 5.1 (iv), the authors eliminate F7 and calculate the

worth vector. The new ranking is as shown in Table 6.13. If the rank of each of the above six

sites is incremented by one position and site F7 is assigned the first rank, then it can be seen

that this will coincide with the previous ranking; this verifies the remark 5.1(iv). However,

if one needs the worth of F7 in addition to just ranking, this site must be included in the

ranking procedure. Another noteworthy thing is that the omission of F7 increases the worth

of other sites.

7. Conclusion

In this paper, the authors have developed an innovative method based on Linear Algebra,

for solving a real-life decision-making problem. By choosing the dual hesitant fuzzy soft

set as the framework, the problem becomes quite handy. By implementing the eigen-value

concepts, the solution becomes more reliable and precise. This method is suitable for the

evaluation of unrelated data. The authors have also presented a practical application for

their proposed method which necessarily depicts the effectiveness of the method.
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Abstract. This paper investigates the conformal curvature properties of Lorentzian β-

Kenmotsu (LβK) manifolds admitting a generalized Tanaka-Webster (g-TW) connection.

We begin by establishing the fundamental preliminaries of LβK manifolds and exploring

their curvature properties under the influence of g-TW connection. The study then focuses

on specific curvature conditions, namely R̃ · S̃ = 0, S̃ ·R̃ = 0, conformal flatness, ζ-conformal

flatness, and pseudo-conformal flatness, to examine their geometric and structural implica-

tions. Additionally, we construct an explicit example of a 3-dimensional LβK manifold

that admits a g-TW connection, providing concrete validation of our theoretical results.

The findings contribute to the broader understanding of curvature behaviors in almost con-

tact pseudo-Riemannian geometry and extend the study of non-Riemannian connections in

Lorentzian manifolds.
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1. Introduction

The Tanaka–Webster connection was introduced by Tanno [16] as a generalization of the

well-known connection formulated in the late 1970s by Tanaka [15] and independently by
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Webster [19]. This connection coincides with the classical Tanaka–Webster connection when

the associated CR-structure is integrable. It is defined as the canonical affine connection on

a non-degenerate, pseudo-Hermitian CR-manifold.

For a real hypersurface in a Kähler manifold endowed with an almost contact structure

(ϕ, ζ, η, g), Cho [3, 4] adapted Tanno’s g-Tanaka–Webster connection for a nonzero real

constant k. Utilizing this connection, several researchers have explored various geometric

properties of real hypersurfaces in complex space forms [17].

A Riemannian manifold is termed semisymmetric if its curvature tensor satisfies

R(H1,H2) ·R = 0, (1.1)

where R(H1,H2) is regarded as a field of linear operators acting on R. It is well established

that the class of semisymmetric manifolds properly contains locally symmetric manifolds

(where ∇R = 0). The concept of semisymmetry in Riemannian geometry was first investi-

gated by E. Cartan, A. Lichnerowicz, R. S. Couty, and N. S. Sinjukov.

A Riemannian manifold is called Ricci semisymmetric if its curvature tensor satisfies

R(H1,H2) · S = 0, (1.2)

where S denotes the Ricci tensor of type (0, 2). The class of Ricci semisymmetric manifolds

contains Ricci symmetric manifolds (where ∇S = 0) as a proper subset. Several researchers

have studied these manifolds extensively. It is known that every semisymmetric manifold

is Ricci semisymmetric, but the converse does not always hold. However, under certain

additional conditions, the equations

R(H1,H2) ·R = 0 and R(H1,H2) · S = 0

become equivalent. Szabó classified semisymmetric manifolds locally in [14], while funda-

mental studies in this area were carried out by Szabó [14], Boeckx et al. [2], and Kowalski

[6].

One notable example of a curvature condition related to semisymmetry is

Q ·R = 0, (1.3)

where Q is the Ricci operator defined by

S(H1,H2) = g(QH1,H2).
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Such curvature conditions naturally extend to pseudosymmetry-type conditions. The condi-

tion Q ·R = 0 was extensively studied by Verstraelen et al. in [18].

Several properties on Mβ and the g-TW connection have also been researched by numer-

ous geometers, such as ([1, 7, 8, 9, 10, 11, 12, 13]). Inspired by these foundational works, the

present paper aims to characterize Lorentzian β-Kenmotsu manifolds admitting the general-

ized Tanaka–Webster connection.

The arrangement of this paper is structured as follows: Section 2 presents the

fundamental definitions and preliminary results related to Lorentzian β-Kenmotsu (LβK)

manifolds. We introduce the structure equations and discuss essential properties that will

be used in subsequent sections. In section 3, we explore the curvature properties of a LβK

manifold admitting the generalized Tanaka-Webster (g-TW) connection. We derive explicit

expressions for the curvature tensor R̃ and the Ricci tensor S̃ with respect to g-TW connection

and establish some interesting geometric properties. Section 4 investigates the condition

R̃ · S̃ = 0 in a LβK manifold equipped with g-TW connection. We demonstrate that under

this condition, the manifold becomes a generalized η-Einstein manifold with respect to the

g-TW connection. In section 5, we analyze the condition S̃ · R̃ = 0 and establish that the

LβK manifold satisfying this curvature restriction is also a generalized η-Einstein manifold

with respect to g-TW connection. Section 6 is devoted to the study of conformally flat LβK

manifolds under the influence of g-TW connection. We prove that such manifolds naturally

admit a generalized η-Einstein structure with respect to g-TW connection. In section 7, we

focus on ζ-conformally flat LβK manifolds and derive certain interesting curvature properties

arising from this condition. Section 8 examines the notion of pseudo-conformal flatness in

the framework of LβK manifolds. Finally, in section 9, we construct an explicit example of

a 3-dimensional LβK manifold admitting g-TW connection and verify that it satisfies the

curvature conditions discussed in the previous sections. This structured approach ensures

a coherent development of our results, highlighting the interplay between various curvature

conditions and the geometry of Lorentzian β-Kenmotsu manifolds.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold is termed as LβK manifold (Mβ), if it

possesses a (1, 1)-tensor field ϕ, a contravariant vector field ζ, a covariant vector field η and

a Lorentzian metric g satisfying
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ϕ2H1 = H1 + η(H1)ζ, g(H1, ζ) = η(H1), (2.4)

η(ζ) = −1, ϕ(ζ) = 0, η(ϕH1) = 0, (2.5)

g(ϕH1, ϕH2) = g(H1,H2) + η(H1)η(H2), (2.6)

g(ϕH1,H2) = g(H1, ϕH2), (2.7)

for all vector fields H1,H2 on Mβ. Furthermore, Mβ satisfies

∇H1ζ = β[H1 − η(H1)ζ], (2.8)

(∇H1η)(H2) = β[g(H1,H2)− η(H1)η(H2)], (2.9)

(∇H1ϕ)(H2) = β[g(ϕH1,H2)ζ − η(H2)ϕH1], (2.10)

where ∇ represents the covariant differentiation operator with respect to the Lorentzian

metric g. Moreover, on Mβ, the following relations hold

η(R(H1,H2)H3) = β2[g(H1,H3)η(H2)− g(H2,H3)η(H1)], (2.11)

R(H1,H2)H3 = β2[g(H1,H3)H2 − g(H2,H3)H1], (2.12)

R(ζ,H1)H2 = β2[η(H2)H1 − g(H1,H2)ζ], (2.13)

R(H1,H2)ζ = β2[η(H1)H2 − η(H2)H1], (2.14)

S(H1, ζ) = −2nβ2η(H1), (2.15)

QH1 = −2nβ2H1, Qζ = −2nβ2ζ, (2.16)

S(ζ, ζ) = 2nβ2, (2.17)

g(QH1,H2) = S(H1,H2) = −2nβ2g(H1,H2), (2.18)

S(ϕH1, ϕH2) = S(H1,H2)− 2nβ2η(H1)η(H2), (2.19)

for any vector fields H1,H2 and H3 on Mβ, where R, S and Q stand for the curvature tensor,

the Ricci tensor and the Ricci operator on Mβ, respectively.

Let {e1, e2, e3, . . . , en = ζ} be an orthonormal basis for the tangent space at any point on

the manifold Mβ. The Ricci tensor S and the scalar curvature r of the manifold are given

by the following expression

S(H1,H2) =

2n+1∑
i=1

εig(R(ei,H1)H2, ei), (2.20)
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where εi are the signs corresponding to the metric signature.

On LβK-manifolds, the scalar curvature r is given by

r =
2n+1∑
i=1

εiS(ei, ei), (2.21)

where εi are the signs corresponding to the metric signature. Additionally, we have

g(H1,H2) =

2n+1∑
i=1

εig(H1, ei)g(H2, ei), (2.22)

where H1,H2 ∈ χ(Mβ) and εi = g(ei, ei) = ±1.

Definition 2.1 A LβK-manifold Mβ is referred to as a generalized η-Einstein manifold

if its Ricci tensor S takes the form

S(H1,H2) = ν1g(H1,H2) + ν2η(H1)η(H2) + ν3Φ(H1,H2), (2.23)

where Φ(H1,H2) = g(ϕH1,H2) is the fundamental 2-form of the manifold Mβ and ν1, ν2,

ν3 are smooth functions on Mβ.

If ν3 = 0, then Mβ is said to be an η-Einstein manifold.

If ν2 = 0, ν3 = 0, then Mβ is said to be an Einstein manifold.

Definition 2.2 In a (2n + 1)-dimensional (n > 1) almost contact metric manifold, the

Weyl-conformal curvature tensor C (also known as conformal curvature tensor) with respect

to the Levi-Civita connection is defined as follows (see [20]):

C(H1,H2)H3 = R(H1,H2)H3 −
1

(2n− 1)

[
S(H2,H3)H1 − S(H1,H3)H2 + g(H2,H3)QH1

− g(H1,H3)QH2

]
+

r

2n(2n− 1)

[
g(H2,H3)H1 − g(H1,H3)H2

]
. (2.24)

for any vector fields H1,H2 and H3 on Mβ, R and r represent the curvature tensor and the

scalar curvature with respect to the Levi-Civita connection, respectively.

Definition 2.3 The sectional curvature κ(H1,H2) of a manifold is given by

κ(H1,H2) = − R(H1,H2,H1,H2)

g(H1,H1)g(H2,H2)− g(H1,H2)2
, (2.25)

where R(H1,H2,H1,H2) represents the associated curvature tensor.



572 G. P. SINGH, P. SHARMA, AND Z. FATMA

3. Curvature properties of a LβK manifold admitting g-TW connection

The g-TW connection ∇̃, associated with the Levi-Civita connection ∇, is defined by

[16, 5]

∇̃H1H2 = ∇H1H2 + (∇H1η)(H2)ζ − η(H2)∇H1ζ − η(H1)ϕH2, (3.26)

for any vector fields H1 and H2 on Mβ. Using (2.8) and (2.9) in (3.26), we obtain

∇̃H1H2 = ∇H1H2 + βg(H1,H2)ζ − βη(H2)H1 − η(H1)ϕH2, (3.27)

for all smooth vector fields H1 and H2 on Mβ.

Substituting H2 = ζ in (3.27), we have

∇̃H1ζ = 2βH1. (3.28)

Let R̃ and R denote the curvature tensors of Mβ with respect to the connections ∇̃ and ∇,

respectively. The curvature tensor of a (2n+ 1)-dimensional LβK manifold with respect to

the g-TW connection ∇̃ is defined by

R̃(H1,H2)H3 = ∇̃H1∇̃H2H3 − ∇̃H2∇̃H1H3 − ∇̃[H1,H2]H3. (3.29)

By virtue of (3.27) in (3.29), we obtain

R̃(H1,H2)H3 = R(H1,H2)H3 + ρη(H1)[g(H2,H3)ζ − η(H3)H2]

− ρη(H2)[g(H1,H3)ζ − η(H3)H1] + 3β2[g(H2,H3)H1 − g(H1,H3)H2]

− 2β[η(H2)g(H1, ϕH3)ζ − η(H1)g(H2, ϕH3)ζ], (3.30)

where ρ = ζβ and H1,H2,H3 are any vector fields on Mβ.

By taking the inner product of (3.30) with the vector field H4, we have

R̃(H1,H2,H3,H4) = R(H1,H2,H3,H4) + ρη(H1)[η(H4)g(H2,H3)− η(H3)g(H2,H4)]

− ρη(H2)[η(H4)g(H1,H3)− η(H3)g(H1,H4)]

+ 3β2[g(H2,H3)g(H1,H4)− g(H1,H3)g(H2,H4)]

− 2βη(H4)[η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)], (3.31)

where R̃(H1,H2,H3,H4) = g(R̃(H1,H2)H3,H4) is the curvature tensor associated with ∇̃.
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Let {e1, e2, e3, . . . , e2n+1} be a local orthonormal basis of the tangent space at any point of

the manifoldMβ. By settingH1 = H4 = ei in (3.31) and summing over i for 1 ≤ i ≤ (2n+1),

we obtain

S̃(H2,H3) = S(H2,H3) + (6nβ2 − ρ)g(H2,H3) + (2n− 1)ρη(H2)η(H3)− 2βΦ(H2,H3),

(3.32)

for all vector fields H2,H3 on Mβ, where S̃ and S denote the Ricci tensor of Mβ with respect

to the connections ∇̃ and ∇ respectively.

Using (3.32) , the Ricci operator Q̃ with respect to the connection ∇̃ is determined by

Q̃H2 = QH2 + (6nβ2 − ρ)H2 + (2n− 1)ρη(H2)ζ − 2βϕH2. (3.33)

Let r̃ and r denote the scalar curvature of Mβ with respect to the connections ∇̃ and ∇,

respectively. Let {e1, e2, e3, . . . , e2n+1} be a local orthonormal basis of the tangent space at

any point of the manifold Mβ. By setting H2 = H3 = ei in (3.32) and summing over i for

1 ≤ i ≤ (2n+ 1), we obtain

r̃ = r + 6n(2n+ 1)β2 − 4nρ− 2βψ, (3.34)

where ψ = trace(ϕ).

From above discussion, we state the following:

Theorem 3.1 In a (2n+1)-dimensional LβK manifold admitting g-TW connection ∇̃, the

following holds:

(i) The curvature tensor R̃, Ricci tensor S̃, Ricci operator Q̃, and scalar curvature r̃ with

respect to ∇̃ are given by (3.30), (3.32), (3.33), and (3.34) respectively,

(ii) R̃(H1,H2)H3 + R̃(H2,H1)H3 = 0,

(iii) R̃(H1,H2)H3 + R̃(H2,H3)H1 + R̃(H3,H1)H2 = 0,

(iv) The Ricci tensor S̃(H1,H2) is symmetric in nature.

Now, let Mβ be a Ricci flat with respect to the g-TW connection ∇̃. Then from (3.32),

we lead to

S(H2,H3) = −(6nβ2 − ρ)g(H2,H3)− (2n− 1)ρη(H2)η(H3) + 2βΦ(H2,H3), (3.35)
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where ρ = ζβ and Φ(H2,H3) = g(H2, ϕH3).

This leads to the following result:

Theorem 3.2 A LβK manifold Mβ is Ricci flat with respect to the g-TW connection ∇̃ if

and only if it is a generalized η-Einstein manifold with respect to the Levi-Civita connection

∇.

Now, if R̃(H1,H2)H3 = 0, then by virtue of (3.31), we have

R(H1,H2,H3,H4) = −ρη(H1)[η(H4)g(H2,H3)− η(H3)g(H2,H4)]

+ ρη(H2)[η(H4)g(H1,H3)− η(H3)g(H1,H4)]

− 3β2[g(H2,H3)g(H1,H4)− g(H1,H3)g(H2,H4)]

+ 2βη(H4)[η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)], (3.36)

Let ζ⊥ = {H1 : g(H1, ζ) = 0, ∀H1 ∈ χ(Mβ)} denotes a (2n + 1)-dimensional distribution

orthogonal to ζ, then for any H1,H2,H3,H4 ∈ ζ⊥, (3.36) takes the form

R(H1,H2,H3,H4) = −3β2[g(H2,H3)g(H1,H4)− g(H1,H3)g(H2,H4)]. (3.37)

Thus, we can state the following:

Theorem 3.3 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃. The curvature tensor of Mβ determined by H1,H2,H3,H4 ∈ ζ⊥ with respect to ∇̃

vanishes if and only if Mβ with respect to the Levi-Civita connection ∇ is isomorphic to the

hyperbolic space H2n+1(−3β2).

Replacing H3 by H1 and H4 by H2 in (3.37), we have

κ(H1,H2) = − R(H1,H2,H1,H2)

g(H1,H1)g(H2,H2)− g(H1,H2)2
= −3β2. (3.38)

Hence, we obtain the following result:

Corollary 3.1 If R̃(H1,H2)H3 = 0 in a LβK manifold, then the sectional curvature of

the plane section determined by H1,H2 ∈ ζ⊥ is −3β2.
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Furthermore, we obtain the following results:

Lemma 3.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connection

∇̃, then we have the following

(i) R̃(H1,H2)ζ = (2β2 − ρ)[η(H2)H1 − η(H1)H2],

(ii) R̃(ζ,H1)H2 = (2β2 − ρ)[g(H1,H2)ζ − η(H2)H1]− 2βΦ(H1,H2)ζ,

(iii) R̃(H1, ζ)H2 = −(2β2 − ρ)[g(H1,H2)ζ − η(H2)H1] + 2βΦ(H1,H2)ζ,

(iv) R̃(ζ,H1)ζ = (2β2 − ρ)ϕ2H1,

(v) S̃(H1, ζ) = 2n(2β2 − ρ)η(H1),

(vi) Q̃ζ = 2n(2β2 − ρ)ζ,

(vii) η(R̃(H1,H2)H3) = (2β2−ρ)[g(H2,H3)η(H1)−g(H1,H3)η(H2)]+2β[η(H2)Φ(H1,H3)−

η(H1)Φ(H2,H3)],

for any vector fields H1,H2 and H3 on Mβ.

Now, we define conformal curvature tensor with respect to g-TW connection ∇̃.

Definition 3.1 The conformal curvature tensor C̃ for a (2n+1)-dimensional LβK manifold

Mβ admitting g-TW connection is defined as

C̃(H1,H2)H3 = R̃(H1,H2)H3 −
1

(2n− 1)

[
S̃(H2,H3)H1 − S̃(H1,H3)H2 + g(H2,H3)Q̃H1

− g(H1,H3)Q̃H2

]
+

r̃

2n(2n− 1)

[
g(H2,H3)H1 − g(H1,H3)H2

]
. (3.39)

for any vector fields H1,H2 and H3 on Mβ. Here R̃, S̃ and r̃ are the Riemannian curvature

tensor, Ricci tensor and the scalar curvature with respect to the connection ∇̃, respectively

on Mβ.

Also, we can state the following:

Lemma 3.2 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connection

∇̃. Let C̃ be the conformal curvature tensor with respect to ∇̃. Then, we have the following

(i) C̃(H1,H2)H3 + C̃(H2,H1)H3 = 0,

(ii) C̃(H1,H2)H3 + C̃(H2,H3)H1 + C̃(H3,H1)H2 = 0,

for any vector fields H1,H2 and H3 on Mβ.
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4. Lorentzian β-Kenmotsu manifold admitting g-TW connection satisfying

R̃ · S̃ = 0 condition

Let us consider a LβK manifold admitting g-TW connection satisfying the condition

R̃(H1,H2) · S̃ = 0, (4.40)

for any vector fields H1,H2 on Mβ.

From (4.40), we infer

(R̃(H1,H2) · S̃)(F1,F2) = S̃(R̃(H1,H2)F1,F2) + S̃(F1, R̃(H1,H2)F2) = 0, (4.41)

for any vector fields H1,H2,F1 and F2 on Mβ.

Substituting H1 = ζ in (4.41), we have

S̃(R̃(ζ,H2)F1,F2) + S̃(F1, R̃(ζ,H2)F2) = 0, (4.42)

By virtue of (3.30), we have

S̃(R̃(ζ,H2)F1,F2) = (2β2 − ρ)[g(H2,F1)S̃(ζ,F2)− η(F1)S̃(H2,F2)]− 2βΦ(H2,F1)S̃(ζ,F2),

(4.43)

and

S̃(F1, R̃(ζ,H2)F2) = (2β2 − ρ)[g(H2,F2)S̃(F1, ζ)− η(F2)S̃(F1,H2)]− 2βΦ(H2,F2)S̃(F1, ζ),

(4.44)

where Φ(H2,F1) = g(H2, ϕF1) and Φ(H2,F2) = g(H2, ϕF2).

Substituting (4.43) and (4.44) in (4.42), we obtain

(2β2 − ρ)[g(H2,F1)S̃(ζ,F2)− η(F1)S̃(H2,F2) + g(H2,F2)S̃(F1, ζ)− η(F2)S̃(F1,H2)]

−2β[Φ(H2,F1)S̃(ζ,F2) + Φ(H2,F2)S̃(F1, ζ)] = 0.

(4.45)

Setting F1 = ζ in (4.45) and on further simplification, we have

S̃(H2,F2) = 2n(2β2 − ρ)g(H2,F2)− 4nβΦ(H2,F2). (4.46)

Contracting above, we have

r̃ = 2n(2n+ 1)(2β2 − ρ)− 4nβψ, (4.47)
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where ψ = trace(ϕ).

By virtue of (3.32) in (4.46), we obtain

S(H2,F2) = −[2nβ2 + (2n− 1)ρ]g(H2,F2)− (2n− 1)ρη(H2)η(F2)− 2(2n− 1)βΦ(H2,F2).

(4.48)

Contracting above, we have

r = −2n(2n+ 1)β2 − 2(2n− 1)[nρ+ βψ]. (4.49)

Thus, based on the discussion above, we can present the following theorem:

Theorem 4.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying R̃ · S̃ = 0 condition. Then we have the following:

(i) Mβ is a generalized η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the

form (4.46) and having scalar curvature r̃ of the form (4.47), and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (4.48) and having scalar curvature r of the form (4.49).

5. Lorentzian β-Kenmotsu manifold admitting g-TW connection satisfying

S̃ · R̃ = 0 condition

Let us consider a LβK manifold admitting g-TW connection satisfying the condition

(S̃(H1,H2) · R̃)(F1,F2)H3 = 0, (5.50)

for any vector fields H1,H2,H3,F1 and F2 on Mβ.

From(5.50), we infer that

(H1 ∧S̃
H2)R̃(F1,F2)H3 + R̃((H1 ∧S̃

H2)F1,F2)H3 + R̃(F1, (H1 ∧S̃
H2)F2)H3

+R̃(F1,F2)(H1 ∧S̃
H2)H3 = 0, (5.51)

where the endomorphism H1 ∧S̃
H2 is defined by

(H1 ∧S̃
H2)H3 = S̃(H2,H3)H1 − S̃(H1,H3)H2. (5.52)
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Substituting H2 = ζ in (5.51) and on further simplification, we obtain

S̃(ζ, R̃(F1,F2)H3)H1 − S̃(H1, R̃(F1,F2)H3)ζ + S̃(ζ,F1)R̃(H1,F2)H3

−S̃(H1,F1)R̃(ζ,F2)H3 + S̃(ζ,F2)R̃(F1,H1)H3 − S̃(H1,F2)R̃(F1, ζ)H3

+S̃(ζ,H3)R̃(F1,F2)H1 − S̃(H1,H3)R̃(F1,F2)ζ = 0. (5.53)

Taking inner product of (5.53) with ζ, we have

S̃(ζ, R̃(F1,F2)H3)η(H1) + S̃(H1, R̃(F1,F2)H3) + S̃(ζ,F1)η(R̃(H1,F2)H3)

−S̃(H1,F1)η(R̃(ζ,F2)H3) + S̃(ζ,F2)η(R̃(F1,H1)H3)− S̃(H1,F2)η(R̃(F1, ζ)H3)

+S̃(ζ,H3)η(R̃(F1,F2)H1)− S̃(H1,H3)η(R̃(F1,F2)ζ) = 0. (5.54)

Setting F1 = H3 = ζ in (5.54) and on simplification, we have

(2β2 − ρ)[S̃(H1,F2) + η(F2)S̃(H1, ζ)] + 2n(2β2 − ρ)2[g(H1,F2) + η(H1)η(F2)]

−4nβ(2β2 − ρ)Φ(H1,F2) = 0. (5.55)

From (3.32), we have

S̃(H1, ζ) = 2n(2β2 − ρ)η(H1). (5.56)

Using (5.56) in (5.55), we obtain

S̃(H1,F2) = −2n(2β2 − ρ)g(H1,F2)− 4n(2β2 − ρ)η(H1)η(F2) + 4nβΦ(H1,F2). (5.57)

Contracting above, we have

r̃ = −2n(2n− 1)(2β2 − ρ) + 4nβψ, (5.58)

where ψ = trace(ϕ).

Furthermore, using (3.32) in (5.57), we obtain

S(H1,F2) = [(2n+ 1)ρ− 10nβ2]g(H1,F2) + [(2n+ 1)ρ− 8nβ2]η(H1)η(F2)

+ 2(2n+ 1)βΦ(H1,F2). (5.59)

Contracting above, we have

r = 2n(2n+ 1)ρ− 2n(10n+ 1)β2 + 2(2n+ 1)βψ. (5.60)

Thus, based on the discussion above, we can present the following theorem:
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Theorem 5.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying S̃ · R̃ = 0 condition. Then we have the following:

(i) Mβ is a generalized η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the

form (5.57) and having scalar curvature r̃ of the form (5.58), and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (5.59) and having scalar curvature r of the form (5.60).

6. Conformally flat Lorentzian β-Kenmotsu manifold admitting g-TW

connection

In this section, we examine conformally flat Lorentzian β-Kenmotsu manifold admitting

g-TW connection ∇̃.

Definition 6.1 A LβK manifold is said to be conformally flat with respect to g-TW

connection ∇̃ if it satisfies

C̃(H1,H2)H3 = 0, (6.61)

for any vector fields H1,H2 and H3 on Mβ.

By virtue of (6.61) in (3.39), we obtain

R̃(H1,H2)H3 =
1

(2n− 1)

[
S̃(H2,H3)H1 − S̃(H1,H3)H2 + g(H2,H3)Q̃H1 − g(H1,H3)Q̃H2

]
− r̃

2n(2n− 1)

[
g(H2,H3)H1 − g(H1,H3)H2

]
. (6.62)

Taking inner product of (6.62) with ζ and on further simplification, we have

R̃(H1,H2,H3, ζ) =
1

(2n− 1)

[
S̃(H2,H3)η(H1)− S̃(H1,H3)η(H2)

]
+

[
4n2(2β2 − ρ)− r̃

(2n− 1)

]
[g(H2,H3)η(H1)− g(H1,H3)η(H2)] . (6.63)

Further, on substituting H4 = ζ in (3.31) and using (2.12), we obtain

R̃(H1,H2,H3, ζ) = (2β2 − ρ) [g(H2,H3)η(H1)− g(H1,H3)η(H2)]

+ 2β [η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)] . (6.64)
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Using (6.64) in (6.63), we infer

S̃(H2,H3)η(H1)− S̃(H1,H3)η(H2) =

[
r̃ − 2n(2β2 − ρ)

2n

]
[g(H2,H3)η(H1)− g(H1,H3)η(H2)]

+ 2(2n− 1)β [η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)] .

(6.65)

Assuming H1 = ζ in (6.65) and on further simplification, we have

S̃(H2,H3) =

[
r̃ − 2n(2β2 − ρ)

2n

]
g(H2,H3) +

[
r̃ − 2n(2n+ 1)(2β2 − ρ)

2n

]
η(H2)η(H3)

− 2(2n− 1)βΦ(H2,H3), (6.66)

where Φ(H2,H3) = g(H2, ϕH3). Using (3.32) in (6.66), we obtain

S(H2,H3) =

[
r + 2nβ2 − 2βψ

2n

]
g(H2,H3) +

[
r + 2n(2n+ 1)β2 − 2βψ

2n

]
η(H2)η(H3)

− 4(n− 1)βΦ(H2,H3). (6.67)

Thus, based on the discussion above, we can present the following theorem:

Theorem 6.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying conformally flat condition. Then we have the following:

(i) Mβ is a generalized η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the

form (6.66), and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (6.67).

7. ζ-conformally flat Lorentzian β-Kenmotsu manifold admitting g-TW

connection

In this section, we examine ζ-conformally flat Lorentzian β-Kenmotsu manifold admitting

g-TW connection ∇̃.

Definition 7.1 A LβK manifold is said to be ζ-conformally flat with respect to g-TW

connection ∇̃ if it satisfies

C̃(H1,H2)ζ = 0, (7.68)
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for any vector fields H1,H2 on Mβ.

Setting H3 = ζ in (3.39) and using (7.68), we obtain

R̃(H1,H2)ζ =
1

(2n− 1)

[
S̃(H2, ζ)H1 − S̃(H1, ζ)H2 + η(H2)Q̃H1 − η(H1)Q̃H2

]
− r̃

2n(2n− 1)

[
η(H2)H1 − η(H1)H2

]
. (7.69)

On further simplification, we have

η(H2)Q̃H1 − η(H1)Q̃H2 =

[
r̃ − 2n(2β2 − ρ)

2n

] [
η(H2)H1 − η(H1)H2

]
. (7.70)

Taking inner product of (7.70) with H3, we have

η(H2)S̃(H1,H3)− η(H1)S̃(H2,H3) =

[
r̃ − 2n(2β2 − ρ)

2n

] [
η(H2)g(H1,H3)− η(H1)g(H2,H3)

]
.

(7.71)

Substituting H1 = ζ in (7.71), we obtain

S̃(H2,H3) =

[
r̃ − 2n(2β2 − ρ)

2n

]
g(H2,H3) +

[
r̃ − 2n(2n+ 1)(2β2 − ρ)

2n

]
η(H2)η(H3).

(7.72)

Using (3.32) in (7.72), we have

S(H2,H3) =

[
r + 2nβ2 − 2βψ

2n

]
g(H2,H3) +

[
r + 2n(2n+ 1)β2 − 2βψ

2n

]
η(H2)η(H3)

+ 2βΦ(H2,H3), (7.73)

where Φ(H2,H3) = g(H2, ϕH3).

Thus, based on the discussion above, we can present the following theorem:

Theorem 7.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying ζ-conformally flat condition. Then we have the following:

(i) Mβ is an η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the form (7.72),

and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (7.73).
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8. Pseudo-conformally flat Lorentzian β-Kenmotsu manifold admitting

g-TW connection

In this section, we examine pseudo-conformally flat Lorentzian β-Kenmotsu manifold ad-

mitting g-TW connection ∇̃.

Definition 8.1 A LβK manifold is said to be pseudo-conformally flat with respect to

g-TW connection ∇̃ if it satisfies

g(C̃(ϕH1,H2)H3, ϕH4) = 0, (8.74)

for any vector fields H1,H2,H3 and H4 on Mβ.

By virtue of (3.39) and (8.74), we have

R̃(ϕH1,H2,H3, ϕH4) =
1

(2n− 1)

[
S̃(H2,H3)g(ϕH1, ϕH4)− S̃(ϕH1,H3)g(H2, ϕH4)

+g(H2,H3)S̃(ϕH1, ϕH4)− g(ϕH1,H3)S̃(H2, ϕH4)
]

− r̃

2n(2n− 1)
[g(H2,H3)g(ϕH1, ϕH4)− g(ϕH1,H3)g(H2, ϕH4)] .

(8.75)

Let {e1, e2, e3, . . . , e2n+1} be a local orthonormal basis of the tangent space at any point of

the manifoldMβ. By settingH2 = H3 = ei in (8.75) and summing over i for 1 ≤ i ≤ (2n+1),

we obtain

(2n+ 1)r̃g(ϕH1, ϕH4) = 0. (8.76)

Since (2n+ 1) ̸= 0, therefore

r̃g(ϕH1, ϕH4) = 0. (8.77)

By virtue of (2.6), we have

r̃ [g(H1,H4) + η(H1)η(H4)] = 0. (8.78)

Replacing H1 by Q̃H1 in (8.78), we have

r̃
[
S̃(H1,H4) + 2n(2β2 − ρ)η(H1)η(H4)

]
= 0. (8.79)

From above, we infer following cases:
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Case I: If r̃ = 0. Then from (3.34), we obtain

r = −6n(2n+ 1)β2 + 4nρ+ 2βψ, (8.80)

where ψ = trace(ϕ).

Case II: If r̃ ̸= 0. Then from (8.79), we have

S̃(H1,H4) = −2n(2β2 − ρ)η(H1)η(H4). (8.81)

Contracting above, we infer

r̃ = 2n(2β2 − ρ). (8.82)

Using (3.32) in (8.81), we obtain

S(H1,H4) = −(6nβ2 − ρ)g(H1,H4)− (4nβ2 − ρ)η(H1)η(H4) + 2βΦ(H1,H4), (8.83)

where Φ(H1,H4) = g(H1, ϕH4).

Contracting above, we have

r = −2n(6n+ 1)β2 + 2nρ+ 2βψ. (8.84)

Thus, based on the discussion above, we can present the following theorem:

Theorem 8.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying pseudo-conformally flat condition. Then we have the following:

(i) The scalar curvature r̃ with respect to ∇̃ vanishes. Moreover, the scalar curvature r with

respect to Levi-Civita connection ∇ is of the form (8.80), or

(ii) Mβ is an η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the form (8.81)

and having scalar curvature r̃ of the form (8.82). Moreover, Mβ is a generalized η-Einstein

manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (8.83)

and having scalar curvature of the form (8.84).

9. Example of a three-dimensional Lorentzian β-Kenmotsu manifold

admitting g-TW connection

In this section, we illustrate an example of a three-dimensional Lorentzian β-Kenmotsu

manifold. Consider the three-dimensional manifold

M3 = {(x, y, z) ∈ R3 : z > 0}
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where (x, y, z) are the standard coordinates in R3. We define the vector fields

ϑ1 = e−z ∂

∂x
, ϑ2 = e−z ∂

∂y
, ϑ3 = e−z ∂

∂z
= ζ,

which remain linearly independent at each point in M .

The Lorentzian metric g is given by

g(ϑ1, ϑ1) = 1, g(ϑ2, ϑ2) = 1, g(ϑ3, ϑ3) = −1,

g(ϑ1, ϑ2) = g(ϑ2, ϑ3) = g(ϑ3, ϑ1) = 0,

which can be expressed as

g = e2z(dx⊗ dx+ dy ⊗ dy − dz ⊗ dz).

Let the 1-form η satisfy

η(H1) = g(H1, ϑ3)

The (1, 1)-tensor field ϕ is defined as

ϕ(ϑ1) = −ϑ2, ϕ(ϑ2) = −ϑ1, ϕ(ϑ3) = 0.

For any vector fields H1,H2 on M3, the following conditions hold:

ϕ2(H1) = H1 + η(H1)ϑ3,

g(ϕH1, ϕH2) = g(H1,H2) + η(H1)η(H2).

Thus, the structure M3(ϕ, ζ, η, g) forms an almost contact metric structure on M3, where

we set ϑ3 = ζ.

The Lie brackets of the vector fields are computed as follows:

[ϑ1, ϑ3] = e−zϑ1, [ϑ1, ϑ2] = 0, [ϑ2, ϑ3] = e−zϑ2.

Using Koszul’s formula, the Levi-Civita connection ∇ is obtained as
∇ϑ1ϑ1 = e−zϑ3, ∇ϑ2ϑ1 = 0, ∇ϑ3ϑ1 = 0,

∇ϑ1ϑ2 = 0, ∇ϑ2ϑ2 = e−zϑ3, ∇ϑ3ϑ2 = 0,

∇ϑ1ϑ3 = 0, ∇ϑ2ϑ3 = 0, ∇ϑ3ϑ3 = 0.

(9.85)
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From the above results, setting β = e−z, we conclude that M3(ϕ, ζ, η, g) defines a Mβ

structure in dimension three. From (3.27) and (9.85), we obtain
∇̃ϑ1ϑ1 = 2e−zϑ3, ∇̃ϑ2ϑ1 = 0, ∇̃ϑ3ϑ1 = −ϑ2,

∇̃ϑ1ϑ2 = 0, ∇̃ϑ2ϑ2 = 2e−zϑ3, ∇̃ϑ3ϑ2 = −ϑ1,

∇̃ϑ1ϑ3 = e−zϑ1, ∇̃ϑ2ϑ3 = e−zϑ2, ∇̃ϑ3ϑ3 = 0.

(9.86)

The components of the curvature tensor with respect to the Levi-Civita connection ∇ are

given by:
R(ϑ1, ϑ2)ϑ1 = e−2zϑ2, R(ϑ2, ϑ3)ϑ1 = 0, R(ϑ1, ϑ3)ϑ1 = e−2zϑ3,

R(ϑ1, ϑ2)ϑ2 = −e−2zϑ1, R(ϑ2, ϑ3)ϑ2 = e−2zϑ3, R(ϑ1, ϑ3)ϑ2 = 0,

R(ϑ1, ϑ2)ϑ3 = 0, R(ϑ2, ϑ3)ϑ3 = e−2zϑ2, R(ϑ1, ϑ3)ϑ3 = e−2zϑ1.

(9.87)

The components of the curvature tensor with respect to the g-TW connection ∇̃ are given

by:
R̃(ϑ1, ϑ2)ϑ1 = −2e−2zϑ2, R̃(ϑ2, ϑ3)ϑ1 = −2e−zϑ3, R̃(ϑ1, ϑ3)ϑ1 = −2e−2zϑ3 + ρϑ3,

R̃(ϑ1, ϑ2)ϑ2 = 2e−2zϑ1, R̃(ϑ2, ϑ3)ϑ2 = −2e−2zϑ3 + ρϑ3, R̃(ϑ1, ϑ3)ϑ2 = −2e−zϑ3,

R̃(ϑ1, ϑ2)ϑ3 = 0, R̃(ϑ2, ϑ3)ϑ3 = −2e−2zϑ2 + ρϑ2, R̃(ϑ1, ϑ3)ϑ3 = −2e−2zϑ1 + ρϑ1.

(9.88)

From (9.87), the non-vanishing components of Ricci tensor with respect to Levi-Civita con-

nection ∇ is as follows

S(ϑ1, ϑ1) = −2e−2z, S(ϑ2, ϑ2) = −2e−2z, S(ϑ3, ϑ3) = 2e−2z, (9.89)

which implies that the scalar curvature r with respect to ∇ can be evaluated by

r =
3∑

i=1

εiS(ei, ei) = −6e−2z. (9.90)

Furthermore, from (9.88), the non-vanishing components of Ricci tensor with respect to the

g-TW connection ∇̃ are given as

S̃(ϑ1, ϑ1) = 4e−2z − ρ, S̃(ϑ2, ϑ2) = 4e−2z − ρ, S̃(ϑ3, ϑ3) = −4e−2z + 2ρ, (9.91)

which implies that the scalar curvature r̃ with respect to ∇̃ can be evaluated by

r̃ =

3∑
i=1

εiS̃(ei, ei) = 12e−2z − 4ρ. (9.92)
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which can also be verified from (3.34) where ψ can be evaluated as

ψ = trace(ϕ) =
3∑

i=1

εiΦ(ei, ei) = 0. (9.93)

10. Conclusion

In this paper, we conducted a comprehensive study of Lorentzian β-Kenmotsu (LβK)

manifolds equipped with the generalized Tanaka-Webster (g-TW) connection. Beginning

with fundamental definitions and preliminary results, we established the essential structure

equations and derived explicit expressions for the curvature tensor R̃ and the Ricci tensor

S̃ in this setting. Our analysis revealed several significant geometric properties, including

the conditions under which an LβK manifold admitting the g-TW connection becomes a

generalized η-Einstein manifold.

We demonstrated that a LβK manifold satisfies crucial curvature identities, such as the

symmetry and skew-symmetry of the curvature tensor, and explored conditions like R̃ ·

S̃ = 0 and S̃ · R̃ = 0, under which the manifold naturally admits a generalized η-Einstein

structure. Further, we investigated the geometric implications of conformally flat and ζ-

conformally flat conditions, showing that such manifolds inherently exhibit the generalized

η-Einstein property with respect to the g-TW connection. Additionally, we examined the

notion of pseudo-conformal flatness in LβK manifolds, establishing key results regarding

scalar curvature and the structure of the Ricci tensor.

To solidify our theoretical findings, we provided an explicit example of a three-dimensional

LβK manifold equipped with the g-TW connection and verified that it satisfies the curvature

conditions discussed throughout the paper. This study offers new insights into the geometric

nature of Lorentzian β-Kenmotsu manifolds and their curvature properties under different

structural constraints. The results presented here open pathways for further research, in-

cluding extensions to higher-dimensional cases, the study of additional curvature conditions,

and potential applications in mathematical physics and relativity.
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Abstract. This paper studies semi-symmetric statistical manifolds (3S-manifolds for short)

to generalise semi-Weyl manifolds. We prove that this class of manifolds is invariant un-
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product manifold from 3S structures on the fiber and base manifolds.

Keywords: Semi-symmetric connection, Semi-Weyl structure, Dual connection, Semi-

symmetric statistical manifold, 3S-manifold.
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There have been several attempts to generalize statistical structures which have led for in-

stance to quasi-statistical structures, Weyl, semi-Weyl, quasi-semi-weyl structures and semi-

symmetric non-metric statistical structures (see [1, 15, 6] and references therein). But, all

these generalizations failed to satisfy some nice properties such as invariance under conformal

changing of the Riemannian metric.

In this paper, we introduce and study Semi-Symmetric statistical manifolds (3S-manifolds

for short), (M, g, ω, ω∗,∇) which form a subclass of quasi-semi-Weyl manifolds, such that

both ∇ and ∇∗ are semi-symmetric connections. It appears that unlike the other general-

izations of statistical manifolds [1, 15], the 3S-manifolds are invariant under the conformal

changing of the metric. Other good results are obtained and compared, when possible, to

the existing ones in a statistical setting.

The paper is organized as follows: The next Section is devoted to the preliminaries where

we recall basic definitions and properties of statistical structures that we need in the sequel of

the paper. Section 3 deals with 3S structures. We show that non-trivial statistical structures

can be generated from 3S structures and vice-versa. And when the so-called 3S-mean vector

field is torse-forming, the 3S connection is of constant sectional curvature if and only if its

associated statistical connection is of the same constant sectional curvature. In the setting

of this paper, α-connections associated to 3S-connections are introduced and studied and it

is shown that surprisingly, the curvatures relations obtained for α-3S-connections are similar

to those of the classical statistical setting. The section ends with the study of the analogue of

the statistical curvature for the 3S connections and the condition for the statistical sectional

curvature to be constant. In Section 4, we briefly show that a submanifold of a 3S-manifold

is also a 3S-manifold. Finally, Section 5 deals with the warped product of 3S-manifolds. We

give a way to construct a 3S structure on a warped product, starting with 3S structures on

fiber and the base manifolds.

2. Preliminaries

In the present section, we give some basic definitions and fundamental formulae useful in

the sequel.

In what follows, M denotes a smooth manifold, g a Riemannian metric on M , ∇g the

Levi-Civita connection of g, and ∇ an affine connection on M . Throughout the paper, we

shall denote the tangent bundle of M by TM , its cotangent bundle by T ∗M and the set of

smooth sections of TM (respectively, of T ∗M) by X(M) (respectively, by Ω1(M)). We will
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also write T∇ to denote the torsion of ∇. From now on, for any ω ∈ Ω1(M), we denote by

Sω the tensor

Sω = ω ⊗ I − I ⊗ ω,

where I : X(M) → X(M) is the identity map.

The dual connection of ∇ with respect to g is the unique affine connection ∇∗ on M such

that:

Xg(Y,Z) = g(∇XY,Z) + g(∇∗
XZ, Y ), (2.1)

for all X,Y, Z ∈ X(M). In this case the triplet (g,∇,∇∗) is called a dualistic structure on

M .

Definition 2.1 ([12]). A connection ∇ is said to be semi-symmetric affine connection if

there exists a 1−form ω such that T∇ = Sw.

Definition 2.2 ([10, 6]). The pair (g,∇) is called a statistical structure on M (and (M, g,∇)

a statistical manifold) when ∇ and its dual ∇∗ are torsion-free affine connections. This is

equivalent to saying that ∇ is torsion-free and the cubic form C = ∇g is totally symmetric,

that is

(∇Xg)(Y, Z) = (∇Y g)(X,Z) (2.2)

for all X,Y, Z ∈ X(M).

Definition 2.3 ([17]). Let ∇ be a torsion-free affine connection and let ω a 1-form on M .

The triplet (g, ω,∇) is called a Weyl structure on M (and (M, g, ω,∇) a Weyl manifold) if

(∇Xg)(Y, Z) = −ω(X)g(Y,Z), (2.3)

for all X,Y, Z ∈ X(M).

Definition 2.4 ([1]). Let ∇ be a torsion-free affine connection and let ω be a 1-form on

M . Then, (g, ω,∇) is called a semi-Weyl structure on M (and (M, g, ω,∇) a semi-Weyl

manifold) if

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = −g(Sω(X,Y ), Z), (2.4)

for all X,Y, Z ∈ X(M).
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In (2.3) and (2.4) when ω = 0 one finds ∇ = ∇g. Hence statistical structure, Weyl

structure and semi-Weyl structure may be regarded as generalizations of the Levi-Civita

connection. A direct computation show that for any affine connection ∇ one has:

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = g(T∇∗
(X,Y )− T∇(X,Y ), Z). (2.5)

for all X,Y, Z ∈ X(M).

Remark 2.1. Observe that when (M, g, ω,∇) is a semi-Weyl manifold, the dual connection

∇∗ is rather semi-symmetric.

Definition 2.5 ([1]). Let ∇ be an affine connection on M with torsion tensor T∇ and let ω

be a 1-form. Then, (g, ω,∇) is called a quasi-semi- Weyl structure on M (and (M, g, ω,∇)

a quasi-semi-Weyl manifold) if

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = −g(T∇(X,Y ) + Sω(X,Y ), Z),

for all X,Y, Z ∈ X(M).

In the next section we are interested in quasi-semi-Weyl structures (g, ω,∇) such that ∇

is semi-symmetric.

3. Semi-symmetric statistical manifolds

Semi-symmetric metric connections on statistical manifolds have been introduced and

studied in [12, 13, 3]. Such a connection is also called statistical semi-symmetric connection in

[13]. In this mentioned papers, the dual connection of a statistical semi-symmetric connection

∇ has the same torsion as ∇. We keep the same terminology to define something more

general. In what follows, the torsion of the dual of ∇ may be different from the one of ∇.

Definition 3.1. The pair (g,∇) is called a semi-symmetric statistical structure on M (and

(M, g,∇) a semi-symmetric statistical manifold) if there are two 1-forms ω and ω∗ on M

such that

T∇ = Sω and T∇∗
= Sω∗ .

To be short, such a structure will be called a 3S-structure and the connection ∇ a 3S-

connection.
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Semi-symmetric statistical structure is a generalization of semi-symmetric metric connec-

tion studied in [12, 13]. When (g, ω, ω∗,∇) is a 3S-structure on M , we set

ωS =
1

2
(ω + ω∗), (3.6)

and we call it the 3S-mean 1-form (for short the mean 1-form). The vector field V , g-

associated to ωS is called the mean vector field. The 3S-structure (g, ω, ω∗,∇) is said to be

closed when ωS is closed.

Example 3.1. We have the following simple examples of 3S-structures:

1. A statistical structure (g,∇) is a 3S-structure and is called the trivial 3S-structure,

where ω = ω∗ = 0.

2. A semi-Weyl structure (g, ω,∇) is a 3S-structure.

3. If (g,∇) is a statistical structure then for all 1-form ω onM , (g, ω,−ω,∇ =: ∇+ω⊗I)

is a 3S-structure. Just observe that the dual connection ∇∗
of ∇ with respect to g is

given by ∇∗
= ∇∗ + ω∗ ⊗ I with ω∗ = −ω.

It is proven in [6] that, if f is a function on M and ω1, ω2 are 1-forms g-associated to the

vector fields ξ1, ξ2 on M respectively, then there exists a unique affine connection ∇ which

satisfies the following equations:

T∇(X,Y ) = ω1(X)Y − ω1(Y )X, (3.7)

(∇Xg)(Y, Z) = f
(
ω2(Y )g(X,Z) + ω2(Z)g(X,Y )

)
. (3.8)

Such a connection has been called semi-symmetric non-metric connection and is given by

∇XY = ∇g
XY + ω1(Y )X − g(X,Y )ξ1 − fg(X,Y )ξ2.

Remark 3.1. All semi-symmetric non-metric affine connection are 3S-connections. But a

3S-connection needs not to be semi-symmetric non-metric affine connection.

Indeed, let ∇ be an affine connection which satisfies (3.7) and (3.8). Since X,Y, Z are

arbitrary in (3.8), so we have

(∇Y g)(X,Z) = f
(
ω2(X)g(Y,Z) + ω2(Z)g(X,Y )

)
. (3.9)

Using (3.8) and (3.9) we get

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = g(fω2(Y )X − fω2(X)Y, Z). (3.10)
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Moreover, using (3.7), (3.8) and (3.10) we have

T∇∗
(X,Y ) = (fω2 − ω1)(Y )X − (fω2 − ω1)(X)Y.

Hence T∇ = Sω1 and T∇∗
= Sω1−fω2 .

Conversely, take h a function on M . Then (g, dh,−dh,∇g + dh⊗ I) is 3S-structure on M

but

(∇Xg)(Y, Z) = −2(dh)(X)g(Y,Z),

which shows that ∇ is not a semi-symmetric non-metric affine connection.

The following theorem shows that unlike statistical structures, 3S-structures are preserved

under conformal changing of g.

Theorem 3.1. Let g̃ be a conformal metric of g such that for a function h on M we have,

g̃ = ehg. Then, (g, ω, ω∗,∇) is 3S-structure on M if and only if (g̃, ω, ω∗ + dh,∇) is 3S-

structure on M .

Proof. Let X,Y, Z be three vector fields on M , ∇d the dual connection of ∇ with respect to

g̃ and ∇∗ the dual connection of ∇ with respect to g. From the duality condition of ∇ with

respect to g̃ we have

Xg̃(Y, Z) = g̃(∇XY, Z) + g̃(Y,∇d
XZ),

that is

Xg(Y,Z) +X(h)g(Y, Z) = g(∇XY, Z) + g(Y,∇d
XZ). (3.11)

As X,Y and Z are arbitrary, from (3.11) we have

Zg(X,Y ) + Z(h)g(X,Y ) = g(∇ZY,X) + g(Y,∇d
ZX). (3.12)

Take (3.11) and substract (3.12), then

Xg(Y,Z)− Z(h)g(X,Y ) +X(h)g(Y,Z)− Zg(X,Y )

= g(∇XY,Z)− g(∇ZY,X) + g(T∇d
(X,Z) + [X,Z], Y ).

That is

g(Y,∇∗
XZ)− g(Y,∇∗

ZX) + g(Y,X(h)Z − Z(h)X)

= g(T∇d
(X,Z) + [X,Z], Y ).

Therefore, we have

T∇d
(X,Z) = T∇∗

(X,Z) + Sdh(X,Z).
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Thus T∇d
= Sω∗+dh if and only if T∇∗

= Sω∗ . This ends the proof. □

One can easily prove the following:

Theorem 3.2. Let (g,M) be a Riemannian manifold, ∇ a connection on M , η, ω and ω∗

some 1-forms on M such that 2ωS = ω + ω∗. Set V and ζ vector fields g-associated to ωS

and η respectively, i.e., g(X,V ) = ωS(X) and g(X, ζ) = η(X). The pair (g, ∇̃) where

∇̃ = ∇− ω ⊗ I + η ⊗ I + I ⊗ η + g(., .)(ζ − 2V ), (3.13)

is a statistical structure on M if and only if (g, ω, ω∗,∇) is a 3S-structure on M . Moreover,

the dual of ∇̃ with respect to g is given by

(∇̃)∗ = ∇∗ + ω ⊗ I − η ⊗ I − I ⊗ η + 2I ⊗ ωS − g(., .)ζ, (3.14)

where ∇∗ is the dual of ∇ with respect to g.

Taking η = 0 in (3.13), one obtains

∇̃ = ∇− ω ⊗ I − 2g(., .)V, (3.15)

(∇̃)∗ = ∇∗ + ω ⊗ I + 2I ⊗ ωS . (3.16)

∇̃ is called the statistical connection with respect to ω and associated to ∇.

For a 3S-structure (g, ω, ω∗,∇) on M , the mean vector field V is called torse-forming with

respect to ω if

∇XV = ω(X)V,

for any X in X(M).

Example 3.2. We consider the manifold M = {(x, y) ∈ R2, x; y > 0} equipped with its

canonical metric g0 = dx2 + dy2 and we set the function h(x, y) = −1
2 ln(x+ y) on M . The

gradient ∇h of h with respect to g0 is given by

∇h = − 1

2(x+ y)
(⃗i+ j⃗),

where (⃗i, j⃗) = (∂x, ∂y) is the canonical basis of X(M). From Theorem 3.1, we see that

(M, g̃, ω, ω∗,∇g0) is a 3S-manifold, that is (M, g̃, ω∗, ω, (∇g0)∗) is a 3S-manifold, where g̃ =

e2hg0, ω = 0, ω∗ = 2dh, ∇g0 is a Levi-Civita connection with respect to g0 and the dual

(∇g0)∗ of ∇g0 with respect to g̃ is given by

(∇g0)∗ = ∇g0 + ω∗ ⊗ I. (3.17)
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Moreover, we have ωS = dh, that is (ωS)♯g̃ = V . From

g̃((ωS)♯g̃ , X) = X(h) = g0((dh)
♯g0 , X),

we get V = e−2h∇h. From (3.17), we have

(∇g0)∗XV = e−2h∇g0
X∇h, (3.18)

for any vector field X in M . Since (∇g0 )⃗ii⃗ = (∇g0 )⃗ij⃗ = (∇g0 )⃗j i⃗ = (∇g0 )⃗j j⃗ = 0⃗, we have

(∇g0 )⃗i∇h = − 1

x+ y
∇h and (∇g0 )⃗j∇h = − 1

x+ y
∇h. (3.19)

So, using (3.19), for any vector field X = X 1⃗i+X2j⃗ in M , we have

∇g0
X∇h = − 1

x+ y
[X1 +X2]∇h

= 2g0(∇h,X)∇h

= 2dh(X)∇h

= ω∗(X)∇h.

From (3.18), we get

(∇g0)∗XV = ω∗(X)V.

Thus, V is a torse-forming vector on the 3S-structure (M, g̃, ω∗, ω, (∇g0)∗) with respect to

ω∗.

Proposition 3.1. For a 3S-structure (g, ω, ω∗,∇) on M , for any 1-form η, we set ρ = η−ω

and Ω = ζ − 2V , where V and ζ are vector fields associated with ωS and η with respect to g

respectively. The relationship between the curvature R of (g, ω, ω∗,∇) and the curvature R̃

of the statistical structure (g, ∇̃) associated to (g, ω, ω∗,∇) is given by

R̃(X,Y )Z = R(X,Y )Z − (dω)(X,Y )Z + (dη)(X,Y )Z

+ g(Y,Z)∇XΩ− g(X,Z)∇Y Ω+ {g(Y,Z)ρ(X)− g(X,Z)ρ(Y )}Ω

+
{
Xη(Z)− η(X)η(Z) + ω(X)η(Z)− η(∇XZ)− η(Ω)g(X,Z)

}
Y

−
{
Y η(Z)− η(Y )η(Z) + ω(Y )η(Z)− η(∇Y Z)− η(Ω)g(Y, Z)

}
X,

for all X,Y, Z ∈ X(M).
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Proposition 3.2. Let (g, ω, ω∗,∇) be a 3S-structure on M . We assume that the sectional

curvatures of ∇ and ∇̃ defined as (3.15) are well-defined. Then, these sectional curvatures

are the same if and only if the mean vector field V is torse-forming with respect to ω.

Proof. Let X,Y be two linear independent vector fields on M . Let R̃ and R the curvature

of ∇̃ and ∇ respectively. From proposition 3.1, taking η = 0 we get

R̃(X,Y )Z = R(X,Y )Z − (dω)(X,Y )Z

+ 2g(Y,Z){ω(X)V −∇XV } − 2g(X,Z){ω(Y )V −∇Y V }.

Also we have

R̃(X,Y, Y,X) = R(X,Y, Y,X) + 2g(X,ω(X)V −∇XV ), (3.20)

where R̃(X,Y, Y,X) = g(R̃(X,Y )Y,X) and R(X,Y, Y,X) = g(R(X,Y )Y,X). Moreover,

from (3.20), R̃(X,Y, Y,X) = R(X,Y, Y,X) if and only if the vector field V is torse-forming

with respect ω. □

We define the tensor S by

S = ∇−∇g. (3.21)

Lemma 3.1. Let ∇ be an affine connection on M . Then, we have

g(X,S(Y, Z))− g(Y, S(X,Z)) = g(T∇∗
(X,Y ), Z), (3.22)

S(X,Y )− S(Y,X) = T∇(X,Y ), (3.23)

for all vectors fields X,Y, Z on M .

Proof. Let X,Y, Z be three vectors fields on M . From the duality condition of ∇g

Xg(Y,Z) = g(∇g
XY,Z) + g(Y,∇g

XZ),

and eq. (3.21), we get

g(∇∗
XY, Z) = g(∇g

XY, Z)− g(Y, S(X,Z)). (3.24)

Therefore, from (3.24) we obtain

g(X,S(Y,Z))− g(Y, S(X,Z)) = g(T∇∗
(X,Y ), Z).
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Moreover,

S(X,Y )− S(Y,X) = ∇XY −∇g
XY −∇YX +∇g

YX

= T∇(X,Y ).

□

Proposition 3.3. Let ∇ be an affine connection on M . Then, (g, ω, ω∗,∇) is 3S-structure

on M if and only if

S(X,Y )− S(Y,X) = Sω(X,Y ), (3.25)

g(X,S(Y,Z))− g(Y, S(X,Z)) = g(Sω∗(X,Y ), Z). (3.26)

Proof. This follows easily from lemma 3.1. □

If (g, ω, ω∗,∇) is 3S-structure on M , from Proposition 3.3 we give the Levi-Civita connec-

tion ∇g in terms of g, mean 1-form ωS , mean vector field V , ∇ and ∇∗. For this purpose,

we set

Kω,ω∗
(X,Y ) = ωS(Y )X − g(X,Y )V,

Proposition 3.4. If (g, ω, ω∗,∇) is a 3S-structure on M , then the Levi-Civita connection

∇g is given by:

∇g
XY =

1

2

(
∇XY +∇∗

XY
)
+Kω,ω∗

(X,Y ), (3.27)

for all vector fields X,Y on M .

Proof. Let X,Y , Z be vector fields on M , ξ and ξ∗ be vector fields g-associated to ω and ω∗

respectively. From the duality condition of ∇ and ∇g with respect to g we obtain

g(Z, S(X,Y )) = g(Y,∇g
XZ −∇∗

XZ). (3.28)

From (3.25) and (3.28) we get

g(Z, S(Y,X)) = g(Y,∇g
XZ −∇∗

XZ) + g(Y,−ω(X)Z + g(X,Z)ξ). (3.29)

As (3.26) is equivalent to

g(Z, S(Y,X)) = g(Y, S(Z,X)) + g(Y, ω∗(Z)X − g(Z,X)ξ∗), (3.30)
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then from (3.29) and (3.30) we have

g(Y, S(Z,X)) + g(Y, ω∗(Z)X − g(Z,X)ξ∗)

= g(Y,∇g
XZ −∇∗

XZ − ω(X)Z + g(X,Z)ξ),

that is

S(Z,X) = ∇g
XZ −∇∗

XZ − ω(X)Z − ω∗(Z)X + g(X,Z)(ξ + ξ∗). (3.31)

According to (3.25) and (3.31) we have

S(X,Z) + Sω(Z,X) = ∇g
XZ −∇∗

XZ − ω(X)Z − ω∗(Z)X + g(X,Z)(ξ + ξ∗),

that is

S(X,Z) = ∇g
XZ −∇∗

XZ − (ω + ω∗)(Z)X + g(X,Z)(ξ + ξ∗). (3.32)

Using (3.21) and (3.32), we get

2∇g
XZ = ∇XZ +∇∗

XZ + (ω + ω∗)(Z)X − g(X,Z)(ξ + ξ∗).

□

Corollary 3.1. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, the dual connection ∇∗ of

∇ is given by

S = ∇g −∇∗ − 2Kω,ω∗
=

1

2
(∇−∇∗)−Kω,ω∗

. (3.33)

For a given totally symmetric (0, 3)-tensor field, we can define mutually dual semi-

symmetric affine connections.

Proposition 3.5. Assume that (g,M) is a Riemannian manifold, C is a totally symmetric

(0, 3)-tensor field on M , ω and ω∗ two 1-forms on M such that 2ωS = ω + ω∗ and V the

vector field g-associated to ωS. We define the mapping ∇ and ∇∗ by

g(∇XY, Z) = g(∇g
XY, Z)−

1

2
C(X,Y, Z) + g(Z, ω(X)Y + 2g(X,Y )V ), (3.34)

g(∇∗
XY, Z) = g(∇g

XY, Z) +
1

2
C(X,Y, Z)− g(Z, ω(X)Y + 2ωS(Y )X). (3.35)

Then ∇ and ∇∗ are mutually dual connections. Moreover (g, ω, ω∗,∇) is 3S-structure on M .

Proposition 3.6. Let ∇ and ∇∗ be mutually dual connections on M with respect to g. Let

C be a (0, 3)-tensor field on M , 2ωS = ω+ω∗ where ω, ω∗ are two 1-forms on M and V the

vector field g-associated with ωS. We suppose that ∇ and C verify (3.34) and (g, ω, ω∗,∇)

is 3S-structure on M . Then C is totally symmetric.
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Proof. We set S = ∇−∇g and S̃ = ∇̃ −∇g such that ∇ and ∇̃ verify (3.15). Let X,Y, Z ∈

X(M). Since ∇ and C verify (3.34), so we get

C(X,Y, Z) = −2g(S(X,Y )− ω(X)Y − 2g(X,Y ), Z). (3.36)

From (3.36), we have

C(X,Y, Z) = −2g(S̃(X,Y ), Z).

(g, ∇̃) is statistical structure implies that C(X,Y, Z) = (∇̃Xg)(Y, Z), thus, C is totally

symmetric. □

3.1. Some results on the alpha-connections of a 3S-structure. For α ∈ R, we define

a family of connections ∇(α) by,

∇(α) =
1 + α

2
∇+

1− α

2
∇∗. (3.37)

∇(α) is called an α-connection of dualistic structure (∇,∇∗). The dual of ∇(α) with respect

to g is given by ∇(−α).

If (g, ω, ω∗,∇) is a 3S-structure on M , we set

ωα =
1 + α

2
ω +

1− α

2
ω∗ and ω∗

α = ω−α =
1− α

2
ω +

1 + α

2
ω∗. (3.38)

In particular,

ω0 = ωg, ω1 = ω and ω−1 = ω∗. (3.39)

We define the tensors K by

K = ∇∗ −∇. (3.40)

Proposition 3.7. If (g, ω, ω∗,∇) is a 3S-structure on M , then (g, ωα, ω
∗
α,∇(α)) is a 3S-

structure.

Proof. Using (3.37) and (3.38) we get

T∇(α)
= Sωα and T∇(−α)

= Sω∗
α
.

□

When (g, ω, ω∗,∇) is a 3S-structure on M we have the following equality,

∇(α) = ∇g − α

2
K −Kω,ω∗

. (3.41)
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In particular

∇ = ∇g − 1

2
K −Kω,ω∗

, (3.42)

∇∗ = ∇g +
1

2
K −Kω,ω∗

. (3.43)

From (3.40) we get

K(X,Y )−K(Y,X) = Sω∗(X,Y )− Sω(X,Y ). (3.44)

It was shown in [3] that for a pair of conjugate connections, their curvature tensors satisfy

g(R(X,Y )Z, T ) + g(Z,R∗(X,Y )T ) = 0, (3.45)

and more generally

g(R(α)(X,Y )Z, T ) + g(Z,R(−α)(X,Y )T ) = 0 (3.46)

where R(−α) = R∗(α).

Denote K(X,Y, Z) = (∇Xg)(Y, Z), where

(∇Xg)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ).

The 3-tensor K(., ., .) is called the cubic form and satisfies K(., Y, Z) = K(., Z, Y ) by its

definition.

Recall the difference tensor K(X,Y ) introduced in (3.40), which can be verified to be related

to K(X,Y, Z) via

g(K(X,Y ), Z) = K(X,Y, Z). (3.47)

Proposition 3.8. Let (g, ω, ω∗,∇) be a 3S-structure on M , the curvature tensor R(α) for

the α-connection ∇(α) satisfies

R(α)(X,Y )Z =
1 + α

2
R(X,Y )Z +

1− α

2
R∗(X,Y )Z

+
1− α2

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
. (3.48)

Proof. We assume that (g, ω, ω∗,∇) is a 3S-structure onM . By definition of the α-connection

and of curvature tensor
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R(α)(X,Y )Z =

(
1 + α

2

)2

R(X,Y )Z +

(
1− α

2

)2

R∗(X,Y )Z

+

(
1− α2

4

)(
∇X∇∗

Y Z +∇∗
X∇Y Z −∇Y∇∗

XZ

−∇∗
Y∇XZ −∇[X,Y ]Z −∇∗

[X,Y ]Z

)
. (3.49)

From (3.42) and (3.43) we have

∇X∇∗
Y Z = ∇g

X∇
g
Y Z − 1

2
K(X,∇g

Y Z)−Kω,ω∗
(X,∇g

Y Z)

+
1

2
∇g
XK(Y, Z)− 1

4
K(X,K(Y, Z))− 1

2
Kω,ω∗

(X,K(Y,Z))

−∇g
XK

ω,ω∗
(Y,Z) +

1

2
K(X,Kω,ω∗

(Y,Z)) +Kω,ω∗
(X,Kω,ω∗

(Y, Z)),

−∇Y∇∗
XZ = −∇g

Y∇
g
XZ +

1

2
K(Y,∇g

XZ) +Kω,ω∗
(Y,∇g

XZ)

− 1

2
∇g
YK(X,Z) +

1

4
K(Y,K(X,Z)) +

1

2
Kω,ω∗

(Y,K(X,Z))

+∇g
YK

ω,ω∗
(X,Z)− 1

2
K(Y,Kω,ω∗

(X,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z)),

∇∗
X∇Y Z = ∇g

X∇
g
Y Z +

1

2
K(X,∇g

Y Z)−Kω,ω∗
(X,∇g

Y Z)

− 1

2
∇g
XK(Y, Z)− 1

4
K(X,K(Y, Z)) +

1

2
Kω,ω∗

(X,K(Y,Z))

−∇g
XK

ω,ω∗
(Y,Z)− 1

2
K(X,Kω,ω∗

(Y,Z)) +Kω,ω∗
(X,Kω,ω∗

(Y, Z)),

−∇∗
Y∇XZ = −∇g

Y∇
g
XZ − 1

2
K(Y,∇g

XZ) +Kω,ω∗
(Y,∇g

XZ)

+
1

2
∇g
YK(X,Z) +

1

4
K(Y,K(X,Z))− 1

2
Kω,ω∗

(Y,K(X,Z))

+∇g
YK

ω,ω∗
(X,Z) +

1

2
K(Y,Kω,ω∗

(X,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))

and

−∇[X,Y ]Z −∇∗
[X,Y ]Z = 2Kω,ω∗

([X,Y ], Z)− 2∇g
[X,Y ]Z.
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Therefore, the last parentheses in (3.49) become

2Rg(X,Y )Z +
1

2

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+ 2

(
Kω,ω∗

(X,Kω,ω∗
(Y, Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
− 2Kω,ω∗

(X,∇g
Y Z)

+ 2Kω,ω∗
(Y,∇g

XZ)− 2∇g
XK

ω,ω∗
(Y,Z) + 2∇g

YK
ω,ω∗

(X,Z) + 2Kω,ω∗
([X,Y ], Z),

where Rg is the Riemann curvature tensor, i.e, the curvature of the Levi–Civita connection

∇g. This last expression can simplify to

2Rg(X,Y )Z +
1

2

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+ 2

(
Kω,ω∗

(X,Kω,ω∗
(Y, Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
+ 2

(
(∇g

YK
ω,ω∗

)(X,Z)− (∇g
XK

ω,ω∗
)(Y, Z)

)
.

Therefore, (3.49) becomes

R(α)(X,Y )Z =

(
1 + α

2

)2

R(X,Y )Z +

(
1− α

2

)2

R∗(X,Y )Z

+
1− α2

2

(
Rg(X,Y )Z +

1

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+

1− α2

2

(
Kω,ω∗

(X,Kω,ω∗
(Y, Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
+

1− α2

2

(
(∇g

YK
ω,ω∗

)(X,Z)− (∇g
XK

ω,ω∗
)(Y, Z)

)
. (3.50)

Taking α = 0 and using (3.50) we get

R(0)(X,Y )Z =
1

4
R(X,Y )Z +

1

4
R∗(X,Y )Z +

1

8

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+

1

2
Rg(X,Y )Z +

1

2

(
Kω,ω∗

(X,Kω,ω∗
(Y,Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
+

1

2

(
(∇g

YK
ω,ω∗

)(X,Z)− (∇g
XK

ω,ω∗
)(Y,Z)

)
. (3.51)

Taking α = 0 and using (3.41) we get

R(0)(X,Y )Z = Rg(X,Y )Z +Kω,ω∗
(X,Kω,ω∗

(Y, Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))

+Kω,ω∗
(Y,∇g

XZ)−Kω,ω∗
(X,∇g

Y Z) +∇g
YK

ω,ω∗
(X,Z)

−∇g
XK

ω,ω∗
(Y,Z) +Kω,ω∗

([X,Y ], Z),
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that is

R(0)(X,Y )Z = Rg(X,Y )Z +Kω,ω∗
(X,Kω

g (Y,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))

+ (∇g
YK

ω,ω∗
)(X,Z)− (∇g

XK
ω,ω∗

)(Y, Z). (3.52)

Using (3.51) and (3.52) we obtain

Rg(X,Y )Z =
1

2
R(X,Y )Z +

1

2
R∗(X,Y )Z +

1

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+Kω,ω∗

(Y,Kω,ω∗
(X,Z))−Kω,ω∗

(X,Kω,ω∗
(Y,Z))

+ (∇g
XK

ω,ω∗
)(Y, Z)− (∇g

YK
ω,ω∗

)(X,Z). (3.53)

Using (3.53) in (3.50) leads to :

R(α)(X,Y )Z =
1 + α

2
R(X,Y )Z +

1− α

2
R∗(X,Y )Z

+
1− α2

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
.

□

From (3.48)

R(α)(X,Y )Z −R(−α)(X,Y )Z = α(R(X,Y )Z −R∗(X,Y )Z). (3.54)

Remark 3.2. Surprisinely, the transformation R 7−→ R(α) from (3.48) is the same form for

3S-structure and statistical structure [21].

Remark 3.3. In the theory of Semi-Symmetric statistical manifold, from (3.52), we get

R(0) ̸= Rg.

3.2. Statistical curvature of semi-Symmetric statistical manifolds. In this section,

we firstly give symmetry properties of curvatures R, R∗ and give these properties for the

statistical curvature RS of semi-symmetric statistical manifolds.
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Lemma 3.2. For a 3S-structure (g, ω, ω∗,∇) onM , the following formulas hold for X,Y, Z, T ∈

X(M):

R(X,Y )Z = −R(Y,X)Z, (3.55)

g(R(X,Y )Z, T ) + g(R(Y,X)Z, T ) = 0, (3.56)

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = (dω(X,Y ))Z

+ (dω(Y,Z))X + (dω(Z,X))Y, (3.57)

g(R(X,Y )Z, T ) + g(R(X,Y )T,Z) = 2g

(
(∇g

XS)(Y, T )− (∇g
Y S)(X,T ), Z

)
+ 2g

(
(∇g

XK
ω,ω∗

)(Y, T )− (∇g
YK

ω,ω∗
)(X,T ), Z

)
+ 4g

(
Kω,ω∗

(Y,Kω,ω∗
(X,T ))

−Kω,ω∗
(X,Kω,ω∗

(Y, T )), Z

)
+ 2g

(
Kω,ω∗

(Y, S(X,T ))−Kω,ω∗
(X,S(Y, T )), Z

)
+ 2g

(
S(Y,Kω,ω∗

(X,T ))− S(X,Kω,ω∗
(Y, T )), Z

)
, (3.58)

and

R∗(X,Y )Z = −R∗(Y,X)Z, (3.59)

g(R∗(X,Y )Z, T ) + g(R∗(Y,X)Z, T ) = 0, (3.60)

R∗(X,Y )Z +R∗(Y, Z)X +R∗(Z,X)Y = (dω∗(X,Y ))Z

+ (dω∗(Y, Z))X + (dω∗(Z,X))Y, (3.61)

g(R∗(X,Y )Z, T ) + g(R∗(X,Y )T,Z) = 2g

(
(∇g

Y S)(X,T )− (∇g
XS)(Y, T ), Z

)
+ 2g

(
(∇g

YK
ω,ω∗

)(X,T )− (∇g
XK

ω,ω∗
)(Y, T ), Z

)
+ 4g

(
Kω,ω∗

(X,Kω,ω∗
(Y, T ))

−Kω,ω∗
(Y,Kω,ω∗

(X,T )), Z

)
+ 2g

(
Kω,ω∗

(X,S(Y, T ))−Kω,ω∗
(Y, S(X,T )), Z

)
+ 2g

(
S(X,Kω,ω∗

(Y, T ))− S(Y,Kω,ω∗
(X,T )), Z

)
. (3.62)

Proof. For the proof of (3.55), (3.56), (3.57), (3.59), (3.60) and (3.61) refer to [12]. We now,

prove (3.58) and (3.62) which depend on the tensor Kω,ω∗
.

Using (3.33) we get

∇∗
X∇∗

Y T = ∇X∇Y T − 2∇XS(Y, T )− 2∇XK
ω,ω∗

(Y, T )− 2S(X,∇Y T )

+ 4S(X,S(Y, T )) + 4S(X,Kω,ω∗
(Y, T ))− 2Kω,ω∗

(X,∇Y T )

+ 4Kω,ω∗
(X,S(Y, T )) + 4Kω,ω∗

(X,Kω,ω∗
(Y, T )).
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Using (3.21), the last equation becomes

∇∗
X∇∗

Y T = ∇X∇Y T − 2∇g
XS(Y, T )− 2∇g

XK
ω,ω∗

(Y, T )− 2S(X,∇g
Y T )

− 2Kω,ω∗
(X,∇g

Y T ) + 2S(X,Kω,ω∗
(Y, T )) + 2Kω,ω∗

(X,S(Y, T ))

+ 4Kω,ω∗
(X,Kω,ω∗

(Y, T )). (3.63)

Moreover,

−∇∗
Y∇∗

XT = −∇Y∇XT + 2∇g
Y S(X,T ) + 2∇g

YK
ω,ω∗

(X,T ) + 2S(Y,∇g
XT )

+ 2Kω,ω∗
(Y,∇g

XT )− 2S(Y,Kω,ω∗
(X,T ))− 2Kω,ω∗

(Y, S(X,T ))

− 4Kω,ω∗
(Y,K(X,T )). (3.64)

Since [X,Y ] = ∇g
XY −∇g

YX, we get

−∇∗
[X,Y ]T = −∇[X,Y ]T + 2S(∇g

XY, T )− 2S(Y,∇g
XT )

+ 2Kω,ω∗
(∇g

XY, T )− 2Kω,ω∗
(Y,∇g

XT ). (3.65)

Summing up (3.63), (3.64) and (3.65), we obtain

R∗(X,Y )T = R(X,Y )T − 2(∇g
XS)(Y, T ) + 2(∇g

Y S)(X,T )− 2(∇g
XK

ω,ω∗
)(Y, T )

+ (∇g
YK

ω,ω∗
)(X,T )− 4Kω,ω∗

(Y,Kω,ω∗
(X,T )) + 4Kω,ω∗

(X,Kω,ω∗
(Y, T ))

− 2Kω,ω∗
(Y, S(X,T )) + 2Kω,ω∗

(X,S(Y, T ))− 2S(Y,Kω,ω∗
(X,T ))

+ 2S(X,Kω,ω∗
(Y, T )). (3.66)

Using (3.45) and (3.66) we get (3.58). Similarly, the proof can be done for Eq. (3.62). □

For a 3S-structure (g, ω, ω∗,∇) on M , we denote the curvature tensor of ∇ by R∇ or R

for short, and R∇∗
by R∗ in the similar fashion. We define

RS(X,Y )Z =
1

2
{R(X,Y )Z +R∗(X,Y )Z}, (3.67)

for all X,Y, Z ∈ X(M), and call RS the semi-symmetric statistical curvature tensor field of

(g, ω, ω∗,∇). We define the (0, 4) tensor R, R
∗
and R

S
by

R(X,Y, Z, T ) = g(R(X,Y )Z, T ), R
∗
(X,Y, Z, T ) = g(R∗(X,Y )Z, T ),

R
S
(X,Y, Z, T ) =

1

2
{R(X,Y, Z, T ) +R

∗
(X,Y, Z, T )}.

From Lemma 3.2, we can state the following.
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Proposition 3.9. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, we get

RS(X,Y )Z = Rg(X,Y )Z + S(X,S(Y, Z))− S(Y, S(X,Z))

+ S(X,Kω,ω∗
(Y,Z))− S(Y,Kω,ω∗

(X,Z))

+Kω,ω∗
(X,S(Y,Z))−Kω,ω∗

(Y, S(X,Z))

− (∇g
XK

ω,ω∗
)(Y, Z) + (∇g

YK
ω,ω∗

)(X,Z)

+ 2{Kω,ω∗
(X,Kω,ω∗

(Y,Z))−Kω,ω∗
(Y, (X,Z))}.

Proof. Using (3.21) in R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, we get

R(X,Y )Z = Rg(X,Y )Z + (∇g
XS)(Y, Z)− (∇g

Y S)(X,Z)

+ S(X,S(Y,Z))− S(Y, S(X,Z)). (3.68)

Similarly, using (3.33) R∗(X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y∇∗

XZ −∇∗
[X,Y ]Z, we get

R∗(X,Y )Z = Rg(X,Y )Z − (∇g
XS)(Y, Z) + (∇g

Y S)(X,Z)

+ S(X,S(Y,Z))− S(Y, S(X,Z))

+ 2{Kω,ω∗
(X,S(Y,Z))−Kω,ω∗

(Y, S(X,Z))}

+ 2{(∇g
YK

ω,ω∗
)(X,Z)− (∇g

XK
ω,ω∗

)(Y, Z)}

+ 4{Kω,ω∗
(X,Kω,ω∗

(Y,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))}. (3.69)

And finally, using (3.68) and (3.69) in (3.67), we reach that

RS(X,Y )Z = Rg(X,Y )Z + S(X,S(Y, Z))− S(Y, S(X,Z))

+ S(X,Kω,ω∗
(Y,Z))− S(Y,Kω,ω∗

(X,Z))

+Kω,ω∗
(X,S(Y,Z))−Kω,ω∗

(Y, S(X,Z))

− (∇g
XK

ω,ω∗
)(Y, Z) + (∇g

YK
ω,ω∗

)(X,Z)

+ 2{Kω,ω∗
(X,Kω,ω∗

(Y,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))}.

□

Remark 3.4. If a 3S-structure (g, ω, ω∗,∇) is a statistical structure, that is, ω = ω∗ = 0,

then, the semi-symmetric statistical curvature tensor field RS is given by

RS(X,Y )Z = Rg(X,Y )Z + S(X,S(Y, Z))− S(Y, S(X,Z)),
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and coincides with the statistical curvature tensor. Thus, the semi-symmetric statistical

curvature tensor field RS is a generalization of the statistical curvature tensor field.

The following series of lemmas and theorem give the symmetrical properties of RS for a

3S-structure (g, ω, ω∗,∇).

Lemma 3.3. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, the semi-symmetric statistical

curvature field RS satisfies the following property.

RS(X,Y )Z +RS(Y, Z)X +RS(Z,X)Y

= (dωS(X,Y ))Z + (dωS(Y,Z))X + (dωS(Z,X))Y. (3.70)

Proof. It follows from Lemma 3.2. □

Hence, from Lemma 3.3 we can state the following lemma :

Lemma 3.4. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, we have

R
S
(Z,X, Y, T ) +R

S
(T, Y, Z,X) +R

S
(X,Z, T, Y )

+R
S
(Y, T,X,Z) = 2g(Z, T )(dωS)(X,Y ) + 2g(X,T )(dωS)(Y, Z)

+ 2g(X,Y )(dωS)(Z, T ) + 2g(Y, Z)(dωS)(T,X).

Proof. Using the Bianchi identity of R and R∗ given by the lemma 3.2 we get

g(R(X,Y )Z, T ) + g(R(Y, Z)X,T ) + g(R(Z,X)Y, T )

= g((dω)(X,Y )Z + (dω)(Y, Z)X + (dω)(Z,X)Y, T ),

g(R∗(X,Y )T,Z) + g(R∗(Y, T )X,Z) + g(R∗(T,X)Y, Z)

= g((dω∗)(X,Y )T + (dω∗)(Y, T )X + (dω∗)(T,X)Y,Z),

g(R(X,Z)T, Y ) + g(R(Z, T )X,Y ) + g(R(T,X)Z, Y )

= g((dω)(X,Z)T + (dω)(Z, T )X + (dω)(T,X)Z, Y ),

and

g(R∗(Y, Z)T,X) + g(R∗(Z, T )Y,X) + g(R∗(T, Y )Z,X)

= g((dω∗)(Y, Z)T + (dω∗)(Z, T )Y + (dω∗)(T, Y )Z,X).
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Using (3.45) and summing up these equations, we get

R(Z,X, Y, T ) +R
∗
(T, Y, Z,X) +R(X,Z, T, Y )

+R
∗
(Y, T,X,Z) = 2g(Z, T )(dωS)(X,Y ) + 2g(X,T )(dωS)(Y, Z)

+ 2g(X,Y )(dωS)(Z, T ) + 2g(Y, Z)(dωS)(T,X). (3.71)

Moreover, using similar reasoning as above, we have the following dual version of (3.71)

R
∗
(Z,X, Y, T ) +R(T, Y, Z,X) +R

∗
(X,Z, T, Y )

+R(Y, T,X,Z) = 2g(Z, T )(dωS)(X,Y ) + 2g(X,T )(dωS)(Y, Z)

+ 2g(X,Y )(dωS)(Z, T ) + 2g(Y, Z)(dωS)(T,X). (3.72)

Summing up (3.71) and (3.72) we get

2R
S
(Z,X, Y, T ) + 2R

S
(T, Y, Z,X) + 2R

S
(X,Z, T, Y )

+ 2R
S
(Y, T,X,Z) = 4g(Z, T )(dωS)(X,Y ) + 4g(X,T )(dωS)(Y, Z)

+ 4g(X,Y )(dωS)(Z, T ) + 4g(Y, Z)(dωS)(T,X).

We deduce the result.

□

Proposition 3.10. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, we have

R
S
(X,Z, T, Y )−R

S
(T, Y,X,Z) = g(Z, T )(dωS)(X,Y )

+ g(X,T )(dωS)(Y,Z) + g(X,Y )(dωS)(Z, T ) + g(Y, Z)(dωS)(T,X). (3.73)

Proof. Using (3.55), (3.59) and (3.77) we have

R
S
(Z,X, Y, T ) +R

S
(X,Z, T, Y ) = −RS(X,Z, Y, T ) +R

S
(X,Z, T, Y )

= R
S
(X,Z, T, Y ) +R

S
(X,Z, T, Y )

= 2R
S
(X,Z, T, Y ).

Therefore,

R
S
(Z,X, Y, T ) +R

S
(X,Z, T, Y ) = 2R

S
(X,Z, T, Y ), (3.74)

R
S
(T, Y, Z,X) +R

S
(Y, T,X,Z) = −2R

S
(T, Y,X,Z). (3.75)

Using the lemma 3.4, (3.74) and (3.75) we have the result. □
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Proposition 3.11. For a 3S-structure (g, ω, ω∗,∇) on M , we have following equations

g(RS(X,Y )Z, T ) + g(RS(Y,X)Z, T ) = 0, (3.76)

g(RS(X,Y )Z, T ) + g(RS(X,Y )T,Z) = 0. (3.77)

Moreover, if ωS is closed, we get

RS(X,Y )Z +RS(Y,Z)X +RS(Z,X)Y = 0, (3.78)

g(RS(X,Y )Z, T )− g(RS(Z, T )X,Y ) = 0. (3.79)

Proof. Summing up Eqs. (3.58) and (3.62) we get (3.77). □

Remark 3.5. Using the preceding properties of the statistical curvature RS, we easily check

that the statistical sectional curvature given as (3.83), is well defined.

Proposition 3.12. Let (g, ω, ω∗,∇) be a 3S-structure on M , V its mean vector field and ∇̃

its associated statistical connection with respect to ω. If V is torse-forming with respect to

ω, then the statistical sectional curvatures of ∇ and ∇̃ are the same if and only if

ω(X)ωS(X) + 4ωS(X)ωS(X)− 2XωS(X) + 2ωS(∇∗
XX) = 0,

for any unitary vector field X.

Proof. From (3.15) and (3.16) we get

R̃(X,Y )Z = R(X,Y )Z − (dω)(X,Y )Z

+ 2g(Y,Z){ω(X)V −∇XV } − 2g(X,Z){ω(Y )V −∇Y V },

and

(R̃)∗(X,Y )Z = R∗(X,Y )Z + (dω)(X,Y )Z + {−ω(X)ωS(Z)− 4ωS(X)ω∗(Z) + 2XωS(Z)

− 2ωS(∇∗
XZ)}Y + {ω(Y )ωS(Z) + 4ωS(Y )ω∗(Z)− 2Y ωS(Z) + 2ωS(∇∗

Y Z)}X.

After summing up these equations we get

2R̃S(X,Y )Z = 2RS(X,Y )Z + 2g(Y, Z){ω(X)V −∇XV } − 2g(X,Z){ω(Y )V −∇Y V }

+

{
− ω(X)ωS(Z)− 4ωS(X)ωS(Z) + 2XωS(Z)− 2ωS(∇S

XZ)

}
Y

+

{
ω(Y )ωS(Z) + 4ωS(Y )ωS(Z)− 2Y ωS(Z) + 2ωS(∇∗

Y Z)

}
X. (3.80)
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From (3.80), since the mean vector field V is torse-forming with respect to ω then we have

2R̃S(X,Y )Z = 2RS(X,Y )Z +

{
− ω(X)ωS(Z)− 4ωS(X)ωS(Z) + 2XωS(Z)− 2ωS(∇S

XZ)

}
Y

+

{
ω(Y )ωS(Z) + 4ωS(Y )ωS(Z)− 2Y ωS(Z) + 2ωS(∇∗

Y Z)

}
X. (3.81)

Taking {X,Y } an orthonormal basis on M . Then (3.81) becomes

2g(R̃S(X,Y )Y,X) = 2g(RS(X,Y )Y,X)+ω(Y )ωS(Y )+4ωS(Y )ωS(Y )−2Y ωS(Y )+2ωS(∇∗
Y Y ).

This ends the proof. □

A multilinear function F : Tp(M)4 −→ R is curvature-like provided F has the symmetries

stated in Proposition 3.11. Thus, F (X,Y, Y,X) = 0 for all X,Y ∈ Tp(M) spanning a

nondegenerate plane implies F vanishes on M [19].

Theorem 3.3. A 3S-structure (g, ω, ω∗,∇) on M is of constant semi-symmetric statistical

sectional curvature k ∈ R if and only if

RS(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }+ 1

2
{dωS(Y,Z)X − dωS(X,Z)Y }

+
1

2
{g(Y, Z)dωS(X, .)♯ − g(X,Z)dωS(Y, .)♯}, (3.82)

for X,Y, Z ∈ Γ(TM).

Proof. Let X,Y, Z and T be vector fields on M . We set

Ω(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }+ 1

2
{dωS(Y, Z)X − dωS(X,Z)Y }

+
1

2
{g(Y, Z)dωS(X, .)♯ − g(X,Z)dωS(Y, .)♯}.

It is easy to see that Ω verifies (3.70), (3.73), (3.76) and (3.77). We now set

F (X,Y, Z, T ) = g(RS(X,Y )Z, T )− g(Ω(X,Y )Z, T ).

Since RS and Ω verify (3.70), (3.73), (3.76) and (3.77) then F is also curvature-like. That

is, F verifies the symmetries properties given by proposition 3.11. Moreover, by hypothesis,

we have F (X,Y, Y,X) = 0. Thus, F vanishes on M , that is RS(X,Y )Z = Ω(X,Y )Z.

Conversely, if RS verify (3.82), it is easy to see that the semi-symmetric statistical sectional

curvature tensor field given by

K(π) =
g(RS(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
, (3.83)

is equal to k, where π is the 2-dimensional plane spanned by X and Y .
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□

The Ricci curvature tensor with respect to ∇, denoted by Ric∇ is defined by

Ric∇(X,Y ) = tr{Z 7−→ R∇(X,Z)Y }.

We denote Ric∇ by Ric, Ric∇
∗
by Ric∗ and Ric∇

g
by Ricg respectively, for short. For a

3S-structure (g, ω, ω∗,∇), we can also define the Ricci curvature tensor relative to the semi-

symmetric statistical curvature tensor field RS as follows.

Definition 3.2. Let (g, ω, ω∗,∇) be a 3S-structure on M and RS the semi-symmetric sta-

tistical curvature tensor field of ∇.

1. The 3S-Ricci curvature tensor, denoted by RicS, is defined as

RicS(X,Y ) = trg{Z 7−→ RS(X,Z)Y }.

2. The 3S-Ricci curvature tensor field RicS of (M, g, ω, ω∗,∇) is said to be 3S-Einstein

manifold if there exists λ ∈ R such that

RicS = λg.

3. The 3S-scalar curvature, denoted by ρS, is defined as

ρS = trgRic
S =

n∑
i=1

RicS(ei, ei),

where {e1, e2, ..., en} is an orthonormal basis of TxM with respect to g, for x ∈M .

Remark 3.6. For a 3S-structure (g, ω, ω∗,∇) on M , it is easy to see that ρS = ρ = ρ∗,

where

ρ = trgRic, ρ∗ = trgRic
∗.

From proposition 3.10, we obtain the following corollary.

Corollary 3.2. Let (M, g) be a Riemannian manifold of dimension n, let (g, ω, ω∗,∇) be a

3S-structure on M . Then, the Ricci tensor RicS of (g, ω, ω∗,∇) verifies

RicS(X,Y )−RicS(Y,X) = (2− n)(dωS)(X,Y ).
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Proof. Let {e1, e2, ..., en} be an orthonormal basis of the tangent space at any point p of the

3S-structure manifold. Taking Z = Y = ei in (3.73), summing over i, 1 ≤ i ≤ n, we get

RicS(X,T )−RicS(T,X) =
n∑
i=1

(
R
S
(X, ei, T, ei)−R

S
(T, ei, X, ei)

)

=

n∑
i=1

(
g(ei, T )(dω

S)(X, ei) + g(X,T )(dωS)(ei, ei)

+ g(X, ei)(dω
S)(ei, T ) + g(ei, ei)(dω

S)(T,X)

)
=

n∑
i=1

(
(dωS)(X, g(ei, T )ei) + (dωS)(g(X, ei)ei, T )

+ g(ei, ei)(dω
S)(T,X)

)
= (dωS)(X,T ) + (dωS)(g(X,T ) + n(dωS)(T,X)

= (2− n)(dωS)(X,T ).

□

From Corollary 3.2, we obtain the following Corollaries :

Corollary 3.3. Let (M, g) be a Riemannian manifold of dimension 2. The semi-symmetric

statistical Ricci tensor of a 3S-structure on M is always symmetric.

Corollary 3.4. Let (M, g) be a Riemannian manifold of dimension n ≥ 3, let (g, ω, ω∗,∇) be

a 3S-structure on M . Then, the semi-symmetric statistical Ricci tensor RicS of (g, ω, ω∗,∇)

is symmetric if and only if ωS is closed. Thus, for a statistical manifold (M, g,∇), the

statistical Ricci tensor RicS is always symmetric.

Proposition 3.13. Let (M, g) be a Riemannian manifold of dimension n, let (g, ω, ω∗,∇)

be a 3S-structure on M such that the 3S-sectional curvature of RS is constant k ∈ R. Then,

we have

RicS(X,Y ) = k(1− n)g(X,Y ) + (1− n

2
)dωS(X,Y ),

for all X,Y ∈ X(M).
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Proof. Let X,Y ∈ X(M), we have

RicS(X,Y ) =

n∑
i=1

g(RS(X, ei)Y, ei)

=

n∑
i=1

g

(
k{g(ei, Y )X − g(X,Y )ei}+

1

2
{dωS(ei, Y )X − dωS(X,Y )ei}

+
1

2
{g(ei, Y )dωS(X, .)♯ − g(X,Y )dωS(ei, .)

♯}, ei
)

= k
n∑
i=1

{g(ei, Y )g(X, ei)− g(X,Y )g(ei, ei)}+
1

2

n∑
i=1

dωS(ei, Y )g(X, ei)

− 1

2

n∑
i=1

dωS(X,Y )g(ei, ei) +
1

2

n∑
i=1

g(ei, Y )dωS(X, ei).

That is:

RicS(X,Y ) = k

n∑
i=1

{g(X, g(ei, Y )ei)− g(X,Y )}+ 1

2

n∑
i=1

dωS(g(X, ei)ei, Y )

− n

2
dωS(X,Y ) +

1

2

n∑
i=1

dωS(X, g(ei, Y )ei)

= kg(X,Y )− nkg(X,Y ) +
1

2
dωS(X,Y )− n

2
dωS(X,Y ) +

1

2
dωS(X,Y )

= k(1− n)g(X,Y ) + (1− n

2
)dωS(X,Y ).

□

Corollary 3.5. Let (M, g, ω, ω∗,∇) be a 3S-manifold such that its 3S-sectional curvature is

constant. Then, M is 3S-Einstein if ωS is closed.

Definition 3.3. Let (M, g, ω, ω∗,∇) be a 3S-manifold and RicS its 3S-Ricci tensor. The

symmetrized R̃icS of RicS is given by

R̃icS(X,Y ) =
1

2
{RicS(X,Y ) +RicS(Y,X)},

for all vector fields X,Y on M .

Definition 3.4. Let (g, ω, ω∗,∇) be a 3S-structure onM , RicS the 3S-Ricci curvature tensor

field. (M, g, ω, ω∗,∇) is said to be symmetrically Einstein manifold if the symmetrized R̃icS

of RicS is of the form

R̃icS = λg,

where λ = ρS

n is a constant.
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Corollary 3.6. If a 3S-manifold (M, g, ω, ω∗,∇) of dimension n is of constant 3S-sectional

curvature, then (M, g, ω, ω∗,∇) is symmetrically Einstein manifold.

Proof. Let X,Y ∈ X(M), from the proposition 3.11 we get

R̃icS(X,Y ) = k(1− n)g(X,Y ).

We also said that (M, g, ω, ω∗,∇) is symmetrically Einstein manifold. □

4. Semi-symmetric statistical submanifolds

Let (M, g) be a Riemannian manifold, (M, g, ω, ω∗,∇) be a 3S-manifold, M be a subman-

ifold of M , g the induced metric g and two 1-forms ω, ω∗ such that

ω(X) = ω(X), ω∗(X) = ω∗(X),

for all vector field X on M .

Let TM⊥ be the normal bundle of M in M with respect to g. We define the second

fundamental form of M for ∇ and ∇∗
by

h(X,Y ) = (∇XY )⊥, (4.84)

h∗(X,Y ) = (∇∗
XY )⊥ (4.85)

respectively, where ()⊥ denotes the orthogonal projection on the normal bundle TM⊥.

Let consider the connections ∇ and ∇∗ given by

∇XY = (∇XY )⊤, (4.86)

∇∗
XY = (∇∗

XY )⊤. (4.87)

It is well known in the literature that ∇ and ∇∗ are dual connections with respect to g and

h, h∗ are bilinear and symmetric.

Proposition 4.1. When (M, g, ω, ω∗,∇) is a 3S-manifold, the induced structure (M, g, ω, ω∗,∇)

on a submanifold M is a 3S-manifold.

Proof. Let X,Y ∈ X(M). From (4.84) and (4.86) we have

∇XY = ∇XY + h(X,Y ). (4.88)
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Since ∇ has semi-symmetric connection, we can write

ω(X)Y − ω(Y )X = ∇XY −∇YX − [X,Y ]

= ∇XY + h(X,Y )−∇YX + h(Y,X)− [X,Y ]

= T∇(X,Y ) + h(X,Y )− h(Y,X). (4.89)

Grouping the normal and tangential components of (4.89), we have

T∇(X,Y ) = ω(X)Y − ω(Y )X. (4.90)

This equation show that ∇ has semi-symmetric. The proof for ∇∗ follows immediately by

substituting ∇∗ for ∇ in the preceding argument, and we obtain

T∇∗
(X,Y ) = ω∗(X)Y − ω∗(Y )X. (4.91)

□

From (4.90) and (4.91), (M, g, ω, ω∗,∇) is a 3S-manifold.

5. Semi-symmetric dualistic structures on warped product spaces

In this section, we give a method to construct 3S-structures on warped product manifolds,

starting from 3S-strutures on the fiber and base manifolds.

Let (M ; g) and (N ;h) be two Riemannian manifolds of dimension m and n respectively

and f ∈ C∞(M) a positive function on M . The warped product of (M ; g) and (N ;h), with

warping function f , is the (m + n)-dimensional manifold M × N endowed with the metric

Gf given by:

Gf = π∗g + (f ◦ π)2σ∗h,

where π∗ and σ∗ are the pull-backs of the projections π and σ of M × N on M and N

respectively.

This warped product is sometime denoted by M ×f N , but for simplicity we keep M ×N in

the sequel.

The tangent space T(p;q)(M ×N) at a point (p; q) ∈M ×N is isomorph to the direct sum

TpM ⊕ TqN . Let LH(M) (resp. LV (N)) denote the set of the horizontal lifts (resp. the

vertical lifts) to T (M ×N) of all the tangent vectors on M . (resp. on N). Hence from [20],

we have the following:

Γ(T (M ×N)) ≃ LH(M)⊕ LV (N),
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and thus a vector field A on M ×N can be written as

A = X + U ; with X ∈ LH(M) and U ∈ LV (N).

For any vector field X ∈ LH(M) we denote π∗(X) by X, and for any vector field U ∈ LV (N)

we denote σ∗(U) by Ũ . Furthermore we denote the horizontal lift on M ×N of a vector field

X ∈ Γ(TM) by (X)H , and the vertical lift on M ×N of a vector field U ∈ Γ(TN) by (U)V .

Obviously

π∗(LH(M)) = Γ(TM) and σ∗(LV (N)) = Γ(TN).

Let (Gf ; D̃; D̃∗) be a dualistic structure on M × N . For X;Y,Z ∈ LH(M) and U ;V,W ∈

LV (N) we define the following four connections [20] :

M∇̃XY = π∗(D̃XY ) and M∇̃′
X
Y = π∗(D̃

∗
XY ),

and

N∇̃
Ũ
Ṽ = σ∗(D̃UV ) and N∇̃′

Ũ
Ṽ = σ∗(D̃

∗
UV ).

We also recall that[19] :

XGf (Y , Z) ◦ π = XGf (Y, Z) and ŨGf (Ṽ , W̃ ) ◦ σ = UGf (V,W ).

Hence we have the following result from [20]:

Proposition 5.1. The triplet (g;M ∇̃;M ∇̃′) is a dualistic structure on M and the triplet

(h;N ∇̃;N ∇̃′) is a dualistic structure on N ; that is

M∇̃′ =M ∇̃∗w.r.t.g and N∇̃′ =N ∇̃∗w.r.t.h.

Conversely, in [20], it has been given a method to construct statistical structure on the

warped product, starting from statistical structures on the fiber and the base manifolds as

it follows:

Let (g,M ∇̃,M ∇̃∗) and (h,N ∇̃,N ∇̃∗) be dualistic structures on M and N respectively. For

all X,Y ∈ LH(M) and U,W ∈ LV (N) we set:

i) D̃XY = (M∇̃XY )H

ii) D̃XU = D̃UX = X(f)
f U

iii) D̃UV = −<U,V >
f grad(f) + (N∇̃

Ũ
Ṽ )V

and

a) D̃∗
XY = (M∇̃∗

X
Y )H

b) D̃∗
XU = D̃∗

UX = X(f)
f U
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c) D̃∗
UW = −<U,W>

f grad(f) + (N∇̃∗
Ũ
W̃ )V ,

where we simplify the notation by writing f for f ◦ π and grad(f) for grad(f ◦ π), and we

denote by <,> the inner product w.r.t. Gf . Obviously D̃ and D̃∗ define affine connections

on T (M ×N) and the following proposition holds:

Proposition 5.2. The triplet (Gf , D̃, D̃
∗) is a dualistic structure on M ×N .

We call (Gf , D̃, D̃
∗) the dualistic structure on M ×N induced from (g,M ∇̃,M ∇̃∗) on M

and (h,N ∇̃,N ∇̃∗) on N .

Now, using [5, 7], and the fact that [X,U ] = 0, [X,Y ]H = [X,Y ], [Ũ , W̃ ]V = [U,W ] for

all X,Y ∈ LH(M) and U,W ∈ LV (N), one obtains the following result.

Corollary 5.1. If (g,M ∇̃,M ∇̃∗) and (h,N ∇̃,N ∇̃∗) are statistical structures on M and N

respectively, then (Gf , D̃, D̃
∗) is statistical structure on M ×N .

Inspired by the reasoning from [5, 7, 20] we introduce here similar but different construction

for 3S-structures on the warped product. We first notice that a 3S-structure on M × N

projects to 3S-structures on M and N .

Let (Gf ; η, η∗, D) be a 3S-structure on M ×N , M∇ and N∇ the connections such that

M∇XY = π∗(DXY ) and N∇
Ũ
W̃ = σ∗(D

∗
UW ),

for all X,Y ∈ LH(M) and U,W ∈ LV (N), where D∗ is the dual connection of D with respect

to Gf . Let
M∇∗ and N∇∗ be defined by

M∇∗
X
Y = π∗(D

∗
XY ) and N∇∗

Ũ
W̃ = σ∗(D

∗
UW ),

The last two connections are dual connections of M∇ and N∇ respectively. We set

ω(X) = η(X), ω∗(X) = η∗(X), ω̃(Ũ) = η(U) and ω̃∗(Ũ) = η∗(U),

for all X ∈ LH(M) and U ∈ LV (N). Then the following holds:

Proposition 5.3. (M, g, ω, ω∗,M ∇) and (N,h, ω̃, ω̃∗,N ∇) are 3S-manifolds.

Proof. Direct computations give T
M∇(X,Y ) = η(X)Y − η(Y )X and

T
M∇∗

(X,Y ) = η∗(X)Y − η∗(Y )X. Thus, (M, g, ω, ω∗,M ∇) is a 3S-manifold. Similarly for

(N,h, ω̃, ω̃∗,N ∇). □
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We now give a converse of the preceding construction. Assume that (g, ω, ω∗,M ∇) and

(h, ω̃, ω̃∗,N ∇) are 3S-structures on M and N respectively and let M∇̃ and N∇̃ be the affine

connections on M and N respectively defined by

M∇̃XY =M ∇XY − ω(X)Y − 2g(X,Y )MV,

N∇̃
Ũ
W̃ =N ∇

Ũ
W̃ − ω̃(Ũ)W̃ − 2h(Ũ , W̃ )NV,

where MV and NV are the vector field g-associated and h-associated with ωS = 1
2(ω + ω∗)

and ω̃S = 1
2(ω̃ + ω̃∗) respectively. Let η and η∗ be the 1-forms defined by:

η = ω ⊕ ω̃ and η∗ = ω∗ ⊕ ω̃∗

namely, η(X +U) = ω(X) + ω̃(Ũ) and η∗(X +U) = ω∗(X) + ω̃∗(Ũ) for all X ∈ LH(M) and

U ∈ LV (N). We set V S to be the vector field Gf−associated with ΩS = 1
2(η + η∗).

It is easy to see from Theorem 3.2 that (M, g,M ∇̃) and (N,h,N ∇̃) are statistical manifolds.

Then, from corollary 5.1, define a connection D̃ on M ×N by the following formula:

i) D̃XY = (M∇̃XY )H

ii) D̃XU = D̃UX = X(f)
f U

iii) D̃UV = −<U,V >
f grad(f) + (N∇̃

Ũ
Ṽ )V

and

a) D̃∗
XY = (M∇̃∗

X
Y )H

b) D̃∗
XU = D̃∗

UX = X(f)
f U

c) D̃∗
UW = −<U,W>

f grad(f) + (N∇̃∗
Ũ
W̃ )V ,

Then, (Gf , D̃, D̃
∗) is a statistical structure on M ×N .

From this, we deduce a 3S-structure as it follows:

Proposition 5.4. Let D be the connection defined by

D = D̃ + η ⊗ I + 2Gf (., .)V
S . (5.92)

Then, (Gf , η, η
∗, D) is 3S-structure on M ×N .

Proof. Let TD and TD
∗
be the torsion tensors of D and D∗ respectively, where D∗ is the

dual connection of D with respect to Gf . From 3.2 we have

D∗ = D̃∗ − η ⊗ I − 2I ⊗ ΩS . (5.93)
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Let A = X + U and B = Y + W such that X,Y ∈ LH(M) and U,W ∈ LV (N). Since

Gf (X,W ) = 0 = Gf (U, Y ) and [X,W ] = 0, [U, Y ] = 0, [X,Y ]H = [X,Y ], [Ũ , W̃ ]V = [U,W ]

[4] and D̃ and D̃∗ are torsion-free connections on M ×N , we get:

TD(A,B) = η(A)B − η(B)A, TD
∗
(A,B) = η∗(A)B − η∗(B)A.

Thus, (Gf , η, η
∗, D) is a 3S-structure on M ×N . □
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Abstract. In this study, we focus on (2n+ 1)-dimensionalK-paracontact manifolds admit-

ting η-Ricci-Bourguignon solitons and gradient η-Ricci-Bourguignon solitons. We then com-

pletely present the classification of a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-

manifold that admits a gradient η-Ricci-Bourguignon soliton. Finally, we construct examples

that provide our results.

Keywords: K-paracontact manifolds, Paracontact (κ, µ)-manifolds, η-Ricci-Bourguignon

solitons, Gradient η-Ricci-Bourguignon solitons.

2020 Mathematics Subject Classification: Primary: 53B30, Secondary: 53C25, 53E20,

53Z05, 83C05.

1. Introduction and Motivations

Geometric flows represent a powerful tool for the topological classification of manifolds,

providing profound insights into their structural intricacies through the study of metric evo-

lution over time. In this process, questions concerning the short- and long-term behavior

of metrics such as whether they smooth out or develop singularities come to the forefront.

Moreover, geometric flows have significant applications in physical theories, including general

relativity and quantum gravity, particularly in modeling the dynamics of the universe’s geo-

metric structure. In this context, self-similar solutions to the flow, known as solitons (e.g.,

Ricci solitons), play a critical role in understanding the long-term behavior of the flow and
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contribute to the identification of stable or special geometric structures. This is particularly

evident in the case of the Poincaré conjecture, a century-old problem that was resolved in

the early 2000’s by Perelman through the use of Ricci flows, [18], [19], [20]. Ricci solitons

were instrumental in resolving the Poincaré conjecture, a problem that had been debated for

more than a hundred years. Thus, given a geometric flow, it is natural to study the solitons

associated to that flow. As a result of this, in 1981, Hamilton [11] introduced Ricci flow by

∂

∂t
g (t) = −2Rc (t) ,

where Rc represents Ricci tensor of type (0, 2) and g is the time dependent metric of the

space evolving under the flow.

Hamilton [12] also defined Yamabe flow as follows.

∂

∂t
g (t) = −r (t) g (t) ,

where r(t) represents the scalar curvature of the metric g (t) .

In 1981, a new geometric flow, named Ricci-Bourguignon flow, was introduced and ex-

tended the Ricci flow notation by Bourguignon [3] as follows:

∂

∂t
g (t) = −2 (Rc (t)− ρr (t) g (t)) , (1.1)

where ρ ∈ R.

Einstein flow [6] is given by

∂

∂t
g (t) = −2(Rc (t)− r (t)

2
g (t)).

Moreover, Ricci-Bourguignon flow is known as a generalization of Einstein flow. Depending

on the choice of ρ, the Ricci-Bourguignon flow may turn to certain geometric flows, namely,

for ρ = 1
2 this flow turn to be Einstein flow, for ρ = 1

2(n − 1) it will turn to the Schouten

flow and for ρ = 0 it will turn to the famous Ricci flow.

The solutions of (1.1) are called Ricci-Bourguignon solitons (RB-solitons) or ρ-Einstein

solitons which are given in [9] by the following

LWg + 2 (Rc− ρrg) = 2λg, (1.2)

where λ is a constant and L denotes the Lie derivative. λ and W are called soliton con-

stant and potential vector field, respectively. If λ is a smooth function, then it is called

almost Ricci-Bourguignon soliton [9]. The Ricci-Bourguignon soliton, a prominent concept

in Riemannian geometry, arises as a solution to the Einstein field equations in the context
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of general relativity. These solitons, which have garnered considerable attention in recent

years, play a crucial role in Riemannian geometry. Interestingly, Ricci Bourguignon solitons

are critical points of the Ricci flow, and studying the flow’s behavior near a soliton provides

important insights into the global geometry of the manifold. Ricci-Bourguignon soliton is

called trivial if W is zero or a Killing vector field (i.e. LWg = 0). If ρ = 0 in (1.2), a

Ricci soliton (a solution of the Ricci flow) is obtained. Theoretical physicists are fascinated

by Ricci solitons because of their link to string theory and the fact that the soliton equa-

tion represents a particular instance of the Einstein field equations. A Ricci soliton extends

the concept of an Einstein metric when there is a smooth, non-zero vector field W and a

constant λ. Recently, numerous researchers have examined Ricci solitons and gradient Ricci

solitons on certain types of three-dimensional almost contact metric manifolds. For instance,

the study of Ricci solitons and gradient Ricci solitons on three-dimensional normal almost

contact metric manifolds is investigated in [8]. Additionally, a comprehensive classification

of Ricci solitons on three-dimensional Kenmotsu manifolds is provided in [7] and [10].

The solutions of the Einstein flow are Einstein solitons and Einstein solitons are given by

LWg + 2(Rc− 1

2
rg) = 2λg.

A generalization of Einstein soliton is RB soliton (or ρ-Einstein soliton). Also a general-

ization of Ricci-Bourguignon flow is η-Ricci-Bourguignon flow which is given by

∂

∂t
g (t) = −2 (Rc (t)− ρr (t) g (t)− ση (t)⊗ η (t)) , (1.3)

where σ and ρ are real numbers.

An essential aspect of studying any geometric flow is analyzing its associated solitons,

which produce self-similar solutions to the flow and frequently serve as models for singulari-

ties. Motivated by the concept of Ricci solitons, it is intriguing to explore special solutions

of the flow (1.3) which is known as a generalization of Ricci-Bourguignon soliton is η-Ricci-

Bourguignon soliton ( η-RB soliton) and is given by

LWg + 2 (Rc− ρrg − ση ⊗ η) = 2λg, (1.4)

where σ and ρ are real numbers, if λ and σ are smooth functions, it is called an almost

η-Ricci-Bourguignon soliton [2]. For ρ = 1
2 , the soliton reduces to η-Einstein soliton and for

ρ = 0, it is η-Ricci-soliton.

The soliton is shrinking, steady or expanding according as λ > 0, λ = 0 and λ < 0,

respectively.



INT. J. MAPS MATH. (2025) 8(2):622-641 / η-RICCI-BOURGUIGNON SOLITONS ON ... 625

If the potential vector field W is the gradient of a smooth function f , denoted by ∇f , then

(1.4) can be written

Hessf + (Rc− ρrg − ση ⊗ η) = λg, (1.5)

where Hessf is the Hessian of f . (1.5) is called a gradient η-Ricci-Bourguignon soliton.

A significant amount of work has been contributed by various researchers to explore the

geometric properties of Ricci-Bourguignon solitons. For instance, in [5], Catino et al. inves-

tigated the Ricci-Bourguignon solitons, where they discussed important rigidity results. In

recent year, in [22] Shaikh et al. demonstrated that a compact gradient Ricci-Bourguignon

soliton with constant scalar curvature is isometric to the Euclidean sphere. A similar result

was established for a gradient Ricci-Bourguignon soliton with a vector field of bounded norm,

subject to additional conditions. [21].

Recently, it is worth to mention that in [15] Mandal et al. studied η-Ricci-Bourguignon

solitons on K-contact and contact (κ, µ)-manifolds. Also, in [16], Mandal et al. investigated

η-Ricci-Bourguignon solitons on three-dimensional almost coKaehler manifolds. Blaga and

Ozgur [1] worked on submanifolds as almost η-Ricci Bourguignon solitons.

As far as our knowledge goes, η-Ricci-Bourguignon solitons and gradient η-Ricci-Bourguignon

solitons on K-paracontact manifolds and paracontact (κ ̸= −1, µ)-manifolds are not studied

by the researchers. This manuscript will fill these gaps.

This paper is structured as follows: In Section 2, we review some concepts essential for the

discussion. Section 3 focuses on (2n+ 1)-dimensional K-paracontact manifolds which admit

η-Ricci-Bourguignon solitons and gradient η-Ricci-Bourguignon solitons. We proved that if a

(2n+ 1)-dimensional K-paracontact manifold admits an η-Ricci-Bourguignon soliton whose

potential vector field being collinear with ξ, we showed that the manifold is η-Einstein and

then the scalar curvature r = −2n (2n+ 1 + σ) is constant. Also we proved that if a (2n+ 1)-

dimensionalK-paracontact manifold admits a gradient η-Ricci-Bourguignon soliton, then the

scalar curvature is constant and the manifold is η-Einstein. In Section 4, we completely give

the classification of a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-manifold that

admits a gradient η-Ricci-Bourguignon soliton.

Finally, we construct examples which verifies our results.

2. Preliminaries

In this section, we review various concepts and results that will be essential for the rest of

the paper.
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A smooth manifold M2n+1has an almost paracontact structure (ϕ, ξ, η) if it possesses a

tensor field ϕ of type (1, 1), a vector field ξ, and a 1-form η that satisfy the compatibility

conditions listed below.

i)ϕ (ξ) = 0, η ◦ ϕ = 0,

ii)η (ξ) = 1, ϕ2 = id− η ⊗ ξ,

iii)the tensor field ϕ gives rise to an almost paracomplex structure on each fibre of the

horizontal distribution D = Kerη [13]

A differentiable manifoldM 2n+1 equipped with an almost paracontact structure is referred

to as an almost paracontact manifold.

A direct implication of the definition of an almost paracontact structure is that the endo-

morphism ϕ has rank 2n.

If a manifold M 2n+1 endowed with (ϕ, ξ, η)-structure possesses a pseudo-Riemannian

metric g such that

g (ϕζ1, ϕζ2) = −g (ζ1, ζ2) + η (ζ1) η (ζ2) , (2.6)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1), then we say that M 2n+1 has an almost paracontact

metric structure and g is called compatible metric. The differentiable manifold M 2n+1 given

by the almost paracontact metric structure is called an almost paracontact metric manifold.

Any metric g that is compatible with a given almost paracontact structure must have a

signature of (n+ 1, n).

Within the framework of almost paracontact manifolds, the tensor N (1) of type (1, 2) can

be introduced by

N (1)(ζ1, ζ2) = [ϕ, ϕ](ζ1, ζ2)− 2dη(ζ1, ζ2)ξ

where

[ϕ, ϕ](ζ1, ζ2) = ϕ2[ζ1, ζ2] + [ϕζ1, ϕζ2]− ϕ[ϕζ1, ζ2]− ϕ[ζ1, ϕζ2]

is the Nijenhuis torsion of ϕ. The almost paracontact manifold is designated as normal, when

N (1) = 0 [23].

Setting ζ2 = ξ , we have g (ζ1, ξ) = η (ζ1). From here and (2.6) follows

g (ϕζ1, ζ2) = −g (ζ1, ϕζ2) .

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1). In an almost paracontact metric manifold, an orthog-

onal basis always exists. {ζ11, ..., ζ1n, ζ21, ..., ζ2n, ξ}, namely ϕ-basis, such that g(ζ1i, ζ1j) =

−g(ζ2i, ζ2j) = δij and ϕζ1i = ζ2i, for any i, j ∈ {1, ..., n}.
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The fundamental 2-form is defined by

Φ (ζ1, ζ2) = g (ζ1, ϕζ2) ,

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

If dη (ζ1, ζ2) = g (ζ1, ϕζ2) (where dη (ζ1, ζ2) = 1
2(ζ1η(ζ2) − ζ2η(ζ1) − η[ζ1, ζ2])), then η is

a paracontact form and the almost paracontact metric manifold is said to be paracontact

metric manifold.

Lemma 2.1. [23]On a paracontact metric manifold M2n+1, h = 1
2Lξϕ is a symmetric oper-

ator and satisfy the followings:

trh = trϕh = 0, hξ = 0, hϕ+ ϕh = 0,

∇ζ1ξ = −ϕζ1 + ϕhζ1, (2.7)

Rc (ξ, ξ) = −2n+ trh2,

for all vector field ζ1 ∈ Γ(M2n+1), tr is the trace operator.

It is important to note that h is equal to zero if and only if the vector field ξ is Killing.

When ξ is Killing, the paracontact metric manifold is referred to as aK-paracontact manifold.

A normal almost paracontact metric manifold is said to be para-Sasakian manifold if Φ = dη.

Furthermore, a para-Sasakian manifold is also K-paracontact, with the reverse holding true

solely in a three-dimensional [23].

An almost paracontact metric manifold is called η-Einstein if its Ricci tensor Rc takes the

form of

Rc = ag + bη ⊗ η

where a and b are smooth functions on the manifold.

For a K-paracontact manifold M2n+1, we have the following relations [23]

∇ζ1ξ = −ϕζ1, (2.8)

R (ξ, ζ1) ζ2 = −g (ζ1, ζ2) ξ + η (ζ2) ζ1, (2.9)

Rc (ζ1, ξ) = −2nη (ζ1) , (2.10)

R (ξ, ζ1) ζ2 = (∇ζ1ϕ) ζ2, (2.11)

R (ζ1, ξ) ξ = −ζ1 + η (ζ1) ξ, (2.12)

(∇ϕζ1ϕ)ϕζ2 − (∇ζ1ϕ) ζ2 = 2g (ζ1, ζ2) ξ − (ζ1 + η (ζ1) ξ) η (ζ2) , (2.13)
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for all vector fields ζ1, ζ2 ∈ Γ(M2n+1), where Q is the Ricci operator defined by g (Qζ1, ζ2) =

Rc (ζ1, ζ2).

Also followings hold on a (2n+ 1)-dimensional K-paracontact manifold [17],

(∇ζ1Q) ξ = Qϕζ1 + 2nϕζ1 (2.14)

and

(∇ξQ) ζ1 = Qϕζ1 − ϕQζ1 (2.15)

for all vector field ζ1 ∈ Γ(M2n+1).

On a (2n+ 1)-dimensional paracontact metric manifold, the notion of (κ, µ)-nullity distri-

bution is given by

N(κ, µ) : p→ Np(κ, µ) =

 ζ3 ∈ TpM : R (ζ1, ζ2) ζ3 = κ (g (ζ2, ζ3) ζ1 − g (ζ1, ζ3) ζ2)

+µ (g (ζ2, ζ3)hζ1 − g (ζ1, ζ3)hζ2) ,


for every vector fields ζ1, ζ2, ζ3 ∈ Γ(M2n+1) and κ, µ ∈ R. If ξ belongs to above distribution,

namely,

R (ζ1, ζ2) ξ = κ (η (ζ2) ζ1 − η (ζ1) ζ2) + µ (η (ζ2)hζ1 − η (ζ1)hζ2) , (2.16)

then the paracontact metric manifold is called a paracontact metric (κ, µ)-manifold. When

µ = 0, a paracontact metric (κ, µ)-manifold reduces to N(κ)-paracontact metric manifold

[4].

Lemma 2.2. [4]Let M2n+1 be a paracontact metric (κ, µ)-manifold, then the following iden-

tities hold:

h2ζ1 = (1 + κ)ϕ2ζ1, (2.17)

R (ξ, ζ1) ζ2 = κ [g (ζ1, ζ2) ξ − η (ζ2) ζ1]

+µ [g (hζ1, ζ2) ξ − η (ζ2)hζ1] , (2.18)

(∇ζ1η) ζ2 = g (ζ1 − hζ1, ϕζ2) , (2.19)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

Lemma 2.3. [4]Let M2n+1 be a paracontact metric (κ ̸= −1, µ)-manifold, then the following

identities hold:

(∇ζ1ϕ) ζ2 = −g (ζ1 − hζ1, ζ2) ξ + η (ζ2) (ζ1 − hζ1) , (2.20)

Rc (ζ1, ξ) = 2nκη (ζ1) , (2.21)



INT. J. MAPS MATH. (2025) 8(2):622-641 / η-RICCI-BOURGUIGNON SOLITONS ON ... 629

Rc (ζ1, ζ2) = [2 (1− n) + nµ] g (ζ1, ζ2) + [2 (n− 1) + µ] g (hζ1, ζ2)

+ [2 (n− 1) + n (2κ− µ)] η (ζ1) η (ζ2) , (2.22)

(∇ζ1h) ζ2 = − [(1 + κ) g (ζ1, ϕζ2) + g (ζ1, ϕhζ2)] ξ

+η (ζ2) [(1 + κ)ϕζ1 − ϕhζ1]− µη (ζ1)ϕhζ2, (2.23)

Qξ = 2nκξ, (2.24)

r = 2n [2 (1− n) + κ+ nµ] , (2.25)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

Theorem 2.1. [24] LetM2n+1be a paracontact metric manifold and suppose that R (ζ1, ζ2) ξ =

0 for all vector fields ζ1 and ζ2. Then locallyM2n+1is the product of a flat (n+ 1)-dimensional

manifold and n-dimensional manifold of negative constant curvature equal to −4, for n > 1

and its locally flat for n = 1.

Lemma 2.4. On a paracontact metric (κ, µ)-manifold M2n+1, we have

(∇ξh) ζ1 = µhϕζ1, (2.26)

(∇ξQ) ζ1 = µ [2 (n− 1) + µ]hϕζ1, (2.27)

(∇ζ1Q) ξ = Q (ϕζ1 − ϕhζ1)− 2nκ (ϕζ1 − ϕhζ1) , κ ̸= −1 (2.28)

for all vector field ζ1 ∈ Γ(M2n+1).

Proof. If we write ζ1 = ξ in (2.23), we obtain (2.26).

From (2.22), we get

Qζ1 = [2 (1− n) + nµ] ζ1 + [2 (n− 1) + µ]hζ1 + [2 (n− 1) + n (2κ− µ)] η (ζ1) ξ. (2.29)

If we take the covariant derivative of (2.29) along ξ and use (2.26), we have (2.27). If we

take the covariant derivative of (2.24) along ζ1 and use (2.7), we obtain (2.28). □



630 I. KÜPELI ERKEN AND S. N. EMETLI

3. η-Ricci-Bourguignon and Gradient η-Ricci-Bourguignon Solitons on

K-Paracontact Manifolds

In this section, we will investigate η-Ricci-Bourguignon and Gradient η-Ricci-Bourguignon

solitons on K-paracontact manifolds.

Theorem 3.1. Let M 2n+1be a K-paracontact manifold. If M 2n+1 admits an η-Ricci-

Bourguignon soliton whose potential vector field being collinear with ξ, the manifold is η-

Einstein and the scalar curvature r = −2n (2n+ 1 + σ) is constant.

Proof. Now assume that W=fξ, where f is a smooth function. Letting W by fξ and using

(2.8) in (1.4), we get

Rc (ζ1, ζ2) +
1

2
(ζ1(f)η(ζ2) + ζ2(f)η(ζ1)) = (λ+ ρr) g (ζ1, ζ2) + ση (ζ1) η (ζ2) . (3.30)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

Putting ζ2 by ξ in (3.30), we have

Rc (ζ1, ξ) +
1

2
(ζ1(f) + ξ(f)η(ζ1)) = (λ+ ρr) η (ζ1) + ση (ζ1) . (3.31)

Using (2.10) in (3.31), we get

gradf = (2 (λ+ ρr) + 2σ − ξ(f) + 4n) ξ. (3.32)

On the other hand putting ζ1 = ζ2 = ξ and using again (2.10) in (3.30), we have

−2n+ ξ(f) = λ+ ρr + σ. (3.33)

If we use (3.33) in (3.32), we obtain

gradf = ξ(f)ξ. (3.34)

If we take the covariant derivative of (3.34) along ζ1 and using (2.8), we get

g (∇ζ1gradf, ζ2) = ξ(f)g (∇ζ1ξ, ζ2) + ζ1(ξ(f))η (ζ2) (3.35)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

By using g (∇ζ1gradf, ζ2) = g (∇ζ2gradf, ζ1) we have

ζ1(ξ(f))η (ζ2)− ζ2(ξ(f))η (ζ1) = −2ξ(f)dη (ζ1, ζ2) (3.36)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1). Putting ζ1 by ϕζ1 and ζ2 by ϕζ2 in (3.36), we obtain

ξ(f) = 0, because of dη ̸= 0. So from (3.34), we have gradf = 0, namely f is constant and

so the manifold is η-Einstein.
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Let {wi} (1 ≤ i ≤ 2n + 1) be an orthonormal basis. Taking the summation over i for ζ1

= ζ2 = wi in (3.30), we obtain

r = (λ+ ρr) (2n+ 1) + σ. (3.37)

Using (3.33) in (3.37), we get

r = −2n (2n+ 1 + σ)

which completes the proof. □

Theorem 3.2. If a (2n+ 1)-dimensional K-paracontact manifold admits a gradient η-Ricci-

Bourguignon soliton, then the scalar curvature is constant and the manifold is η-Einstein.

Proof. By virtue of (1.5), we have

∇ζ1gradf = −Qζ1 + (λ+ ρr) ζ1 + ση (ζ1) ξ. (3.38)

Taking the covariant derivative of (3.38) with ζ2 and using (2.8), we get

∇ζ2∇ζ1gradf = −∇ζ2Qζ1 + (λ+ ρr)∇ζ2ζ1 + ρζ2 (r) ζ1 + σ (∇ζ2η (ζ1) ξ − η (ζ1)ϕζ2) . (3.39)

Interchanging ζ1 and ζ2 in the last equation, we derive

∇ζ1∇ζ2gradf = −∇ζ1Qζ2 + (λ+ ρr)∇ζ1ζ2 + ρζ1 (r) ζ2 + σ (∇ζ1η (ζ2) ξ − η (ζ2)ϕζ1) . (3.40)

From (3.38), we obtain

∇[ζ1,ζ2]gradf = −Q [ζ1, ζ2] + (λ+ ρr) [ζ1, ζ2] + ση ([ζ1, ζ2]) ξ. (3.41)

In the view of (3.39), (3.40) and (3.41), we can compute

R (ζ1, ζ2) gradf = − (∇ζ1Q) ζ2 + (∇ζ2Q) ζ1 + ρ (ζ1 (r) ζ2 − ζ2 (r) ζ1) (3.42)

+σ (−2g (ϕζ1, ζ2) ξ + η (ζ1)ϕζ2 − η (ζ2)ϕζ1) .

Contracting the last equation over ζ1 and using

divQζ2 =
2n+1∑
i=1

εig((∇wiQ)ζ2, wi) =
1

2
ζ2(r).

We conclude that

Rc (ζ2, gradf) =

(
1

2
− 2nρ

)
ζ2 (r) . (3.43)

By (2.10), we have

Rc (gradf, ξ) = −2nξ(f). (3.44)

Since ξ is Killing, ξ(r) = 0. Putting ζ2 = ξ in (3.43) and using (3.44), we get ξ(f) = 0.
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Taking the inner product of (3.42) with ξ and using equation (2.14) , we obtain

g (R (gradf, ξ) ζ1, ζ2) = g (Qϕζ2, ζ1)− g (Qϕζ1, ζ2)− 2 (2n+ σ) g (ϕζ1, ζ2) (3.45)

+ρ [ζ1 (r) η (ζ2)− ζ2 (r) η (ζ1)] .

Replacing ζ1 by ξ in (3.45) and using the fact that ξ(r) = 0 and ξ(f) = 0, equations (2.9)

and (2.10), we have

ζ2 (f − ρr) = 0,

this leads to the conclusion that f − ρr is a constant.

Substituting ζ2 = ξ in (3.42) and taking the inner product with ζ2 and using (2.11), (2.14)

and (2.15) we get

g((∇ζ1ϕ) ζ2, gradf) = − (2n+ σ) g (ϕζ1, ζ2)− g (ϕQζ1, ζ2) + ρζ1 (r) η (ζ2) . (3.46)

First, if we replace ζ1 by ϕζ1 and ζ2 by ϕζ2 in (3.46) and then subtract (3.46) from the

obtained equation, we obtain following equation

Qϕζ1 + ϕQζ1 = −2 (2n+ σ)ϕζ1, (3.47)

by using (2.13) and ξ(f) = 0.

Let {wi} (1 ≤ i ≤ 2n + 1) be an orthonormal basis, after writing ζ1 = wi in (3.47), we

have

Qϕwi + ϕQwi = −2 (2n+ σ)ϕwi. (3.48)

Moreover, we can calculate following

g (ϕQwi, ϕwi) = −g
(
Qwi, ϕ

2wi

)
= −g (Qwi, wi) . (3.49)

By virtue of (3.48) and (3.49), we get

r = Rc (ξ, ξ) +

n∑
i=1

{Rc (wi, wi)−Rc (ϕwi, ϕwi)}

= −2n+

n∑
i=1

{−g (ϕQwi +Qϕwi, ϕwi)}

= −2n (2n+ 1)− 2nσ.

constant, so from f − ρr is constant, we have f is constant. Hence from W=gradf, W=0.

By (1.5), the manifold is η-Einstein. This concludes the proof. □
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4. Gradient η-Ricci-Bourguignon Solitons on Paracontact (κ ̸= −1, µ)-

Manifolds

In this section, we will investigate gradient η-Ricci-Bourguignon solitons on paracontact

metric (κ ̸= −1, µ)-manifolds.

Lemma 4.1. If a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-manifold admits a

gradient η-Ricci-Bourguignon soliton, then we have

κ (2− µ) = µ (n+ 1) + σ. (4.50)

Proof. By virtue of (1.5), we have

∇ζ1gradf +Qζ1 = (λ+ ρr) ζ1 + ση (ζ1) ξ. (4.51)

Taking the covariant derivative of (4.51) with ζ2 and using (2.7), we get

∇ζ2∇ζ1gradf +∇ζ2Qζ1 = (λ+ ρr)∇ζ2ζ1 + σ (∇ζ2η (ζ1) ξ − η (ζ1)ϕζ2 + η (ζ1)ϕhζ2) . (4.52)

Interchanging ζ1 and ζ2 in the last equation, we obtain

∇ζ1∇ζ2gradf +∇ζ1Qζ2 = (λ+ ρr)∇ζ1ζ2 + σ (∇ζ1η (ζ2) ξ − η (ζ2)ϕζ1 + η (ζ2)ϕhζ1) . (4.53)

From (4.51), we have

∇[ζ1,ζ2]gradf +Q [ζ1, ζ2] = (λ+ ρr) [ζ1, ζ2] + ση ([ζ1, ζ2]) ξ. (4.54)

In the view of (4.52), (4.53) and (4.54), we can compute

R (ζ1, ζ2) gradf = − (∇ζ1Q) ζ2 + (∇ζ2Q) ζ1

+σ (2g (ζ1, ϕζ2) ξ + η (ζ1)ϕζ2 − η (ζ1)ϕhζ2 − η (ζ2)ϕζ1 + η (ζ2)ϕhζ1) .(4.55)

Using (2.28) in (4.55), we obtain

g (R (ζ1, ζ2) gradf, ξ) = g ((Qϕ+ ϕQ) ζ2, ζ1)− g ((Qϕh+ hϕQ) ζ2, ζ1)

−4nκg (ϕζ2, ζ1) + 2σg (ζ1, ϕζ2) . (4.56)

Putting ζ1 by ϕζ1 and ζ2 by ϕζ2 in (4.56) and using the fact that R (ϕζ1, ϕζ2) ξ = 0 from

(2.16), we get

0 = ϕ (− (Qϕ+ ϕQ)ϕζ1 + (Qϕh+ hϕQ)ϕζ1 + 4nκζ1 − 2σζ1) . (4.57)
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From (2.29), we can compute

ϕ (Qϕ+ ϕQ)ϕζ1 = 2 (2 (1− n) + nµ)ϕζ1. (4.58)

ϕ (Qϕh+ hϕQ)ϕζ1 = −2 (κ+ 1) (2 (n− 1) + µ)ϕζ1. (4.59)

If we use (4.58) and (4.59) in (4.57), we get (4.50). □

Theorem 4.1. If a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-manifold admits a

gradient η-Ricci-Bourguignon soliton, then either

i) The manifold is η-Einstein, κ = 0, µ = 2(1− n), r = 4n(1− n2), or

ii) The manifold is the product of a flat (n+ 1)-dimensional manifold and n-dimensional

manifold of negative constant curvature equal to −4 for n > 1 and its locally flat for n = 1,

or

iii) The manifold is η-Einstein, κ = 1−n2

n + σ
2n , µ = 2(1− n), r = 2(1− n2)(1 + 2n) + σ,

or

iv) The manifold is paracontact metric
(
κ > −1, µ = ± κ√

κ+1

)
-manifold.

Proof. Substituting ζ1 = ξ in (4.55) and then using (2.27) and (2.28), we get

R (ξ, ζ2) gradf = −µ [2 (n− 1) + µ]hϕζ2+Q (ϕζ2 − ϕhζ2)−2nκ (ϕζ2 − ϕhζ2)+σ (ϕζ2 − ϕhζ2) .

(4.60)

Putting ζ1 = ζ2, ζ2 = gradf in (2.18), we obtain

R (ξ, ζ2) gradf = κ [ζ2 (f) ξ − ξ (f) ζ2] + µ [(hζ2) (f) ξ − ξ (f)hζ2] . (4.61)

By equating the right-hand sides of equations (4.60) and (4.61) and subsequently taking the

inner product of the resulting equation with ξ, we obtain

κ [ζ2 (f)− ξ (f) η (ζ2)] + µ [(hζ2) (f)] = 0. (4.62)

If we substitute ζ2 by hζ2 in (4.62) and use (2.17), we get

κ (hζ2) (f) + µ (κ+ 1) [ζ2 (f)− η (ζ2) ξ (f)] = 0. (4.63)

Combining (4.62) and (4.63), we obtain

[ζ2 (f)− ξ (f) η (ζ2)]
[
κ2 − µ2 (κ+ 1)

]
= 0. (4.64)

Contracting (4.55) over ζ1 and using

divQζ2 =

2n+1∑
i=1

εig((∇wiQ)ζ2, wi) =
1

2
ζ2(r).
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We conclude that

Rc (ζ2, gradf) = 0. (4.65)

In the view of (2.22) and (4.65), we get

0 = [2 (1− n) + nµ] g (ζ1, gradf) + [2 (n− 1) + µ] g (hζ1, gradf)

+ [2 (n− 1) + n (2κ− µ)] η (ζ1) η (gradf) . (4.66)

Substituting ζ1 = ξ in (4.66), we have

2nκξ (f) = 0.

This gives either κ = 0, or ξ (f) = 0.

Case 1: Let κ = 0. From (4.64), we have

[gradf − ξ (f) ξ]µ2 = 0. (4.67)

By (4.67), we have followings:

Case 1a: Let µ ̸= 0. So we obtain

gradf = ξ (f) ξ. (4.68)

If we take the covariant derivative of (4.68) along ζ1 and using (2.7), we get

g (∇ζ1gradf, ζ2) = ξ(f)g (∇ζ1ξ, ζ2) + ζ1(ξ(f))η (ζ2) (4.69)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

By using g (∇ζ1gradf, ζ2) = g (∇ζ2gradf, ζ1) we have

ζ1(ξ(f))η (ζ2)− ζ2(ξ(f))η (ζ1) = −2ξ(f)dη (ζ1, ζ2) (4.70)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1). Putting ζ1 by ϕζ1 and ζ2 by ϕζ2 in (4.70), we obtain

ξ(f) = 0, because of dη ̸= 0. So from (4.68), we have gradf = 0, namely f is constant and so

the manifold is η-Einstein. So from (2.29), we obtain µ = 2(1−n). Let {wi} (1 ≤ i ≤ 2n+1)

be an orthonormal basis. Taking the summation over i for ζ1 = ζ2 = wi in (2.29), we obtain

r = 4n
(
1− n2

)
. Note that in this subcase the scalar curvature can not be positive.

Case 1b: Let µ = 0. So we can use Theorem 2.1.

Case 2: Let ξ (f) = 0. By (4.64) we have

gradf
(
κ2 − µ2 (κ+ 1)

)
= 0. (4.71)

By (4.71), we have followings:
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Case 2a: Let gradf = 0. Namely f is constant. So the manifold is η-Einstein. So from

(2.29), we obtain µ = 2(1 − n). Using this in (4.50), we get κ = 1−n2

n + σ
2n . Let {wi}

(1 ≤ i ≤ 2n+ 1) be an orthonormal basis. Taking the summation over i for ζ1 = ζ2 = wi in

(2.29), we obtain r = 2(1− n2)(1 + 2n) + σ.

Case 2b: Let κ2−µ2 (κ+ 1) = 0. We want to remind that κ ̸= −1. It means that κ > −1

or κ < −1. Firstly let us suppose that κ < −1. In this case we say that κ = 0 and µ = 0.

But this case is contradiction with the assumption that κ < −1. Therefore, κ must be bigger

than −1. Now, from κ2 − µ2 (κ+ 1) = 0, we obtain µ = ± κ√
κ+1

Namely the manifold is

paracontact metric
(
κ > −1, µ = ± κ√

κ+1

)
-manifold. This concludes the proof. □

5. Examples

Example 5.1. We consider the three-dimensional manifold M . Define the almost paracon-

tact structure (ϕ, ξ, η) on M by

ϕξ = 0, ϕw1 = w2, ϕw2 = w1, ξ = w3.

We have

[w1, w3] = 0, [w2, w3] = 0, [w1, w2] = −2ξ.

Let g be the semi-Riemannian metric defined by

g (w2, w2) = −1, g (w1, w1) = g (ξ, ξ) = 1, g(wi, wj) = 0, i ̸= j

where i, j = 1, 2, 3. Let ∇ be the Levi-Civita connection with respect to g. Then by Koszul

formula

∇w1w1 = 0, ∇w2w1 = ξ, ∇w3w1 = −w2,

∇w1w2 = −ξ, ∇ww2w2 = 0, ∇w3w2 = −w1,

∇w1w3 = −w2, ∇w2w3 = −w1,∇w3w3 = 0.

It is easy to see that M is a K-paracontact manifold. The components of the curvature tensor

are

R(w1, w2)w2 = −3w1, R(w1, w2)w3 = 0, R(w3, w2)w2 = ξ,

R(w1, w3)w3 = −w1, R(w2, w3)w3 = −w2, R(w1, w3)w2 = 0,

R(w2, w1)w1 = 3w2, R(w3, w1)w1 = −ξ, R(w2, w3)w1 = 0.
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Using the components of the curvature tensor, we obtain

Rc(w1, w1) = 2, Rc(w2, w2) = −2, Rc(ξ, ξ) = −2

In view of above relations, we have r = S(w1, w1)− S(w2, w2) + S(ξ, ξ) = 2. Using (1.4), we

have

Rc(w1, w1) = λ+ρr = 2, Rc(w2, w2) = −(λ+ρr) = −2, Rc(ξ, ξ) = λ+ρr+σ = −2. (5.72)

From (5.72), we get λ + 2ρ = 2 and σ = −4. Hence we see that M admits an η-Ricci-

Bourguignon soliton with σ = −4, for W=fξ, f constant. M is also η-Einstein manifold

and verifies Theorem 3.1. Also the soliton is shrinking, steady or expanding according as

2(1− ρ) > 0 , 2(1− ρ) = 0 and 2(1− ρ) < 0, respectively.

We used [14] while constructing following examples.

Example 5.2. Let M be a three-dimensional manifold. w1 = w, w2 = ϕw and w3 = ξ are

vector fields such that

[w, ξ] = (λ̃− 1)ϕw, [ϕw, ξ] = −(λ̃+ 1)w, [w, ϕw] = 2ξ.

The semi-Riemannian metric g is defined by

g (w,w) = −1, g (ϕw, ϕw) = g (ξ, ξ) = 1, g(wi, wj) = 0, i ̸= j

where i, j = 1, 2, 3. The 1-form η is defined by

η (ζ1) = g(ζ1, ξ)

for all ζ1 on M . Let ϕ be the (1, 1)-tensor field defined by

ϕξ = 0, ϕw1 = w2, ϕw2 = w1.

Then,

η (ξ) = 1, ϕ2 (ζ1) = ζ1 − η (ζ1) ξ

g (ϕζ1, ϕζ2) = −g (ζ1, ζ2) + η (ζ1) η (ζ2) , dη (ζ1, ζ2) = g (ζ1, ϕζ2) ,
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for any vector fields ζ1, ζ2 on M . Hence (ϕ, ξ, η, g) defines a paracontact structure. Let ∇ be

the Levi-Civita connection on M , then by Koszul’s formula, we obtain

∇ww = 0, ∇ϕww = −(λ̃+ 1)ξ, ∇ξw = 0,

∇wϕw = (1− λ̃)ξ, ∇ϕwϕw = 0, ∇ξϕw = 0,

∇wξ = (λ̃− 1)ϕw, ∇ϕwξ = −(λ̃+ 1)w, ∇ξξ = 0.

Using the covariant derivatives, we compute the components of the Riemannian curvature

tensor:

R (w, ϕw)ϕw = (1− λ̃2)w, R (ϕw, ξ) ξ = (λ̃2 − 1)ϕw, R (w, ϕw) ξ = 0,

R (w, ξ) ξ = (λ̃2 − 1)w, R (ξ, w)w = (1− λ̃2)ξ, R (w, ξ)ϕw = 0,

R (ϕw,w)w = (λ̃2 − 1)ϕe, R (ξ, ϕw)ϕw = (λ̃2 − 1)ξ , R (ϕw, ξ)w = 0.

Also, the followings are valid:

hw = λ̃w, hϕw = −λ̃ϕw, hξ = 0.

Qw = (1− λ̃2 +
r

2
)w,

Qϕw = (1− λ̃2 +
r

2
)ϕw,

Qξ = 2(λ̃2 − 1)ξ. (5.73)

Thus, the manifold is a (κ ̸= −1,0)-paracontact metric manifold with κ = λ̃2 − 1 > −1.

From the components of the Riemannian curvature tensor, we derive Rc (w,w) = 0,

Rc (ϕw, ϕw) = 0, Rc (ξ, ξ) = 2λ̃2 − 2. Hence, the scalar curvature r = 2(λ̃2 − 1) = 2κ.

Then, using this, (1.5) and (5.73) we get

(−1+λ̃2− r
2
+λ+ρr)w = 0, (−1+λ̃2− r

2
+λ+ρr)ϕw = 0, (−2λ̃2+2+λ+ρr+σ)ξ = 0. (5.74)

By (5.74), we get λ+ρr = 1− λ̃2+ r
2 and r = σ. If we use r = 2(λ̃2−1) in the last equation

we have λ+ ρr = 0. Hence we see that M admits gradient η-Ricci-Bourguignon soliton with

σ = 2(λ̃2 − 1) = r and constant f . M is also η-Einstein manifold and verifies Theorem 4.1.

Example 5.3. Let M be a three-dimensional manifold. w1 = w, w2 = ϕw and w3 = ξ are

vector fields such that

[w, ξ] = 2w − ϕw, [ϕw, ξ] = −w − 2ϕw, [w, ϕw] = 2ξ.
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The semi-Riemannian metric g is defined by

g (w,w) = −1, g (ϕw, ϕw) = g (ξ, ξ) = 1, g(wi, wj) = 0, i ̸= j

where i, j = 1, 2, 3. The 1-form η is defined by

η (ζ1) = g(ζ1, ξ)

for all ζ1 on M . Let ϕ be the (1, 1)-tensor field defined by

ϕξ = 0, ϕw1 = w2, ϕw2 = w1.

Then,

η (ξ) = 1, ϕ2 (ζ1) = ζ1 − η (ζ1) ξ

g (ϕζ1, ϕζ2) = −g (ζ1, ζ2) + η (ζ1) η (ζ2) , dη (ζ1, ζ2) = g (ζ1, ϕζ2) ,

for any vector fields ζ1, ζ2 on M . Hence (ϕ, ξ, η, g) defines a paracontact structure. Let ∇ be

the Levi-Civita connection on M , then by Koszul’s formula, we obtain

∇ww = 2ξ, ∇ϕww = −ξ, ∇ξw = 0,

∇wϕw = ξ, ∇ϕwϕw = 2ξ, ∇ξϕw = 0,

∇wξ = −ϕw + 2w, ∇ϕwξ = −w − 2ϕw, ∇ξξ = 0.

Using the covariant derivatives, we compute the components of the Riemannian curvature

tensor:

R (w, ϕw)ϕw = 5w, R (ϕw, ξ) ξ = −5ϕw, R (w, ϕw) ξ = 0,

R (w, ξ) ξ = −5w, R (ξ, w)w = 5ξ, R (w, ξ)ϕw = 0,

R (ϕw,w)w = −5ϕw, R (ξ, ϕw)ϕw = −5ξ, R (ϕw, ξ)w = 0.

Also, the followings are valid:

hw = λ̃ϕw, hϕw = −λ̃w, hξ = 0.

Qw = (5 +
r

2
)w,

Qϕw = (5 +
r

2
)ϕw,

Qξ = −10ξ. (5.75)
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Thus, the manifold is a (κ ̸= −1,0)-paracontact metric manifold with κ = −5 < −1.

From the components of the Riemannian curvature tensor, we derive Rc (w,w) = 0,

Rc (ϕw, ϕw) = 0, Rc (ξ, ξ) = −10. Hence, the scalar curvature r = −10 = 2κ. Then,

using this, (1.5) and (5.75) we get

(λ− 10ρ)w = 0, (λ− 10ρ)ϕw = 0, (10 + λ− 10ρ+ σ)ξ = 0. (5.76)

By (5.76), we get λ − 10ρ = 0 and r = σ = −10. Hence we see that M admits a gradient

η-Ricci-Bourguignon soliton with σ = −10 and constant f . M is also η-Einstein manifold

and verifies Theorem 4.1.
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SPACETIMES WITH ANTI-TORQUED VECTOR FIELDS
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Abstract. The kinematic and dynamic properties of relativistic spacetime in the context

of relativity can be modelled by three distinct classes: shrinking, steady, and expanding.

This physical framework bears a resemblance to conformal Ricci flow, where solitons serve

as fixed points. Notably, within the solar system, the gravitational effects predicted by Ricci

flow align with those of Einstein’s gravity, ensuring consistency with all classical tests. In this

article, we investigate conformal solitons, which extend the concept of Ricci solitons, within

the framework of a magnetized spacetime manifold equipped with an anti-torqued vector

field ζ. An anti-torqued vector field is defined as one that resists rotational deformation

within the fluid-spacetime structure, effectively encoding a type of constrained rotational

symmetry relevant in magneto-fluid dynamics. We demonstrate that whether these confor-

mal solitons are steady, expanding, or shrinking depends on intricate relationships among

key physical parameters, including magnetic permeability, magneto-fluid density, isotropic

pressure, magnetic flux, and the strength of the magnetic field.

Keywords: Soliton, Spacetime, Energy momentum tensor.
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1. Introduction

In modern physics, space and time are inseparable, at least in the process of represent-

ing physical things through ourselves, where these two dimensions play an important role

in imagining and conceptualizing the connections of all physical things. In 1915, Einstein
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developed the theory of gravity known as general relativity, which exposes the fundamental

role of the physics and geometry of spacetime. It plays an important role in Engineering

when applied to day to day life. If we consider general relativity, then the space-time in the

four-dimensional pseudo-Riemannian manifold with Lorentzian metric (M4, g), where g is

considered to be perfectly liquid space-time. Perfect fluids are used in cosmology to model

the idealized distributions of matter. It is defined by various thermodynamical variables

(variables are: particle number density, energy density, pressure, temperature, and entropy

per particle). These variables are spacetime scalar fields whose values represent measure-

ments made in the rest frame of the isotropic or star.

On the other hand, the Ricci flow was first introduced by Hamilton [9]. Over the last decades,

many differential geometers progressively studied Ricci flow [3, 14]. Fischer [8] proposed a

modified version known as conformal Ricci flow, which differs from the classical Ricci flow

in its constraints. While the original Ricci flow preserves unit volume, the conformal Ricci

flow instead imposes a scalar curvature constraint. Interestingly, the conformal Ricci flow

equations exhibit structural similarities to the Navier-Stokes equations in fluid dynamics. In

this analogy, the time-dependent scalar field p acts as a conformal pressure—unlike physical

pressure, which ensures fluid incompressibility, conformal pressure influences the deforma-

tion of the metric under the flow. The fixed points of this system correspond to Einstein

metrics with a specific constant −1
n . Building on these concepts, Catino and Mazzieri [6]

introduced Einstein solitons, which provide self-similar solutions to the Einstein flow. Ex-

tending this framework, Roy et al. [18] developed the notion of conformal Einstein solitons.

Both conformal Ricci and conformal Einstein solitons generate self-similar solutions, offering

a deeper understanding of geometric flows in mathematical physics. The conformal Ricci

and conformal Einstein flow respectively are given by:

∂g

∂t
= −2(S +

g

n
)− ϕg and r = −1 and

∂g

∂t
= −2(S − r

2
g). (1.1)

A matter is assumed to be fluid, having pressure, density, and kinematic and dynamical quan-

tities like verticity, shear, velocity, acceleration, and expansion [25, 1]. The energy-momentum

tensor acts a big role in the matter content of spacetime (universe). The energy-momentum

tensor applications are cosmology and stellar structure, and examples are electromagnetism

and scalar field theory. The study of the kinematic and dynamic nature of relativistic space-

time application in relativity has a physical model of three classes, namely: shrinking, steady,
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and expanding. Such a physical model are similar to conformal flow. Also, for the solar sys-

tem, conformal flow gravity effects are not different from Einstein’s gravity, and hence it

obeys all the classical tests.

Over the last decades, many differential geometers [19, 17] progressively studied the various

geometric flows in Relativistic perfect fluid spacetime (briefly RPFS). The study of Ricci

solitons and their geometric properties in RPFS was first explored by Ali and Ahsan [2].

Subsequently, Blaga [5] investigated the geometric characteristics of RPFS in the context

of Ricci solitons, Einstein solitons, and their extensions—namely, π-Ricci solitons and π-

Einstein solitons. Further contributions were made in [26], where the authors examined

Ricci soliton structures in RPFS with a torse-forming timelike velocity vector field ζ. D.

Siddiqi and A. Siddiqui [23] later analyzed the geometric structure of RPFS using conformal

Ricci solitons. Siddiqi and De [24] extended these investigations to relativistic magneto-fluid

spacetimes (RMFS). More recently, Praveena et al. [16, 15] studied Ricci, Einstein, and con-

formal Ricci solitons in almost pseudo-symmetric Kählerian and Kähler-Norden spacetimes,

incorporating various curvature tensors. Additionally, Bhattacharyya et al. [18] examined

conformal Einstein solitons in para-Kähler manifolds.

Inspired by these developments, the present work explores the geometric behavior of confor-

mal Ricci and Einstein flows in RMFS with an anti-torqued vector field.

2. Relativistic magneto fluid spacetime

A relativistic magneto-fluid (RMF) is a continuum medium whose physical state can be

fully described by several key parameters: the fluid’s rest frame, mass density, isotropic pres-

sure, magnetic flux, and magnetic field strength. In general relativity, such magneto-fluids

serve as fundamental models for idealized matter distributions, including stellar interiors and

homogeneous cosmological models.

The RMF framework makes several simplifying assumptions - the medium exhibits zero

shear stress, negligible viscosity, and no thermal conduction. Mathematically, its behavior is

governed by a magnetic energy-momentum tensor T with specific symmetric properties that

capture these physical characteristics. This formulation provides a valuable theoretical tool

for analyzing relativistic plasma systems where electromagnetic and gravitational interactions

play equally important roles. T is in the form [13, 12]:

T = ρg + (σ + ρ)A⊗A+ ν{H
(
A⊗A+

1

2
g

)
− B ⊗ B}, (2.2)
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where ν, σ, ρ,B,H are the magnetic permeability, magneto-fluid density, isotopic pressure,

magnetic flux, strength of the magnetic field, respectively and A(·) = g(·, ζ), g(·, ξ) = B(·)

are two non-zero 1-forms. Also, ζ and ξ, are unit timelike vector field ζ such that g(ζ, ζ) = −1

and spacelike magnetic flux vector field ξ such that g(ξ, ξ) = 1. Therefore, ζ and ξ are

orthogonal vector fields generate the magneto-fluid spacetime.

Einstein’s gravitational equation with cosmological constant is given as [12]

kT = S +
(
λ− r

2

)
g, (2.3)

for any E,F ∈ χ(M), where λ, k are the cosmological constant and gravitational constant,

respectively.

In view of (2.2), equation (2.3) takes the form

S =

[
−λ+

r

2
+ k

(
νH
2

+ ρ

)]
g

+k(νH+ σ + ρ)A⊗A− kνB ⊗ B. (2.4)

3. Characteristics of relativistic magneto fluid spacetime with anti-torqued

vector field

Let (M4, g) be a relativistic magneto fluid spacetime (briefly RMFS) satisfying (2.4).

Contracting the equation (2.4) provides

r = 4λ− k[ν(H− 1) + 3ρ− σ]. (3.5)

Using the above equation in (2.4), we have

S(E,F ) =

(
λ+

k

2
(ν + σ − ρ)

)
g(E,F ) + k(νH+ σ + ρ)A(E)A(F )

−kνB(E)B(F ), (3.6)

which also implies

QE = aE + bA(E)ζ + cB(E)ξ, (3.7)

where a = λ+ k
2 (ν + σ − ρ), b = k(νH+ σ + ρ), c = −kν.

We consider the special case when ζ is an anti-torqued vector field [7] of the form:

∇Eζ = f(E −A(E)ζ), (3.8)

for a vector field E on M4, where A is one form dual to unit anti-torqued vector field and f

is a non-zero smooth function.
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Theorem 3.1. On a RMFS with an anti-torqued vector field ζ, the following relations hold:

(∇XA)(E) = f [g(E,F )−A(E)A(F )], (3.9)

A(∇ζζ) = 2, ∇ζζ = 2ζ, (3.10)

R(E,F )ζ = f2[A(E)F −A(F )E] + E(f)[F −A(F )ζ]− F (f)[E −A(E)ζ],(3.11)

R(E, ζ)ζ = f2[E +A(E)ζ] + 2E(f)ζ − ζ(f)[E −A(E)ζ], (3.12)

A(R(E,F )D) = f2[A(F )g(X,D)−A(E)g(F,D)]− E(f)[g(F,D)−A(F )A(D)]

+F (f)[g(E,D)−A(E)A(D)], (3.13)

(£ζg)(E,F ) = 2f [g(E,F )−A(E)A(F )]. (3.14)

Proof. Compute (∇EA)(F ) = E(A(F ))−A(∇EF ) = E(g(F, ζ))−g(∇EF, ζ) = g(F,∇Eζ) =

f [g(E,F ) − A(E)A(F )]. Specifically, (∇ζA)E = 0. The relation (3.9) can be obtained by

(3.8).

Now, utilizing (3.8) in R(E,F )ζ = ∇E∇F ζ−∇F∇Eζ−∇[E,F ]ζ and from direct computation

we obtain the relation (3.11). Additionally (3.12) and (3.13) follows from (3.11). Now

differentiating g along ζ, then by simple calculation we get (3.14). □

4. Conformal Ricci soliton in a RMFS

This section is devoted to studying the conformal Ricci soliton in the context of RMFS.

Conformal Ricci solitons, which are defined as [4]:

£V g + 2S +

[
2Λ−

(
π +

2

n

)]
g = 0, (4.15)

where S, π,Λ are the Ricci tensor, the conformal pressure, a constant respectively and £V

is the Lie-derivative operator along the vector field V on spacetime. The conformal Ricci

soliton becomes shrinking (resp. steady, expanding) for Λ < 0 (resp. Λ = 0, Λ > 0).

Taking ζ instead of V in (4.15) and then using (3.14) yields

S(E,F ) = −
[
Λ− 1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).

Making use of (2.4) in the above equation, we obtain[
−λ+

r

2
+ k

(
νH
2

+ ρ

)]
g(E,F ) + k(νH+ σ + ρ)A(E)A(F )

−kνB(E)B(F ) = −
[
Λ− 1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).



INT. J. MAPS MATH. (2025) 8(2):642-652 / CONFORMAL SOLITONS IN RELATIVISTIC ... 647

Setting E = F = ζ in the foregoing equation and then making use of (3.5) yields

Λ = −λ+ kν

(
H− 1

2

)
+

3

2
kρ+

kσ

2
+
π

2
− 2f +

1

4
. (4.16)

Theorem 4.1. A RMFS with anti-torqued vector field ζ admitting a conformal Ricci soliton

is shrinking, steady, or expanding accordingly cosmological constant λ≤
>kν

(
H− 1

2

)
+ 3

2kρ+

kσ
2 + π

2 − 2f + 1
4 respectively.

Let us consider a spacetime in the absence of a cosmological constant i.e. λ = 0. Then it

yields S(ζ, ζ) = k
2 [ν(2H− 1) + σ + 3ρ]. If the characteristic vector field is timelike then in a

spacetime S(ζ, ζ) > 0, which implies ν(2H−1)+σ+3ρ > 0, the spacetime obeys the cosmic

strong force condition.

In view of the above converse and Eq. (4.16), we can state the following theorem.

Theorem 4.2. A RMFS with anti-torqued vector field ζ admitting a conformal Ricci soliton

which satisfies timelike convergence condition in the absence of a cosmological constant is

expanding.

5. Conformal A-Ricci Soliton in a RMFS

Consider the equation

£V g + 2S +

[
2Λ−

(
π +

2

n

)]
g + 2ΩA⊗A = 0, (5.17)

where Λ, Ω are real constants and π, S are same as defined in (4.15). The quadruple

(g, ζ,Λ,Ω) which satisfy the equation (5.17) is said to be a conformal A-Ricci soliton in

M [21]. In particular if Ω = 0, then it reduces to a conformal Ricci soliton [4] and it becomes

shrinking (resp. steady, expanding) for Λ < 0 (resp. Λ = 0, Λ > 0) [9].

Writing the Lie derivative £ζg explicitly, we have £ζg = g(∇Eζ, F ) + g(E,∇F ζ). Then

(5.17) takes the form

S(E,F ) = −
[
Λ− 1

2

(
π +

1

2

)]
g(E,F )−ΩA(E)A(F )− 1

2
[g(∇Eζ, F ) + g(E,∇F ζ)], (5.18)

for any E,F ∈ χ(M4).

From (2.4) and (5.18), we have[
λ+

k

2
(ν + σ − ρ) + Λ− 1

2

(
π +

1

2

)]
g(E,F ) + [k(νH+ σ + ρ) + Ω]A(E)A(F )

−kνB(E)B(F ) + 1

2
[g(∇Eζ, F ) + g(E,∇F ζ)] = 0. (5.19)
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Consider {ei}1≤i≤4 an orthonormal frame field and ζ =
∑4

i=1 ζ
iei. We have

∑4
i=1 ϵii(ζ

i)2 =

−1 and multiplying (5.19) by ϵii and summing over i for E = F = ei, we obtain

4Λ− Ω = −4λ+ k[ν(H− 1)− σ + 3ρ) + 2π + 1− divζ. (5.20)

Plugging E = F = ζ in (5.19), we obtain

Λ− Ω = −λ+
k

2
[ν(2H− 1) + σ + 3ρ] +

1

2

(
π +

1

2

)
. (5.21)

On solving (5.20) and (5.21), we have

Λ = −λ− k

2

(ν
3
+ σ − ρ

)
+
π

2
+

1

4
− divζ

3
,

Ω = −k
[
ν

(
H− 1

3

)
+ σ + ρ

]
− divζ

3
.

Thus, we have the following theorem:

Theorem 5.1. Let (M4, g) be a 4-dimensional pseudo-Riemannaian manifold and let A be

the g-dual 1-form of the gradient vector field ζ = grad(ϕ) with g(ζ, ζ) = −1. If (5.17) define

a conformal A-Ricci soliton in M4, then the Laplacian equation satisfied by ϕ becomes

∆(ϕ) = −3Ω− k

[
ν

(
H− 1

3

)
+ σ + ρ

]
.

Remark 5.1. If Ω = 0 in (5.17), then we obtain the conformal Ricci soliton with

Λ = −λ+ k
[
ν
(
H+ 1

6

)
+ σ+ρ

2

]
+ 1

2

(
π + 1

2

)
, which is expanding, steady, or shrinking accord-

ingly

λ
≤
>
k

[
ν

(
H+

1

6

)
+
σ + ρ

2

]
+

1

2

(
π +

1

2

)
respectively.

6. Conformal Einstein Soliton in a RMFS

Consider the equation

£V g + 2S +

[
2Λ− r +

(
π +

2

n

)]
g = 0, (6.22)

where g, ξ,Λ, S, r,A are same as defined in (4.15) and π is a scalar non-dynamical field. The

triplet (g, ζ,Λ) which satisfy the equation (6.22) is said to be a conformal Einstein soliton in

M [18]. It is called shrinking (resp. steady or expanding) for Λ < 0 (resp. Λ = 0 or Λ > 0).

Taking ζ instead of V in (6.22) and then making use of (3.14) yields

S(E,F ) = −
[
Λ− r

2
+

1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).
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Utilizing (2.4) in the foregoing equation, one can easily obtain[
−λ+

r

2
+ k

(
νH
2

+ ρ

)]
g(E,F ) + k(νH+ σ + ρ)A(E)A(F )− kνB(E)B(F )

= −
[
Λ− r

2
+

1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).

Setting E = F = ζ in the above equation provides

Λ = λ+ k

(
νH
2

+ σ

)
− π

2
− 2f − 1

4
.

Theorem 6.1. A RMFS with anti-torqued vector field ζ admitting a conformal Einstein

soliton is shrinking, steady, or expanding accordingly cosmological constant λ≥
< + π

2 + 2f +

1
4 − k

(
νH
2 + σ

)
respectively.

7. Conformal A-Einstein Soliton in a RMFS

Consider the equation

£V g + 2S +

[
2Λ− r +

(
π +

2

n

)]
g + 2ΩA⊗A = 0, (7.23)

where Λ, Ω are real constants and r, π, S are same as defined in (6.22). The quadruple

(g, ζ,Λ,Ω) which satisfy the equation (7.23) is said to be a conformal A-Einstein soliton

in M . In particular if Ω = 0, (g, ζ,Λ) is a conformal Einstein soliton [18] and it becomes

shrinking (resp. steady, expanding) for Λ < 0 (resp. Λ = 0, Λ > 0) [9].

Writing the Lie derivative £ζg explicitly, we have £ζg = g(∇Eζ, F ) + g(E,∇F ζ) and from

(7.23) we obtain:

S(E,F ) = −
[
Λ− r

2
+

1

2

(
π +

1

2

)]
g(E,F )− ΩA(E)A(F )− 1

2
[g(∇Eζ, F ) + g(E,∇F ζ)],

(7.24)

for any E,F ∈ χ(M4).

From (2.4) and (7.24), we have[
−λ+ k

(
νH
2

+ ρ

)
+ Λ− 1

2

(
π +

1

2

)]
g(E,F ) + [k(νH+ σ + ρ) + Ω]A(E)A(F )

−kνB(E)B(F ) + 1

2
[g(∇Eζ, F ) + g(E,∇F ζ)] = 0. (7.25)

Consider {ei}1≤i≤4 an orthonormal frame field and ζ =
∑4

i=1 ζ
iei. We have

∑4
i=1 ϵii(ζ

i)2 =

−1 and multiplying (7.25) by ϵii and summing over i for X = Y = ei, we obtain

4Λ− Ω = 4λ+ k(νH+ 3ρ+ ν + σ) + 2π + 1− divζ. (7.26)
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Plugging E = F = ζ in (7.25), we obtain

Λ− Ω = λ+ k(
νH
2

+ σ) +

(
π

2
+

1

4

)
. (7.27)

On solving (7.26) and (7.27), we have

Λ = λ+ k

[
νH
6

+ ρ+
ν

3

]
+
π

2
+

1

4
− divζ

3
,

Ω = −k
(
νH
3

− σ + ρ− ν

3

)
− divζ

3
.

Thus, we have the following theorem:

Theorem 7.1. Let (M4, g) be a 4-dimensional pseudo-Riemannaian manifold and let A be

the g-dual 1-form of the gradient vector field ζ = grad(ϕ) with g(ζ, ζ) = −1. If (7.23) define

a conformal A-Einstein soliton in M4, then the Laplacian equation satisfied by ϕ becomes

∆(ϕ) = −3

[
Ω+ k

(
νH
3

− σ + ρ− ν

3

)]
.

Remark 7.1. If Ω = 0 in (7.23), then we obtain the conformal Ricci soliton with

Λ = λ+ k
[
νH
2 − σ + 2ρ

]
+ π

2 + 1
4 , which is expanding, steady or shrinking accordingly

λ
≥
<

− k

[
νH
2

− σ + 2ρ

]
− π

2
− 1

4

respectively.

8. Conclusion

In the framework of general relativity, the energy-momentum tensor T fundamentally

characterizes the matter distribution within spacetime. Conventional cosmological models

typically represent the universe’s matter content as a perfect fluid within a 4-dimensional

Lorentzian manifold. Within this paradigm, Einstein’s field equations serve as the founda-

tional tool for constructing viable cosmological models.

Relativistic magneto-fluid spacetime (RMFS) models hold particular significance across

multiple disciplines, including astrophysics, nuclear physics, and plasma physics. Recent

investigations have revealed that geometric flows provide powerful tools for characterizing

the intrinsic structures of RMFS. Of special interest are soliton solutions - those metric

configurations evolving through dilations and diffeomorphisms, which emerge naturally in

the singularity analysis of these flows. These self-similar solutions find applications not only

in physics but also in chemistry, biology, and economics (see [20], [27], [28]).



INT. J. MAPS MATH. (2025) 8(2):642-652 / CONFORMAL SOLITONS IN RELATIVISTIC ... 651

This work systematically examines various classes of solitons in RMFS endowed with an

anti-torqued vector field. We establish precise conditions under which these solitons exhibit

expanding, steady, or shrinking behavior. Furthermore, we derive the Laplace equation for

such RMFS configurations admitting conformal A-Ricci and A-Einstein solitons.

The investigation of conformal solitons gains additional importance from the remarkable

similarity between conformal Ricci flow equations and the Navier-Stokes equations of fluid

dynamics. In this correspondence, the time-dependent scalar field p functions as a conformal

pressure - distinct from conventional fluid pressure that preserves incompressibility, as it

directly influences metric deformation under the flow.
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Abstract. In this study, first, the parallel surfaces of the tube surfaces given with the
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1. Introduction

It is known that two surfaces with a common normal are called parallel surfaces. Parallel

surfaces have various uses in the design field and in the modeling of forging casting molds

[25]. It has been one of the surfaces that has been the focus of attention of many mathe-

maticians from past to present,[22, 8, 9, 10, 1, 11]. A large number of papers and books have

been published in the literature which deal with parallel surfaces in both Minkowski space

and Euclidean space. Kılıç showed that if a parallel transformation on En is a connection-

preserving transformation, the fundamental curvatures of the underlying surface are constant

[14]. Taleshian used Euler’s theorem to examine the orthogonal curvatures of parallel hyper-

surfaces and stated that if the parallel transformation preserves the second fundamental form,
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the fundamental hypersurface defines a hyperplane [23]. Fukui and Hasegawa studied the

singularities of parallel surfaces [12]. Önder and Kızıltuğ gave the relations between Bertrand

and Mannheim partner D-curves on parallel surfaces in 3-dimensional Minkowski space [19].

Dede, Ekici and Çöken first defined parallel surfaces in Galilean space and examined the rela-

tionship between them, and then obtained the first, second fundamental forms and Gaussian,

mean curvatures of the parallel surface depending on the first, second fundamental forms and

Gaussian, mean curvatures of the main surface [5]. Savcı studied the relationship between the

Darboux frame, geodesic curvatures, normal curvatures, and geodesic torsions of the curves

lying on the parallel surface pair, showed that the parallel surface of a non-developable ruled

surface is not a ruled surface, and obtained that the parallel surface of a Weingarten ruled

surface is also a ruled Weingarten surface [20].

Craig worked on parallel surfaces of the ellipsoid [2]. Eisenhart wrote a section on parallel

surfaces in his work “A treatise on the differential geometry of curves and surfaces” [7].

Nizamoğlu stated that the parallel ruled surface is a curve that depends on a parameter and

gave some geometrical properties of such a surface [18]. Hacısalihoğlu and Tarakcı defined

surfaces with constant ridge distance and showed that a parallel surface is a special case of a

surface with constant ridge distance [24]. Again, Hacısalihoğlu and Yaşar studied the parallel

surface of a hypersurface in Lorentz space and obtained new characterizations [27]. Çöken,

Çiftçi and Ekici worked on parallel surfaces of timelike ruled surfaces [3]. Dae Won Yoon

studied parallel Weingarten surfaces in Euclidean space and showed that for a surface to be a

Weingarten surface, it is necessary and sufficient that its parallel surface is also a Weingarten

surface [28]. In recent years, Kızıltuğ has taken a curve on a surface and obtained the image

of this curve on a parallel surface and examined the characteristic features of this curve on

the parallel surface [15, 16, 17]. Ünlütürk and Özüsağlam showed that the image of a curve

that is geodesic onM by normal transformation in Minkowski 3-space on the parallel surface

Mr is also a geodesic [26].

Given any curve in three-dimensional Euclidean space, an orthonormal vector system called

the Frenet frame can be established at every point of this curve. The Frenet frame defines

the curvature and torsion functions of the curve that characterize the curve. However, the

disadvantage of this frame is that the Frenet frame cannot be established at points where

the second derivative of the curve is zero. With the Flc frame defined by Dede in 2019, the

singular points occurring in the second derivative of the curve were eliminated and a new

frame was established. This shows that the Flc frame can be established along the curve,
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including the points where the Frenet frame cannot be established. Thus, the deformation

on the surfaces created by taking this frame as a reference was also minimized, [4].

In this study, the parallel surfaces of tube surfaces defined using the Flc frame are first

introduced. The Gaussian and mean curvatures of these parallel surfaces are calculated to

determine the conditions under which they are developable or minimal. Next, the criteria for

the parameter curves on the parallel surfaces to be asymptotic, geodesic, or curvature lines

are analyzed. It is also demonstrated that both the tube surface and its parallel surfaces

preserve the Gaussian transform. Finally, examples of these surfaces are provided.

2. Preliminaries

In this section, we remind some basic concepts that will be used throughout the paper.

Let λ = λ(t) be a regular space curve satisfying non-degenerate condition λ
′
(t) ∧ λ′′

(t) ̸= 0.

Then, the orthonormal vector system called Frenet frame is defined by

T (t) =
λ

′
(t)

∥λ′(t)∥
, B(t) =

λ
′
(t) ∧ λ′′

(t)

∥λ′(t) ∧ λ′′(t)∥
, N(t) = B(t) ∧ T (t)

where T is tangent, N is principal normal, and B is binormal vector field. The Frenet

formulas are given by

T ′ = κηN, N ′ = −κηT + τηB, B′ = −τηN ,
∥∥λ′∥∥ = η

where the curvature κ and torsion τ of the curve are, [4]

κ =

∥∥∥λ′
(t) ∧ λ′′

(t)
∥∥∥

∥λ′(t)∥3
, τ =

〈
λ

′
(t) ∧ λ′′

(t), λ
′′′
(t)
〉

∥λ′(t) ∧ λ′′(t)∥2
.

The nth degree polynomial with parameter t is defined as

P (t) = λnt
n + λn−1t

n−1 + ...+ λ1t
1 + λ0, λn ̸= 0

where n ∈ N0, λi ∈ R, (0 ≤ i ≤ n), [4]. Now let us define a curve such that, λ : [a, b] →

En, λ(t) = (λ1(t), λ2(t), ..., λn(t)). If each λi(t) are polynomials for 1 ≤ i ≤ n, then

λt ∈ R [s] is defined to be an n−dimensional polynomial curve [4]. The degree of such a

polynomial curve as λ(t) is given by

deg λ(t) = max {deg (λ1(t)) ,deg (λ2(t)) , ..., deg (λn(t))} .
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The definition of the Flc frame of a polynomial space curve λ = λ(t) given by Dede in [4] is

as follows

T (t) =
λ

′
(t)

∥λ′(t)∥
, D1(t) =

λ
′
(t) ∧ λ(n)(t)∥∥λ′(t) ∧ λ(n)(t)

∥∥ , D2(t) = D1(t) ∧ T (t)

where the prime ′ indicates the differentiation with respect to s and (n) stands for the nth

derivative. The new vectorsD1 andD2 are called binormal-like vector and normal-like vector,

respectively. The curvatures of the Flc-frame d1, d2, and d3 are given by

d1 =
⟨T ′, D2⟩

η
, d2=

⟨T ′, D1⟩
η

, d3 =
⟨D2

′, D1⟩
η

where ∥λ′∥ = η. The local rate of change of the Flc-frame called as the Frenet-like formulas

can be expressed in the following form
T ′

D2
′

D1
′

 = η


0

−d1

−d2

d1

0

−d3

d2

d3

0




T

D2

D1

 .
The relationship between the Frenet and Frenet like frame (Flc) is given by

T

D2

D1

 =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ



T

N

B


and the relations between the curvatures of two frames are

d1 = κcosθ, d2 = −κsinθ, θ = arctan

(
−d2
d1

)
, d3 =

dθ

η
+ τ

where θ = ∢(N,D2). Let E3 be a 3-dimensional Euclidean space provided with the metric

given by

< X,X >= dx21 + dx22 + dx23

where (x1, x2, x3) is a rectangular coordinate system of E3. Recall that, the norm of an

arbitrary vector X ∈ E3 is given by ∥X∥ =
√
< X,X >, [13]. The parametric equation of a

parallel surface is given as: LetM1 andM2 be two surfaces in 3-dimensional Euclidean space

and the unit normal vector field of M1 be Z. If there is a function f defined as

f :M1 −→M2, f(P ) = P + rZp
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where r is a constant number, then the surfaces M1 and M2 are called parallel surfaces.

Given the surface M ,

Mr = {P + rZp : P ∈M, r ∈ R and r=constant }

the set Mr given by the equation is a surface parallel to M . The normal vector field of the

surface Mr is computed as

NMr(t, θ) =
Mrt ∧Mrθ

∥Mrt ∧Mrθ∥
.

In addition, the first and second fundamental forms of the surface Mr are given by

I = Edt2 + 2Fdtdθ +Gdθ2,

II = Ldt2 + 2Mdtdθ +Ndθ2

while the Gaussian and mean curvatures are

K =
LN −M2

EG− F 2
, H =

EN − 2FM +GL

2(EG− F 2)

where the coefficients are found by following:

E =< Mrt ,Mrt >, F =< Mrt ,Mrθ >, G =< Mrθ ,Mrθ >,

L =< Mrtt , NMr >, N =< Mrtθ , NMr >, M =< Mrθθ , NMr > .

Concerning the Gaussian and mean curvatures, the following definitions exist

• A surface is said to be developable and has parabolic points if the Gaussian curvature

vanishes,

• A surface is said to have hyperbolic (resp. elliptic) points, if it has a negative (resp.

positive) Gaussian curvature,

• A surface is said to be minimal if the mean curvature vanishes, [6].

3. On geometry of the parallel surface of the tube surface given by the Flc

frame in Euclidean 3-space

Let M(t) be a polynomial space curve of degree n. We can parametrize a tubular surface

generated by an Flc-frame as follows

K(t, θ) =M (t) + r [cos θD2 (t) + sin θD1 (t)] (3.1)
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where θ ∈ [0, 2π), r ∈ R is the radius of the tubular surface and the curve M(t) is the center

curve of the tubular surface, [4]. The derivatives according to parameters t and θ of the

tubular surface K(t, θ) are, respectively,

Kt = ν(1− r (cos θd1 + sin θd2 ))T − νr sin θd3D2 + νr cos θd3D1,

Kθ = −r sin θD2 + r cos θD1 .

The normal vector field of the tubular surface K(t, θ) is obtained as

N(t, θ) = cosθD2 + sinθD1. (3.2)

If the parallel surface of the tube surface K(t, θ) is represented by KP (t, θ), the equation of

this surface is defined as

KP (t, θ) = K(t, θ) + εN(t, θ).

If the expressions (3.1) and (3.2) are written here, the expression of the parallel surface

KP (t, θ) with respect to the Flc frame becomes,

Kp(t, θ) = K(t, θ) + εN(t, θ)

=M (t) + (r + ε) [cos θD2 (t) + sin θD1 (t)] .

If the first order partial derivatives of the surface Kp(t, θ) are taken with respect to the

parameters t and θ

Kpt =ν(1− (r + ε) (cos θd1 + sin θd2 ))T − ν(r + ε) sin θd3D2

+ ν(r + ε) cos θd3D1,

Kpθ =− (r + ε) sin θD2 + (r + ε) cos θD1 ,

is found. Here the unit normal vector of the surface is

Np(t, θ) =
Kpt ∧Kpθ

∥Kpt ∧Kpθ∥
= cosθD2 + sinθD1.

The coefficients of the first fundamental form of the surface are as follows

Ep =< Kpt ,Kpt >= ν2 [1− (r + ε) (cos θd1 + sin θd2 )]
2 + ν2(r + ε)2d3

2,

Fp < Kpt ,Kpθ >= ν(r + ε)2d3 , (3.3)

Gp =< Kpθ ,Kpθ >= (r + ε)2.
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The second-order partial derivatives of the surface Kp(t, θ) are as follows:

Kptt =[ν2(r + ε)d3(sinθd1 − cosθd2)− ν(r + ε)(cosθd′1 + sinθd′2) (3.4)

− ν ′(r + ε)(cosθd1 + sinθd2) + ν ′]T

− [ν2(r + ε)cosθ(d21 + d23) + ν2(r + ε)d1d2sinθ + (r + ε)sinθ(vd3)
′ − ν2d1]D2

− [ν2(r + ε)sinθ(d22 + d23) + ν2(r + ε)d1d2cosθ + (r + ε)cosθ(vd3)
′ − ν2d2]D1,

Kptθ =ν(r + ε)(sinθd1 − cosθd2)T − ν(r + ε)cosθd3D2 − ν(r + ε)sinθd3D1,

Kpθθ =− (r + ε)cosθD2 − (r + ε)sinθD1. (3.5)

The coefficients of the first fundamental form of the surface are written as follows

ep =< Kptt , Np > = ν2(d1cosθ + d2sinθ)− ν2(r + ε)(d1cosθ + d2sinθ)
2 (3.6)

− ν2(r + ε)d23,

fp =< Kptθ , Np >= −ν(r + ε)d3, (3.7)

gp =< Kpθθ , Np >= −(r + ε). (3.8)

With the help of these expressions, the Gaussian curvature Kp and the mean curvature Hp

of the parallel surface Kp(t, θ) are written as follows, respectively:

Kp =
−cosθd1 − sinθd2

(r + ε)[1− (r + ε)(cosθd1 + sinθd2)]
,

Hp =
1− 2(r + ε)(cosθd1 + sinθd2)

2(r + ε)[1− (r + ε)(cosθd1 + sinθd2)]
.

Theorem 3.1. Singular points of the parallel surface Kp(t, θ) satisfy the equation

cosθ0d1 + sinθ0d2 =
1

r + ε
.

Proof. For the parallel surface Kp(t, θ) to have singular points at the point (t0, θ0) ,

∥Kpt ∧Kpθ∥(t0, θ0) = 0.
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If the necessary operations are carried out from here, the following is obtained:

∥Kpt ∧Kpθ∥ (t0, θ0) = 0 ⇒ ν(r + ε) (cos θd1 (r + ε) + sin θd2 (r + ε)− 1) = 0

⇒ (r + ε)cosθ0d1 + (r + ε)sinθ0d2 = 1

⇒ cosθ0d1 + sinθ0d2 =
1

r + ε
.

□

Corollary 3.1. In particular, if θ0 = 0 is taken, then d1 = 1
r+ε . In this case, the locus of

singular points of the surface is a curve of the form

Kp(t, 0) =M(t) + (r + ε)D2(t).

Corollary 3.2. If θ0 = π
2 or θ0 = 3π

2 is taken, then d2 = 1
r+ε . In this case, the geometric

locus of the singular points of the surface is a curve of the form

Kp(t,
π

2
) =M(t) + (r + ε)D1(t),

Kp(t,
3π

2
) =M(t)− (r + ε)D1(t).

Theorem 3.2. For Kp(t, θ) parallel surface:

(i) t parametric curves are asymptotic if and only if

(r + ε)d23 + (r + ε)(cosθd1 + sinθd2)
2 = cosθd1 + sinθd2.

(ii) The parameter curves θ are not asymptotic curves.

Proof. (i) For the parameter curves of the parallel surface Kp(t, θ) to be asymptotic

curves, it is necessary and sufficient that ep = 0. From the equation (3.6) we find:

ep = 0 ⇒ ν2(d1cosθ + d2sinθ)− ν2(r + ε)(d1cosθ + d2sinθ)
2 − ν2(r + ε)d23 = 0

⇒ (r + ε)d23 + (r + ε)(d1cosθ + d2sinθ)
2 = d1cosθ + d2sinθ.

(ii) For the θ parameter curves of the parallel surface Kp(t, θ) to be asymptotic curves,

the necessary and sufficient condition is that gp = 0. From the equation (3.8), since

gp = −r − ε and r, ε ̸= 0, the θ parameter curves cannot be asymptotic.

□

Theorem 3.3. For Kp(t, θ) parallel surface:
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(i) t parametric curves are geodesic if and only if

v2d1d2(r + ε)cos2θ − v2cosθsinθ(r + ε)(d21 − d22)

− v2(cosθd2 − sinθd1)− (r + ε)(vd3)
′ = 0,(

cosθ + sinθ
)(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
= 0.

(ii) The θ parameter curves are always geodesic.

Proof. (i) The necessary and sufficient condition for the parameter curves t of the parallel

surface Kp(t, θ) to be geodesic curves is that Np∧Kptt = 0. From the equations (3.2)

and (3.4), the vector Np ∧Kptt is given by

Np ∧Kptt =
(
v2d1d2(r + ε)cos2θ − v2cosθsinθ(r + ε)(d21 − d22)

− v2(cosθd2 − sinθd1)− (r + ε)(vd3)
′
)
T (t)

+ sinθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
D2(t)

− cosθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
D1(t).

For Np ∧Kptt = 0 the coefficients must be zero. Therefore,

v2d1d2(r + ε)cos2θ − v2cosθsinθ(r + ε)(d21 − d22)

− v2(cosθd2 − sinθd1)− (r + ε)(vd3)
′ = 0,

sinθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
= 0,

cosθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
= 0.

If these equations are arranged, the desired result is obtained.

(ii) The necessary and sufficient condition for the parameter curves of the parallel surface

Kp(t, θ) to be geodesic curves is that Np ∧Kpθθ = 0. Using the equations (3.2) and

(3.5), Np ∧Kpθθ = 0 means that the θ parameter curves are always geodesic.

□
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Theorem 3.4. Let the parallel surface Kp(t, θ) be given. In order for the parameter curves

on the surface to be lines of curvature, the necessary and sufficient condition is that d3 = 0 .

Proof. For the parameter curves of the parallel surface Kp(t, θ) to be lines of curvature, it is

necessary and sufficient that Fp = fp = 0. From the equations (3.3) and (3.7) we write

ν(r + ε)2d3 = 0 and − ν(r + ε)d3 = 0.

Here d3 = 0 since ν, r ̸= 0. □

In this case, the following result can be given:

Corollary 3.3. If the parameter curves t and θ on the parallel surface Kp(t, θ) are planar,

these curves are the curvature lines of the surface.

Theorem 3.5. Let (K,Kp) be the pair of parallel surfaces in E3. There is a relation between

the Gaussian transformations,

η = ηp

where the unit normal vectors of the surfaces K and Kp are N and Np, respectively.

Proof. Let the coordinates of the unit normal vectors K and Kp be αi = (α1, α2, α3) and

ξi = (ξ1, ξ2, ξ3), respectively.

η :K −→ S2

X −→ η(X) =

3∑
i=1

αi(X)
∂

∂Yi|X
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is the Gaussian transform of the surface K. On the other hand, the Gaussian transform of

the surface Kp is as follows, where f : K −→ Kp is the parallel transform:

ηp : Kp −→ S2

f(X) −→ ηp(f(X)) =

n∑
i=1

ξi(f(X))
∂

∂Yi
|f(X)

=

n∑
i=1

(ξi ◦ f(X))
∂

∂Yi
|f(X)

=
n∑

i=1

αi(X)
∂

∂Yi
|f(X)

= ηp(X)

Since the Gaussian transformation will be provided for ∀X ∈ K, η = ηp is obtained. □

Example 3.1. Let M : I −→ R3 be a polynomial curve with center curve M(t) = (t, t8, t9).

If the derivatives of the curve M(t) are calculated, it is as follows:

M ′(t) = (1, 8t7, 9t8),

M ′′(t) = (0, 56t6, 72t7),

M (9)(t) = (0, 0, 362880).

The Flc frame vectors of the polynomial curve M(t) are found as follows, respectively:

T (t) =
M ′(t)

∥M ′(t)∥
=
( 1√

81t16 + 64t14 + 1
,

8t7√
81t16 + 64t14 + 1

,
9t8√

81t16 + 64t14 + 1

)
,

D1(t) =
M ′(t)×M (9)(t)

∥M ′(t)×M (9)(t)∥
=
( 8t7√

64t14 + 1
,− 1√

64t14 + 1
, 0
)
,

D2(t) = T (t)×D1(t)

=
(
− 9t8√

64t14 + 1
√
81t16 + 64t14 + 1

,− 72t15√
64t14 + 1

√
81t16 + 64t14 + 1

,

√
64t14 + 1√

81t16 + 64t14 + 1

)
.
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On the other hand, Flc curvatures are as follows:

d1(t) =
⟨T ′(t), D2(t)⟩

∥M ′(t)∥
=

72t7
(
8t14 + 1

)
√
64 s14 + 1 (81t16 + 64t14 + 1)3/2

,

d2(t) =
⟨T ′(t), D1(t)⟩

∥M ′(t)∥
= − 56t6√

64 t14 + 1 (81 t16 + 64 t14 + 1)
,

d3(t) =

〈
D2(t)

′, D1(t)
〉

∥M ′(t)∥
=

504t14

(64 t14 + 1) (81 t16 + 64 t14 + 1)
.

If the radius r = 0.25 is taken, the parametric equation of the tube surface K(t, θ) is as

follows:(−1 ≤ t ≤ 1, −π ≤ θ ≤ π)

K(t, θ) =
(
t− 9t8 cos θ

4
√
64t14 + 1

√
81t16 + 64t14 + 1

+
2t7 sin θ√
64t14 + 1

,

t8 − 18t15 cos θ√
64t14 + 1

√
81t16 + 64t14 + 1

− sin θ

4
√
64t14 + 1

,

t9 +
cos θ

√
64t14 + 1

4
√
81t16 + 64t14 + 1

)
.

If ϵ = 0.5 is taken, the equation of the parallel surface Kp(t, θ) is as follows: (−1 ≤ t ≤

1, −π ≤ θ ≤ π)

Kp(t, θ) =
(
t− 27t8 cos θ

4
√
64t14 + 1

√
81t16 + 64t14 + 1

+
6t7 sin θ√
64t14 + 1

,

t8 − 54t15 cos θ√
64t14 + 1

√
81t16 + 64t14 + 1

− 3 sin θ

4
√
64t14 + 1

,

t9 +
3 cos θ

√
64t14 + 1

4
√
81t16 + 64t14 + 1

)
.
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(a) K(t, θ) tube surface (b) Kp(t, θ) parallel surface

4. Conclusion

In this study, first of all, the parallel surfaces of the tube surface given with the Flc frame

were defined. It was seen that the surface created by investigating the geometric features

of this parallel surface was developable and minimal. The parameter curves of the parallel

surface were examine. Subsequently, the tube surface and parallel surface were shown to

preserve the Gaussian transform. Finally, the tube surface, which accepts a polynomial curve

as its center curve, and the parallel surface of this tube surface, are given as an example,

and are shown. This work can be studied in various spaces such as Minkowski space and

Galilean space, and can also be repeated for higher-dimensional curves.
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[8] Eren, K., Ayvacı K. H., & S. Şenyurt.(2022). On Characterizations of Spherical Curves Using Frenet Like

Curve Frame, Honam Mathematical Journal, 44, no.3 (September 1,): 391–401.

[9] Eren, K., Ayvacı K. H., & S. Senyurt.(2023). On Ruled Surfaces Constructed by the Evolution of a

Polynomial Space Curve, J. of Science and Arts, 23(1),77-90.
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1. Introduction

Let Γ be a simple graph of order n. The degree of a vertex ui, denoted by di, is defined

as the number of edges incident to it. A graph Γ is said to be r-regular if and only if each

vertex of Γ has degree r. The eigenvalues of the graph Γ of order n are the eigenvalues of its

adjacency matrix A(Γ), denoted by λ1, λ2, . . . , λn.
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Let n0, n− and n+ denote the number of zero, negative and positive eigenvalues of the

graph Γ, respectively. The energy of a graph Γ is defined as

E(Γ) =
n∑

j=1

| λj | .

The line graph L(Γ) of a graph Γ is defined as the graph whose vertex set corresponds to

the edge set of Γ, where two vertices in L(Γ) are adjacent if and only if their corresponding

edges in Γ share a common vertex. The ith iterated line graph of Γ, denoted by Li(Γ) for

i = 1, 2, . . ., is defined recursively as Li(Γ) = L(Li−1(Γ)), with L0(Γ) = Γ and L1(Γ) = L(Γ).

The concept of graph energy, which originated from Hückel molecular orbital theory, was

first introduced by Gutman [6]. If two graphs of the same order have the same energy, they

are called equienergetic graphs. If the energy of a graph is equal to the number of vertices

n, then the graph is said to be orderenergetic [1]. If E(Γ) ≤ 2(n− 1), then the graph is said

to be non-hyperenergetic [17] and if E(Γ) = 2(n − 1), then Γ is said to be borderenergetic

[5]. In the literature, there are various research articles that focus on equienergetic graphs.

For recent papers, see [10, 11, 12, 13, 14].

Graph products such as the Cartesian product, tensor product, strong product and their

corresponding energies have been well studied in the literature [2, 4, 9, 12, 14, 18]. The

distance spectrum, adjacency spectrum, distance Laplacian spectrum and distance signless

Laplacian spectrum of another product namely, the Indu-Bala product have been investigated

in [7, 8, 16]. However, the energy of the Indu-Bala product has not yet been examined.

Therefore, in this paper, we study the energy of the Indu-Bala product, which contributes to

the construction of non-regular equienergetic graphs. For undefined terminology and results

related to the graph spectra, we follow [3].

Definition 1.1 (Indu–Bala product). [7] The Indu–Bala product of two graphs Γ1 and Γ2,

denoted by Γ1▼Γ2, is defined as follows: Let Γ1 ∨ Γ2 denote the join of Γ1 and Γ2, where

V (Γ1) = {w1, w2, . . . , wn1} and V (Γ2) = {z1, z2, . . . , zn2}. Take a disjoint copy of Γ1 ∨ Γ2,

denoted by Γ′
1∨Γ′

2, with vertex sets V (Γ′
1) = {w′

1, w
′
2, . . . , w

′
n1
} and V (Γ′

2) = {z′1, z′2, . . . , z′n2
}.

Finally, add edges between each vertex zi ∈ V (Γ2) and its corresponding copy z′i ∈ V (Γ′
2), for

all i = 1, 2, . . . , n2.
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Figure 1. The graph P3▼P4

Proposition 1.1. [8] Let Γk be an rk-regular graph of order nk, for k = 1, 2. Then, the

spectrum of Γ1▼Γ2 is as follows:

(a) λk(Γ1), with multiplicity 2 for k = 2, 3, . . . , n1;

(b) λk(Γ2) + 1 for k = 2, 3, . . . , n2;

(c) λk(Γ2)− 1 for k = 2, 3, . . . , n2;

(d)
(r1+r2+1)±

√
(r1+r2+1)2−4(r1(r2+1)−n1n2)

2 and
(r1+r2−1)±

√
(r1+r2−1)2−4(r1(r2−1)−n1n2)

2 .

Proposition 1.2. [11] Let a graph Γ have n vertices with eigenvalues λ1, λ2, . . . , λn. Then

n∑
k=1

| λk + 1 |= n+ E(Γ)− 2n− + 2
∑

λk∈(−1,0)

(λk + 1).

Proposition 1.3. [15] Let a graph Γ have n vertices with eigenvalues λ1, λ2, . . . , λn. Then

n∑
k=1

| λk + 2 |= 2n+ E(Γ)− 4n− + 2
∑

λk∈(−2,0)

(λk + 2).

2. Energy of Indu-Bala product of graphs

Lemma 2.1. Let a graph Γ have n vertices with eigenvalues λn ⩽ λn−1 ⩽ · · · ⩽ λ1. Then,

for 0 ⩽ p < λ1,

n∑
k=1

| λk − p |= E(Γ) + np− 2pn+ − 2
∑

λk∈(0,p)

(λk − p).

Proof. Define nλ(I) as the count of eigenvalues of Γ within the interval I.
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Let us compute
n∑

k=1

| λk − p |,

n∑
k=1

| λk − p | =
∑
λk⩽p

(−λk + p) +
∑
λk>p

(λk − p)

=
∑
λk⩽p

−λk + pnλ[λn, p] +
∑
λk>p

λk − pnλ(p, λ1]

= pnλ[λn, p]− pnλ(p, λ1] +
∑
λk⩽0

| λk | +
∑

λk∈(0,p]

−λk

+
∑
λk>p

λk, (2.1)

The E(Γ) can be expressed as,

E(Γ) =
n∑

k=1

| λk | =
∑
λk≤0

| λk | +
∑

λk∈(0,p]

λk +
∑
λk>p

λk (2.2)

The order n can be expressed as,

n = nλ(0, p] + nλ(p, λ1] + n0 + n− (2.3)

or,

n = nλ[λn, p] + nλ(p, λ1]. (2.4)

By equalities 2.2 and 2.4, equality 2.1 becomes,

n∑
k=1

| λk − p | = p(n− nλ(p, λ1])− pnλ(p, λ1] + E(Γ)− 2
∑

λk∈(0,p]

λk

= np− 2pnλ(p, λ1] + E(Γ)− 2
∑

λ
k
∈(0,p]

λk

= E(Γ) + np− 2pn+ + 2pnλ(0, p]

−2
∑

λk∈(0,p]

(λk − p)− 2pnλ(0, p] by the equality 2.3

n∑
k=1

| λk − p | = E(Γ) + np− 2pn+ − 2
∑

λk∈(0,p)

(λk − p).

□

Let ξ be the absolute sum of the eigenvalues mentioned in the case (d) of Proposition 1.1.
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Theorem 2.1. Let the order of an rk-regular graph Γk be nk, where k = 1, 2, then the energy

of Indu-Bala product is

E(Γ1▼Γ2) = 2(E(Γ1) + E(Γ2)) + 2n02 − 2(r1 + r2) + 2
∑

λi(Γ2)∈(−1,0)

(λi(Γ2) + 1)

−2
∑

λi(Γ2)∈(0,1)

(λi(Γ2)− 1) + ξ.

Proof. Proposition 1.1 provides the eigenvalues of Indu-Bala product of Γk; k = 1, 2. There-

fore,

E(Γ1▼Γ2) = 2

n1∑
i=2

| λi(Γ1) | +
n2∑
i=2

| λi(Γ2) + 1 | +
n2∑
i=2

| λi(Γ2)− 1 | +ξ

= 2

n1∑
i=1

| λi(Γ1) | −2r1 +

n2∑
i=1

| (λi(Γ2) + 1) | −(r2 + 1)

+

n2∑
i=1

| (λi(Γ2)− 1) | −(r2 − 1) + ξ.

By using Lemma 2.1 and Proposition 1.2, we have

E(Γ1▼Γ2) = 2E(Γ1)− 2r1 + E(Γ2) + n2 − 2n−2 + 2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)− r2

−1 + E(Γ2) + n2 − 2n+2 − 2
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1)− (r2 − 1) + ξ

= 2E(Γ1)− 2r1 + 2E(Γ2) + 2n2 − 2(n−2 + n+2 )− 2r2

+2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)− 2
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ (2.5)

= 2(E(Γ1) + E(Γ2))− 2(r1 + r2) + 2n02 + 2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

−2
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ.

□

Corollary 2.1. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then,

2E(Γ1) + 2E(Γ2)− 2(r1 + r2) + ξ ⩽ E(Γ1▼Γ2)

< 2E(Γ1) + 2E(Γ2) + 2n2 + ξ.

Equality holds at the left side if and only if there is no eigenvalues in the interval (−1, 1).
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Proof. For upper bound, it is observed from the equation 2.5 that

n−2 −
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1) > 0 and n+2 −
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) > 0

Also, if we can eliminate the values r1 and r2 from equation 2.5 as both are positive, we get

E(Γ1▼Γ2) < 2E(Γ1) + 2E(Γ2) + 2n2 + ξ.

For lower bound, it is easy to observe from Theorem 2.1 that∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1) > 0and−
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) > 0,

also n02 ≥ 0, on removing these values from Theorem 2.1, we obtain,

2E(Γ1) + 2E(Γ2)− 2(r1 + r2) + ξ < E(Γ1▼Γ2).

The equality on the left side is derived from the following fact,∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1) = 0,
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) = 0 and n02 = 0

if and only if Γ2 has no eigenvalues in the interval (−1, 1). □

There are numerous equienergetic graphs with the same regularity and same order, one

can find them in the recent articles [11, 12, 13, 14]. With the help of these graphs and

Indu-Bala product, one can easily construct non-regular equienergetic graphs.

Corollary 2.2. Let Hi; i = 1, 2 be two r-regular graphs of same order n. Then Hi▼Γ2; i = 1, 2

are equienergetic graphs if and only if Hi; i = 1, 2 are equienergetic.

Proof. Proof follows from Theorem 2.1 that Hi▼Γ2; i = 1, 2 are equienergetic graphs if and

only if

2(E(H1) + E(Γ2)) + 2n02 − 2(r + r2) + 2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

−
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ = 2(E(H2) + E(Γ2)) + 2n02 − 2(r + r2)

+2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)−
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ.

On both sides, the terms of Γ2 are common. Therefore,

E(H1) = E(H2).

□
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Example 2.1. The regular graphs Kn,n□Kn−1 and Kn−1,n−1□Kn are non-isomorphic having

the degree 2n− 2 and order 2n2 − 2n, where □ denotes the Cartesian product. For all n ≥ 5

and k ≥ 0, these graphs Lk(Kn,n□Kn−1) and Lk(Kn−1,n−1□Kn) are equienergetic [14]. By

Corollary 2.2, Lk(Kn,n□Kn−1)▼Γ2 and L
k(Kn−1,n−1□Kn)▼Γ2 are equienergetic, non-regular

graphs.

The following finding presents a large collection of non-regular equienergetic graphs.

Proposition 2.1. Let Hi; i = 1, 2 be two r(≥ 3)-regular graphs of same order n. Let Γ2 be

any graph. Then Lk(Hi)▼Γ2; i = 1, 2 are equienergetic graphs.

Proof. If Hi; i = 1, 2 denote r(≥ 3)-regular graphs with order n. Then the graphs Lk(Hi); i =

1, 2 and k ≥ 2 are equienergetic graphs of same degree by Theorem 4.1 of [13]. Therefore,

by this observation and Corollary 2.2 completes the proof. □

Corollary 2.3. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is non-hyperenergetic if E(Γ1) + E(Γ2) ⩽ 2n1 + n2 − 1− ξ
2 .

Proof. The two graphs Γ1 and Γ2 of order n1 and n2 then the order of Γ1▼Γ2 is 2(n1 + n2).

If E(Γ1) + E(Γ2) ⩽ 2n1 + n2 − 1− ξ
2 , then by Corollary 2.1, we have following

E(Γ1▼Γ2) < 2(E(Γ1) + E(Γ2)) + 2n2 + ξ ⩽ 2(2(n1 + n2)− 1).

This shows that, the graph Γ1▼Γ2 is non-hyperenergetic. □

Corollary 2.4. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is borderenergetic if and only if

E(Γ1) + E(Γ2) = 2(n1 + n2) + (r1 + r2)− n02 −
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

+
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1)− ξ

2
− 1.

Specifically, if λk(Γ2) /∈ (−1, 1), then Γ1▼Γ2 is borderenergetic if and only if E(Γ1)+E(Γ2) =

2(n1 + n2) + (r1 + r2)− 1− ξ
2 .

Proof. By the definition of borderenergetic graph and Theorem 2.1 together provide the

proof. □
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Corollary 2.5. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is orderenergetic if and only if

E(Γ1) + E(Γ2) = (n1 + n2) + (r1 + r2)− n02 −
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

+
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1)− ξ

2
.

Specifically if λk(Γ2) /∈ (−1, 1) then, Γ1▼Γ2 is orderenergetic if and only if E(Γ1) +E(Γ2) =

2(n1 + n2) + (r1 + r2)− ξ
2 .

Proof. By the definition of orderenergetic graph and Theorem 2.1 together provide the proof.

□

Theorem 2.2. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then,

E(Γ1▼Γ2) = 2(E(Γ1) + E(Γ2)) + 2(n1 + n2)− 2(r1 + r2)− 4(n−1 + n−2 )− 4

+4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1.

Proof. If λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn are the eigenvalues of any regular graph Γ, then the

eigenvalues of complement of Γ are n − 1 − λ1,−(λ2 + 1),−(λ3 + 1), · · · ,−(λn + 1). From

Proposition 1.1, the eigenvalues of Indu-Bala product Γ1▼Γ2 are as follows:

(a) −(λk(Γ1) + 1), with multiplicity 2 for k = 2, 3, · · · , n1;

(b) −λk(Γ2) for k = 2, 3, · · · , n2;

(c) −(λk(Γ2) + 2) for k = 2, 3, · · · , n2;

(d)
(n1+n2)−(r1+r2+1)±

√
((n1+n2)−(r1+r2+1))2−4((n1−1−r1)(n2−r2)−n1n2)

2 and

(n1+n2)−(r1+r2+3)±
√

((n1+n2)−(r1+r2+3))2−4((n1−1−r1)(n2−r2−2)−n1n2)

2

Here, we denote the absolute sum of the all eigenvalues in the (d) case as ξ1

E(Γ1▼Γ2)

= 2

n1∑
k=2

| −λk(Γ1)− 1 | +
n2∑
k=2

| −λk(Γ2) | +
n2∑
k=2

| −λk(Γ2)− 2 | +ξ1

= 2

n1∑
k=1

| λk(Γ1) + 1 | −2(r1 + 1) +

n2∑
k=1

| λk(Γ2) | −r2

+

n2∑
k=1

| λk(Γ2) + 2 | −(r2 + 2) + ξ1.
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Using Propositions 1.2 and 1.3, we get E(Γ1▼Γ2)

= 2E(Γ1) + 2n1 − 4n−1 + 4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)− 2(r1 + 1)

+E(Γ2)− r2 + E(Γ2) + 2n2 − 4n−2

+2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2)− (r2 + 2) + ξ1

= 2E(Γ1) + 2E(Γ2) + 4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)− 4(n−1 + n−2 )− 4

+2(n1 + n2)− 2(r1 + r2) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1

= 2(E(Γ1) + E(Γ2)) + 2(n1 + n2)− 2(r1 + r2)− 4(n−1 + n−2 )− 4

+4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1.

□

Corollary 2.6. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then,

2(E(Γ1) + E(Γ2))− 4(n−1 + n−2 )− 2(r1 + r2)− 4 + ξ1 ≤ E(Γ1▼Γ2)

< 2(E(Γ1) + E(Γ2)) + 2(n1 + n2) + ξ1.

Equality holds at the left side if and only if Γ1 has no eigenvalues in the interval (−1, 0) and

Γ2 has no eigenvalues in the interval (−2, 0).

Proof. For upper bound, it can be seen from Theorem 2.2

n−1 −
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) > 0 and 2n−2 −
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) > 0

Along these, if we can eliminate the values 4, r1, r2 from E(Γ1▼Γ2) in Theorem 2.2 as these

are positive, we obtain,

E(Γ1▼Γ2) < 2E(Γ1) + 2E(Γ2) + 2(n1 + n2) + ξ1.

For lower bound, ∑
λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) > 0 and
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) > 0

and n1, n2 ≥ 0, on removing these values from Theorem 2.2, we obtain, 2(E(Γ1) +E(Γ2))−

4(n−1 + n−2 )− 2(r1 + r2)− 4 + ξ1 < E(Γ1▼Γ2).
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The equality holds at the left side by the following fact

∑
λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) = 0 and
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) = 0

if and only if Γ1 has no eigenvalues in the interval (−1, 0) and Γ2 has no eigenvalues in the

interval (−2, 0). □

Corollary 2.7. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then, Γ1▼Γ2

is non-hyperenergetic if E(Γ1) + E(Γ2) ⩽ (n1 + n2)− 1− ξ1
2 .

Proof. If Γ1 and Γ2 are graphs of order n1 and n2, then order of Γ1▼Γ2 is 2(n1 + n2). If

E(Γ1) + E(Γ2) ⩽ (n1 + n2)− 1− ξ1
2 and by Corollary 2.6, we have the following equation.

i.e. E(Γ1▼Γ2) < 2(E(Γ1) + E(Γ2)) + 2(n1 + n2) + ξ1 ⩽ 2(2(n1 + n2)− 1).

This shows that, the graph Γ1▼Γ2 is non-hyperenergetic. □

Corollary 2.8. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then, G1▼Γ2

is borderenergetic if and only if

E(Γ1) + E(Γ2) = (n1 + n2) + 2(n−1 + n−2 ) + (r1 + r2) + 1

−2
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)−
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2)− ξ1
2

Specifically, if Γ1 and Γ2 contains no eigenvalues in the interval (−1, 0) and (−2, 0) respec-

tively, then Γ1▼Γ2 is borderenergetic if and only if E(Γ1) + E(Γ2) = 2(n1 + n2) + 2(n−1 +

n−2 ) + (r1 + r2) + 1− ξ1
2 .

Proof. The definition of borderenergetic and Theorem 2.2 together provide the proof. □

Corollary 2.9. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is orderenergetic if and only if

E(Γ1) + E(Γ2) = 2(n−1 + n−2 ) + (r1 + r2) + 2

−2
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)−
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2)− ξ1
2
.

Specifically, if Γ1 and Γ2 contains no eigenvalues in the intervals (−1, 0) and (−2, 0) respec-

tively, then Γ1▼Γ2 is orderenergetic if and only if E(Γ1)+E(Γ2) = 2(n1+n2)+2(n−1 +n−2 )+

(r1 + r2)− ξ1
2 .

Proof. The definition of orderenergetic and Theorem 2.2 together provide the proof. □
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Corollary 2.10. Let the order of an r-regular graph Hk; k = 1, 2 be n, with no eigenvalues in

the interval (−1, 0). Then Hk▼Γ2; k = 1, 2 are equienergetic graphs if and only if Hk; k = 1, 2

are equienergetic with same number of negative eigenvalues.

Proof. Proof follows from Theorem 2.2 that Hi▼Γ2; i = 1, 2 are equienergetic graphs if and

only if

2(E(H1) + E(Γ2)) + 2(n1 + n2)− 2(r + r2)− 4(n−1 + n−2 )− 4

+4
∑

λk(H1)∈(−1,0)

(λk(H1) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1 = 2(E(H2) + E(Γ2))

+2(n1 + n2)− 2(r + r2)− 4(n∗−1 + n−2 )− 4

+4
∑

λk(H2)∈(−1,0)

(λk(H2) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1.

Here, n∗−1 denotes the number negative eigenvalues in H2.

On both sides, the terms of Γ2 are common and also, H1 and H2 have same regularity.

Therefore,

E(H1)− 2n−1 = E(H2)− 2n∗−1 .

□

Example 2.2. Let us take the graphs in Example 2.1. These are integral graphs, which means

no eigenvalues in (−1, 0). These graphs posses same count of negative eigenvalues. Therefore,

by Corollary 2.10, Lk(Kn,n□Kn−1)▼Γ2 and Lk(Kn−1,n−1□Kn)▼Γ2 are equienergetic graphs.

The following finding presents another large collection of non-regular equienergetic graphs.

Proposition 2.2. Let the order of an r(≥ 3)-regular graph Hk; k = 1, 2 be n and Γ2 be any

graph. Then Lk(Hi)▼Γ2; i = 1, 2 and k ≥ 2 are equienergetic graphs.

Proof. If Hi; i = 1, 2 denote r(≥ 3)-regular graphs with order n. Then by Theorem 4.1 of

[13], the graphs Lk(Hi); i = 1, 2 and k ≥ 2 are equienergetic graphs of same degree. In

addition these have all negative eigenvalues equal to −2. Therefore, by this observation and

Corollary 2.10 completes the proof. □
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3. Conclusion

In this paper, we calculate the energy of the Indu-Bala product two regular graphs.

Furthermore, we investigate the properties such as equienergetic, borderenergetic, orderener-

getic and non-hyperenergetic characteristics using the Indu-Bala product. Further, one can

study the Indu-Bala product of two non-regular graphs.
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Abstract. In this paper, we introduce and study the concept of normed GE-algebras, an

extension of GE-algebras equipped with a GE-norm, which provides a framework to mea-

sure the magnitude of algebraic elements. We define the magnitude function and explore its

properties in the context of GE-algebras. Through theorems and propositions, we examine

the behavior of sequences in these normed structures, demonstrating convergence proper-

ties, quasi-metrics, and the relationship between norms and algebraic operations. We also

establish the connection between normed GE-algebras and their product spaces, as well

as the implications for convergent sequences and limit uniqueness. Finally, we generalize

these results to mappings between normed GE-algebras and investigate the implications of

GE-morphisms in preserving convergence behavior.
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1. Introduction

In the 1950s, Hilbert algebras were introduced by L. Henkin and T. Skolem as a means

to investigate non-classical logics, particularly intuitionistic logic. As demonstrated by A.

Diego, these algebras belong to the category of locally finite varieties, a fact highlighted

in [6]. Over time, a community of scholars developed the theory of Hilbert algebras, as

evidenced by works such as [4, 5, 7]. In the broader scope of algebraic structures, the

process of generalization is of utmost importance. Y. B. Jun et al. introduced the concept of
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BH-algebras as a generalization of BCH/BCI/BCK-algebras and investigated its important

properties in [9]. R. H. Abass introduced the notions of norm and distance in BH-algebras

and given some basic properties in normed BH-algebras in [1].

The introduction of GE-algebras, proposed by R. K. Bandaru et al. as an extension

of Hilbert algebras, marked a significant step in this direction. This advancement led to

the examination of various properties, as explored in [2]. The evolution of GE-algebras

was greatly influenced by filter theory. In light of this, R. K. Bandaru et al. introduced

the concept of belligerent GE-filters in GE-algebras, closely investigating its attributes as

documented in [3]. Generalized algebraic structures, such as GE-algebras, offer a broad

framework to study a variety of algebraic and topological properties.

The concept of norms has a rich history in mathematics, originating in the study of

vector spaces and Banach algebras, where norms quantify the size of elements and induce

metric spaces [14]. In logical algebras, norms have been adapted to capture algebraic prop-

erties, as seen in normed BCK/BCI-algebras [8], where norms relate to implication opera-

tions, and in MV-algebras, where norms support quantitative semantics [11]. Unlike these

structures, normed GE-algebras, introduced in this paper, define a GE-norm tailored to the

non-commutative binary operation of GE-algebras, inducing quasi-metric spaces rather than

metric spaces. This generalization extends the applicability of norms to non-linear algebraic

systems, offering a novel framework for studying convergence and topological properties in

generalized algebraic settings.

In this context, normed GE-algebras represent an important class that combines the alge-

braic properties of GE-algebras with a GE-norm, enabling the measurement of the magnitude

of elements. This paper aims to extend the classical understanding of algebraic norms by

introducing the concept of a GE-norm, defined as a real-valued mapping that satisfies specific

properties akin to a norm in conventional algebraic systems. We begin by formally defin-

ing the notion of a GE-norm and explore its compatibility with the underlying operations

of the GE-algebra. Following this, we investigate the properties of the magnitude function

derived from the norm and establish a series of results on its behavior. Notably, we prove

that normed GE-algebras induce quasi-metric spaces and that these spaces generate a T0-

topology. In subsequent sections, we delve into the properties of convergent sequences in

normed GE-algebras, proving the uniqueness of limits and characterizing the boundedness

of certain subsequences. We also establish several results concerning the preservation of

normed structures under GE-morphisms, culminating in a product theorem for GE-algebras.
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This work contributes to the ongoing development of generalized algebraic systems, provid-

ing both theoretical insights and practical tools for further exploration of algebraic norms,

convergence, and topological spaces in GE-algebras.

2. Preliminaries

Definition 2.1 ([2]). A GE-algebra is a non-empty set X with a constant 1 and a binary

operation “∗” satisfying the following axioms:

(GE1) a ∗ a = 1,

(GE2) 1 ∗ a = a,

(GE3) a ∗ (b ∗ c) = a ∗ (b ∗ (a ∗ c))

for all a, b, c ∈ X.

In a GE-algebra X, a binary relation “≤X” is defined by

(∀a, b ∈ X) (a ≤X b ⇔ a ∗ b = 1) . (2.1)

Definition 2.2 ([2, 3]). A GE-algebra X is said to be

• transitive if it satisfies:

(∀a, b, c ∈ X) (a ∗ b ≤X (c ∗ a) ∗ (c ∗ b)) . (2.2)

• commutative if it satisfies:

(∀a, b ∈ X) ((a ∗ b) ∗ b = (b ∗ a) ∗ a) . (2.3)

Proposition 2.1 ([2]). Every GE-algebra X satisfies the following items.

a ∗ 1 = 1. (2.4)

a ∗ (a ∗ b) = a ∗ b. (2.5)

a ≤X b ∗ a. (2.6)

a ∗ (b ∗ c) ≤X b ∗ (a ∗ c). (2.7)

1 ≤X a ⇒ a = 1. (2.8)

a ≤X (b ∗ a) ∗ a. (2.9)

a ≤X (a ∗ b) ∗ b. (2.10)

a ≤X b ∗ c ⇔ b ≤X a ∗ c. (2.11)
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for all a, b, c ∈ X. If X is transitive, then

a ≤X b ⇒ c ∗ a ≤X c ∗ b, b ∗ c ≤X a ∗ c. (2.12)

a ∗ b ≤X (b ∗ c) ∗ (a ∗ c). (2.13)

a ≤X b, b ≤X c ⇒ a ≤X c. (2.14)

for all a, b, c ∈ X.

Definition 2.3 ([12]). Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. A mapping f : X →

Y is called a GE-morphism if it satisfies:

(∀ϱ1, ϱ2 ∈ X)(f(ϱ1 ∗X ϱ2) = f(ϱ1) ∗Y f(ϱ2)). (2.15)

Let Xα := {(Xα, ∗α, 1α) | α ∈ Λ} be a family of GE-algebras where Λ is an index set. Let∏
Xα be the set of all mappings ð : Λ →

⋃
α∈Λ

Xα with ð(α) ∈ Xα, that is,

∏
Xα :=

{
ð : Λ →

⋃
α∈Λ

Xα | ð(α) ∈ Xα, α ∈ Λ

}
. (2.16)

We define a binary operation ⊛ on
∏

Xα and the constant 1 by(
∀ð, f ∈

∏
Xα

)
((ð⊛ f)(α) = ð(α) ∗α f(α)) (2.17)

and 1(α) = 1α, respectively, for every α ∈ Λ. It is routine to verify that (
∏

Xα,⊛,1) is a

GE-algebra, which is called the product GE-algebra (see [3]).

3. Normed GE-algebras

In what follows, let X := (X, ∗, 1X) and R be a GE-algebra and the set of all real numbers,

respectively, unless otherwise specified. In the absence of ambiguity, the GE-algebra X :=

(X, ∗, 1X) can simply be represented by X.

Definition 3.1. A GE-norm on X := (X, ∗, 1X) is defined to be a mapping || · || : X → R

that satisfies:

(∀ϱ ∈ X) (||ϱ|| ≥ 0) , (3.18)

(∀ϱ ∈ X) (||ϱ|| = 0 ⇔ ϱ = 1X) , (3.19)

(∀ϱ, ς,ϖ ∈ X) (||ϱ ∗ϖ|| ≤ ||ϱ ∗ ς||+ ||ς ∗ϖ||) . (3.20)
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The GE-norm defined above shares similarities with classical norms, such as those in vector

spaces or Banach algebras, where non-negativity and zero norm at the identity (conditions

(3.18) and (3.19)) ensure a measure of magnitude [14]. However, it differs significantly

due to the non-linear, non-commutative structure of GE-algebras. Unlike classical norms,

which induce symmetric metrics, the GE-norm’s triangle-like inequality (condition (3.20)) is

tailored to the binary operation “∗”, leading to a quasi-metric space (Example 3.3). This

formulation is chosen to align with the GE-algebra’s axioms (GE1–GE3) and partial order

≤X , ensuring compatibility with algebraic operations and enabling the study of convergence

in non-commutative settings.

A normed GE-algebra is a GE-algebra X := (X, ∗, 1X) equipped with a GE-norm

|| · || : X → R and it is denoted by (X, || · ||).

Given a GE-algebra X := (X, ∗, 1X), if there exists a function || · || mapping elements of

X to non-negative real numbers satisfying the conditions (3.19) and (3.20), then (X, || · ||) is

a normed GE-algebra.

Example 3.1. For every GE-algebra X := (X, ∗, 1X), define a mapping:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then || · || is a GE-norm on X := (X, ∗, 1X), and so

(X, || · ||) is a normed GE-algebra.

In normed GE-algebras, the “GE-norm” often provides a way to measure the “magnitude”

of elements in a way that is compatible with the algebraic operation “∗”.

By the magnitude of a normed GE-algebra (X, || · ||), we mean a real-valued function ð on

X ×X defined as follows:

(∀ϱ, ς ∈ X) (ð(ϱ, ς) = ||ϱ ∗ ς||) . (3.21)

We say ð(ϱ, ς) is the magnitude of (ϱ, ς).
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Proposition 3.1. The magnitude ð : X ×X → R of (X, || · ||) has the following assertions:

ð(ϱ, ς) ≥ 0, ð(ϱ, ϱ) = 0 = ð(ϱ, 1X), (3.22)

ð satisfies the triangle inequality, (3.23)

ð(1X , ϱ) = 0 ⇒ ϱ = 1X , (3.24)

ϱ ≤X ς ⇒ ð(1X , ς) ≤ ð(1X , ϱ), (3.25)

ð(ϱ, ς) ≤ ð(1X , ς), (3.26)

ð(ς, ϱ ∗ϖ) ≤ ð(ϱ, ς ∗ϖ), (3.27)

ð(ς ∗ ϱ, ϱ) ≤ ð(1X , ϱ), (3.28)

ð(ϱ ∗ ς, ς) ≤ ð(1X , ϱ), (3.29)

for all ϱ, ς,ϖ ∈ X.

Proof. Let ϱ, ς,ϖ ∈ X. Then (3.22) and (3.23) are clear by (3.18), (3.19) and (3.19). The

combination of (GE2) and (3.19) induces (3.24). Let ϱ, ς ∈ X be such that ϱ ≤X ς. Then

ϱ ∗ ς = 1, and so

ð(1X , ς)
(3.21)
= ||1X ∗ ς||

(3.20)

≤ ||1X ∗ ϱ||+ ||ϱ ∗ ς|| = ||1X ∗ ϱ||+ ||1||

(3.19)
= ||1X ∗ ϱ||+ 0 = ||1X ∗ ϱ|| (3.21)= ð(1X , ϱ).

Hence (3.25) is valid. By the combination of (GE2), (2.6) and (3.25), we have (3.26). Using

(GE2), (2.7) and (3.25), we get (3.27), (3.28) and (3.29). □

Proposition 3.2. If X := (X, ∗, 1X) is transitive, then the magnitude ð : X ×X → R of (X,

|| · ||) satisfies:

(∀ϱ, ς,ϖ ∈ X) (ð(ς ∗ϖ, ϱ ∗ϖ) ≤ ð(ϱ, ς)) . (3.30)

Proof. Using (GE2), (2.13) and (3.25), we obtain (3.30). □

The following example shows that any magnitude ð : X ×X → R of (X, || · ||) does not

satisfy the following.

(∀ϱ, ς ∈ X) (ð(ϱ, ς) = 0 = ð(ς, ϱ) ⇒ ϱ = ς) . (3.31)
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Example 3.2. Consider a non-commutative GE-algebra X := (X, ∗, 1X), where X = {1X ,

ℓ1, ℓ2, ℓ3, ℓ4} and a binary operation “∗” is given in the following table:

∗ 1X ℓ1 ℓ2 ℓ3 ℓ4

1X 1X ℓ1 ℓ2 ℓ3 ℓ4

ℓ1 1X 1X ℓ2 ℓ3 1X

ℓ2 1X ℓ4 1X 1X ℓ4

ℓ3 1X ℓ1 1X 1X ℓ1

ℓ4 1X 1X ℓ2 ℓ3 1X

Define a mapping:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then || · || is a GE-norm on X := (X, ∗, 1X), and so

(X, || · ||) is a normed GE-algebra. We can observe that ð(ℓ2, ℓ3) = ||ℓ2 ∗ ℓ3|| = ||1X || = 0 and

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||1X || = 0. Therefore ð(ℓ2, ℓ3) = 0 = ð(ℓ3, ℓ2). But ℓ2 ̸= ℓ3. Hence

(3.31) is not valid.

Theorem 3.1. If X := (X, ∗, 1X) is a commutative GE-algebra, then its magnitude

ð : X ×X → R satisfies (3.31).

Proof. Let X := (X, ∗, 1X) be a commutative GE-algebra. Then (X,≤X) is antisymmetric.

Let ϱ, ς ∈ X be such that ð(ϱ, ς) = 0 = ð(ς, ϱ). Then ||ϱ ∗ ς|| = 0 and ||ς ∗ ϱ|| = 0, which

imply from (3.19) that ϱ ∗ ς = 1 and ς ∗ ϱ = 1, i.e., ϱ ≤X ς and ς ≤X ϱ. Hence ϱ = ς, and so

(3.31) is valid. □

The following example shows that any magnitude ð : X ×X → R of (X, || · ||) does not

satisfy the following.

(∀ϱ, ς ∈ X) (ð(ϱ, ς) = ð(ς, ϱ)) . (3.32)
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Example 3.3. Consider a non-commutative GE-algebra X := (X, ∗, 1X), where X = {1X ,

ℓ1, ℓ2, ℓ3} and a binary operation “∗” is given in the following table:

∗ 1X ℓ1 ℓ2 ℓ3

1X 1X ℓ1 ℓ2 ℓ3

ℓ1 1X 1X 1X 1X

ℓ2 1X ℓ1 1X 1X

ℓ3 1X ℓ1 ℓ2 1X

Define a mapping:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then || · || is a GE-norm on X := (X, ∗, 1X), and so (X,

|| · ||) is a normed GE-algebra. We can observe that ð(ℓ2, ℓ3) = ||ℓ2 ∗ ℓ3|| = ||1X || = 0 and

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||ℓ2|| = ϱ0. Therefore ð(ℓ2, ℓ3) ̸= ð(ℓ3, ℓ2). Hence (3.32) is not valid.

Example 3.3 is indicating that the magnitude ð : X×X → R of (X, ||·||) cannot be a metric

on X, that is, (X, ð) is not a metric space. But we know that the magnitude ð : X ×X → R

of (X, || · ||) is a quasi metric on X, and thus (X,ð) is a quasi metric space which generates

a T0-space on X. For the quasi metric ð on X, we define new real-valued mappings ð−1 and

ð∨ on X ×X as follows:

ð− : X ×X → R, (ϱ, ς) 7→ ð(ς, ϱ). (3.33)

ð∨ : X ×X → R, (ϱ, ς) 7→ max{ð(ϱ, ς), ð−(ϱ, ς)}. (3.34)

It is clear that ð− and ð∨ are quasi metrices on X.

The following example illustrates the quasi metrices ð− and ð∨ on X.

Example 3.4. Consider the normed GE-algebra (X, || · ||) in Example 3.3. Then

X ×X = {(1X , 1X), (1X , ℓ1), (1X , ℓ2), (1X , ℓ3), (ℓ1, 1X), (ℓ1, ℓ1),

(ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ2, 1X), (ℓ2, ℓ1), (ℓ2, ℓ2), (ℓ2, ℓ3),

(ℓ3, 1X), (ℓ3, ℓ1), (ℓ3, ℓ2), (ℓ3, ℓ3)}

and the binary operation “⊛” on X ×X is given by Table 3.1.
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Table 3.1. Tabular representation for the operation “⊛” on X ×X

⊛ (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(1X , 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(1X , ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(1X , ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(1X , ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ2, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ2, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ2, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ3, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ3, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ3, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ3, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

The quasi metrices ð− and ð∨ on X appear as follows.

ð−(ϱ, ς) =

 0 if (ϱ, ς) ∈ (X ×X) \A,

ϱ0 if (ϱ, ς) ∈ A,

and

ð∨(ϱ, ς) =

 0 if (ϱ, ς) ∈ B,

ϱ0 if (ϱ, ς) ∈ (X ×X) \B,

where A = {(ℓ1, 1X), (ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ2, 1X), (ℓ2, ℓ3), (ℓ3, 1X)} and

B = {(1X , 1X), (ℓ1, ℓ1), (ℓ2, ℓ2), (ℓ3, ℓ3)}.
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Table 3.1 (continued)

⊛ (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(1X , 1X) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(1X , ℓ1) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X)

(1X , ℓ2) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, 1X) (ℓ1, 1X)

(1X , ℓ3) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(ℓ2, ℓ1) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X)

(ℓ2, ℓ2) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, 1X) (ℓ1, 1X)

(ℓ2, ℓ3) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, 1X)

(ℓ3, 1X) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(ℓ3, ℓ1) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X)

(ℓ3, ℓ2) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, 1X) (ℓ1, 1X)

(ℓ3, ℓ3) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, 1X)

Theorem 3.2. Let f : X → Y be an onto GE-morphism from a GE-algebra X := (X, ∗, 1X)

to a GE-algebra Y := (Y, ∗, 1Y ). If (X, || · ||) is a normed GE-algebra, then so is (Y, || · ||).

Proof. Assume that (X, || · ||) is a normed GE-algebra. Since f is onto, f−1(ℏ) ̸= ∅ for every

ℏ ∈ Y . So we can take ||ℏ|| = inf
ϱ∈f−1(ℏ)

||ϱ||. It is clear that ||ℏ|| ≥ 0. If ||ℏ|| = 0, then

inf
ϱ∈f−1(ℏ)

||ϱ|| = 0, and so there exists ϱ ∈ X such that ||ϱ|| = 0. Hence ϱ = 1X which implies

that ℏ = f(ϱ) = f(1X) = 1Y . If ℏ = 1Y , then ||ℏ|| = inf
ϱ∈f−1(ℏ)

||ϱ|| (3.25)
= ||1X || = 0 since

1X ∈ f−1(1Y ). Let ℏ, ȷ, ℘ ∈ Y . Then there exist ϱ, ς,ϖ ∈ X such that f(ϱ) = ℏ, f(ς) = ȷ
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Table 3.1 (continued)

⊛ (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, ℓ3)

(1X , 1X) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, ℓ3)

(1X , ℓ1) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X)

(1X , ℓ2) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X)

(1X , ℓ3) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ2, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ2, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ2, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ3, 1X) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, ℓ3)

(ℓ3, ℓ1) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X)

(ℓ3, ℓ2) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, 1X) (ℓ2, 1X)

(ℓ3, ℓ3) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, 1X)

and f(ϖ) = ℘. Hence

||ℏ ∗ ℘|| = inf
u∈f−1(ℏ∗℘)

||u|| = inf
u∈f−1(ℏ)∗f−1(℘)

||u|| = inf
ϱ∈f−1(ℏ),
ϖ∈f−1(℘)

||ϱ ∗ϖ||

(3.20)

≤ inf
ϱ∈f−1(ℏ),
ς∈f−1(ȷ)

||ϱ ∗ ς||+ inf
ς∈f−1(ȷ),

ϖ∈f−1(℘)

||ς ∗ϖ||

= inf
v∈f−1(ℏ)∗f−1(ȷ)

||v||+ inf
w∈f−1(ȷ)∗f−1(℘)

||w||

= inf
v∈f−1(ℏ∗ȷ)

||v||+ inf
w∈f−1(ȷ∗℘)

||w||

= ||ℏ ∗ ȷ||+ ||ȷ ∗ ℘||.

Hence (Y, || · ||) is a normed GE-algebra. □

Theorem 3.3. Let f : X → Y be a one-to-one GE-morphism from a GE-algebra X :=

(X, ∗, 1X) to a GE-algebra

Y := (Y, ∗, 1Y ). If (Y, || · ||) is a normed GE-algebra, then so is (X, || · ||).
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Table 3.1 (continued)

⊛ (ℓ3, 1X) (ℓ3, ℓ1) (ℓ3, ℓ2) (ℓ3, ℓ3)

(1X , 1X) (ℓ3, 1X) (ℓ3, ℓ1) (ℓ3, ℓ2) (ℓ3, ℓ3)

(1X , ℓ1) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X)

(1X , ℓ2) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X)

(1X , ℓ3) (ℓ3, 1X) (ℓ3, ℓ1) (ℓ3, ℓ2) (ℓ3, 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ2, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ2, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ2, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ3, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ3, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ3, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ3, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

Proof. Assume that (Y, || · ||) is a normed GE-algebra. For every ϱ ∈ X, let ||ϱ|| = ||f(ϱ)||.

Then ||ϱ|| = ||f(ϱ)||
(3.18)

≥ 0 and

||ϱ|| = 0 ⇔ ||f(ϱ)|| = 0
(3.19)⇔ f(ϱ) = 1X = f(1X) ⇔ ϱ = 1X

since f is a one-to-one GE-morphism. For every ϱ, ς,ϖ ∈ X, we get

||ϱ ∗ϖ|| = ||f(ϱ ∗ϖ)|| = ||f(ϱ) ∗ f(ϖ)||

(3.20)

≤ ||f(ϱ) ∗ f(ς)||+ ||f(ς) ∗ f(ϖ)||

= ||f(ϱ ∗ ς)||+ ||f(ς ∗ϖ)||

= ||ϱ ∗ ς||+ ||ς ∗ϖ||.

Therefore (X, || · ||) is a normed GE-algebra. □

Theorem 3.4. Let X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) be GE-algebras and consider the

product GE-algebra X × Y := (X × Y,⊛,1) of X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ). Then
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X×Y is a normed GE-algebra if and only if X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) are normed

GE-algebras.

Proof. Assume that X× Y is a normed GE-algebra and consider the projection

fX : X × Y → X and fY : X × Y → Y . Then fX and fY are onto GE-morphisms. Hence

X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) are normed GE-algebras by Theorem 3.2.

Conversely, suppose that X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) are normed GE-algebras. If

ℏ ∈ X × Y , then ℏ = (ϱℏ, ςℏ) for some ϱℏ ∈ X and ςℏ ∈ Y . Define ||ℏ|| = ||ϱℏ||+ ||ςℏ||. Then

||ℏ|| = ||ϱℏ||+ ||ςℏ|| ≥ 0 and

||ℏ|| = 0 ⇔ ||ϱℏ||+ ||ςℏ|| = 0 ⇔ ||ϱℏ|| = 0 = ||ςℏ||

(3.19)⇔ ϱℏ = 1X and ςℏ = 1Y

⇔ ℏ = (ϱℏ, ςℏ) = (1X , 1Y ) = 1.

Let ℏ := (ϱℏ, ςℏ), ȷ := (ϱȷ, ςȷ), ℘ := (ϱ℘, ς℘) ∈ X × Y. Then

||ℏ⊛ ℘|| = ||(ϱℏ ∗ ϱ℘, ςℏ ∗ ς℘)||

= ||ϱℏ ∗ ϱ℘||+ ||ςℏ ∗ ς℘||

(3.20)

≤ (||ϱℏ ∗ ϱȷ||+ ||ϱȷ ∗ ϱ℘||) + (||ςℏ ∗ ςȷ||+ ||ςȷ ∗ ς℘||)

= (||ϱℏ ∗ ϱȷ||+ ||ςℏ ∗ ςȷ||) + (||ϱȷ ∗ ϱ℘||+ ||ςȷ ∗ ς℘||)

= ||(ϱℏ ∗ ϱȷ, ςℏ ∗ ςȷ)||+ ||(ϱȷ ∗ ϱ℘, ςȷ ∗ ς℘)||

= ||ℏ⊛ ȷ||+ ||ȷ⊛ ℘||.

Therefore X× Y is a normed GE-algebra. □

Definition 3.2. Let (X, || · ||) be a normed GE-algebra and consider a sequence {ℏn} in X.

Then {ℏn} is said to be convergent in X if there exists a number ℏ0 in X such that for every

ε > 0 (no matter how small), there exists a natural number k0 such that the magnitude for

(ℏn, ℏ0) and (ℏ0, ℏn) is less than ε for all n ≥ k0, that is, it can be written as:

lim
n→∞

ℏn = ℏ0 if and only if for every ε > 0 there exists k0 ∈ N such that

n ≥ k0 ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε.

In this case, we say that ℏ0 is the limit of {ℏn}.
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Theorem 3.5. Let X := (X, ∗, 1X) be a commutative GE-algebra. In a normed GE-algebra

(X, || · ||), a convergent sequence cannot have two different limits, that is, If a sequence {ℏn}

converges to a limit ℏ0, then that limit is unique.

Proof. Let {ℏn} be a convergent sequence in X, and let ℏ0 and ȷ0 be two limits of {ℏn}. Then

for every ε > 0, there exists a natural number k0 such that ð(ℏn, ℏ0) < ε
2 , ð(ℏ0, ℏn) < ε

2 ,

ð(ℏn, ȷ0) < ε
2 and ð(ℏ0, ȷn) < ε

2 for all n ≥ k0. Hence

ð(ℏ0, ȷ0)
(3.21)
= ||ℏ0 ∗ ȷ0||

(3.20)

≤ ||ℏ0 ∗ ℏn||+ ||ℏn ∗ ȷ0||

(3.21)
= ð(ℏ0, ℏn) + ð(ℏn, ȷ0) < ε

2 + ε
2 = ε.

By the similarly way, we have ð(ȷ0, ℏ0) ≤ ε. Since ε is arbitrary, it follows that ð(ℏ0, ȷ0) =

0 = ð(ȷ0, ℏ0). Using Theorem 3.1, we conclude that ℏ0 = ȷ0. Therefore {ℏn} has a unique

limit. □

Theorem 3.6. In a normed GE-algebra (X, || · ||), every convergent sequence {ℏn} in X

satisfies:

(∀ε > 0)(∃k0 ∈ N) (n,m ≥ k0 ⇒ ð(ℏn, ℏm) < ε and ð(ℏm, ℏn) < ε) . (3.35)

Proof. Let X := ⟨X, ∗, 1X⟩ be a normed GE-algebra with GE-norm ∥ · ∥, and let ð(ϱ, ς) =

∥ϱ ∗ ς∥ be the magnitude function. Suppose {ℏn} is a sequence in X that converges to ℏ0 in

X. By definition 3.2, for every ε > 0, there exists k0 ∈ N such that for all n ≥ k0,

ð(ℏn, ℏ0) = ∥ℏn ∗ ℏ0∥ < ε and ð(ℏ0, ℏn) = ∥ℏ0 ∗ ℏn∥ < ε.

To prove that {ℏn} satisfies condition (3.35), fix ε > 0. Since {ℏn} converges to ℏ0, there

exists k0 ∈ N such that for all n ≥ k0,

ð(ℏn, ℏ0) <
ε

2
and ð(ℏ0, ℏn) <

ε

2
.

We need to show that for all n,m ≥ k0, ð(ℏn, ℏm) < ε and ð(ℏm, ℏn) < ε. Consider

ð(ℏn, ℏm) = ∥ℏn ∗ ℏm∥. By the triangle-like inequality of the GE-norm (Definition 3.1,

condition (3.20)), for any ϱ, ς,ϖ ∈ X,

∥ϱ ∗ϖ∥ ≤ ∥ϱ ∗ ς∥+ ∥ς ∗ϖ∥.

Set ϱ = ℏn, ϖ = ℏm, and ς = ℏ0. Then,

∥ℏn ∗ ℏm∥ ≤ ∥ℏn ∗ ℏ0∥+ ∥ℏ0 ∗ ℏm∥,
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i.e.,

ð(ℏn, ℏm) ≤ ð(ℏn, ℏ0) + ð(ℏ0, ℏm).

Since n,m ≥ k0, we have:

ð(ℏn, ℏ0) = ∥ℏn ∗ ℏ0∥ <
ε

2
, ð(ℏ0, ℏm) = ∥ℏ0 ∗ ℏm∥ <

ε

2
.

Thus,

ð(ℏn, ℏm) ≤ ð(ℏn, ℏ0) + ð(ℏ0, ℏm) <
ε

2
+

ε

2
= ε.

Similarly, we can show that ð(ℏm, ℏn) < ε. □

The converse of Theorem 3.6 is not valid as seen in the following example.

Example 3.5. (i) For the normed GE-algebra (X, || · ||) in Example 3.2, we can observe that

if

ℏn =

 ℓ1 if n is odd,

ℓ4 if n is even,

then the sequence {ℏn} in X satisfies (3.35). If we take ε > 0 such that ϱ0 ≥ ε, then

ð(ℏ7, ℓ2) = ||ℓ1 ∗ ℓ2|| = ||ℓ2|| = ϱ0 ≮ ε

and/or ð(ℓ2, ℏ7) = ||ℓ2 ∗ ℓ1|| = ||ℓ4|| = ϱ0 ≮ ε. Hence {ℏn} is not convergent.

(ii) Let (0, 1] ⊆ R and define a binary operation “∗” on (0, 1] as follows:

ϱ ∗ ς =

 ς if ϱ = 1,

1 otherwise.

Then ((0, 1], ∗, 1) is a GE-algebra. If we take a sequence { 1
n+1}n∈N, then it satisfies (3.35)

but does not converge in (0, 1].

Theorem 3.7. Let {ℏn} be a sequence in a normed GE-algebra (X, || · ||) where X :=

(X, ∗, 1X) is a commutative GE-algebra. Then it is convergent if and only if all of its non-

trivial subsequences converge.

Proof. Assume that {ℏn} is a convergent sequence in (X, || · ||) and let ℏ0 be its limit. For

every ε > 0 there exists k0 ∈ N such that

n ≥ k0 ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε.

Let {ℏϕ(n)} be a non-trivial subsequence of {ℏn}. If n ≥ k0, then ϕ(n) ≥ n ≥ k0, and so

ð(ℏϕ(n), ℏ0) < ε and ð(ℏ0, ℏϕ(n)) < ε. This shows that {ℏϕ(n)} is convergent.
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Conversely, suppose that all of non-trivial subsequences of {ℏn} converge. If {ℏn} is not

convergent, then there are at least two non-trivial subsequences, say {ℏϕ(n)} and {ℏϕ(m)},

with different limits ℏ0 and ȷ0, respectively. This is a contradiction by Theorem 3.5, and

thus {ℏn} is a convergent sequence in (X, || · ||). □

Theorem 3.8. Let {ℏn} be a sequence in (X, || · ||). If ℏ0 is a limit of {ℏn}, then 1X is a

limit of the sequences {ℏn ∗ ℏ0} and {ℏ0 ∗ ℏn}.

Proof. If ℏ0 is a limit of {ℏn}, then for every ε > 0 there exists k0 ∈ N such that

n ≥ k0 ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε.

Hence ð(ℏn ∗ ℏ0, 1X)
(3.22)
= 0 < ε and

ð(1X , ℏn ∗ ℏ0)
(3.21)
= ||1X ∗ (ℏn ∗ ℏ0)||

(GE2)
= ||ℏn ∗ ℏ0||

(3.21)
= ð(ℏn, ℏ0) < ε.

Therefore 1X is a limit of {ℏn ∗ ℏ0}. Similarly, {ℏ0 ∗ ℏn} has a limit 1X . □

Theorem 3.9. Let {ℏn} be a sequence in a normed GE-algebra (X, || · ||). If ℏ0 is a limit of

{ℏn}, then {ð(ℏn, ȷ0)} and {ð(ȷ0, ℏn)} are bounded above for all ȷ0 ∈ X.

Proof. Assume that {ℏn} converges to ℏ0. By the definition of convergence, for every ε > 0

there exists a natural number k0 such that ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε for all n ≥ k0. It

follows from (3.20) that

ð(ℏn, ȷ0) ≤ ð(ℏn, ℏ0) + ð(ℏ0, ȷ0) < ε+ ð(ℏ0, ȷ0)

and ð(ȷ0, ℏn) ≤ ð(ȷ0, ℏ0)+ð(ℏ0, ℏn) < ð(ȷ0, ℏ0)+ε. If n < k0, then ð(ℏn, ȷ0) = ||ℏn ∗ ȷ0|| ≤ M

and ð(ȷ0, ℏn) = ||ȷ0 ∗ ℏn|| ≤ M where

M := max{||ℏn ∗ ȷ0||, ||ȷ0 ∗ ℏn||}.

This completes the proof. □

Let ð be the magnitude of a normed GE-algebra (X, || · ||). Consider the following:

(∀ϱ, ς,ϖ ∈ X)

 ϱ ≤X ς ⇒

 ð(ϱ,ϖ) ≤ ð(ς,ϖ)

ð(ϖ, ς) ≤ ð(ϖ, ϱ)

 . (3.36)

The following example shows that (3.36) is not valid in general.
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Example 3.6. Consider a GE-algebra X := (X, ∗, 1X), where X = {1X , ℓ1, ℓ2, ℓ3, ℓ4, ℓ5}

and a binary operation “∗” is given in the following table:

∗ 1X ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

1X 1X ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

ℓ1 1X 1X 1X ℓ3 ℓ3 ℓ5

ℓ2 1X ℓ1 1X ℓ4 ℓ4 ℓ5

ℓ3 1X 1X ℓ2 1X 1X ℓ5

ℓ4 1X 1X 1X 1X 1X ℓ5

ℓ5 1X ℓ1 ℓ2 ℓ3 ℓ4 1X

Define a norm || · || on X := (X, ∗, 1X) as follows:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then (X, || · ||) is a normed GE-algebra. Note that

ℓ3 ∗ ℓ1 = 1X and ℓ4 ∗ ℓ2 = 1X , i.e., ℓ3 ≤X ℓ1 and ℓ4 ≤X ℓ2. We can observe that

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||ℓ2|| = ϱ0 ≰ 0 = ||1X || = ||ℓ1 ∗ ℓ2|| = ð(ℓ1, ℓ2)

and

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||ℓ2|| = ϱ0 ≰ 0 = ||1X || = ||ℓ3 ∗ ℓ4|| = ð(ℓ3, ℓ4).

We now discuss the squeeze theorem for convergence sequences.

Theorem 3.10. Assume that every magnitude ð of a normed GE-algebra (X, || · ||) satisfies

(3.36). Let {ℏn}, {ȷn} and {℘n} be sequences in (X, || · ||) such that {ȷn} is trapped between

{ℏn} and {℘n} for a sufficiently large n, that is, there exists a natural number k0 such that

ℏn ≤X ȷn ≤X ℘n for all n > k0. If {ℏn} and {℘n} converge to ℏ0, then {ȷn} also converges

to ℏ0.

Proof. If {ℏn} and {℘n} converge to ℏ0, then for every ε > 0 there exist natural numbers kℏ

and kȷ such that

n ≥ kℏ ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε

and

n ≥ kȷ ⇒ ð(℘n, ℏ0) < ε and ð(ℏ0, ℘n) < ε.
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Using (3.36), we have

ð(ℏn, ℏ0) ≤ ð(ȷn, ℏ0) ≤ ð(℘n, ℏ0)

and

ð(℘0, ℏn) ≤ ð(ȷ0, ℏn) ≤ ð(ℏ0, ℏn)

for all k0 := max{kℏ, kȷ}. It follows that if n ≥ k0, then ð(ȷn, ℏ0) < ε and ð(ℏ0, ȷn) < ε. Thus

{ȷn} converges to ℏ0. □

Theorem 3.11. Let f be a GE-morphism from a GE-algebra X := (X, ∗X , 1X) to a GE-

algebra Y := (Y, ∗Y , 1Y ). Assume that ||ϱ|| = ||f(ϱ)|| for all ϱ ∈ X. Then a sequence {ℏn} in

(X, || · ||) converges to ℏ0 if and only if the sequence {f(ℏn)} in (Y, || · ||) converges to f(ℏ0).

Proof. Assume that a sequence {ℏn} in (X, || · ||) converges to ℏ0. Then for every ε > 0, there

exists a natural number k0 such that ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε for all n ≥ k0. Using

(2.15) and (3.21), we have

ð(f(ℏn), f(ℏ0)) = ||f(ℏn) ∗Y f(ℏ0)|| = ||f(ℏn ∗X ℏ0)||

= ||ℏn ∗X ℏ0|| = ð(ℏn, ℏ0) < ε

and

ð(f(ℏ0), f(ℏn)) = ||f(ℏ0) ∗Y f(ℏn)|| = ||f(ℏ0 ∗X ℏn)||

= ||ℏ0 ∗X ℏn|| = ð(ℏ0, ℏn) < ε

Therefore the sequence {f(ℏn)} converges to f(ℏ0).

Conversely, suppose that the sequence {f(ℏn)} in (Y, || · ||) converges to f(ℏ0). For every

ε > 0 there exists a natural number k0 such that ð(f(ℏn), f(ℏ0)) < ε and ð(f(ℏ0), f(ℏn)) < ε

for all n ≥ k0. It follows that

ð(ℏn, ℏ0) = ||ℏn ∗X ℏ0|| = ||f(ℏn ∗X ℏ0)||

= ||f(ℏn) ∗Y f(ℏ0)|| = ð(f(ℏn), f(ℏ0)) < ε

and

ð(ℏ0, ℏn) = ||ℏ0 ∗X ℏn|| = ||f(ℏ0 ∗X ℏn)||

= ||f(ℏ0) ∗Y f(ℏn)|| = ð(f(ℏ0), f(ℏn)) < ε

for all n ≥ k0. Consequently, {ℏn} converges to ℏ0. □
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4. Conclusion

This paper introduces normed GE-algebras, equipping GE-algebras with a GE-norm to

measure element magnitudes. We defined a magnitude function ð(ϱ, ς) = ∥ϱ∗ ς∥ that induces

a quasi-metric space, generating a T0-topology (Theorem 3.1, Example 3.3). Key results

include the Cauchy-like property of convergent sequences (Theorem 3.6), preservation of

normed structures under GE-morphisms (Theorem 3.2), and properties of product spaces

(Theorem 3.4). These findings establish normed GE-algebras as a robust framework for

studying convergence and topological properties in generalized algebraic systems. The sig-

nificance of this work lies in bridging algebraic and geometric concepts, enabling the analysis

of non-commutative structures in a topological context. The quasi-metric and T0-topology

support applications in functional analysis, modeling asymmetric distances, and in mathe-

matical logic, quantifying logical distances in non-classical logics [13]. The GE-morphism and

product theorems facilitate the study of complex algebraic systems. Future work includes

exploring additional topological properties, such as compactness or connectedness, in the T0-

topology. Extending GE-norms to BCK/BCI-algebras or residuated lattices could broaden

their scope [8]. Applications in functional analysis (e.g., asymmetric function spaces) and

topology (e.g., non-Hausdorff spaces) are promising. Open problems, such as characterizing

complete normed GE-algebras, encourage further interdisciplinary research.

Normed GE-algebras offer promising applications across several mathematical disciplines.

In functional analysis, the quasi-metric spaces induced by GE-norms (Example 3.3) provide

a framework for studying function spaces with asymmetric distances, which are relevant in

asymmetric functional analysis [10]. These spaces can model non-reversible processes or

directed convergence, extending traditional Banach space techniques. In topology, the T0-

topology generated by normed GE-algebras facilitates the study of non-Hausdorff topological

spaces, which are prevalent in computational topology and data analysis. This topology

supports the analysis of convergence properties in generalized settings. In mathematical

logic, normed GE-algebras, as extensions of Hilbert algebras linked to intuitionistic logic,

enable quantitative semantics where the GE-norm measures the “distance” between logical

propositions [13]. This can enhance reasoning frameworks in non-classical logics, such as

those used in artificial intelligence and formal verification. These applications underscore the

versatility of normed GE-algebras and pave the way for future interdisciplinary research.
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GE-Norm

∥ · ∥ (Def. 3.1)

Quasi-Metric

ð(ϱ, ς) = ∥ϱ ∗ ς∥ (Ex. 3.3)

T0-Topology

(Thm. 3.1)

Convergence Properties

(Thm. 3.6)

Induces

Generates

Governs

Figure 1. Flowchart illustrating the relationships between GE-norms, quasi-

metrics, T0-topology, and convergence properties in normed GE-algebras. The

GE-norm induces a quasi-metric, which generates a T0-topology, governing

sequence convergence (e.g., Cauchy-like property in Theorem 3.6).
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1. Introduction

Many researchers have examined and analyzed various forms of continuity in academic

literature. In general topology, continuity remains a vital and foundational concept in math-

ematics. In 1972, Crossley and Hildebrand [7] introduced the concept of irresoluteness. In

1999, Arokiarani et al. [3] studied gp-irresolute functions, followed by Balasubramanian and

Sarada [5] in 2012, who explored the properties of gpr-irresolute functions. Over time, several

variants of irresolute functions have been introduced. Recently, J. B. Toranagatti proposed

and investigated δgp-continuity [23] as a broader interpretation of continuity. This research

aims to introduce and investigate a completely δgp-irresolute function, which serves as a

more robust variant of the existing gpr-irresolute function.
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2. Preliminaries

Throughout this paper (M, τ), (N , γ) and (P, η) (or simply M, N and P) represent

non-empty topological spaces on which no separation axioms are assumed unless otherwise

stated. For a subset K of M, ć(K) and í(K) denote the closure of K and the interior of K,

respectively.

Definition 2.1. A set J ⊆ M is called:

(i) regular closed [22] if ć(́i(J))=J,

(ii) pre-closed [18] ć(́i(J)) ⊆ J.

Definition 2.2. A set J ⊆ M is called δ-closed [28] if J = ćδ(J) where ćδ(J) = {b ∈ M:

í(ć(U))∩J= ∅, U ∈ ℑ and b ∈ U}.

Definition 2.3. A set J ⊆ M is called δgp-closed [6] (resp., gp-closed [17] and gpr-closed

[10]) if pć(J) ⊆ H whenever J ⊆ H and H is δ-open (resp., open, regular open) in M.

Their complements are the open sets that are related to the previously listed closed sets.

δO(M) is the collection of all δ-open sets in (M, τ). The families of open sets, pre-open

sets, regular open sets, gp-open sets, gpr-open sets, and δgp-open sets are denoted as O(M),

PO(M), RO(M), GPO(M), GPRO(M) and δGPO(M) correspondingly.

Definition 2.4. A function ℓ: (M, ℑ) → (N , γ) is called:

(i) R-maps [12] if ℓ−1(K) ∈ RO(M) for every K ∈ RO(N );

(ii) completely continuous [4] if ℓ−1(K) ∈ RO(M) for every K ∈ γ;

(iii) completely preirresolute [14] (resp., completely gp-irresolute [14] and completely gpr-

irresolute) if ℓ−1(K) ∈ RO(M) for every K ∈ PO(N ) (resp., K ∈ GPO(N ) and K ∈

GPRO(N ));

(iv) δgp-irresolute [23] if ℓ−1(K) ∈ δGPO(M) for every K ∈ δGPO(N );

(v) δgp-continuous [23] if ℓ−1(K) ∈ δGPO(M) for every K ∈ γ;

(vi) pre δgp-continuous [23] if ℓ−1(K) ∈ δGPO(M) for every K ∈ PO(N );

(vii) gpr-irresolute [5] if ℓ−1(K) ∈ δGPR(M) for every K ∈ δGPR(N ).

Definition 2.5. A space (M, ℑ) is called:

(i) δgp-additive [24] if δGPC(M) is closed under arbitrary intersections;

(ii) Tδgp-space [6] if δGPC(M) = C(M);

(iii) preregular T1/2-space [10] if GPRC(M) = PC(M);

(iv) locally indiscrete [13] if ℑ = RO(M).
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3. Completely δgp-irresolute Functions

Definition 3.1. A function ℓ: (M, ℑ) → (N , γ) is called as completely δgp-irresolute

(briefly, c.δgp-i.) if for every point b in M and for any δgp-open set H that includes ℓ(b),

there exists a δ-open set G around b such that ℓ(G) ⊆ H.

Theorem 3.1. The following conditions are equivalent for a function ℓ: (M, ℑ) → (N , γ):

(i) ℓ is c.δgp-i.;

(ii) For each q ∈ M and each D ∈ δGPC(N , ℓ(q)), there exists a C ∈ RO(M, q) such that

ℓ(C) ⊆ D.

Proof. (i) → (ii): Let q ∈ M and D ∈ δGPC(N , ℓ(q)).
(i)
==⇒(∃ J ∈ δO(M, q))(ℓ(J) ⊂ D).

Now, J ∈ δO(M, q) =⇒ (∃ C ∈ RO(M, q)(C ⊂ J)).

Therefore, ( ∃ C ∈ RO(M, q)) (ℓ(C) ⊂ ℓ(J) ⊂ D).

(ii) → (i): Obvious. □

Theorem 3.2. The following conditions are identical for a function ℓ: (M, ℑ) → (N , γ):

(i) ℓ is c.δgp-i.;

(ii) For each q ∈ M and each G ∈ δGPC(N ) where ℓ(q) /∈ G, there exists an H ∈ δC(M)

such that q /∈ H and ℓ−1(G) ⊆ H;

(iii) For each q ∈ M and each G ∈ δGPC(N ) where ℓ(q) /∈ G, there exists an H ∈ RC(M)

such that q /∈ H and ℓ −1(G) ⊆ H;

(iv) For every q ∈ M and each N ∈ δGPC(N ,ℓ(q)), there exists a G ∈ O(M, q) such that

ℓ(́i(ć(G)) ⊆ N;

(v) For every q ∈ M and each H ∈ δGPC(N ,ℓ(q)), there exists a G ∈ O(M, q) such that

ℓ(sc(G)) ⊆ H.

Proof. Obvious. □

Remark 3.1. We can generate the following diagram for the function ℓ: (M, ℑ) → (N , γ)

by using Definitions 2.4 and 3.1.

c.gpr.i. → c.δgp.i. → c.gp.i. → c.p.i. → c.c. → R-m.

↓ ↓

gpr.i. → δgp.i. → p.δgp.c. → δgp.c.
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Notations:

c.gpr.i.: completely gpr-irresolute, c.δgp.i.: completely δgp-irresolute, c.gp.i.: completely

gp-irresolute, c.p.i.: completely pre-irresolute, c.c.: completely continuous, R-m.: R-maps,

gpr.i.: gpr-irresolute, δgp.i.: δgp-irresolute, p.δgp.c.: pre δgp-continuous, δgp.c.: δgp-

continuous.

None of the implications in above diagram is reversible as shown in the following

examples.

Example 3.1. Let M = η = {u1, u2, u3, u4}, τ = {M, ∅, {u1},{u2},{u1, u2},{u1, u2, u3}}

and γ = {η, ∅, {u1}, {u2}, {u1, u2}, {u1, u3}, {u1, u2, u3}}. Then:

(i) The identity function ℓ: (M, ℑ) → (M, γ) is δgp-irresolute, but it is not completely

δgp-irresolute.

(ii) Let us define ℓ: (M, ℑ) → (M, γ) by ℓ(u1) = u1, ℓ(u2) = u3 = ℓ(u3) and ℓ(u4) = u4,

In this case, ℓ is δgp-i. but not gpr-i., since {u1, u2} ∈ GPRC(M, γ) implies that ℓ−1({u1,

u2})={u1} /∈ GPRC(M, ℑ).

Example 3.2. Consider M = {u1, u2, u3, u4} with the topologies

ℑ = {∅, M, {u1}, {u2}, {u1, u2}, {u1, u3}, {u1, u2, u3}} and

γ = {∅, M, {u1},{u2},{u1, u2},{u1, u2, u3}}.

Let the function ℓ: (M, ℑ) → (M, γ) be defined by ℓ(u1) = u2 = ℓ(u3), and ℓ(u2) = u4

with ℓ(u4)= u4. In this scenario, ℓ is c.gp-i. but not c.δgp-i.. This is evident as {u4} ∈

δGPC((M, γ) leads to the conclusion that ℓ−1({u4})) = {u2, u4} /∈ RO(M, ℑ).

Example 3.3. Consider (M, ℑ) as in Example 3.2. We define the function ℓ: (M, ℑ) →

(M, ℑ) by specifying ℓ(u1)= u2, ℓ(u3)= u2, and ℓ(u2)= u4 with ℓ(u4) = u4. In this context,

ℓ is c.δgp-i., but it is not c.gpr-i.. This is because {u1, u4} ∈ GPRO(M, σ) leads to the

conclusion that ℓ−1({u1, u4}) = {u2, u4} /∈ RO(M, ℑ).

Theorem 3.3. For any J ⊆ M, the following are the same where (M, ℑ) is locally indiscrete

space [25].

(i) J is gp-closed;

(ii) J is δgp-closed;

(iii) J is gpr-closed.

As a consequence of Theorem 3.3, we can state the following theorem.
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Theorem 3.4. The statements that follow are interchangeable for ℓ: (M, ℑ) → (N , γ)

where (N , γ) is locally indiscrete space:

(i) ℓ is c.gp-i.;

(ii) ℓ is c.δgp-i.;

(iii) ℓ is c.gpr-i..

Theorem 3.5. The statements that follow are interchangeable for ℓ: (M, ℑ) → (N , γ)

where (N , γ) is Tδgp-space:

(i) ℓ is c.c.;

(ii) ℓ is c.p-i.;

(iii) ℓ is c.gp-i.;

(iv) ℓ is c.δgp-i..

Theorem 3.6. The statements that follow are interchangeable for ℓ: (M, ℑ) → (N , γ)

where (N , γ) is preregular T1/2-space:

(i) ℓ is c.p-i.;

(ii) ℓ is c.gp-i.;

(iii) ℓ is c.δgp-i.;

(iv) ℓ is c.gpr-i..

Definition 3.2. [11] Every gpr-closed set for a space (M, ℑ) is closed if and only if τ∗g= τ

where τ∗g={L ⊆ M: gprcl(M-L)=(M-L)}.

Theorem 3.7. If γ∗g= γ in (N , γ). Then, the assertions that follow are the same:

(i) ℓ: (M, ℑ) → (N , γ) is c.gpr-i.;

(ii) ℓ: (M, ℑ) → (N , γ) is c.δgp-i.;

(iii) ℓ: (M, ℑ) → (N , γ) is c.gp-i.;

(iv) ℓ: (M, ℑ) → (N , γ) is c.p-i.;

(v) ℓ: (M, ℑ) → (N , γ) is c.c..

Theorem 3.8. If γ∗g= γ in (N , γ) and (N , γ) is locally indiscrete. Then, the assertions

that follow are the same:

(i) ℓ: (M, ℑ) → (N , γ) is c.gpr-i.;

(ii) ℓ: (M, ℑ) → (N , γ) is c.δgp-i.;

(iii) ℓ: (M, ℑ) → (N , γ) is c.gp-i.;

(iv) ℓ: (M, ℑ) → (N , γ) is c.p-i.;
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(v) ℓ: (M, ℑ) → (N , γ) is c.c.;

(vi) ℓ: (M, ℑ) → (N , γ) is R-map.

Theorem 3.9. Let ℓ: (M, ℑ) → (N , γ) be such that the space (N , γ) is δgp-additive. The

statement that follow are interchangeable:

(i) ℓ is c.δgp-́i.;

(ii) ℓ−1 (δgp-́i(R)) ⊆ íδ(ℓ
−1(R)) for each R ⊆ N ;

(iii) ℓ (ćδ(S)) ⊆ δgp-ć(ℓ(S)) for each S ⊆ M;

(iv) ćδ( ℓ
−1(R)) ⊆ ℓ−1(δgp-ć(R)) for each R ⊆ N ;

(v) ℓ−1(B) ∈ δC(M) for each B ∈ δGPC(N );

(vi) ℓ−1(A) ∈ δO(M) for each A ∈ δGPO(N );

(vii) ℓ−1(A) ∈ RO(M) for each A ∈ δGPO(N );

(viii) ℓ−1(B) ∈ RC(M) for each B ∈ δGPC(N ).

Proof. (i) =⇒ (ii): Let R ⊆ N and x ∈ ℓ−1(δgp-́i(R)).

b ∈ ℓ−1 (δgp-́i(R)) =⇒ δgp-́i(R) ∈ δGPO(N , ℓ(b))
(i)
==⇒ (∃ S ∈ RO(M, q) (ℓ(S) ⊆ δgp-́i(R)⊂ R)

=⇒ (∃ S ∈ RO(M, q))(S ⊆ ℓ−1(R)) =⇒ q ∈ íδ(ℓ
−1(R)).

(ii) =⇒ (iii) : Let S ⊆ M.

S ⊆ M =⇒ ℓ(S) ⊆ N =⇒ N \ ℓ(S) ⊆ N (ii)
==⇒ ℓ−1 [δgp-́i(N\S)] ⊆ íδ(ℓ

−1(N\ℓ(S)))

=⇒ M \ ℓ−1 (δgp-ć(ℓ(S)) ⊆ M \ ćδ(ℓ−1(ℓ(S))))

=⇒ ćδ (S) ⊂ ćδ ((ℓ
−1(ℓ(S))) ⊆ ℓ−1(δgp-ć(ℓ(S)))

=⇒ ℓ(ćδ(S)) ⊆ δgp-ć(ℓ(S)).

(iii) =⇒ (iv): Let R ⊆ N .

R ⊆ N =⇒ ℓ−1(R) ⊆ M (iii)
==⇒ ℓ(ćδ (ℓ

−1(ℓ(R))) ⊆ δgp-ć(ℓ−1(R)) ⊆ δgp-ć(R)

=⇒ ćδ ((ℓ
−1(R)) ⊆ ℓ−1(δgp-ć(R)).

(iv) =⇒ (v): Let H ∈ δGPC(N ).

H ∈ δGPC(N ) =⇒ H = δgp-ć(H)
(iv)
==⇒ ćδ((ℓ

−1(H)) ⊆ ℓ−1(δgp-ć(H)) = ℓ−1(H)

=⇒ ℓ−1(H) = ćδ (ℓ
−1(H)) =⇒ ℓ−1(H) ∈ δC(M).

(i) =⇒ (vi): Obvious.

(viii) ⇐⇒ (vii) =⇒ (vi) : Obvious.

(vi) =⇒ (i): Let K ∈ δGPO(N ) and q ∈ ℓ−1(K).
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(K ∈ δGPO(N ) (q ∈ ℓ−1(K)) =⇒ K ∈ δGPO(N , ℓ(q))
(vi)
==⇒ (L: = ℓ−1(K) ∈ δO(M, q)) (ℓ(L) ⊆ K). □

Theorem 3.10. The following assertions are identical for a bijection ℓ: (M, ℑ) → (N , γ):

(i) ℓ is c.δgp-i.;

(ii) δgp-́i(ℓ(H)) ⊆ ℓ(́iδ(H)) for each H ⊆ M.

Proof. (i) =⇒ (ii) Let H ⊆ M.

H ⊆ M =⇒ M \ H ⊆ M

(i)
==⇒ ℓ[(M\́iδ(H))] = ℓ[ćδ(M \H)] ⊆ δgp-ć(ℓ[M/H])

ℓ is bijection

 =⇒

=⇒ N \ℓ[́iδ(H)] ⊆ N \ δgp-́i(ℓ[H])

=⇒ δgp-́i(ℓ[H]) ⊆ ℓ(́iδ[H]).

(ii) =⇒ (i) : Let K ⊆ M.

K ⊆ M =⇒ M\K⊆M (ii)
==⇒ δgp-́i(ℓ[M\K]) ⊆ ℓ[́iδ(M\K)]

ℓ is bijection

 =⇒

=⇒ N\ δgp-ć(ℓ[K]) ⊆ N \ ℓ[ćδ(K)]

=⇒ ℓ(ćδ(K)) ⊆ δgp-ć(ℓ(K)). □

Lemma 3.1. Let N ⊂ M and N ∈ O (M). The following hold [15].

(i) K ∈ RO(M) =⇒ Y ∩ K ∈ RO(N , τN ).

(ii) H ∈ RO(N , τN ) =⇒ (∃ a K ∈ RO(M) such that H = N ∩ K.

where τN={N ∩ G | G ∈ O(M)}.

Theorem 3.11. If ℓ: (M, ℑ) → (N , γ) is c.δgp-i. and K ∈ ℑ, then the restriction

ℓ/K : K → N is c.δgp-i..

Proof. Let J ∈ δGPO(N ).

J ∈ δGPO(N )
ℓ is c.δgp.i.
=======⇒ℓ−1(J) ∈ RO(M)

K ∈ ℑ

 =⇒

lemma 3.1
=======⇒ (ℓ/K)−1(J) = ℓ−1(J) ∩ K ∈ RO(K). □
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Lemma 3.2. Let N ⊆ M and N ∈ PO(M). Then, N ∩ K ∈ RO(N ) for each K ∈ RO(M)

[2].

Theorem 3.12. If ℓ: (M, ℑ) → (N , ℜ) is a c.δgp-i. and K ∈ PO(M), then ℓ/k : K → N

is c. δgp-i..

Proof. This can be inferred from Lemma 3.2. □

Theorem 3.13.

(i) If ℓ: (M, ℑ) → (N , γ) is δgp-i. and ḱ: (N , γ) → (P, σ) is δgp-i., then the composition

ḱoℓ:(M, ℑ) → (P, σ) is also c.δgp-i.

(ii) If ℓ: (M, ℑ) → (N , γ) is c.δgp-i. and ḱ: (N , γ) → (P, σ) is c.δgp-i., then the

composition ḱoℓ:(M, ℑ) → (P, σ) remains c.δgp-i.

(iii) If ℓ: (M, ℑ) → (N , γ) is an R-map and ḱ: (N , γ) → (P, σ) is c.δgp-i., then the

composition ḱoℓ:(M, ℑ) → (P, σ) is c.δgp-i.

(iv) If ℓ: (M, ℑ) → (N , γ) is c.δgp-i. and ḱ: (N , γ) → (P, σ) is δgp-c., then the composition

ḱoℓ:(M, ℑ) → (P, σ) is also c.c..

Proof. Straightforward. □

Definition 3.3. If J, H ∈ RO(M) (resp., δGPO(M)) cannot be found such that J ∩ H

= ∅ and J ∪ H = M, then a space (M, ℑ) is referred to as almost connected [8] (resp.,

δgp-connected [24]).

Theorem 3.14. If ℓ: (M, ℑ) → (N , γ) is a surjective function that is c.δgp-i. and (M,

ℑ) is almost connected, then (N , γ) is δgp-connected.

Proof. Let us consider that (N , γ) is not δgp-connected.

(N , γ) is not δgp-connected =⇒

(∃ C, D ∈ δGPO(N )\{∅})(C∩D = ∅)(C∪D = N )

ℓ is c.δgp-i. surjection

 =⇒

=⇒ (ℓ−1(C), ℓ−1(D) ∈ RO(M) \{∅})(ℓ−1(C∩D) = ℓ−1(∅))(ℓ−1(C∪D) = ℓ−1(N ))

=⇒ (ℓ−1(C), ℓ−1(D) ∈ RO(M)\{∅})(ℓ−1(C) ∩ ℓ−1(D) = ∅)(ℓ−1(C) ∪ ℓ−1(D) = M).

This (M, ℑ) is not almost connected. □

Definition 3.4.

(i) If each regular open cover of a space (M, ℑ) has a finite subcover, then the space is said
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to as nearly compact (briefly, n.c.) [20];

(ii) Every countable cover of a space (M, ℑ) by regular open sets that has a finite subcover

is called nearly countably compact (briefly, n.c.c.) [9].

(iii) If there is a countable subcover for each cover of M by regular open sets, then the space

(M, ℑ) is referred to as nearly Lindelöf(briefly, n.L.) [8].

(iv) If each δgp-open cover of a space (M, ℑ) has a finite subcover, then the space is said to

as δgp-compact (briefly, δgp.c.) [26];

(v) Every countable cover of a space (M, ℑ) by δgp-open sets that has a finite subcover is

called countably δgp-compact (briefly, c.δgp-c.);

(vi) If there is a countable subcover for each cover of M by δgp-open sets, then the space

(M, ℑ) is referred to as δgp-Lindelöf(briefly, δgp.L.)

Theorem 3.15. Let ℓ: (M, ℑ) → (N , γ) be a c. δgp-i. surjection, then the following hold:

(i) If (M, ℑ) is n.c., then (N , γ) is δgp-c.;

(ii) If (M, ℑ) is n.L., then (N , γ) is δgp-L.;

(iii)If (M, ℑ) is n.c.c., then (N , γ) is c.δgp-c..

Proof. (i) Let M be n.c. and A be an δgp-open cover of N .

(A ⊂ δGPO(N )) (N = ∪ A)
ℓ is c.δ gp.i
=======⇒

(K: = {ℓ−1(J)| J ∈ A} ⊂ RO(M))(M = ∪ K)

M is nearly compact

 =⇒ (∃K∗ ⊂ K)(| K∗ |< ℵ0(M = ∪K∗))

ℓ is surjective
=========⇒ (K: = (ℓ(K∗)⊂ℓ(K)=A)(|ℓ(B∗)| < ℵ0) (K = ℓ(M) = ℓ(∪ B∗) = ∪N∈N∗ ℓ(K)).

(ii) Let M be n.L. and A be an δgp-open cover of N .

(A ⊂ δGPO(N ))(|A| ≤ ℵ0(N = ∪ A))
ℓ is c.δ gp.i.
========⇒

=⇒
(
K := {ℓ−1(J) | J ∈ A} ⊆ RO(M)

)
(M = ∪K)

M is n.c.

 =⇒

=⇒
(
∃K∗ ⊆ K | K |< ℵ0 ∧ M = ∪K∗)

ℓ is surjective

 =⇒

=⇒ (ℓ(K∗) ⊂ ℓ(K) = A)(|ℓ(K∗) | < ℵ0)(N = ℓ(M) = ℓ(∪ K∗) = UN∈N ∗ ℓ(K)).

(iii) Let M be n.c.c. and A be an δgp-open countable cover of N .
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(A ⊂ δGPO(N ))(|A| ≤ ℵ0)(N = ∪ A)
ℓ is c.δ gp.i.
========⇒

=⇒
(
K := {ℓ−1(J) | J ∈ A} ⊆ RO(M)

)
(M = ∪K)

M is n.c.c.

 =⇒

=⇒
(
∃K∗ ⊆ K with |K∗| < ℵ0 ∧ M = ∪K∗)

ℓ is surjective

 =⇒

=⇒ (ℓ (K∗) ⊂ ℓ(K) = A)(| ℓ(K∗)| < ℵ0)(N = ℓ(M) = ℓ(∪ K∗)) = ∪K∈K∗ ℓ(K). □

Definition 3.5.

(i) If there is a finite subcover for each regular closed (resp., δgp-closed) cover of a space (M,

ℑ) then the space is said to be S-closed [27] (resp., δgp-closed compact).

(ii) If every countable cover of M by regular closed (resp., δgp-closed) sets has a finite

subcover, then the space (M, ℑ) is called countably S-closed compact [1](resp., countably

δgp-closed compact).

(iii) If any cover of M by regular closed (resp., δgp-closed) sets admits a countable subcover,

then the space (M, ℑ) is called S-Lindelöf [16] (resp., δgp-closed Lindelöf).

Theorem 3.16. Let ℓ: (M, ℑ) → (N , γ) be a c.δgp-i. surjection. The following is true:

(i) If (M, ℑ) is S-closed, then (N , γ) is δgp-closed compact.

(ii) If (M, ℑ) is S-Lindelöf, then (N , γ) is δgp-closed Lindelöf.

(iii) If (M, ℑ) is countably S-closed compact, then (N , γ) is countably δgp-closed compact.

Proof. (i) Let (M, ℑ) be S-closed and compact and A be an δgp-closed cover of (N , γ).

(A ⊂ δGPC(N ))(N = ∪ A)
ℓ is c.δ gp.i.
========⇒ (H: = {ℓ−1(K)|K ∈ A} ⊂ RC(M))(M = ∪ H)

M is S-closed

 =⇒

=⇒ (∃ N ∗ ⊂ H) (|H∗| < ℵ0) (M = ∪ H)
ℓ is surjective
=========⇒

=⇒ (H : = (ℓ(H∗) ⊂ ℓ(H)=A)(|ℓ(H∗)| < ℵ0)(N = ℓ(M) = ℓ(∪ H∗) = ∪ H∈H∗ ℓ(H)).

(ii) Let (M, ℑ) be S - Lindelöf and A be an δgp-closed countable cover of N .

(A ⊂ δGPC(Q)) (| A | ≤ ℵ0)(N = ∪ A)
ℓ is c.δ gp.i.
========⇒

=⇒
(
B := {ℓ−1[A] | A ∈ A} ⊆ δRC(M)

)
(M = ∪B)

M is Lindelöf closed

 =⇒
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=⇒ (∃ B∗⊂ B)(|B∗| < ℵ0)(M = ∪ B∗)

ℓ is surjective
=========⇒ (ℓ[B∗] ⊂ ℓ[B] = A) (|ℓ[B*]| ≤ ℵ0)

(N = ℓ(M) = ℓ(∪ B∗)) = ∪B∈B∗ ℓ(B).

(iii) Let (M, ℑ) be countable S-closed compact and A be an δgp-closed countable cover of

N .

(A ⊂ δGPC(N )) (|A| ≤ ℵ0)(N = ∪ A)
ℓ is c.δgp.i.
=======⇒

(J:={ℓ−1 (A) | A ∈ A} ⊂ RC(M))(|J| ≤ ℵ0)(M = ∪ J)

M is countable S-closed compact)

 =⇒

=⇒
(
∃J∗ ⊆ J with |J∗| < ℵ0 ∧ M = ∪J∗)

ℓ is surjective

 =⇒

=⇒ (ℓ(J∗) ⊂ ℓ(J) = A) (| ℓ(J∗) | < ℵ0)(N = ℓ(M) = ℓ(∪ J∗) = ∪J∈J∗ ℓ(J). □

Definition 3.6. A space (M, ℑ) is defined as almost regular [19] (or strongly δgp-regular)

if for any L ∈ RC(M) (or δGPC(M) and any point q ∈ M\L, there exist C, D ∈ ℑ (or

δGPO(M)) such that q ∈ C, L ⊆ D and C ∩ D= ∅).

Example 3.4. Consider M = {u1, u2, u3, u4, u5} with the topology ℑ ={∅, M ,{u1, u2},{u3,

u4},{u1, u2, u3, u4}}. Then, (M, ℑ) is strongly δgp-regular

Theorem 3.17. If ℓ: (M, ℑ) → (N , ℜ) c.δgp-i. δgp-open bijection.

If (M, ℑ) is an almost regular, then (N , γ) is strongly δgp-regular.

Proof. Let F ∈ δGPC(N ) and ℓ(r) = s /∈ F.

ℓ(r)=s /∈ F ∈ δGPC(N )
ℓ is c.δgp.i.
=======⇒ r /∈ ℓ−1 (F) ∈ RC(M)

M is almost regular

 =⇒

=⇒ (∃ U, V ∈ δGPO(M)) (r ∈ U) (ℓ−1(F) ⊂ V)(U∩V= ∅)
ℓ is δgp-open bijection
==============⇒ (ℓ(U), ℓ(V) ∈ δGPO(N ))(s = ℓ(r) ∈ ℓ(U))(F⊂ℓ(V))(ℓ(U) ∩ ℓ(V) = ∅).

□

Definition 3.7. A space (M, ℑ) is defined as follows:

(a) Almost normal: [21] For each G ∈ C(M) and each H ∈ RC(M) such that G ∩ H = ∅,

there exist J, K ∈ ℑ such that J ∩ K = ∅, G ⊆ J and H ⊆ K.
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(b) Strongly δgp-normal: For any pair G, H ∈ δGPC(M) such that G ∩ H = ∅, there exist

J, K ∈ δGPO(M) such that J ∩ K = ∅, G ⊆ J and H ⊆ K.

Example 3.5. Consider M ={u1, u2, u3, u4} with the topology ℑ ={∅, M, {u1}, {u2}, {u1,

u2},{u1, u3},{u1, u2, u3}}. Then, (M, ℑ) is strongly δgp-normal.

Theorem 3.18. If (M, ℑ) is an almost normal space then (N , γ) is strongly δgp-normal

whenever ℓ:(M, ℑ) → (N , γ) is c. δgp-i. and δgp-open bijection.

Proof. Let C, D ∈ δGPC(N ) and C ∩ D = ∅.

(C, D ∈ δGPC(N )) (C ∩ D)= ∅

ℓ is c.δgp.i.

 =⇒ (ℓ−1(C), ℓ−1(D) ∈ RC(M))(ℓ−1(C ∩D) = ℓ−1(∅))

=⇒
(
ℓ−1(C), ℓ−1(D) ∈ RC(M) ∧ ℓ−1(C) ∩ ℓ−1(D) = ∅

)
RC(M) ⊆ C(M)

 =⇒

=⇒ (ℓ−1(C) ∈ C(M)) ( ℓ−1(D) ∈ RC(M)) (ℓ−1(C) ∩ ℓ−1(D) = ∅)
(M, ℑ) is almost normal
================⇒

=⇒
(
∃U, V ∈ δGPO(M) : ℓ−1(C) ⊆ U, ℓ−1(D) ⊆ V, U ∩ V = ∅

)
ℓ is a δ-gp-open bijection

 =⇒

=⇒ (ℓ(U), ℓ(V) ∈ δGPO(N ))(C ⊆ ℓ(U))(D ⊆ ℓ(V)) (ℓ(U) ∩ ℓ(V) = ∅. □

Definition 3.8. A space (M, ℑ) is said to be δgp-T1 [25] (resp., r-T1 [8]) if for each r, s

(r ̸= s) ∈ M, there exist K1 and K2 ∈ δGPO(M) (resp., O(M)) r ∈ K1, s ∈ K2, r /∈ K2

and s /∈ K1.

Theorem 3.19. If ℓ:(M, ℑ) → (N , γ) is c.δgp-i. injection and (N , γ) is δgp-T1, then

(M, ℑ) is r-T1.

Proof. Let r, s ∈ M and r ̸= s.

((r, s) ∈ M)(r ̸= s)
ℓ is injective
========⇒ ℓ(r) ̸= ℓ(s)

(N , γ) is δgp - T1

 =⇒

=⇒ (∃ U ∈ δGPO(N , ℓ(r) and V ∈ δGPO (N , ℓ(s))) (ℓ(r) /∈ V) (ℓ(s) /∈ U)

ℓ is c.δgp.i.
=======⇒ (ℓ−1(U) ∈ RO(M, r)) (ℓ−1(V) ∈ RO(M, s))(r /∈ ℓ−1(V)) (s /∈ ℓ−1(U)). □
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Definition 3.9. A space (M, ℑ) is said to be δgp-Hausdorff [24] (resp. r-T2 [8]) for each

p, q (p ̸= q) ∈ M, there exist ∈ J, K δGPO(M) (resp., RO(M)) such that p ∈ J, q ∈ K

and J ∩ K = ∅.

Theorem 3.20. If ℓ: (M, ℑ) → (N ,γ) is c.δgp-i. injection and (N , γ) is δgp-Hausdorff,

then (M, ℑ) is r-T2.

Proof. Let r, s ∈ M and r ̸= s.

(r, s) ∈ M×M)(r ̸= s)
ℓ is injective
========⇒ ℓ(r) ̸= ℓ(s)

(N , γ) is δgp-Hausdorff

 =⇒

=⇒ (∃ A ∈ δGPO (N , ℓ(r)) (∃ B ∈ δGPO (N , ℓ(s)) ( A ∩ B= ∅)
ℓ is c.δgp.i.
=======⇒ (ℓ−1(A) ∈ RO (M, r)) (ℓ−1(B) ∈ RO(N , s))(ℓ−1(A) ∩ ℓ−1(B) = ∅). □

Theorem 3.21. Let (N , γ) be δgp-Hausdorff space. If ℓ: (M, ℑ) → (N ,γ) and ḱ: (M, ℑ)

→ (N ,γ) are c.δgp-i.e, then L = {q | ℓ(q) = ḱ(q)} is δ-closed in M.

Proof. Suppose that q /∈ L.

q /∈ L =⇒ ℓ(q) ̸= ḱ(q)

(N , γ) is δgp-Hausdorff

 =⇒

=⇒ (∃ G ∈ δGPO(N, ℓ(q)))(∃ H ∈ δGPO(N , ḱ(q)))(G ∩ H = ∅)
ℓ and ḱ are c.δgp.i.
============⇒

(ℓ−1(G) ∈ RO(M, q))(ḱ−1(H) ∈ RO(M, q))(ℓ−1(G ∩ H) = ∅)(ḱ−1(G ∩ H) = ∅)

=⇒ (U : = ℓ−1(G) ∩ ḱ−1(H) ∈ RO(M, q)) (U ∩ L = ∅) =⇒ q /∈ ćδ(L).

Then, L is δ-closed in M. □

Theorem 3.22. Let (N , γ) be δgp-Hausdorff space. If ℓ: (M, ℑ) → (N ,γ) is c.δgp-i., then

K = {(p, q) | ℓ(p) = ℓ(q)} is δ-closed in M×M.

Proof. Let (p, q) /∈ K.

(p, q) /∈ K =⇒ ℓ(p) ̸= ℓ(q)

(N , γ) is δgp-Hausdorff

 =⇒

(∃ G ∈ δGPO(N ,ℓ(p)))(∃ H ∈ δGPO (N , ℓ(q)))(G ∩ H = ∅)
ℓ is c.δgp.i.
=======⇒ (ℓ−1(G) ∈ RO (M, p)) (ℓ−1(H) ∈ RO (M, q))(ℓ−1(G) ∩ ℓ−1(H) = ∅)

=⇒ (U: = ℓ−1(G) × ℓ−1(H) ∈ RO(M×M, (p, q))(U ∩ K = ∅)

=⇒ (p, q) /∈ ćδ(K)

Then, M is δ-closed in M×M. □
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4. Conclusion

In this research paper, we have defined completely δgp-irresolute functions, strongly δgp-

regular space, and strongly δgp-normal space in topological spaces with an example and

give the proof of the theorems based on their properties. We are interested in extending

our research work to convergence in bitopological spaces and nano topological spaces. In

addition, we plan to find some interesting concepts in bitopological spaces.
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1. Introduction

Consider an isometric immersion ψ :Mn → Em from a Riemannian manifold Mn into the

Euclidean space Em. Denote by H and ∆ the mean curvature vector field of Mn and the

Laplace operator of Mn with respect to the induced Riemannian metric of Em. From the

Beltrami’s formula ∆ψ = nH we see that M is minimal in Em if and only if its coordinate

functions are harmonic. Observe that ∆2ψ = n∆H. Manifolds with ∆H = 0, or equivalently

∆2ψ = 0 are called biharmonic. Obviously, minimal submanifolds (i.eH = 0) are biharmonic.

The question that arises is whether the class of biharmonic submanifolds is reduced to that

of minimal submanifolds. Several authors have proved it in some cases (cf. [1, 16, 18, 20, 22]

and notes in the report [14]).
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Cyriaque Comlan Atindogbé⋄ atincyr@gmail.com ⋄ https://orcid.org/0000-0001-8346-4027.

717

HTTPS://ORCID.ORG/0000-0001-8346-4027


718 C.C. ATINDOGBÉ

A well-known Bang-Yen Chen’s conjecture says : Any biharmonic submanifold in pseudo-

Euclidean space En+ps is minimal. But in contrast to the Euclidean case (s = 0, where the

conjecture is not entirely solved), the conjecture generally fails for submanifolds in a pseudo-

Euclidean space. B.-Y. Chen and S. Ishikawa [13] gave examples of nonminimal biharmonic

(also called proper biharmonic) space-like surfaces with constant mean curvature in pseudo-

Euclidean spaces E4
s (s = 1, 2) and proper biharmonic surfaces of signature (1, 1) in E4

s

(s = 1, 2, 3) in [15]. Furthermore, in case of hypersurfaces, Chen has found a good relation

between the finite type hypersurfaces and biharmonic ones [17, Chapter 11].

The Laplacian operator ∆ involved in the biharmonicity can be seen as the first one of a

sequence of n operators L0 = ∆, L1, . . . , Ln−1, where Lr stands for the linearized operator

of the first variation of the (r + 1)−th mean curvature arising from normal variations of the

hypersurface. They act on smooth functions by Lr(f) = tr(Tr ◦ ∇2f), where Tr is the r−th

Newton transformation associated with the shape operator of the hypersurface, and ∇2f is

the self-adjoint linear operator metrically equivalent to the Hessian of f . With this extension

of the Laplace operator ∆ = L0 and inspired by the Chen’s conjecture, it appears natural

to generalize the definition of biharmonic hypersurfaces replacing ∆ by the Lr. Along these

lines, the Lr−conjecture has been formulated (cf. [5]) as follows:

Lr−Conjecture 1.1 : Every Euclidean hypersurface ψ : Mn → Rn+1 satisfying the condi-

tion L2
rψ = 0 for some r, 0 ≤ r ≤ n − 1 has zero (r + 1)−th mean curvature (equivalently,

(r + 1)−minimal).

This Lr−conjecture has been generalized (cf. [6]) for hypersurfaces of simply connected

space forms as follows :

Lr−Conjecture 1.2 : Let ψ : Mn → Qn+1(c) be a hypersurface immersed into a simply

connected space form Qn+1(c). If M is Lr−biharmonic then Hr+1 is zero.

Recently, Lr−biharmonic hypersurfaces have been considered when the target space is

pseudo-Riemannian and scrutinized by several authors [3, 19, 27, 28, 26] and references

therein. In particular, it is shown in [27, Theorem 1.1] that on any Lk−biharmonic spacelike

hypersurfaces in E4
1 with mutually distinct principal curvatures, if the k−th mean curvature

Hk is constant then the same is for Hk+1. It is worth mentioning that all the hypersurfaces

involved in the above quoted works are either spacelike or timelike, hence nondegenerate.

To fill the gap, the present work focuses on Lr−biharmonic null (degenerate) hypersurfaces

in generalized Robertson-Walker (GRW) spacetimes. As it is predictible due to the extra

difficulties presented by the singularities of null hypersurfaces, our following results provide
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(partial) characterizations of such Lr−biharmonic null hypersurfaces, involving sometimes

auxilliary screen foliations.

Theorem 1.1. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a connected isometric immersion of a null hypersurface in a GRW spacetime M
n+2
1 (c)

where m = n+ 2 + c2, t = c(c− 1)/2 with c = 1, 0,−1, furnished with a timelike closed and

conformal rigging vector field ζ. Then M is L̃r−harmonic for some 0 ≤ r < n if and only if

one of the following holds :

(a) M is r−maximal;

(b) M is (r + 1)−maximal and ζ is parallele along M ⊂ Rn+2
1 .

Theorem 1.2. Let n ∈ {1, 2} be integer,

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a connected isometric immersion of a null hypersurface in a GRW spacetime M
n+2
1 (c)

where m = n + 2 + c2, t = c(c − 1)/2 with c = 1, 0,−1, furnished with a non unit timelike

closed and conformal rigging vector field ζ.

(1) For c = 0, M is biharmonic (i.e L̃0−biharmonic) if and only if it is totally geodesic,

i.e null hyperplane. In particular the null mean curvature H vanishes.

(2) For c ̸= 0, if M is biharmonic then the null mean curvature H is leafwise constant

along the screen foliation induced by ζ, but not on the whole M .

The following is a null version of the result in [27, Theorem 1.1] for r = 1 in generalized

Robertson-Walker spaces.

Theorem 1.3. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a connected isometric immersion of a null hypersurface in a GRW spacetime M
n+2
1 (c)

where m = n + 2 + c2, t = c(c − 1)/2 with c = 1, 0,−1, furnished with a non unit timelike

closed and conformal rigging vector field ζ. Then,

(1) For n = 1, ψ :M2 −→M
3
1(c) ⊆ R3+c2

1+t is L̃1−biharmonic.

(2) For n = 2, if M3 is L̃1−biharmonic and the null mean curvature function H :=
⋆
H1

is leafwise constant in the screen foliation F induced by ζ then the same is for the
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second order mean curvature
⋆
H2. Moreover, if

⋆
H2 is constant on the whole null

hypersurface M3 then this constant is zero and M is 2−maximal.

Throughout the paper, all geometric objects (manifolds, metrics, connections, maps,. . . )

are smooth. The Lie algebra of vector fields on a manifold N is denoted by X(N).

2. Null hypersurfaces and rigged structures

A hypersurfaceM of a Lorentzian manifold (M, g) is null if the metric tensor is degenerate

on it, i.e the induced structure from the Lorentzian ambient manifold is degenerate.

A rigging for a null hypersurfaceM is a vector field ζ defined in some open neighbourhood

ofM such that ζp ̸∈ TpM for all p ∈M . If ζ is defined only overM , then we call it a restricted

rigging. If a rigging exists, then we can take the unique null vector field ξ ∈ X(M) such that

g(ζ, ξ) = 1 (called rigged vector field) and the (screen) distribution given by Sp = ζ⊥p ∩ TpM

for all p ∈M . We can also define the rigged metric as the Riemannian metric on M given by

g̃ = g+ω⊗ω, where ω = i∗α, α is the g-metrically equivalent one-form to ζ and i :M →M

is the canonical inclusion map. The rigged vector field ξ is unitary and orthogonal to S with

respect to g̃. Moreover, ω is g̃-metrically equivalent to ξ, and is called the rigged one-form.

The vector field N = ζ − 1
2g(ζ, ζ)ξ is the unique null vector field defined on M , orthogonal

to the screen distribution S and such that g(N, ξ) = 1.

Moreover, we have the following decompositions :

TpM = TpM ⊕ span(Np), TpM = span{ξp} ⊕ Sp (2.1)

for all p ∈M .

The rigging technique presents two main advantages. The first one is that all the geomet-

ric objects defined above from the rigging are tuned together in a way that allows linking

properties of the null hypersurface with properties of the ambient space. The second one is

the presence of the Riemannian rigged metric g̃, which geometry is reasonably well coupled

with the ambient geometry in most cases and it allows us to use Riemannian tools for the

study of the null hypersurface [23].

We get from decompositions (2.1)

∇UV = ∇UV +B(U, V )N, ∇UN = −A(U) + τ(U)N (2.2)
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where ∇, ∇ are the Levi-Civita connection of M and the induced (projected) connection

on M , respectively. The induced connection ∇ is torsion free but, in general, is not metric,

which makes it less useful in the theory. The second fundamental form B, the one-form τ

(also called rotation one form) and the screen second fundamental form C are given by

B(U, V ) = −g(∇Uξ, V ), τ(U) = −g(∇Uξ, ζ),

C(U, V ) = −g(∇UN,P (V )) = −g(∇Uζ, P (V )),

for all U, V ∈ X(M), where P : TM → S is the canonical projection associated to the second

decomposition in (2.1). The vector field ∇Uξ = ∇Uξ is tangent to the null hypersurface M

and can be decomposed as

∇Uξ = −τ(U)ξ−
⋆
A (U),

where
⋆
A (U) ∈ S. The endomorphism

⋆
A is the shape operator of S and satisfies

B(U, V ) = g(
⋆
A (U), V ) = g(U,

⋆
A (V )), B(ξ, U) = 0.

Some useful identities in the theory are the following:

−2C(U,X) = dω(U,X) + (Lζg) (U,X) + g(ζ, ζ)B(U,X), (2.3)

the Gauss-Codazzi equation

g(RUVW, ξ) = g(
(
∇U

⋆
A
)
(V ),W )− g(

(
∇V

⋆
A
)
(U),W ) (2.4)

+ τ(U)g(
⋆
A (V ),W )− τ(V )g(

⋆
A (U),W ),

(Lξ g̃)(X,Y ) = −2B(X,Y ) (2.5)

for all U, V,W ∈ X(M),X,Y ∈ S, and the Raychaudhuri equation[9] :

Ric(ξ, ξ) = ξ(H) + τ(ξ)H − ∥
⋆
A ∥2,

where H denotes the (non-normalized) null mean curvature of the null hypersurface given by

Hp =
n∑
i=1

B(ei, ei),

with {e1, . . . , en} an orthonormal basis in Sp. In particular, H = −d̃ivξ.

If B = 0, then it is said that M is totally geodesic and if B = ρg for certain ρ ∈ C∞(M),

then M is totally umbilical. Observe that these definitions do not depend on the chosen
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rigging, although the tensors B, τ and C do depend. Throughout, the Levi-Civita connection

on the normalized rigged structure (M, g̃) will be denoted ∇̃ and we have for all X,Y, Z ∈ S

C(ξ,X) = −τ(X)− g̃(∇̃ξξ,X), ∇̃XY =
⋆
∇X Y − g̃(∇̃Xξ, Y )ξ,

being
⋆
∇ the connection on the screen bundle S. In particular

g̃(∇̃XY,Z) = g(∇XY,Z) = g(∇XY,Z) ∀X,Y, Z ∈ S.

From now on, we assume M to be a generalized Robertson-Walker (GRW) spacetime of

constant sectional curvature c ∈ {−1, 0, 1}, which will be denoted M
n+2
1 (c) throughout. It

is known that such spacetime admits timelike closed and conformal vector field, say ζ. We

have

M
n+2
1 (c) = (I ×f F, g) , g = −dt2 + f2(t)gF

where f (the warping function) is a smooth positive function on I, and the fiber (F, gF ) is an

(n + 1)−dimensional Riemannian manifold of constant sectional curvature cF [29]. So, the

target spaceM
n+2
1 (c) of immersion is locally isometric to one of the modele spaces : a de Sitter

spacetime Sn+2
1 of curvature c = 1, the Lorentz-Minkowski spacetime Rn+2

1 when c = 0 or the

anti de Sitter spacetime Hn+2
1 (actually the universal covering of this pseudohyperbolic space

Hn+2
1 ) of curvature c = −1. Hence, we consider the following orientable isometric immersion

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

of the null hypersurface inM
n+2
1 (c) where m = n+2+c2 and t = c(c−1)/2 with c = 1, 0,−1.

Due to the causal character (spacelike or null) of tangent vectors to a null hypersurface in

Lorentzian space, the induced singular metric on the null hypersurface has signature (0, n).

So the timelike concircular vector field ζ can act as rigging vector field forM . The closed and

conformal vector field ζ has the outstanding property that there exists a smooth function

σ ∈ C∞(M) (the conformal factor) such that ∇Uζ = σU for all U ∈ X(M). In particular

Lζg = 2σg. For a closed and conformal rigging, the rotation 1−form vanishes identically

(τ = 0) and ξ is g−geodesic. Moreover, due to the closedness of ζ, ∇̃Uξ = −
⋆
A (U) and

∇̃UV = ∇UV + [B(U, V )− C(U,PV )] ξ, (2.6)



INT. J. MAPS MATH. (2025) 8(2):717-750 / L̃r−BIHARMONIC NULL HYPERSURFACES 723

for all U, V ∈ X(M). Also, using (2.3) we derive the following useful relation linking the

shape operators A and
⋆
A.

A = −1

2
λ

⋆
A −σP, (2.7)

where λ = g(ζ, ζ) denotes the length function of ζ.

For the closed rigging ζ, the screen distribution Sp = ζ⊥p ∩TpM is integrable and gives rise

to a foliation F on the null hypersurface. Moreover, we have shown in [11, Lemma 7] that

the conformal factor σ and the length function λ are constant through the (screen) leaves

Fp, p ∈M . In other words,

X · σ = 0 and X · λ = 0

for all X ∈ S.

3. Rigged linearized operators L̃r and technical lemmas

The shape operator
⋆
A is self-adjoint and satisfies

⋆
A ξ = 0. Its n+1 real valued eigenfunc-

tions
⋆
k0= 0,

⋆
k1, . . . ,

⋆
kn are the screen principal curvatures and we let (X0 = ξ,X1, . . . , Xn)

denote a g̃−orthonormal basis of eigenvector fields of
⋆
A, with span(X1, . . . , Xn) = S. For

0 ≤ r ≤ n, the r − th null mean curvature
⋆
Hr of the null hypersurface with respect to the

shape operator
⋆
A is given by(

n+ 1

r

)
⋆
Hr =

∑
0≤i1<···<ir≤n

⋆
ki1 · · ·

⋆
kir and

⋆
H0= 1,

and the null hypersurface is said to be r−maximal if
⋆
Hr= 0 identically on M . The following

notations will be in use :

⋆
Sr=

∑
0≤i1<···<ir≤n

⋆
ki1 · · ·

⋆
kir ,

⋆
S
α

r=
∑

0≤i1<···<ir≤n
i1,··· ,ir ̸=α

⋆
ki1 · · ·

⋆
kir .

In particular
⋆
S0= 1 and

⋆
S1= H (the null mean curvature).

For 0 ≤ r ≤ n+1, the r− th Newton transformation
⋆
T r with respect to the shape operator

⋆
A is the End(Γ(TM)) element given by

⋆
T r=

r∑
a=0

(−1)a
⋆
Sa

⋆
A
r−a

.

Inductively,
⋆
T 0= I and

⋆
T r = (−1)r

⋆
SrI+

⋆
A ◦

⋆
T r−1,
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where I denotes the identity of Γ(TM) and
⋆
Tn+1= 0 ( follows Cayley-Hamilton’s theorem).

By algebraic computations, one shows the following.

Proposition 3.1 ([9]).

(1)
⋆
T r is self-adjoint and commute with

⋆
A for any r;

(2)
⋆
T rXα = (−1)r

⋆
S
α

r Xα (for a fixed α);

(3) tr(
⋆
T r) = (−1)r(n+ 1− r)

⋆
Sr;

(4) tr
( ⋆
A ◦

⋆
T r−1

)
= (−1)r−1r

⋆
Sr;

(5) tr

(
⋆
A

2

◦
⋆
T r−1

)
= (−1)r−1

( ⋆
S1

⋆
Sr −(r + 1)

⋆
Sr+1

)
;

(6) tr(
⋆
T r−1 ◦∇X

⋆
A) = (−1)r−1X·

⋆
Sr .

Also, for the last item in Proposition 3.1, replacing ∇ by ∇̃, it is easy to show by a

straightforward computation that

tr(
⋆
T r−1 ◦∇̃X

⋆
A) = (−1)r−1X·

⋆
Sr . (3.8)

We recall the following from [9, Remark 3, Page 68].

Theorem 3.1. Let (Mn+1, ζ) be a normalized null hypersurface of a Lorentzian space form

(M
n+2
1 (c), ḡ) with rigged vector field ξ and τ = 0. Then,

ξ·
⋆
Sr= (−1)r−1tr

(
⋆
A

2

◦
⋆
T r−1

)
Prop. 3.1 (5)

=
( ⋆
S1

⋆
Sr −(r + 1)

⋆
Sr+1

)
. (3.9)

Consequently, if
⋆
Sr= 0 for some r = 1, ..., n, then

⋆
Sk= 0 for all k ≥ r.

For each 0 ≤ r ≤ n, the divergence of the operator
⋆
T r: X(M) −→ X(M) with respect to

the rigged connection ∇̃ is the vector field div∇̃(
⋆
Tr) ∈ X(M) defined as the trace of ∇̃

⋆
T r,

that is

div∇̃(
⋆
Tr) =

(
∇̃ξ

⋆
Tr

)
(ξ) +

n∑
i=1

(
∇̃Xi

⋆
Tr

)
(Xi).

Using the iterative formula
⋆
T r= (−1)r

⋆
SrI+

⋆
A ◦

⋆
T r−1, we have

div∇̃
⋆
Tr= (−1)rdiv∇̃

(⋆
Sr I
)
+ div∇̃

( ⋆
A ◦

⋆
Tr−1

)
.

But

div∇̃
(⋆
Sr I
)

=

n∑
α=0

(
∇̃Xα

⋆
Sr I

)
Xα =

∑
α

[
∇̃Xα(

⋆
Sr Xα)−

⋆
Sr

(
∇̃XαXα

)]
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=
∑
α

(Xα·
⋆
Sr)Xα = ∇̃

⋆
Sr .

On the other side,

div∇̃
( ⋆
A ◦

⋆
Tr−1

)
=

∑
α

(
∇̃Xα

( ⋆
A ◦

⋆
T r−1

)
Xα

)
=

∑
α

[
∇̃Xα

( ⋆
A ◦

⋆
T r−1 (Xα)

)
−
( ⋆
A ◦

⋆
T r−1

)(
∇̃XαXα

)]
=

∑
α

(
∇̃Xα

⋆
A
)( ⋆

T r−1 Xα

)
+

⋆
A
(
div∇̃

⋆
Tr−1

)
.

So, for all U ∈ X(M),

g̃
(
div∇̃

⋆
Tr,U

)
= g̃

(
div∇̃

⋆
Tr−1,

⋆
AU

)
+
∑
α

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

+(−1)rU ·
⋆
Sr . (3.10)

We compute
∑
α

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)
using curvature relations. Before proceeding we

note the following covariant derivative identity which is established by a direct computation.

For all linear operator T : X(M) → X(M) and U, V ∈ X(M),(
∇̃UT

)
(V ) = (∇UT ) (V ) + [B(U, TV )ξ −B(U, V )Tξ]

−1

2

(
[⟨AU, TV ⟩+ ⟨U,A(TV )⟩] ξ − [⟨AU, V ⟩+ ⟨U,AV ⟩]Tξ

)
. (3.11)

Applying (3.11) with T =
⋆
A and using the fact that

⋆
Aξ = 0 and ∇ζ = σ ⊗ I we get :(

∇̃U

⋆
A
)
(V ) =

(
∇U

⋆
A
)
(V ) +

[
⟨
⋆
AU,

⋆
A V ⟩ − ⟨AU,

⋆
A V ⟩

]
ξ. (3.12)

So, for each 0 ≤ α ≤ n,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

= g̃
( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)

+
[
g(

⋆
A Xα,

⋆
AU)− g(AXα,

⋆
AU)

]
× g̃(XXα ,

⋆
T r−1 ξ).

Using item (ii) in Proposition 3.1 and (2.7) we see that the last term in above equality

vanishes. Hence, in closed and conformal setting,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

= g̃
( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)

= g
( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)
+ ω

( ⋆
T r−1 Xα

)
ω
((

∇Xα

⋆
A
)
U
)
.
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We show that the last term vanishes. Indeed,

ω
( ⋆
T r−1 Xα

)
= g̃

( ⋆
T r−1 Xα, ξ

)
= (−1)r−1

⋆
S
α

r−1 g̃(Xα, ξ)

=

 0 if α ̸= 0

(−1)r−1
⋆
S
0

r−1= (−1)r−1
⋆
Sr−1 if α = 0,

(3.13)

where we use the fact that
⋆
S
0

r−1=
⋆
Sr−1 due to

⋆
k0= 0. From (3.13) we need to compute the

second factor just for α = 0.

ω
((

∇Xα

⋆
A
)
U
)

= g̃
(
(∇ξ

⋆
A)(U), ξ

)
= g̃

(
∇ξ(

⋆
AU)−

⋆
A (∇ξU), ξ

)
= g̃

(
∇ξ(

⋆
AU), ξ

)
= g̃

( ⋆
∇ξ (

⋆
AU) + C(ξ,

⋆
AU)ξ, ξ

)
= C(ξ,

⋆
AU)

(2.7)
= 0.

Hence, for 0 ≤ α ≤ n,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)
= g

( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)
. (3.14)

Now, Gauss-Codazzi equation (2.4) with τ = 0 provides

g
(
R(U, V )W, ξ

)
= g

(
(∇U

⋆
A)V,W

)
− g

(
(∇V

⋆
A)U,W

)
,

for all U, V, V ∈ X(M), where we make use of the identity

(∇UB) (V,W ) = g
(
(∇U

⋆
A)V,W

)
+ ω(W )g(

⋆
AU,

⋆
A V ).

Hence, (3.14) becomes

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

= g
(
R(Xα, U)

⋆
T r−1 Xα, ξ

)
+g
( ⋆
T r−1 Xα,

(
∇U

⋆
A
)
(Xα)

)
.

From (3.12), the following equation holds(
∇U

⋆
A
)
(Xα) =

(
∇̃U

⋆
A
)
(Xα)−

[
g(

⋆
AU,

⋆
A Xα)− g(AU,

⋆
A Xα)

]
ξ

and we get

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)
= g

(
R(Xα, U)

⋆
T r−1 Xα, ξ

)
+ g

( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
.
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But

g
( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
= g̃

( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
−ω(

⋆
T r−1 Xα)ω

((
∇̃U

⋆
A
)
(Xα)

)
. (3.15)

Due to the relation
⋆
T r−1 Xα = (−1)r−1

⋆
S
α

r−1 Xα, we see that for α ̸= 0, ω(
⋆
T r−1 Xα) = 0.

Also, for α = 0,

ω
((

∇̃U

⋆
A
)
(ξ)
)

= g̃
((

∇̃U

⋆
A
)
(ξ), ξ

)
= g̃

(
∇̃U (

⋆
A ξ)−

⋆
A (∇̃Uξ), ξ

)
= −g̃

( ⋆
A (∇̃Uξ), ξ

)
= 0,

hence the product ω(
⋆
T r−1 Xα)ω

((
∇̃U

⋆
A
)
(Xα)

)
in (3.15)vanishes identically and we get

g
( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
= g̃

( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
.

Therefore, for 0 ≤ α ≤ n,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
(U)
)

= g
(
R (Xα, U)

⋆
T r−1 Xα, ξ

)
+g̃
(
Xα,

( ⋆
T r−1 ◦

(
∇̃U

⋆
A
))

(Xα)
)
.

Returning back to (3.10) we have

g̃
(
div∇̃

⋆
Tr,U

)
= g̃

(
div∇̃

⋆
Tr−1,

⋆
AU

)
+
∑
α

g
(
R(Xα, U)

⋆
T r−1 Xα, ξ

)
+
∑
α

g̃
(( ⋆
T r−1 ◦(∇̃U

⋆
A)
)
Xα, Xα

)
+ (−1)rU ·

⋆
Sr

= g̃
(
div∇̃

⋆
Tr−1,

⋆
AU

)
+
∑
α

g
(
R(Xα, ξ)

⋆
T r−2 Xα,

⋆
AU

)
+g
(
R(Xα, ξ)

⋆
T r−1 Xα, U

)
.

By iterating this process, we get the following.

Lemma 3.1.

g̃
(
div∇̃

⋆
Tr,U

)
=

r−1∑
i=0

n∑
α=0

g

(
R(Xα, ξ)

⋆
T i Xα,

⋆
A
r−1−i

U

)
(3.16)

Corollary 3.1. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rn+2+c2

1+t

be a isometric immersion of a null hypersurface in M
n+2
1 (c) where t = c(c − 1)/2 with

c = 1, 0,−1, furnished with a closed and conformal rigging vector field ζ. Then, for all

f ∈ C∞(M).

div∇̃
⋆
Tr= 0 and div∇̃

( ⋆
Tr ∇̃f

)
= tr

( ⋆
Tr ◦∇̃2f

)
. (3.17)
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Proof. When the ambient Lorentzian manifold M
n+2

has constant sectional curvature c, we

have for a fixed r, each i = 0 . . . r− 1 and α = 0, . . . , n the term g

(
R(Xα, ξ)

⋆
T i Xα,

⋆
A
r−1−i
U

)
in (3.16) vanishes identically. So div∇̃

⋆
Tr= 0. By definition,

div∇̃
( ⋆
Tr ∇̃f

)
= tr

(
∇̃

⋆
Tr ∇̃f

)
=

n∑
α=0

g̃
(
∇̃Xα(

⋆
Tr ∇̃f),Xα

)
,

and

∇̃Xα(
⋆
T r ∇̃f) =

(
∇̃Xα

⋆
T r

)
∇̃f+

⋆
T r

(
∇̃Xα∇̃f

)
.

So,

div∇̃
( ⋆
Tr ∇̃f

)
=

n∑
α=0

g̃
(
∇̃f,

(
∇̃Xα

⋆
T r

)
(Xα)

)
+

n∑
α=0

g̃
( ⋆
T r

(
∇̃Xα∇̃f

)
, Xα

)
= g̃

(
∇̃f, div∇̃(

⋆
Tr)
)
+ tr

( ⋆
T r ◦∇̃2f

)
and the second claim in (3.17) follows from div∇̃(

⋆
Tr) = 0. □

For the sake of comparison, note that in [9] using the projected (induced) connection ∇

we established the following.

Proposition 3.2. [9, Proposition 3] ∀X ∈ X(M),

g(div∇
⋆
T r, U) =

r−1∑
a=0

n∑
i=1

ḡ

(
R̄(Xi, ξ)

⋆
T a Xi,

⋆
A
r−1−a
ξ U

)

+

r−1∑
a=0

(
τ(

⋆
A
r−1−a
ξ U)tr(

⋆
Aξ ◦

⋆
T a)− τ(P (

⋆
Aξ ◦

⋆
T a U))

)

+(−1)rω(U)

(
n∑
i=1

⋆
S
i

r−1

⋆
k
2

i −ξ(
⋆
Sr)

)
. (3.18)

Taking r = 2 and U = ξ in (3.18) leads to

0 = g(div∇
⋆
T 2, ξ) =

n∑
i=1

g
(
R(Xi, ξ)

⋆
T iXi, ξ

)
+ τ(ξ)tr(

⋆
A ◦

⋆
T 1)

−τ(
⋆
A ◦

⋆
T 1 ξ) +

n∑
i=1

⋆
S
i

1

⋆
k
2

i −ξ·
⋆
S2

=

n∑
i=1

⋆
S
i

1 Kξ(Πi) + τ(ξ)tr(
⋆
A ◦

⋆
T 1)

−τ(
⋆
A ◦

⋆
T 1 ξ) +

n∑
i=1

⋆
S
i

1

⋆
k
2

i −ξ·
⋆
S2
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where Kξ(Πi) =
g(R(ξ,Xi)Xi, ξ)

g(Xi, Xi)
= g(R(ξ,Xi)Xi, ξ) stands for the null sectional curvature

of the null plane Πi = span(Xi, ξ). But
⋆
A ◦

⋆
T 1 ξ = 0 and tr(

⋆
A ◦

⋆
T 1) = −2

⋆
S2, so

n∑
i=1

⋆
S
i

1 Kξ(Πi) = ξ·
⋆
S2 +2τ(ξ)

⋆
S2 −

n∑
i=1

⋆
S
i

1

⋆
k
2

i . (3.19)

Therefore, we can state the following.

Lemma 3.2. Let

ψ :Mn+1 −→M
n+2
1 (c)

be a isometric immersion of a null hypersurface in a space M
n+2
1 (c) of constant curvature c,

furnished with a conformal rigging vector field ζ. Then

ξ·
⋆
S2=

n∑
i=1

⋆
S
i

1

⋆
k
2

i . (3.20)

In particular, for n = 2

ξ·
⋆
S2=

⋆
S1

⋆
S2 . (3.21)

Proof. For constant sectional curvature, Kξ(Πi) = 0, i = 1, . . . , n and since τ(ξ) = 0, we

obtain (3.20) from (3.19). □

Now, for n = 2,

2∑
i=1

⋆
S
i

1

⋆
k
2

i=
⋆
k2

⋆
k
2

1 +
⋆
k1

⋆
k
2

2=
⋆
k1

⋆
k2 (

⋆
k1 +

⋆
k2) =

⋆
S1

⋆
S2 .

For each Newton transformation
⋆
T r, we can consider the second-order linear differential

operator L̃r : C
∞(M) → C∞(M) given by

L̃r(f) = tr
( ⋆
T r ◦∇̃2f

)
(3.22)

where ∇̃2f := ∇̃∇̃f stands for the g̃−dual of the Hessian H̃ess f of f with respect to g̃ onM .

Observe that when r = 0, L̃0 = ∆̃ is nothing but the Laplacian operator on the Riemannian

rigged structure (M, g̃). Also, the second-order linear differential operator L̃r defined here

in (3.22) is different from Lr(f) = tr
( ⋆
T r ◦∇(∇̃f)

)
as defined in [25] where a hybrid use of

the (projected) induced connection ∇ and the rigged Levi-Civita connection ∇̃ on (M, g̃) is

made. But these two connections do not coincide in general. Indeed, the equality ∇̃ = ∇

holds if and only if B = C and τ = 0 (cf. [10, Theorem 4.1]).

From (3.22) and (3.17) and using divergence properties, we get



730 C.C. ATINDOGBÉ

Lemma 3.3. For all f, h ∈ C∞(M),

L̃r(fh) = fL̃r(h) + hL̃r(f) + 2g̃
(
∇̃f,

⋆
T r ∇̃h

)
. (3.23)

For the following orientable isometric immersion

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

of the null hypersurface inM
n+2
1 (c) where m = n+2+c2 and t = c(c−1)/2 with c = 1, 0,−1,

we will calculate L̃r acting on the coordinate components of the immersion ψ, i.e a function

given by
〈
ψ, a

〉
where a ∈ Rm1+t is an arbitrary fixed vector. We let

0
∇ and ∇ denote the

Levi-Civita connections on Rn+2+c2

1+t and M
n+2
1 (c), respectively. For all U, V ∈ X(M),

0
∇U V = ∇UV − cg(U, V )ψ

which, by use of (2.6) gives

0
∇U V = ∇̃UV +B(U, V )(N − ξ) + g(AU, V )ξ − cg(U, V )ψ. (3.24)

In particular, for all U ∈ X(M),

0
∇Uξ = ∇Uξ = ∇̃Uξ = −

⋆
AU,

Lemma 3.4. Set h =
〈
ψ, a

〉
, a ∈ Rn+2+c2

1+t with c = −1, 0, 1 and λ = ⟨ζ, ζ⟩. Then,

∇̃h = aT − ⟨a,N − ξ⟩ξ = a− ⟨a,N − ξ⟩ξ − ⟨a, ξ⟩N − c⟨a, ψ⟩ψ; (3.25)

L̃rh = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
⟨ξ, a⟩+ (−1)r(r + 1)

⋆
Sr+1 ⟨ζ, a⟩

+(−1)r+1(n− r)c
⋆
Sr ⟨ψ, a⟩, (3.26)

and

L̃rψ = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
ξ + (−1)r(r + 1)

⋆
Sr+1 ζ

+(−1)r+1(n− r)c
⋆
Sr ψ. (3.27)

Proof. The function h is smooth on M and for all X ∈ X(M),

g̃(X, ∇̃h) = X · h = X · ⟨ψ, a⟩ =
〈

0
∇X ψ, a

〉
= ⟨X, a⟩.
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But

a = aT + ⟨ξ, a⟩N + c⟨ψ, a⟩ψ, (3.28)

where aT ∈ X(M) is the tangential component of the vector a projected onM in the direction

span(N,ψ). So, noting that ω(aT ) = ⟨a,N⟩,

g̃(X, ∇̃h) =
〈
X, aT + ⟨ξ, a⟩N + c⟨ψ, a⟩ψ

〉
= g(X, aT ) + ⟨ξ, a⟩g̃(ξ,X)

= g̃(X, aT )− ω(X)ω(aT ) + ⟨ξ, a⟩g̃(ξ,X) = g̃
(
X, aT − ⟨a,N − ξ⟩ξ

)
,

and we get ∇̃h = aT − ⟨a,N − ξ⟩ξ and the last equality in (3.25) follows from (3.28).

Further, note that

0
∇U N = −AU − cω(U)ψ

0
∇U ξ = −

⋆
AU and

0
∇U ψ = U,

hence, a straightforward computation using (3.25) leads to

0
∇U ∇̃h = −c⟨ψ, a⟩PU + ⟨AU−

⋆
AU, a⟩ξ + ⟨N − ξ, a⟩

⋆
AU

+⟨
⋆
AU, a⟩N + ⟨ξ, a⟩AU − c⟨PU, a⟩ψ. (3.29)

On the other hand, applying (3.24) with V = ∇̃h leads to

0
∇U ∇̃h = ∇̃U∇̃h+ ⟨a,

⋆
AU⟩(N − ξ) + ⟨a,AU⟩ξ − c⟨PU, a⟩ψ. (3.30)

Therefore, using (3.29), (3.30) and (2.7) we get

∇̃U∇̃h =
〈
N − 1

2
(2 + λ)ξ, a

〉 ⋆
AU − ⟨σξ + cψ, a⟩PU, (3.31)

which in terms of ζ reads

∇̃U∇̃h =
〈
ζ − (1 + λ)ξ, a

〉 ⋆
AU − ⟨σξ + cψ, a⟩PU. (3.32)

It follows from (3.32) that

L̃rh = tr
( ⋆
T r ◦∇̃2h

)
=
∑
α

g̃
( ⋆
T r

(
∇̃Xα∇̃h

)
, Xα

)
=

∑
α

[
⟨ζ − (1 + λ)ξ, a⟩ g̃(

⋆
T r

⋆
A Xα, Xα)− ⟨σξ + cψ, a⟩g̃(

⋆
T r PXα, Xα)

]
= ⟨ζ − (1 + λ)ξ, a⟩ tr(

⋆
A ◦

⋆
T r)− ⟨σξ + cψ, a⟩

(
tr(

⋆
T r)− (−1)r

⋆
Sr

)
= (−1)r(r + 1) ⟨ζ − (1 + λ)ξ, a⟩

⋆
Sr+1 +(−1)r(n− r)⟨σξ + cψ, a⟩

⋆
Sr .
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Therefore,

L̃rh = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
⟨ξ, a⟩+ (−1)r(r + 1)

⋆
Sr+1 ⟨ζ, a⟩

+(−1)r+1(n− r)c
⋆
Sr ⟨ψ, a⟩,

which is (3.26). Extend L̃r to the Rmt −valued function ψ by setting

L̃rψ =
(
L̃rψ1, . . . , L̃rψm

)
where ψi = εi⟨ψ, ei⟩ and (e1, . . . , em) stands for an orthonormal basis of Rm1+t with m =

n+ 2 + c2, t = c(c− 1)/2 and εi = ⟨ei, ei⟩ = ±1. We have

L̃rψ =

m∑
i=1

εiL̃r⟨ψ, ei⟩ei

= (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

] m∑
i=1

εi⟨ξ, ei⟩ei

+(−1)r(r + 1)
⋆
Sr+1

m∑
i=1

εi⟨ζ, ei⟩ei + (−1)r+1(n− r)c
⋆
Sr

m∑
i=1

εi⟨ψ, ei⟩ei,

= (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
ξ

+(−1)r(r + 1)
⋆
Sr+1 ζ + (−1)r+1(n− r)c

⋆
Sr ψ,

which completes the proof. □

Remark 3.1. Due to
⋆
Sn+1= 0, we see from above expression (3.27) that L̃nψ = 0 and that

(M, ζ) is (trivially) L̃n−harmonic.

Lemma 3.5. Let a ∈ Rmt be a fixed constant vector and U ∈ X(M). Then,

∇̃⟨ξ, a⟩ = −
⋆
A aT , (3.33)

where aT = a− ⟨a, ξ⟩N − c⟨ψ, a⟩ψ.

∇̃U∇̃⟨ξ, a⟩ = −
(
∇̃aT

⋆
A
)
U −

[
⟨
⋆
A

2

U, aT ⟩+ ⟨1
2

⋆
A

2

U + σ
⋆
AU, a

T ⟩
]
ξ

+⟨ξ, a⟩
(
1

2

⋆
A

2

U + σ
⋆
AU

)
+ c⟨ψ, a⟩

⋆
AU ; (3.34)

L̃r⟨ξ, a⟩ = (−1)r+1⟨∇̃
⋆
Sr+1, a⟩+ (−1)r(r + 1)c

⋆
Sr+1 ⟨ψ, a⟩

+(−1)r+1

([
1

2
λ

⋆
S1 −(r + 1)σ

]
⋆
Sr+1 +

1

2
(r + 2)λ

⋆
Sr+2 −ξ·

⋆
Sr+1

)
⟨ξ, a⟩;(3.35)
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and

L̃rξ = (−1)r+1∇̃
⋆
Sr+1 +(−1)r(r + 1)c

⋆
Sr+1 ψ

+(−1)r+1

([
1

2
λ

⋆
S1 −(r + 1)σ

]
⋆
Sr+1 +

1

2
(r + 2)λ

⋆
Sr+2 −ξ·

⋆
Sr+1

)
ξ. (3.36)

Proof. Set ν = ⟨ξ, a⟩. For U ∈ X(M),

g̃
(
∇̃ν, U

)
= U · ν = U · ⟨ξ, a⟩ = ⟨

0
∇U ξ, a⟩ = ⟨−

⋆
AU, a⟩

= ⟨−
⋆
AU, a

T ⟩ = ⟨U,−
⋆
A aT ⟩ = g̃(U,−

⋆
A aT ).

Therefore, ∇̃⟨ξ, a⟩ = −
⋆
A aT . Using this expression, we get by direct computation that for

all U , W ∈ X(M),

⟨
0
∇U ∇̃ν,W ⟩ = −

〈
aT + ⟨a, ξ⟩N,

(
∇U

⋆
A
)
W
〉

−⟨
⋆
A

2

U,W ⟩ω(aT ) + c⟨
⋆
AU,W ⟩⟨ψ, a⟩

It is easy to check that if T ∈ End(TM) is a self-adjoint operator with respect to g then〈
(∇UT )V,W

〉
=

〈
V, (∇UT )W

〉
+ ω(V )B(U, TW )

−ω(TV )B(U,W )− ω(W )B(U, TV ) + ω(TW )B(U, V ).

Applying this for T =
⋆
A leads to

⟨
0
∇U ∇̃ν,W ⟩ = −

(〈(
∇U

⋆
A
)
aT ,W

〉
+ ω(W )B(U

⋆
A aT )− ω(aT )B(U,

⋆
AW )

+⟨a, ξ⟩
〈(

∇U

⋆
A
)
W,N

〉)
− ⟨

⋆
A

2

U,W ⟩ω(aT ) + c⟨ψ, a⟩⟨
⋆
AU,W ⟩.

But
〈(

∇U

⋆
A
)
W,N

〉
= ⟨

⋆
AAU,W ⟩ and due to (2.7), we get

〈(
∇U

⋆
A
)
W,N

〉
=
〈
− 1

2
λ

⋆
A

2

U − σ
⋆
A U,W

〉
where λ = ⟨ζ, ζ⟩. Also, by Gauss-Codazzi equation with τ = 0, the following equation holds,

⟨R(U, V )ξ,W ⟩ = −⟨R(U, V )W, ξ⟩ = ⟨(∇V

⋆
A)U − (∇U

⋆
A)V,W ⟩,

and since the ambient space has constant sectional curvature c, the left hand side van-

ishes, which leads to ⟨(∇V

⋆
A)U,W ⟩ = ⟨(∇U

⋆
A)V,W ⟩. Therefore,

〈(
∇U

⋆
A
)
aT ,W

〉
=
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∇aT

⋆
A
)
U,W

〉
and

⟨
0
∇U ∇̃ν,W ⟩ =

〈
−
(
∇aT

⋆
A
)
U −

〈 ⋆
A

2

U, aT
〉
N +

(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
⟨ξ, a⟩+ c⟨ψ, a⟩

⋆
AU,W

〉
.

and this leads to

0
∇U ∇̃ν = −

(
∇aT

⋆
A
)
U −

〈 ⋆
A

2

U, aT
〉
N + ⟨ξ, a⟩

(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
+c⟨ψ, a⟩

⋆
AU + β(U)ξ + γ(U)ψ. (3.37)

Taking respectively ξ and ψ components both side leads to β(U) = 0 and γ(U) = c
〈 ⋆
AU, aT

〉
.

Hence,

0
∇U ∇̃ν = −

(
∇aT

⋆
A
)
U −

〈 ⋆
A

2

U, aT
〉
N + ⟨ξ, a⟩

(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
+c⟨ψ, a⟩

⋆
AU + c

〈 ⋆
AU, a

T
〉
ψ. (3.38)

Computing the same term
0
∇U ∇̃ν using the right hand side of (3.24), we get

0
∇U ∇̃ν = ∇̃U∇̃ν −

〈
⋆
A

2

U, aT
〉
(N − ξ)

−
〈
−1

2
λ

⋆
A

2

U − σ
⋆
A U, aT

〉
ξ + c

〈 ⋆
AU, a

T
〉
ψ. (3.39)

By comparing (3.38)‘and (3.39) and using (2.7) we get,

∇̃U∇̃ν = −(∇aT
⋆
A)U −

[〈
⋆
A

2

U, aT
〉
+

〈
1

2
λ
⋆
A

2

U + σ
⋆
A U, aT

〉]
ξ

+⟨ξ, a⟩
(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
+ c⟨ψ, a⟩

⋆
AU. (3.40)

Finally, taking into account that

(∇aT
⋆
A)U = (∇̃aT

⋆
A)U − [⟨

⋆
A

2

U−
⋆
A AU, aT ⟩⟩]ξ,

we get the desired relation (3.34). Now,

L̃r⟨ξ, a⟩ = tr(
⋆
T r ∇̃2ν)

3.34
= −tr

( ⋆
T r ◦∇̃aT

⋆
A
)
− 0 + ⟨ξ, a⟩

(
1

2
λtr(

⋆
T r ◦

⋆
A

2

) + σtr(
⋆
T r ◦

⋆
A)

)
+

c⟨ψ, a⟩tr
( ⋆
T r ◦

⋆
A
)
,
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and (3.35) is straightforward from Proposition 3.1. The last claim (3.36) follows from

L̃rξ =
m∑
i=1

εi

(
L̃r⟨ξ, ei⟩

)
ei

where we use (3.35) componentwise. □

Before the next statement, we recall the following from [11, Lemma 4 (4)], where ζ is a

closed and conformal vector field.

Ric(U, ζ) = −(n+ 1)U · σ, (3.41)

forall U ∈ X(M). Since our ambient space M
n+2

(c) has constant sectional curvature c, it

follows from (3.42) that

U · σ = −cω(U) for all U ∈ X(M). (3.42)

Taking U = ξ provides

ξ · σ = −c. (3.43)

It turns out that

∇̃σ = (ξ · σ)ξ = −cξ. (3.44)

Furthermore, for U ∈ X(M),

∇̃U∇̃σ = ∇̃U (−cξ) = c
⋆
AU, (3.45)

and we get

L̃rσ = tr
( ⋆
T r (∇̃U∇̃σ)

)
= (−1)r(r + 1)c

⋆
Sr+1 . (3.46)

As for σ, the function λ = ⟨ζ, ζ⟩ is (screen) leafwise constant and ∇λ = 2σζ. Therefore,

∇̃λ = 2σξ. (3.47)

Hence, for all U ∈ X(M),

∇̃U∇̃λ = −2cω(U)ξ − 2σ
⋆
A U, (3.48)

and

L̃rλ = tr
( ⋆
T r (∇̃U∇̃λ)

)
= (−1)r+1

(
2c

⋆
Sr +2(r + 1)σ

⋆
Sr+1

)
. (3.49)

Following the same steps as above for the function ν = ⟨ξ, a⟩, we establish the following.
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Lemma 3.6. Let a ∈ Rmt be a fixed constant vector and U ∈ X(M). Then,

∇̃⟨ζ, a⟩ = σaT + ⟨σ(ξ −N)− cψ, a⟩ ξ, (3.50)

or equivalently

∇̃⟨ζ, a⟩ = σa+ ⟨σ(ξ −N)− cψ, a⟩ ξ − σ⟨ξ, a⟩N − cσ⟨a, ψ⟩ψ; (3.51)

∇̃U∇̃⟨ζ, a⟩ = −cω(U)aT − σ (σ⟨a, ξ⟩+ c⟨a, ψ⟩)PU

− [(λ+ 1)σ⟨a, ξ⟩ − σ⟨a, ζ⟩ − c⟨a, ψ⟩]
⋆
A U

−c
〈
1

2
(2 + λ)ω(U)ξ − ω(U)ζ + U, a

〉
ξ;

L̃r⟨ζ, a⟩ = (−1)r+1
[(
(n− r)σ2 + 2c

) ⋆
Sr +(r + 1)(λ+ 1)σ

⋆
Sr+1

]
⟨ξ, a⟩

+(−1)r+1
[
(n− r)cσ

⋆
Sr −(r + 1)c

⋆
Sr+1

]
⟨ψ, a⟩

+(−1)r(r + 1)σ
⋆
Sr+1 ⟨ζ, a⟩;

and

L̃rζ = (−1)r+1
[(
(n− r)σ2 + 2c

) ⋆
Sr +(r + 1)(λ+ 1)σ

⋆
Sr+1

]
ξ

+(−1)r+1
[
(n− r)cσ

⋆
Sr −(r + 1)c

⋆
Sr+1

]
ψ

+(−1)r(r + 1)σ
⋆
Sr+1 ζ. (3.52)

Now, we compute L̃2
rψ. Starting from (3.26),

L̃2
r⟨ψ, a⟩ = (−1)r(r + 1)L̃r

( ⋆
Sr+1 ⟨ζ, a⟩

)
+ (−1)r+1c(n− r)L̃r

( ⋆
Sr ⟨ψ, a⟩

)
+(−1)r+1(r + 1)L̃r

(
(λ+ 1)

⋆
Sr+1 ⟨ξ, a⟩

)
+ (−1)r+1(n− r)L̃r

(
σ

⋆
Sr ⟨ξ, a⟩

)
.

We compute each term using Lemma 3.3, (3.33) (3.36), (3.50), (3.52), (3.44), (3.46), (3.47)

and (3.49):

(−1)r(r + 1)L̃r

( ⋆
Sr+1 ⟨ζ, a⟩

)
= 2(−1)r(r + 1)σ

〈 ⋆
T r ∇̃

⋆
Sr+1, a

〉
+(r + 1)

[
(−1)rL̃r

⋆
Sr+1 +(r + 1)σ

⋆
S
2

r+1

]
⟨ζ, a⟩

−(r + 1)
[ (

(n− r)σ2 + 2c
) ⋆
Sr

⋆
Sr+1

+(r + 1)(λ+ 1)σ
⋆
S
2

r+1

]
⟨ξ, a⟩

−(r + 1)
[
(n− r)cσ

⋆
Sr

⋆
Sr+1 −(r + 1)c

⋆
S
2

r+1
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+2c
⋆
Sr (ξ·

⋆
Sr+1)

]
⟨ψ, a⟩;

(−1)r+1c(n− r)L̃r

( ⋆
Sr ⟨ψ, a⟩

)
= (−1)r+1(n− r)c

[
L̃r

⋆
Sr +(−1)r+1(n− r)c

⋆
S
2

r

]
⟨ψ, a⟩

+(n− r)c
[
(n− r)σ

⋆
S
2

r +(r + 1)(λ+ 1)
⋆
Sr

⋆
Sr+1

]
⟨ξ, a⟩

−(n− r)(r + 1)c
⋆
Sr

⋆
Sr+1 ⟨ζ, a⟩

+2(−1)r+1(n− r)c
〈 ⋆
T r ∇̃

⋆
Sr, a

〉
;

(−1)r+1(r + 1)L̃r

(
(λ+ 1)

⋆
Sr+1 ⟨ξ, a⟩

)
= (r + 1)(λ+ 1)

⋆
Sr+1

〈
∇̃

⋆
Sr+1, a

〉
+2(−1)r(r + 1)(λ+ 1)

〈 ⋆
T r ◦

⋆
A∇̃

⋆
Sr+1, a

〉
−(r + 1)2(λ+ 1)c

⋆
S
2

r+1 ⟨ψ, a⟩

+
[(1

2
λ(λ+ 1)(r + 1)

⋆
S1

−(r + 1)2(λ+ 1)σ
) ⋆
S
2

r+1

+
1

2
λ(λ+ 1)(r + 1)(r + 2)

⋆
Sr+1

⋆
Sr+1

−(r + 1)(λ+ 1)
⋆
Sr+1 (ξ·

⋆
Sr+1)

+(−1)r+1(r + 1)(λ+ 1)L̃r
⋆
Sr+1

+2(r + 1)c
⋆
Sr

⋆
Sr+1 +2(r + 1)2σ

⋆
S
2

r+1

−4(r + 1)σ
⋆
Sr (ξ·

⋆
Sr+1)

]
⟨ξ, a⟩;

(−1)r+1(n− r)L̃r

(
σ

⋆
Sr ⟨ξ, a⟩

)
= (n− r)σ

⋆
Sr

〈
∇̃

⋆
Sr+1, a

〉
+2(−1)r(n− r)σ

〈 ⋆
T r◦

⋆
A ∇̃

⋆
Sr, a

〉
−(n− r)(r + 1)σc

⋆
Sr

⋆
Sr+1 ⟨ψ, a⟩

+(n− r)
[
(−1)r+1σL̃r

⋆
Sr

+(n− r)
(1
2
λσ

⋆
S1 −(r + 1)(c+ σ2)

) ⋆
Sr

⋆
Sr+1

+2(n− r)c
⋆
Sr (ξ·

⋆
Sr) +

1

2
λ(n− r)(r + 2)σ

⋆
Sr

⋆
Sr+2

−(n− r)σ
⋆
Sr (ξ·

⋆
Sr+1)

]
⟨ξ, a⟩.

Putting all the above together, we get the following.

Proposition 3.3. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a isometric immersion of a null hypersurface in the Robertson-Walker space M
n+2
1 (c)

where m = n+ 2 + c2, t = c(c− 1)/2 with c = 1, 0,−1, furnished with a timelike closed and
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conformal rigging vector field ζ. If λ = ⟨ζ, ζ⟩ denotes the squared length function of ζ and σ

its conformal factor, Then,

L̃2
r⟨ψ, a⟩ =

[
(r + 1)(λ+ 1)

⋆
Sr+1 +(n− r)σ

] 〈
∇̃

⋆
Sr+1, a

〉
+2(−1)r(r + 1)(λ+ 1)

〈
(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr+1, a

〉
+2(−1)r(n− r)σ

〈
(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr, a

〉
+2(−1)r(r + 1)σ

〈 ⋆
T r ∇̃

⋆
Sr+1, a

〉
+2(−1)r+1(n− r)c

〈 ⋆
T r ∇̃

⋆
Sr, a

〉
+Λξr⟨ξ, a⟩+ Λζr⟨ζ, a⟩+ Λψr ⟨ψ, a⟩ (3.53)

for a fixed a ∈ Rm1+t; and

L̃2
rψ =

[
(r + 1)(λ+ 1)

⋆
Sr+1 +(n− r)σ

]
∇̃

⋆
Sr+1

+2(−1)r(r + 1)(λ+ 1)(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr+1

+2(−1)r(n− r)σ(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr

+2(−1)r(r + 1)σ
⋆
T r ∇̃

⋆
Sr+1

+2(−1)r+1(n− r)c
⋆
T r ∇̃

⋆
Sr

+Λξrξ + Λζrζ + Λψr ψ; (3.54)

with Λξr, Λ
ζ
r and Λψr as follows :

Λξr = (−1)r+1(r + 1)(λ+ 1)L̃r
⋆
Sr+1 +(−1)r+1σ(n− r)L̃r

⋆
Sr

+(r + 1)λ

(
1

2
(λ+ 1)

⋆
S1 −2(r + 1)σ

)
⋆
S
2

r+1 +c(n− r)2σ
⋆
S
2

r

+(n− r)

(
1

2
λσ

⋆
S1 +(r + 1)(cλ− 2σ2)

)
⋆
Sr

⋆
Sr+1

+
1

2
(r + 1)(r + 2)λ(λ+ 1)

⋆
Sr+1

⋆
Sr+2

+
1

2
(r + 2)(n− r)λσ

⋆
Sr

⋆
Sr+2 +2(n− r)c

⋆
Sr (ξ·

⋆
Sr)

−
[
(r + 1)(λ+ 1)

⋆
Sr+1 +σ(n+ 3r + 4)

⋆
Sr

]
(ξ·

⋆
Sr+1); (3.55)

Λζr = (r + 1)

[
(−1)rL̃r

⋆
Sr+1 +(r + 1)σ

⋆
S
2

r+1 −(n− r)c
⋆
Sr

⋆
Sr+1

]
(3.56)

and

Λψr = c
[
(−1)r+1(n− r)L̃r

⋆
Sr +(n− r)2c

⋆
S
2

r −(r + 1)2λ
⋆
S
2

r+1

−2(r + 1)(n− r)σ
⋆
Sr

⋆
Sr+1 −2(r + 1)

⋆
Sr (ξ·

⋆
Sr+1)

]
. (3.57)
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Remark 3.2. Observe that

∇̃
⋆
Sr= P ∇̃

⋆
Sr +(ξ·

⋆
Sr)ξ,

⋆
T r ∇̃

⋆
Sr= P

[ ⋆
T r ∇̃

⋆
Sr

]
+ (−1)r

⋆
Sr (ξ·

⋆
Sr)ξ

and similar formulas for ∇̃
⋆
Sr+1 and

⋆
T r ∇̃

⋆
Sr+1. So we get the following useful equivalent

formula for (3.54)

L̃2
rψ =

[
(r + 1)(λ+ 1)

⋆
Sr+1 +(n− r)σ

]
P ∇̃

⋆
Sr+1

+2(−1)r(r + 1)(λ+ 1)(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr+1

+2(−1)r(n− r)σ(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr

+2(−1)r(r + 1)σP
⋆
T r ∇̃

⋆
Sr+1

+2(−1)r+1(n− r)cP
⋆
T r ∇̃

⋆
Sr

+
⋆

Λξr ξ + Λζrζ + Λψr ψ; (3.58)

with

⋆

Λξr = (−1)r+1(r + 1)(λ+ 1)L̃r
⋆
Sr+1 +(−1)r+1σ(n− r)L̃r

⋆
Sr

+(r + 1)λ

(
1

2
(λ+ 1)

⋆
S1 −2(r + 1)σ

)
⋆
S
2

r+1 +c(n− r)2σ
⋆
S
2

r

+(n− r)

(
1

2
λσ

⋆
S1 +(r + 1)(cλ− 2σ2)

)
⋆
Sr

⋆
Sr+1

+
1

2
(r + 1)(r + 2)λ(λ+ 1)

⋆
Sr+1

⋆
Sr+2

+
1

2
(r + 2)(n− r)λσ

⋆
Sr

⋆
Sr+2 −2(r + 1)σ

⋆
Sr (ξ·

⋆
Sr+1). (3.59)

Definition 3.1. A connected isometric immersion

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rmq

of a null hypersurface in M
n+2
1 (c) furnished with a rigging vector field ζ is said to be

L̃r−biharmonic if the position vector field ψ satisfies the condition L̃2
rψ = 0.

Remark 3.3. Based on (3.58),(3.59), (3.56), (3.57) and Theorem 3.1, a r−maximal null

hypersurface

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rmq

is biharmonic. For this, we fix that proper L̃r−biharmonic null hypersurfaces are L̃r− bihar-

monic, but not r−maximal.
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4. Examples

Example 4.1 (Null cone torus). Let n ≥ m ≥ 2 be integers. Consider

M = {x ∈ Ln+3 | − x20 + x21 + · · ·+ x2m+1 = 0, x2m+2 + · · ·+ x2n+2 = 1} ∩ {x0 > 0}.

It is easy to see that M = Λm+1
0 × Sn−m is a null hypersurface of the De Sitter spacetime

Sn+2
1 given by the product of the lightcone Λm+1

0 of dimension m+1 with the n−m standard

sphere Sn−m (a null cone torus). A timelike closed and conformal rigging for M is given by

ζ = ∂0 + x0x,

with (null) rigged vector field

ξ = − 1

x0
·
(
x0, x1, . . . , xm+1, 0, . . . , 0

)
.

Then the shape operator is

⋆
A ≃


0 · · · · · · 0
... 1

x0
Im 0

... 0 0n−m

0


,

and we get that

⋆
Hr=



(
n+ 1

r

)−1(m
r

)
· 1

(x0)r
if 0 ≤ r ≤ m

0 if m+ 1 ≤ r ≤ n+ 1

(4.60)

Based on Remark 3.3, we see thatM = Λm+1
0 ×Sn−m is L̃k−biharmonic for m+1 ≤ k ≤ n+1.

Example 4.2 (Null cone cylinder). Let 1 ≤ m ≤ n− 1 be integers, and

M = {x ∈ Ln+2 | − x20 + x21 + · · ·+ x2m+1 = 0, x0 > 0}.

This null cone cylinder Λm+1
0 × Rn−m is a null hypersurface in Ln+2, for which a natural

timelike closed and conformal rigging is given by the constant vector field

ζ = ∂1
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with corresponding rigged vector field

ξ = − 1

x0
·
(
x0, x1, . . . , xm+1, 0, . . . , 0

)
.

Similar computations as in above Example 4.1, show that the hight order mean curvatures

are given as in (4.60) and Λm+1
0 × Rn−m is L̃k−biharmonic for m+ 1 ≤ k ≤ n+ 1.

5. Proofs of main results

5.1. Proof of Theorem 1.1. The Lr−harmonicity condition reads

0 = L̃rψ = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)λ

⋆
Sr+1

]
ξ +

[
(−1)r(r + 1)

⋆
Sr+1

]
ζ

+(−1)r+1
[
c(n− r)

⋆
Sr

]
ψ.

This is equivalent to
⋆
Sr+1= 0, σ

⋆
Sr= 0 and c

⋆
Sr= 0.

Obviously, due to Theorem 3.1, if
⋆
Sr= 0 the above system is satisfied. Assume

⋆
Sr ̸= 0. Then,

⋆
Sr+1= 0 and σ = 0 and the latter implies c = 0 due to (3.43). □

5.2. Proof of Theorem 1.2. We prove cases n = 1 and n = 2 separately.

• Case n = 1.

From (3.54) with n = 1 and r = 0,

L̃2
0ψ =

[
(λ+ 1)

⋆
S1 +3σ

]
P ∇̃

⋆
S1 +2(λ+ 1)

⋆
A∇̃

⋆
S1 +

⋆
Λ
ξ

0 ξ + Λζ0ζ + Λψ0ψ,

with

⋆
Λ
ξ

0 = −(λ+ 1)∆̃
⋆
S1 +

λ

2

[
(λ+ 1)

⋆
S1 −3σ

] ⋆
S
2

1

+(cλ− 2σ2)
⋆
S1 −2σ(ξ·

⋆
S1) + cσ, (5.61)

Λζ0 = ∆̃
⋆
S1 +σ

⋆
S
2

1 −c
⋆
S1 (5.62)

and

Λψ0 = c
[
c− λ

⋆
S
2

1 −2σ
⋆
S1 −2(ξ·

⋆
S1)
]

(5.63)
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where we used
⋆
S2= 0. Therefore, the condition L̃2

0ψ = 0 is equivalent to

⋆
AP ∇̃

⋆
S1= −(λ+ 1)

⋆
S1 +3σ

2(λ+ 1)
P ∇̃

⋆
S1 (5.64)

∆̃
⋆
S1 +σ

⋆
S
2

1 −c
⋆
S1= 0 (5.65)

c
[
c− λ

⋆
S
2

1 −2σ
⋆
S1 −2(ξ·

⋆
S1)
]
= 0 (5.66)

−(λ+ 1)∆̃
⋆
S1 +

λ

2

[
(λ+ 1)

⋆
S1 −3σ

] ⋆
S
2

1 +(cλ− 2σ2)
⋆
S1 −2σ(ξ·

⋆
S1) + cσ = 0. (5.67)

Assume P ∇̃
⋆
S1 ̸= 0. Then, we see that P ∇̃

⋆
S1 is an eigenvector field of

⋆
A with

eigenfunction (a screen principal curvature)

⋆
k= −(λ+ 1)

⋆
S1 +3σ

2(λ+ 1)
.

Since the null surface M is 2−dimensional, it follows that
⋆
k= 0 or

⋆
k=

⋆
S1. But each

of the two cases implies
⋆
S1=

⋆
S1 (σ, λ) which leads to a condradiction since σ and

λ are leafwise constant. We conclude that P ∇̃
⋆
S1= 0 and

⋆
S1 is leafwise constant.

Observe that by the Raychaudhuri equation (2), if
⋆
S1 is constant on the whole M ,

this constant is zero. But the case c ̸= 0 implies
⋆
S1 ̸= 0. Indeed,

⋆
S1= 0 in (5.67) leads

to σ = 0 on M and c = −ξ · σ = 0 which is a contradiction. Hence, for c ̸= 0,
⋆
S1

is not constant on the whole M . To go further, let (ξ,X) be a local g̃−orthonormal

basis of M . Since ∇̃
⋆
S1= (ξ·

⋆
S1)ξ =

⋆
S
2

1 ξ we get

∆̃
⋆
S1= g̃(∇̃ξ∇̃

⋆
S1, ξ) + g̃(∇̃X∇̃

⋆
S1, X = g̃(∇̃ξ(

⋆
S
2

1 ξ), ξ) + g̃(∇̃X(
⋆
S
2

1 ξ), X) =
⋆
S
3

1 . (5.68)

Consider the case where c = 0 and assume
⋆
S1 ̸= 0. From (5.65) and (5.68) we get

(
⋆
S1 +σ)

⋆
S
2

1= 0. Therefore
⋆
S1= −σ. Then we get

σ2 =
⋆
S
2

1= ξ·
⋆
S1= −ξ · σ = c = 0.

Therefore, σ = 0 on M and
⋆
S1= −σ = 0 which is a contradiction.

• Case n = 2.

With r = 0, equation (3.54) reads

L̃2
0ψ =

[
(λ+ 1)

⋆
S1 +4σ

]
P ∇̃

⋆
S1 +2(λ+ 1)

⋆
A∇̃

⋆
S1 +

⋆
Λ
ξ

0 ξ + Λζ0ζ + Λψ0ψ, (5.69)
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with

⋆
Λ
ξ

0 = −(λ+ 1)∆̃
⋆
S1 +λ

[1
2
(λ+ 1)

⋆
S1 −2σ

] ⋆
S
2

1 +2
[1
2
λσ

⋆
S1 +cλ− 2σ2

] ⋆
S1

+λ(λ+ 1)
⋆
S1

⋆
S2 +2λσ

⋆
S2 +4cσ − 2σ(ξ·

⋆
S1). (5.70)

Λζ0 = ∆̃
⋆
S1 +σ

⋆
S
2

1 −2c
⋆
S1, (5.71)

and

Λψ0 = c
[
4c− λ

⋆
S
2

1 −4σ
⋆
S1 −2(ξ·

⋆
S1)
]
. (5.72)

Therefore, the biharmonicity condition amounts to

⋆
AP ∇̃

⋆
S1= −(λ+ 1)

⋆
S1 +4σ

2(λ+ 1)
P ∇̃

⋆
S1,

⋆
Λ
ξ

0= 0, Λζ0 = 0 and Λψ0 = 0. (5.73)

Assume P ∇̃
⋆
S1 ̸= 0. Then we see from the first equation in (5.73) that

⋆
k1= −(λ+ 1)

⋆
S1 +4σ

2(λ+ 1)

is a screen principal curvature. Also, it is easy to see that the screen shape operator

is (with
⋆
k0= 0),

⋆
A=


0 0 0

0
⋆
k1 0

0 0
⋆
k2

 =



0 0 0

0 −(λ+ 1)
⋆
S1 +4σ

2(λ+ 1)
0

0 0
3(λ+ 1)

⋆
S1 +4σ

2(λ+ 1)


.

From Raychaudury equation (2) and due to τ(ξ) = 0 and Ric(ξ, ξ) = 0, we have

ξ·
⋆
S1=

1

2(λ+ 1)2

[
5(λ+ 1)2

⋆
S
2

1 +16(λ+ 1)σ
⋆
S1 +16σ2

]
. (5.74)

Now, we treat the cases c = 0 and c ̸= 0 separately.

Assume c ̸= 0. Eq. (5.74) in the last equation in (5.73) yields
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(λ+ 5)
⋆
S
2

1 +
4σ(λ+ 5)

λ+ 1

⋆
S1 +

16σ2

(λ+ 1)2
− 4c = 0.

But, λ+5 ̸≡ 0, otherwise we get c = 0 from (3.43) and (3.47) which is a contradiction.

So,
⋆
S1=

⋆
S1(λ, σ). Therefore, since λ and σ are (screen) leafwise constant, the same is

for
⋆
S1 and we get P ∇̃

⋆
S1= 0 which is a contradiction.

Assume now that c = 0. It follows from the third equation in (5.73) that

∆̃
⋆
S1= −σ

⋆
S
2

1 . (5.75)

Also,
⋆
S2=

1

2

( ⋆
S
2

1 −ξ·
⋆
S1

)
(5.74)
= −3

4

⋆
S
2

1 −
4σ

λ+ 1

⋆
S1 −

4σ2

(λ+ 1)2
. (5.76)

Therefore, by replacing the expressions (5.75), (5.76) and (5.74) in the second equa-

tion in (5.73) we get

1

4
λ(λ+ 1)

⋆
S
3

1 +
1

2
(11λ+ 8)σ

⋆
S
2

1 +
4σ2

λ+ 1
(4λ+ 5)

⋆
S1 +

8σ3

(λ+ 1)2
(λ2 + 2λ+ 2) = 0

which is polynomial in
⋆
S1 with degree 3 since λ(λ+ 1) ̸= 0. Therefore,

⋆
S1=

⋆
S1(λ, σ)

which implies again a contradiction P ∇̃
⋆
S1= 0 since λ and σ are (screen) leafwise

constant. Finally, we conclude that P ∇̃
⋆
S1= 0 and

⋆
S1 is (screen) leafwise constant.

Now we are interested in knowing whether
⋆
S1 can be globally constant over the

whole hypersurface M , in which case this constant would necessarily be zero. For

this, observe that due to (5.72) and the last equation in (5.73), c ̸= 0 implies ∥
⋆
A∥2 =

ξ·
⋆
S1 ̸= 0 and the answer is negative. It remains to analyze the case where c = 0. Use

(5.71) and the third equation in (5.73) to get

∆̃
⋆
S1= −σ

⋆
S
2

1 . (5.77)

Also, 0 = c = −ξ ·σ and being leafwise constant, we see that σ restricts to a constant

over the whole M . Assume this constant to be zero. From the second equation in

(5.73) and (5.70) we get
⋆
S1(

⋆
S
2

1 +2
⋆
S2) = 0. (5.78)

In this relation, assume
⋆
S2 ̸= 0, then by Theorem 3.1,

⋆
S1 ̸= 0 and we get

1

2

(
⋆
S
2

1 −ξ·
⋆
S1

)
=
⋆
S2= −1

2

⋆
S
2

1,
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i.e ξ·
⋆
S1= 2

⋆
S
2

1. Before we go further, we note the following. Choose a local

g̃−orthonormal frame (X0, X1, X2) consisting of eigenvectors of
⋆
A such that X0 = ξ

andX1, X2 ∈ Γ(S). Then, by a straightforward computation, ∆̃
⋆
S1= ξ ·(ξ·

⋆
S1)−(ξ·

⋆
S1

)
⋆
S1. Therefore, 0 = ∆̃

⋆
S1= 4

⋆
S
3

1 −2
⋆
S
3

1, thus,
⋆
S1= 0 : a contradiction. So, in (5.78),

we have
⋆
S2= 0 and consequently

⋆
S1= 0. Now, assume that σ restricts on M to a non

zero constant. Substituting (5.77) and
⋆
S2 in the second equation in (5.73) yields

λ(λ+ 1)
⋆
S
3

1 +(λ+ 1)σ
⋆
S
2

1 −4σ2
⋆
S1 −

[
λ(λ+ 1)

⋆
S1 +(λ+ 2)σ

]
(ξ·

⋆
S1) = 0.

Taking again derivative with respect to ξ both side leads to

λ(λ+ 1)(ξ·
⋆
S1)

2 +

[
−2λ(λ+ 1)

⋆
S
2

1 +(3λ+ 2)σ
⋆
S1 +6σ2

]
(ξ·

⋆
S1)

−
[
(5λ+ 2)

⋆
S1 +λ

2 + σλ+ 4σ
]
σ

⋆
S
2

1= 0 (5.79)

Observe that since ξ·
⋆
S1= 0 implies

⋆
S1= 0, we infer that ξ·

⋆
S1 is solution of Eq.

(5.79). Consequently, we have

ξ·
⋆
S1= 0 or


ξ·

⋆
S1=

2λ(λ+ 1)
⋆
S
2

1 −(3λ+ 2)σ
⋆
S1 −6σ2

λ(λ+ 1)[
(5λ+ 2)

⋆
S1 +λ

2 + σλ+ 4σ
]
σ

⋆
S
2

1= 0

. (5.80)

Observe that
⋆
S1= 0 is incompatible with the second system in (5.80) as it implies

σ = 0 which is a contradiction. So, for this system,
⋆
S1 ̸= 0 and we get

(5λ+ 2)
⋆
S1 +λ

2 + σλ+ 4σ = 0.

But 5λ+ 2 ̸≡ 0, otherwise 2σ = ξ · λ = 0 and σ = 0, a contradiction. Therefore,

⋆
S1= −λ

2 + σλ+ 4σ

5λ+ 2
, (5.81)

from which we get

ξ·
⋆
S1=

−2σ

(5λ+ 2)2
[
5λ2 + 4λ− 18σ

]
. (5.82)

Replacing (5.81) in the first equation of the system in (5.80) yields

ξ·
⋆
S1= 2

(
λ2 + σλ+ 4σ

5λ+ 2

)2

+
3λ+ 2

λ(λ+ 1)

λ2 + σλ+ 4σ

5λ+ 2
σ − 6σ2

λ(λ+ 1)
. (5.83)
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From (5.82) and (5.83) we see that λ = λ(σ) = const i.e 0 = ξ · λ = 2σ i.e σ = 0 and

this is a contradiction. So the second expression of ξ·
⋆
S1 is not admissible and we

conclude that ξ·
⋆
S1= 0 is the only one solution, and this implies

⋆
S1= 0 and the proof

is complete. □

5.3. Proof of Theorem 1.3. From (3.54) with n = 1 and r = 1,

L̃2
1ψ = 2(λ+1)

⋆
S2 P ∇̃

⋆
S2 −4(λ+1)(

⋆
T 1 ◦

⋆
A)∇̃

⋆
S2 −4σP

⋆
T 1 ∇̃

⋆
S2 +

⋆
Λ
ξ

1 ξ+Λζ1ζ+Λψ1ψ, (5.84)

with

⋆
Λ
ξ

1= 2(λ+ 1)L̃1

⋆
S2 +2λ

(1
2
(λ+ 1)

⋆
S1 −4σ

) ⋆
S
2

2 +3λ(λ+ 1)
⋆
S2

⋆
S3 −4σ

⋆
S1 (ξ·

⋆
S2)

Λζ1 = 2
[
− L̃1

⋆
S2 +2σ

⋆
S2

]
, and Λψ1 = −4c

[
λ

⋆
S
2

2 +
⋆
S1 (ξ·

⋆
S2)
]
.

But for the null surfaceM2, we have
⋆
S2=

⋆
k0

⋆
k1= 0. So, L̃2

1ψ = 0 andM2 is L̃1−biharmonic

and item (1) is proved.

Let n = 2 and r = 1 in (3.54). We treat separately the cases σ = 0 and σ ̸= 0.

• For σ = 0 we see that c = 0 and λ = cste. So,

L̃2
1ψ = 2(λ+ 1)

⋆
S2 P∇̃

⋆
S2 −4(λ+ 1)(−

⋆
S1

⋆
A +

⋆
A

2

)P ∇̃
⋆
S2 +

⋆
Λ
ξ

1 ξ + Λζ1ζ + Λψ1ψ, (5.85)

with
⋆
Λ
ξ

1= λ(λ+ 1)
⋆
S1

⋆
S2, Λζ1 = L̃1

⋆
S2 and Λψ1 = 0, (5.86)

where we used
⋆
S3= 0. From the L̃1−biharmonicity condition, the first equality in

(5.86) yields
⋆
S1

⋆
S2= 0 which implies

⋆
S2= 0. Indeed, if

⋆
S1 ̸= 0 then

⋆
S2= 0. Now, by

Theorem 3.1
⋆
S1= 0 implies

⋆
S2= 0.

• For σ ̸= 0,

L̃2
1ψ =

[
2(λ+ 1)

⋆
S2 +4σ

⋆
S1 +σ

]
P∇̃

⋆
S2 +4(λ+ 1)

[(
⋆
S1 −

σ

λ+ 1

)
⋆
A −

⋆
A

2
]
P∇̃

⋆
S2

−2c
⋆
S1 P∇̃

⋆
S1 +2σ

[( ⋆
S1 +

c

σ

) ⋆
A −

⋆
A

2
]
P∇̃

⋆
S1 +

⋆
Λ
ξ

1 ξ + Λζ1ζ + Λψ1ψ.

Assume
⋆
S1 is F−leafwise constant. Set

⋆
D=

(
⋆
S1 −

σ

λ+ 1

)
⋆
A −

⋆
A

2

.
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The L̃1−bihamonicity condition implies

⋆
D P∇̃

⋆
S2= −

[
1

2

⋆
S2 +

σ

4(λ+ 1)
(4

⋆
S1 +1)

]
P∇̃

⋆
S2 . (5.87)

Observe that ξ is also an eigenvector field of
⋆
D associated to the eigenvalue

⋆
λ0= 0.

Also,
⋆
D is diagonalizable and

trace(
⋆
D) = 2

⋆
S2 −

σ

λ+ 1

⋆
S1 .

Assume P∇̃
⋆
S2 ̸= 0. It follows from (5.87) that

⋆
λ1= −

[
1

2

⋆
S2 +

σ

4(λ+ 1)
(4

⋆
S1 +1)

]

is an eigenfunction for
⋆
D. Observe that

⋆
λ1 ̸= 0. Otherwise,

⋆
S2=

−σ
2(λ+ 1)

(4
⋆
S1

+1) which implies P∇̃
⋆
S2= 0 and this is a contradiction. We find that the third

eigenfunction of
⋆
D is

⋆
λ2= trace(

⋆
D)−

⋆
λ1=

5

2

⋆
S2 +

σ

4(λ+ 1)
.

Without losing generality we can choose a local g̃−orthonormal frame field consisting of

eigenvector fields of
⋆
D such that

X0 = ξ, X1 =
P ∇̃

⋆
S2∥∥∥P ∇̃⋆
S2

∥∥∥ ∈ Γ(S) and X2 ∈ Γ(S).

In this local frame,
⋆
D takes the form

⋆
D=



⋆
λ0 0 0

0
⋆
λ1 0

0 0
⋆
λ3


=



0 0 0

0 −
[
1
2

⋆
S2 +

σ

4(λ+ 1)
(4

⋆
S1 +1)

]
0

0 0 5
2

⋆
S2 +

σ

4(λ+ 1)


Taking into account the ξ, ζ and ψ components we also derive the following equations :

⋆
Λ
ξ

1 = 2(λ+ 1)L̃1

⋆
S2 +σL̃1

⋆
S1 +2λ

[
1

2
(λ+ 1)

⋆
S1 −4σ

]
⋆
S2 +cσ

⋆
S
2

1

+

[
1

2
λσ

⋆
S1 +2c(cλ− 2σ2)

]
⋆
S1

⋆
S2 −4σ

⋆
S1 (ξ·

⋆
S2) = 0; (5.88)
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2Λζ1 = −L̃1

⋆
S2 +2σ

⋆
S
2

2 −c
⋆
S1

⋆
S2= 0; (5.89)

Λψ1 = c

[
L̃1

⋆
S1 +c

⋆
S1 +c

⋆
S1 −4λ

⋆
S
2

2 −4σ
⋆
S1

⋆
S2 −4

⋆
S1 (ξ·

⋆
S2)

]
= 0. (5.90)

Observe that since
⋆
S3= 0, we have ξ·

⋆
S2=

⋆
S1

⋆
S2. Let us compute L̃1

⋆
S1.

L̃1

⋆
S1= g̃

( ⋆
T 1 ◦∇̃ξ∇̃

⋆
S1, ξ

)
+ g̃

( ⋆
T 1 ◦∇̃X1∇̃

⋆
S1, X1

)
+ g̃

( ⋆
T 1 ◦∇̃X2∇̃

⋆
S1, X2

)
where ∇̃

⋆
S1= (ξ·

⋆
S1)ξ = (

⋆
S
2

1 −2
⋆
S2)ξ. Computing each term leads to

g̃
( ⋆
T 1 ◦∇̃ξ∇̃

⋆
S1, ξ

)
= −2

⋆
S
4

1 +6
⋆
S
2

1

⋆
S2;

g̃
( ⋆
T 1 ◦∇̃X1∇̃

⋆
S1, X1

)
= g̃

( ⋆
T 1 ◦∇̃X2∇̃

⋆
S1, X2

)
=
⋆
S2 (

⋆
S
2

1 −2
⋆
S2).

So,

L̃1

⋆
S1= 8

⋆
S
2

1

⋆
S2 −2

⋆
S
4

1 −4
⋆
S
2

2 . (5.91)

Assume c ̸= 0. From (5.90) and (5.91),

−4(λ+ 1)
⋆
S
2

2 +[4
⋆
S
2

1 −4σ
⋆
S1]

⋆
S2 −2

⋆
S
4

1 +c
⋆
S1= 0.

Hence, since λ + 1 ̸= 0 we see that
⋆
S2=

⋆
S2 (

⋆
S1, λ, σ) and this implies P∇̃

⋆
S2= 0 which is a

contradiction.

Assume c = 0. We get from (5.89), L̃1

⋆
S2= 2σ

⋆
S
2

2 with σ constant on M . Using (5.88), we

derive

4λ
⋆
S
2

2 +

[
(4 +

1

2
λ)σ

⋆
S
2

1 +(λ2 + λ− 4σ2)
⋆
S1 −4σλ

]
⋆
S2 −2σ

⋆
S
4

1= 0.

But λ < 0 since ζ is timelike. So,
⋆
S2=

⋆
S2 (

⋆
S1, λ, σ) and this implies P∇̃

⋆
S2= 0 which is again

a contradiction.

Finally, we conclude that P∇̃
⋆
S2= 0 i.e

⋆
S2 is leafwise constant in the screen foliation F .

Assume that
⋆
S2 and hence

⋆
H2 is constant on the whole null hypersurface M3. Then

0 = ξ·
⋆
S2=

⋆
S1

⋆
S2 and this implies again

⋆
S2= 0 as shown in previous argument above. □

Discussion. Consider the case where the rigging is a unit timelike vector field, i.e λ =

⟨ζ, ζ⟩ = −1. Due to ∇̃λ = 2σξ and ξ · σ = −c, we get σ = 0 on the null hypersurface M

and c = 0. Hence, when the rigging ζ is a timelike unit closed and conformal vector field,
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the target space of immersion is necessarily Minkowskian, and ζ is a Killing vector field in a

neighbourhood of the null hypersurface. Moreover,

L̃2
rψ =

[
(−1)r(r + 1)L̃r

⋆
Sr+1

]
ζ.

Consequently, the null hypersurface connected isometric immersion ψ : Mn+1 −→ Rn+2
1

furnished with a timelike unit closed and conformal vecor field (a Killing rigging ) ζ is

r−biharmonic if and only if L̃r
⋆
Sr+1= 0.
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Abstract. This article presents the concepts of statistically bounded, statistically bounded

convergence, statistically bounded null, statistically regular convergence, statistically regu-

lar null double sequences of bi-complex numbers, statistically convergent double sequences

in Pringsheim’s sense, and statistically null double sequences in Pringsheim’s sense. We

have established that these spaces are linear, and we have demonstrated their many alge-

braic, topological, and geometric properties using the Euclidean norm defined on bi-complex

numbers. Suitable examples have been discussed.
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1. Introduction

The notion of convergence double sequence was first proposed by Pringsheim [14]. Bromwich

[2] has some of the earliest works on double sequence spaces. The concept of regular conver-

gence of double sequence was later introduced by Hardy [5]. Additionally, double sequences

of bi-complex numbers were introduced by Kumar and Tripathy in various directions [6], [7],

and [8].
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Definition 1.1. [13] Norm (Euclidean Norm) on C2 is defined by

∥γ∥C2
=
√
w2 + x2 + y2 + z2

=
√
|u1|2 + |u2|2

=

√
|µ1|2 + |µ2|2

2
.

C2 becomes a modified Banach algebra with respect to this norm in the sense that

∥γ · s∥C2 ≤
√
2∥γ∥C2 · ∥s∥C2 .

Definition 1.2. Three types of conjugations are defined in the bi-complex numbers (Rochon,

Shapiro [16]) as follows,

(1) i1- conjugation of bi-complex number γ is γ∗ = u1 + i2u2, for all u1, u2 ∈ C1 and

u1, u2 are complex conjugates of u1, u2 respectively.

(2) i2- conjugation of bi-complex number γ is γ̃ = u1 − i2u2, for all u1, u2 ∈ C1.

(3) i1i2- conjugation of bi-complex number γ is γ
′
= u1 − i2u2, for all u1, u2 ∈ C1 and

u1, u2 are complex conjugates of u1, u2 respectively.

The concept of statistical convergence was introduced Fast [3] and reintroduced by Schoen-

berg [18]. It was also discussed in the work of Zygmund [20]. Subsequently, several researchers

including Fridy and Orhan [4], Maddox [11], Salat [17], Mursaleen and Edely [12], Rath and

Tripathy [15], Tripathy [19] and others explored this notion in various contexts”.

A subset E of N is said to have natural density δ(E) if

δ(E) = lim
n→∞

1

n

∑
l≤n

χE(l) exists ,

where χE is the characteristic function of E.

A single sequence (γl) is said to be statistically convergent to L if for each ε > 0, δ({l ∈ N :

∥γl−L∥C2 ≥ ε}) = 0 and write γl
stat−−→ L or stat− lim γl = L. A sequence that is statistically

convergent to zero is called a statistically null sequence.

The density of a subset E of N× N is defined as

δ2(E) = lim
n,k→∞

1

nk

∑
l≤n

∑
m≤k

χE(l,m) exists.

A double sequence (γlm) is said to be statistically convergent to L in Pringsheim’s sense if for

every ε > 0, δ2({(l,m) ∈ N× N : ∥γlm − L∥C2 ≥ ε}) = 0, written as st− liml,m→∞ γlm = L.
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A double sequence (γlm) is said to be statistically null if it is statistically convergent to 0 in

Pringsheim’s sense.

A double sequence (γlm) is said to be statistically regular convergent if it converges in

Pringsheim’s sense and the following statistical limits exist

stat− lim
l→∞

γlm = Pm, exists, for each m ∈ N,

and

stat− lim
m→∞

γlm = Ql, exists, for each l ∈ N.

For regularly null sequences we have Pm = Ql = L = 0, for all l,m ∈ N.

Definition 1.3. Let (γlm) and (tlm) be two double sequences, then we say that γlm = tlm,

for all most all l and m (in short a.a.l and m) if δ2({(l,m) : γlm ̸= tlm}) = 0.

Definition 1.4. A double sequence (γlm) of bi-complex numbers is said to be statistically

divergent to ∞ if for any given G, δ2({(l,m) : ∥γlm∥C2 > G}) = 0. Similarly, statistically

divergent to −∞ is defined.

Definition 1.5. A double sequence (γlm) is said to be statistically Cauchy if for every ε > 0,

there exists n = n(ε) and k = k(ε) such that δ2({(l,m) : ∥γlm − γnk∥C2 ≥ ε}) = 0.

Definition 1.6. [10] The set of bi-complex numbers is a commutative ring. Modules over

rings are defined in the same way as vector spaces are over fields. A module defined over the

bi-complex number ring BC is known as a BC− module or simply module.

Definition 1.7. [6] A double sequence (γlm) of bi-complex numbers is called bounded, if there

exists a real number M > 0 such that

∥γlm∥C2 ≤M, for all l,m ∈ N.

and the set of all bounded double sequences of bi-complex numbers, defined by;

2ℓ∞(C2) :=

{
γ = (γlm) ∈ 2ω(C2) : sup

l,m∈N
∥γlm∥C2 <∞

}
.

The sequence space 2ℓ∞(C2) is a normed linear space with respect to

∥A∥ = sup
l,m

∥γlm∥C2 .
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2. Definitions and Preliminaries

In this paper, the notations 2
¯ℓ∞(C2), 2c̄(C2), 2c̄0(C2), 2c̄

R(C2), 2c̄
R
0 (C2), 2c̄

B(C2), 2c̄
B
0 (C2)

are used to denote the spaces of bi-complex double sequences that are statistically bounded,

statistically convergence in Pringsheim’s sense, statistically null in Pringsheim’s sense, sta-

tistically regularly convergent, statistically regularly null, statistically bounded convergent

in Pringsheim’s sense, statistically bounded null in Pringsheim’s sense, respectively.

2
¯ℓ∞(C2) := {(γlm) ∈ 2ω(C2) : ∃ 0 < M ∈ C0 : δ2({(l,m) : ∥γlm∥C2 ≥M}) = 0};

2c̄(C2) :=

{
(γlm) ∈ 2ω(C2) : there exists L ∈ C2 such that st− lim

l→∞
m→∞

γlm = L

}
;

2c̄0(C2) :=

{
(γlm) ∈ 2ω(C2) : st− lim

l→∞
m→∞

γlm = 0

}
;

2c̄
R(C2) :=

{
(γlm) ∈ 2c̄(C2) : st− lim

l→∞
γlm = γm, exists for each

m ∈ N and st− lim
m→∞

γlm = γl, exists for each l ∈ N

}
;

2c̄
R
0 (C2) :=

{
(γlm) ∈ 2c̄

R(C2) : γm = γl = L = 0, for all l,m ∈ N
}
;

2c̄
B(C2) := 2c̄(C2) ∩ 2ℓ∞(C2) and 2c̄

B
0 (C2) = 2c̄0(C2) ∩ 2ℓ∞(C2).

Definition 2.1. [7] Let E be a subset of a linear space X. Then E is said to be convex

(or BC− convex) if (1− λ)(γlm) + λ(tlm) ∈ E for all (γlm), (tlm) ∈ E and scalar λ ∈ [0, 1].

Definition 2.2. [8] A Banach space X is said to be strictly convex (or BC− strictly convex)

if (γlm), (tlm) ∈ SX with (γlm) ̸= (tlm) implies that ∥λ(γlm) + (1 − λ)(tlm)∥X < 1, for all

λ ∈ (0, 1), where SX is unit sphare.

Definition 2.3. [9] A Banach space X is considered uniformly convex (or BC− uniformly

convex) if, for any ε with 0 < ε ≤ 2, the following inequalities hold true: ∥γlm∥X ≤

1, ∥tlm∥X ≤ 1 and ∥(γlm)− (tlm)∥X ≥ ε imply that there is a δ = δ(ε) > 0 such that∥∥∥∥∥(γlm) + (tlm)

2

∥∥∥∥∥
X

≤ 1− δ.
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3. Main Result

In this section, the following results are established.

Theorem 3.1. If a double sequence (γlm) of bi-complex numbers γlm = u1lm + i2u2lm for

all l,m ∈ N is a statistically bounded double sequence of bi-complex numbers, then the dou-

ble sequences (u1lm) and (u2lm) of bi-complex numbers are also statistically bounded double

sequences of bi-complex numbers.

Proof. Let (γlm) be a statistically bounded double sequence of bi-complex numbers. There

exists a positive real number M , such that δ2({(l,m) : ∥γlm∥C2 ≥ M}) = 0, which implies

δ2({(l,m) : ∥u1lm + i2u2lm∥C2 ≥ M}) = 0 and δ2({(l,m) : ∥uplm∥C2 ≥ M}) ≤ δ2({(l,m) :

∥u1lm+i2u2lm∥C2 ≥M}) = 0 for p = 1, 2. Hence, (u1lm) and (u2lm) are statistically bounded

double sequences of bi-complex numbers.

Conversely, let (u1lm) and (u2lm) are statistically bounded double sequences of bi-complex

numbers. Then, without loss of generality, we can find M > 0, such that

δ2({(l,m) : ∥u1lm∥C2 ≥M}) = 0,

and

δ2({(l,m) : ∥u2lm∥C2 ≥M}) = 0.

Consequently, the following inequality yields the result;

δ2({(l,m) : ∥u1lm + i2u2lm∥C2 ≥M})

≤ δ2({(l,m) : ∥u1lm∥C2 ≥M}) + δ2({(l,m) : ∥u2lm∥C2 ≥M}) = 0.

(By sub-additive property)

Hence, (γlm) is statistically bounded. □

We formulate the following corollaries based on the previous theorem:

Corollary 3.1. If a double sequence (γlm) of bi-complex numbers, where γlm = x1lm +

i1x2lm + i2x3lm + i1i2x4lm, is statistically bounded double sequence of bi-complex numbers,

then the double sequences (xplm), p = 1, 2, 3, 4. of bi-complex numbers are also statistically

bounded double sequences.

Corollary 3.2. If a double sequence (γlm) of bi-complex numbers, where γlm = µ1lme1 +

µ2lme2, is statistically bounded double sequence of bi-complex numbers, then the double se-

quences (µ1lm) and (µ2lm) are also statistically bounded double sequences.
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Theorem 3.2. If a double sequence (γlm) of bi-complex numbers, where γlm = u1lm+ i2u2lm

for all l,m ∈ N is statistically convergent to γ = u1+ i2u2 with respect to the Euclidean norm

on C2 if and only if (u1lm) and (u2lm) are statistically convergent to u1 and u2 respectively.

Proof. Consider (γlm) be statistically convergent to γ. Then, by definition, for every ε > 0

δ2({(l,m) ∈ N× N : ∥γlm − γ∥C2 ≥ ε}) = 0

=⇒ δ2({(l,m) ∈ N× N : ∥(γ1lm − γ1) + i2(γ2lm − γ2)∥C2 ≥ ε}) = 0

=⇒ δ2({(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 + ∥γ2lm − γ2∥C2 ≥ ε}) = 0.

Now, consider the set

Aε = {(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 ≥ ε}.

Since, ∥γ1lm − γ1∥C2 ≥ ε implies ∥γ1lm − γ1∥C2 + ∥γ2lm − γ2∥C2 ≥ ε,

we have,

Aε ⊆ {(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 + ∥γ2lm − γ2∥C2 ≥ ε}

=⇒ δ2(Aε) ≤ δ2({(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 + ∥γ2lm − γ2∥C2 ≥ ε}) = 0.

Hence, for every ε > 0,

δ2({(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 ≥ ε}) = 0.

Similarly, for every ε > 0,

δ2({(l,m) ∈ N× N : ∥γ2lm − γ2∥C2 ≥ ε}) = 0.

Hence, the double sequences (γ1lm) and (γ2lm) of bi-complex numbers are statistically con-

vergent to γ1 and γ2 respectively. □

Theorem 3.3. If a bounded double sequence (γlm), where γlm = e1µ1lm + e2µ2lm is statisti-

cally Cauchy, then (γlm) is a Cauchy double sequence in ∥ · ∥C2.

Proof. Let (γlm) be statistically Cauchy double sequence of bi-complex numbers; then, for

each ε > 0, there exists n0, k0 ∈ N, such that

δ2({(l,m) : ∥γlm − γn0k0∥C2 ≥ ε}) = 0.

Substituting γlm = e1µ1lm + e2µ2lm, we have

∥γlm − γn0k0∥C2 = ∥e1(µ1lm − µ1n0k0) + e2(µ2lm − µ2n0k0)∥C2 .
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Using the properties of the Euclidean norm on C2, then

∥γlm − γn0k0∥C2 =
√
∥µ1lm − µ1n0k0∥1C2

+ ∥µ2lm − µ2n0k0∥2C2
.

Since (γlm) is a statistically Cauchy double sequence of bi-complex numbers, we have;

δ2({(l,m) : ∥µ1lm − µ1n0k0∥1C2
≥ ε1}) = 0,

and

δ2({(l,m) : ∥µ2lm − µ2n0k0∥2C2
≥ ε2}) = 0,

for some ε1, ε2 > 0, such that ε2 = ε21 + ε22.

This implies that the statistical bounds of (∥µ1lm − µ1n0k0∥C2) and (∥µ2lm − µ2n0k0∥C2) are

zero as ε1, ε2 → 0.

Hence, for any ε > 0, we have

∥γlm − γn0k0∥C2 = e1(∥µ1lm − µ1n0k0∥1C2
) + e2(∥µ2lm − µ2n0k0∥2C2

) → 0.

Thus, (γlm) is a Cauchy double sequence of bi-complex numbers in ∥ · ∥C2 . □

Corollary 3.3. If a double sequence (γlm) of bi-complex numbers, where γlm = e1µ1lm +

e2µ2lm is statistically convergent, then (γlm) is a Cauchy sequence in ∥ · ∥C2.

Theorem 3.4. Let (γlm) be a statistically convergent double sequence of bi-complex numbers

to L. If (tlm) ∈ [(γlm)], then (tlm) is also statistically convergent to L in ∥ · ∥C2

Proof. Since (γlm) is statistically convergent double sequence of bi-complex numbers to L,

by definition, for every ε > 0;

δ2({(l,m) ∈ N× N : ∥γlm − L∥C2 ≥ ε}) = 0.

Given that (tlm) ∈ [(γlm)], we have:

∥γlm − tlm∥C2 = 0, for all l,m ∈ N.

Now,

∥tlm − L∥C2 ≤ ∥γlm − L∥C2 + ∥tlm − γlm∥C2 .

Substituting ∥γlm − tlm∥C2 = 0, we get

∥tlm − L∥C2 ≤ ∥γlm − L∥C2 .

Since (γlm) is statistically convergent to L, for every ε > 0:

δ2({(l,m) ∈ N× N : ∥γlm − L∥C2}) = 0.
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It follows that:

δ2({(l,m) ∈ N× N : ∥tlm − L∥C2 ≥ ε}) ≤ δ2({(l,m) ∈ N× N : ∥γlm − L∥C2 ≥ ε}) = 0.

Hence, the double sequence of bi-complex numbers (tlm) is statistically convergent to L in

∥ · ∥C2 . □

The decomposition theorem for statistically bounded sequences of bi-complex numbers for

single sequences was demonstrated by Bera and Tripathy [1].

The decomposition theorem for double sequences of bi-complex numbers is as follows.

Theorem 3.5. A bounded double sequence (slm) of bi-complex numbers and a statistically

null double sequence (tlm) of bi-complex numbers exist if a double sequence (γlm) of bi-complex

numbers is statistically bounded. This means that (γlm) = (slm) + (tlm).

Proof. Let (γlm), where γlm = µ1lme1 + µ2lme2, be a statistically bounded double sequence.

Then δ2(B) = 0, where B = {(l,m) : ∥γlm∥C2 ≥M}.

Define the double sequences (slm) and (tlm) as follows:

slm =

 γlm, if k ∈ Bc;

θ, otherwise .

tlm =

 θ, if k ∈ Bc;

γlm, otherwise .

From the above construction of (slm) and (tlm), we have

(γlm) = (slm) + (tlm),

where (slm) ∈ 2ℓ∞(C2) and (tlm) ∈ 2c̄0(C2). □

We state the following theorem without a proof that can be established by standard

techniques.

Theorem 3.6. Let (γlm) be a double sequence of bi-complex numbers and L,L′ ∈ C2. If

st2 − lim∥γlm∥C2 = L. and st2 − lim∥γlm∥C2 = L′, then L = L′.

Theorem 3.7. A double sequence (γlm) of bi-complex numbers is statistically convergent if

and only if (γlm) is statistically Cauchy.
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Proof. Let (γlm) be statistically convergent to a number L ∈ C2. Then for every ε > 0, the

set

{(l,m), l ≤ n,m ≤ k : ∥γlm − L∥C2 ≥ ε}

has double natural density zero. Choose two numbers p and q such that ∥γlm − L∥C2 ≥ ε.

Now let

A = {(l,m), l ≤ n,m ≤ k : ∥γlm − γpq∥C2 ≥ ε},

B = {(l,m), l ≤ n,m ≤ k : ∥γlm − L∥C2 ≥ ε},

C = {(l,m), l = p ≤ n,m = q ≤ k : ∥γpq − L∥C2 ≥ ε}.

Then A ⊆ B ∪ C, and therefore δ2(A) ≤ δ2(B) + δ2(C) = 0. Hence, (γlm) is statistically

Cauchy.

Conversely, assume that (γlm) is statistically Cauchy but not statistically convergent. This

implies that there does not exist a unique L ∈ C2 such that ∥γlm−L∥C2 → 0, in the sense of

statistical convergence. Instead, there must exist two distinct points L1, L2 ∈ C2 and some

ε > 0, such that the sets

B1 = {(l,m) : ∥γlm − L1∥C2 < ε} and B2 = {(l,m) : ∥γlm − L2∥C2 < ε}

both have double natural density greater than zero: δ2(B1) > 0 and δ2(B2) > 0.

Since L1 ̸= L2, the distance between these two points is positive:

∥L1 − L2∥C2 = δ > 0.

For (l,m) ∈ B1 ∩B2, we have

∥γlm − L1∥C2 < ε, ∥γlm − L2∥C2 < ε.

By the triangle inequality

∥L1 − L2∥C2 ≤ ∥γlm − L1∥C2 + ∥γlm − L2∥C2 .

Substituting the bounds for ∥γlm − L1∥C2 and ∥γlm − L2∥C2 , we get

∥L1 − L2∥C2 < ε+ ε = 2ε.

Since L1 ̸= L2, their distance ∥L1 − L2∥C2 = δ > 0.

Choose ε > 0, such that 2ε < δ.

This creates a contradiction because the inequality ∥L1 − L2∥C2 ≤ 2ε can not hold when

2ε < δ.
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The assumption that (γlm) is statistically Cauchy but not statistically convergent leads to a

contradiction.

Therefore, if (γlm) is statistically Cauchy, it must also be statistically convergent to a unique

limit L ∈ C2. □

Theorem 3.8. Let (γlm) and (tlm) be double sequences of bi-complex numbers. If (tlm) is

a convergent double sequence such that γlm ̸= tlm for all l and m, then (γlm) is statistically

convergent.

Proof. Suppose that δ2({(l,m) ∈ N × N : γlm ̸= tlm}) = 0 and liml,m→∞ ∥tlm∥C2 = L. Then

for every ε > 0,

{(l,m) ∈ N× N : ∥γlm − L∥C2 ≥ ε} ⊆ {(l,m) ∈ N× N : γlm ̸= tlm}.

Therefore,

δ2({(l,m) ∈ N× N : ∥γlm − L∥C2 ≥ ε})

⊆ δ2({(l,m) ∈ N× N : ∥tlm − L∥C2 ≥ ε}) + δ2({(l,m) ∈ N× N : γlm ̸= tlm}).
(3.1)

Since, liml,m→∞ ∥tlm∥C2 = L, the set {(l,m) ∈ N × N : ∥tlm − L∥C2 ≥ ε} contains finite

number of integers. Hence,

δ2({(l,m) ∈ N× N : ∥tlm − L∥C2 ≥ ε}) = 0.

Using the inequality Eq. (3.1), we get

δ2({(l,m) ∈ N× N : ∥γlm − L∥C2 ≥ ε}) = 0

for every ε > 0. Consequently, st− liml,m→∞ ∥(γlm)∥C2 = L. □

Corollary 3.4. Let (γlm) be a statistically Cauchy sequence. Then there exists a convergent

double sequence (tlm) of bi-complex numbers such that γlm = tlm, for almost all l and m.

The following two theorems, Theorems 3.9 and 3.10, are stated without proof, as they can

be established using standard techniques.

Theorem 3.9. Let the double sequences (γlm) and (tlm) of bi-complex numbers and L,L′ ∈

C2 and α ∈ C2 −O2. If st2 − lim ∥(γlm)∥C2 = L and st2 − lim ∥(tlm)∥C2 = L′. Then

(1) st2 − lim ∥(γlm + tlm)∥C2 = L+ L′

(2) st2 − lim ∥α · (γlm)∥C2 = ∥α∥C2 · L
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Theorem 3.10. A double sequence (γlm) of bi-complex numbers is statistically convergent

to a bi-complex numbers L if and only if there exists a subset K = {(n, k) ⊂ N × N : n, k =

1, 2, ...} such that δ2(K) = 1 and

lim
n,k

γlnmk
= L.

Theorem 3.11. If (γlm), where γlm = u1lm+i2u2lm is statistically convergent to γ = u1+i2u2

with respect to the Euclidean norm on C2 if and only if (u1lm) and (u2lm) are statistically

convergent to u1 and u2 respectively.

Proof. Consider (γlm) be statistically convergent to γ. Then for every ε > 0,

δ2({(l,m) ∈ N× N : ∥γlm − γ∥C2 ≥ ε}) = 0

=⇒ δ2({(l,m) ∈ N× N : ∥(γ1lm − γ1) + i2(γ2lm − γ2)∥C2 ≥ ε}) = 0

=⇒ δ2({(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 + ∥γ2lm − γ2∥C2 ≥ ε}) = 0.

Now,

{(l,m) ∈ N×N : ∥γ1lm − γ1∥C2 ≥ ε} ⊆ {(l,m) ∈ N×N : ∥γ1lm − γ1∥C2 + ∥γ2lm − γ2∥C2 ≥ ε}.

Thus, we have

δ2({(l,m) ∈ N×N : ∥γ1lm−γ1∥C2 ≥ ε}) ≤ δ2({(l,m) ∈ N×N : ∥γ1lm−γ1∥C2+∥γ2lm−γ2∥C2 ≥ ε}) = 0.

Hence for every ε > 0,

δ2({(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 ≥ ε}) = 0.

Similarly, for every ε > 0,

δ2({(l,m) ∈ N× N : ∥γ2lm − γ2∥C2 ≥ ε}) = 0.

Hence, the double sequences (γ1lm) and (γ2lm) are statistically convergent to γ1 and γ2,

respectively.

Conversely, let (u1lm) and (u2lm) be statistically convergent to u1 and u2 respectively.

Then, for every ε > 0,

δ2({(l,m) ∈ N×N : ∥γ1lm−γ1∥C2 ≥ ε}) = 0. & δ2({(l,m) ∈ N×N : ∥γ2lm−γ2∥C2 ≥ ε}) = 0.
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We have

{(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 ≥ ε} ∪ {(l,m) ∈ N× N : ∥γ2lm − γ2∥C2 ≥ ε}

= {(l,m) ∈ N× N : ∥(γ1lm − γ1) + i2(γ2lm − γ2)∥C2 ≥ ε}.

Thus,

δ2({(l,m) ∈ N× N : ∥(γ1lm − γ1) + i2(γ2lm − γ2)∥C2 ≥ ε})

≤ δ2({(l,m) ∈ N× N : ∥γ1lm − γ1∥C2 ≥ ε}+ {(l,m) ∈ N× N : ∥γ2lm − γ2∥C2 ≥ ε})

(by subadditive property)

=⇒ δ2({(l,m) ∈ N× N : ∥γlm − γ∥C2 ≥ ε}) = 0, for every ε > 0.

Hence, (γlm) is a statistically convergent to γ with respect to the Euclidean norm on C2. □

We establish the following results based on the apparent proof.

Corollary 3.5. If the double sequence of bi-complex numbers (γlm), where γlm = u1lm +

i2u2lm is statistically convergent to γ = u1+i2u2 = µ1e1+µ2e2 with respect to Euclidean norm

on C2 if and only if (µ1lm) and (µ2lm) are statistically convergent to µ1 and µ2 respectively.

Corollary 3.6. If double sequences (µ1lm) and (µ2lm) are statistically convergent to L ∈ C2,

then double sequence of bi-complex numbers (γlm) is statistically convergent to L with respect

to Euclidean norm on C2.

Theorem 3.12. Define the function d
2
¯ℓ∞(C2)

by

d
2
¯ℓ∞(C2)

: 2 ¯ℓ∞(C2)× 2
¯ℓ∞(C2) → [0,∞), (γ, t) → d

2
¯ℓ∞(C2)

(γ, t) = sup
l,m∈N

{∥γlm − tlm∥C2},

where γ = (γlm), t = (tlm) ∈ 2
¯ℓ∞(C2). Then (2 ¯ℓ∞(C2), d2

¯ℓ∞(C2)
) is a complete metric space.

Proof. The proof is trivial from Theorem 9 [7]. □

Remark 3.1. If (γlm) be statistically convergent to L ∈ C2 with respect to the Euclidean

norm on C2, then

(1) (γ∗lm) is statistically convergent to γ∗ with respect to Euclidean norm on C2 and

converse is also true.

(2) (γ̃lm) is statistically convergent to γ̃ with respect to Euclidean norm on C2 and con-

verse is also true.
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(3) (γ
′
lm) is statistically convergent to γ

′
with respect to Euclidean norm on C2 and con-

verse is also true.

Remark 3.2. If (γlm) be statistically convergent with respect to the Euclidean norm on C2,

then

(1) (|γlm|2i1) = (γlm · γ̃lm) is also statistically convergent with respect to Euclidean norm

on C2.

(2) (|γlm|2i2) = (γlm · γ∗lm) is also statistically convergent with respect to Euclidean norm

on C2.

(3) (|γlm|2i1i2) = (γlm · γ′
lm) is also statistically convergent with respect to Euclidean norm

on C2.

Theorem 3.13. The sets 2
¯ℓ∞(C2), 2c̄(C2), 2c̄0(C2), 2c̄

R(C2), 2c̄
R
0 (C2), 2c̄

B(C2), 2c̄
B
0 (C2) are

BC-module.

Proof. We prove that the set 2
¯ℓ∞(C2) is a BC-module. The proofs for the other sets follow

analogously based on their respective definitions.

Let, (γlm), (tlm) ∈ 2
¯ℓ∞(C2). By definition of vector addition,

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(γlm)∥C2 ≥M}| = 0,

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(tlm)∥C2 ≥M}| = 0.

Consider the sum (γlm) + (tlm), using the triangle inequality for the norm ∥ · ∥C2 , we have;

∥(γlm) + (tlm)∥C2 ≤ ∥(γlm)∥C2 + ∥(tlm)∥C2 .

Now, analyze the density condition for (γlm) + (tlm);

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(γlm) + (tlm)∥C2 ≥M}|.

By subadditivity of the density measure, this is bounded by

lim
l,m→∞

1

lm
|{(l,m) ∈ N×N : ∥(γlm)∥C2 ≥M}|+ lim

l,m→∞

1

lm
|{(l,m) ∈ N×N : ∥(tlm)∥C2 ≥M}|.

Since, both terms on the right-hand side are zero by assumption, we conclude.

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(γlm) + (tlm)∥C2 ≥M}| = 0.
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Thus, (γlm) + (tlm) ∈ 2
¯ℓ∞(C2), showing closure under addition Let a ∈ C2 and (γlm) ∈

2
¯ℓ∞(C2). By definition of scalar multiplication,

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(γlm)∥C2 ≥M}| = 0.

For the scalar product a · (γlm), using the property of the norm

∥a · (γlm)∥C2 = |a|C2 · ∥(γlm)∥C2 ,

where |a|C2 is the modulus of a in C2.

Now analyze the density condition for a · (γlm);

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥a · (γlm)∥C2 ≥M}|.

This is equivalent to;

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(γlm)∥C2 ≥ M

|a|C2

}|.

Since, the right-hand side is zero by the assumption that (γlm) ∈ 2
¯ℓ∞(C2), we conclude

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥a · (γlm)∥C2 ≥M}| = 0.

Thus, a·(γlm) ∈ 2
¯ℓ∞(C2), showing closure under scalar multiplication. Since 2

¯ℓ∞(C2) satisfies

closure under addition and scalar multiplication, it is a BC-module.

Similarly, using analogous arguments, the other sets can be shown to be BC-modules. □

Theorem 3.14. The classes of the double sequences 2
¯ℓ∞(C2), 2c̄

R(C2), 2c̄
R
0 (C2), 2c̄

B(C2),

2c̄
B
0 (C2) of bi-complex numbers are BC-convex.

Proof. We first prove the BC-convexity for 2
¯ℓ∞(C2). The other classes can be established

similarly. Let (γlm), (tlm) ∈ 2
¯ℓ∞(C2). Then there exist constants M1,M2 > 0 such that

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(γlm)∥C2 ≥M1}| = 0,

lim
l,m→∞

1

lm
|{(l,m) ∈ N× N : ∥(tlm)∥C2 ≥M2}| = 0.

Define M = max{M1,M2}. For 0 ≤ λ ≤ 1, consider the convex combination

(δlm) = λ(γlm) + (1− λ)(tlm).

Using the triangle inequality, we have

∥(δlm)∥C2 ≤ λ∥(γlm)∥C2 + (1− λ)∥(tlm)∥C2 .



INT. J. MAPS MATH. (2025) 8(2):751-768 / STATISTICAL CONVERGENCE OF DOUBLE ... 765

For (l,m) ∈ N× N such that ∥(δlm)∥C2 ≥M , at least one of ∥(γlm)∥C2 ≥M1 or

∥(tlm)∥C2 ≥M2, must hold.

Thus,

|{(l,m) : ∥(δlm)∥C2 ≥M}| ≤ |{(l,m) : ∥(γlm)∥C2 ≥M1}|+ |{(l,m) : ∥(tlm)∥C2 ≥M2}|.

Dividing by lm and taking the limit as l,m→ ∞.

lim
l,m→∞

1

lm
|{(l,m) : ∥(δlm)∥C2 ≥M}| = 0.

Hence, (δlm) ∈ 2
¯ℓ∞(C2). Proving 2

¯ℓ∞(C2) is BC-convex. Similarly, the other cases can be

established. □

Remark 3.3. The classes of the double sequences 2
¯ℓ∞(C2), 2c̄

R(C2), 2c̄
R
0 (C2), 2c̄

B(C2), 2c̄
B
0 (C2)

of bi-complex numbers are not BC-strictly convex.

This follows from the following example for the case 2
¯ℓ∞(C2). The other classes can be

established similarly.

Example 3.1. Let the double sequences (γlm) & (tlm) of bi-complex numbers defined by

(γlm) =


(12 −

√
3
2 i1)e1 + (12 +

√
3
2 i1)e2 ( 1√

5
+ 2√

5
i1)e1 + ( 1√

5
− 2√

5
i1)e2 θ θ . . .

( 1√
5
− 2√

5
i1)e1 + ( 1√

5
+ 2√

5
i1)e2 (13 + 2

√
2

3 i1)e1 + (13 − 2
√
2

3 i1)e2 θ θ . . .

θ θ θ θ . . .
...

...
...

...
. . .


,

and

(tlm) =


θ ( 1√

5
+ 2√

5
i1)e1 + ( 1√

5
− 2√

5
i1)e2 θ θ . . .

( 1√
5
− 2√

5
i1)e1 + ( 1√

5
+ 2√

5
i1)e2 (13 + 2

√
2

3 i1)e1 + (13 − 2
√
2

3 i1)e2 θ θ . . .

θ θ θ θ . . .
...

...
...

...
. . .


.
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Then, ∥(γlm)∥
2
¯ℓ∞(C2)

= ∥(tlm)∥
2
¯ℓ∞(C2)

= 1 and∥∥∥∥∥
(
1

2
e1 +

1

2
e2

)
(γlm) +

{
1−

(
1

2
e1 +

1

2
e2

)}
(tlm)

∥∥∥∥∥
2
¯ℓ∞(C2)

= sup
l,m∈N

∥∥∥∥∥
(
1

2
e1 +

1

2
e2

)
γlm +

{
1−

(
1

2
e1 +

1

2
e2

)}
tlm

∥∥∥∥∥
C2

= sup
l,m∈N

[∥∥∥∥∥(14 −
√
3

4
i1)e1 + (

1

4
+

√
3

4
i1)e2, (

1

2
√
5
+

2

2
√
5
i1)e1 + (

1

2
√
5
− 2

2
√
5
i1)e2, θ, θ, ...,

(
1

2
√
5
− 2

2
√
5
i1)e1 + (

1

2
√
5
+

2

2
√
5
i1)e2, (

1

6
+

2
√
2

6
i1)e1 + (

1

6
− 2

√
2

6
i1)e2, θ, θ, ...,

θ, θ, ...,

+

{
θ, (

1√
5
+

2√
5
i1)e1 + (

1√
5
− 2√

5
i1)e2, θ, θ, ...,

(
1√
5
− 2√

5
i1)e1 + (

1√
5
+

2√
5
i1)e2, (

1

3
+

2
√
2

3
i1)e1 + (

1

3
− 2

√
2

3
i1)e2, θ, θ, ...,

θ, θ, ...,

−

(
θ, (

1

2
√
5
+

2

2
√
5
i1)e1 + (

1

2
√
5
− 2

2
√
5
i1)e2, θ, θ, ...,

(
1

2
√
5
− 2

2
√
5
i1)e1 + (

1

2
√
5
+

2

2
√
5
i1)e2, (

1

6
+

2
√
2

6
i1)e1 + (

1

6
− 2

√
2

6
i1)e2, θ, θ, ...,

θ, θ, ...,

)}∣∣∣∣∣
k

]

= supl,m∈N

{
1
2 , 1, θ

}
= 1. for λ = (12e1 +

1
2e2) ∈ C2.

Hence, 2
¯ℓ∞(C2) is not BC-strictly convex.

Remark 3.4. The classes of the double sequences 2
¯ℓ∞(C2), 2c̄

R(C2), 2c̄
R
0 (C2), 2c̄

B(C2), 2c̄
B
0 (C2)

of bi-complex numbers are not BC-uniformly convex.

This follows from the following Example.

Example 3.2. Let the double sequences (γlm) & (tlm) of bi-complex numbers defined by

(γlm) =


(12 −

√
3
2 i1)e1 + (12 +

√
3
2 i1)e2 ( 1√

3
+

√
2√
3
i1)e1 + ( 1√

3
−

√
2√
3
i1)e2 θ θ . . .

( 1√
3
−

√
2√
3
i1)e1 + ( 1√

3
+

√
2√
3
i1)e2 ( 1√

5
+ 2√

5
i1)e1 + ( 1√

5
− 2√

5
i1)e2 θ θ . . .

θ θ θ θ . . .
...

...
...

...
. . .


,
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and

(tlm) =


(−1

2 +
√
3
2 i1)e1 + (−1

2 −
√
3
2 i1)e2 ( 1√

3
+

√
2√
3
i1)e1 + ( 1√

3
−

√
2√
3
i1)e2 θ θ . . .

( 1√
3
−

√
2√
3
i1)e1 + ( 1√

3
+

√
2√
3
i1)e2 ( 1√

5
+ 2√

5
i1)e1 + ( 1√

5
− 2√

5
i1)e2 θ θ . . .

θ θ θ θ . . .
...

...
...

...
. . .


.

Then ∥(γlm)∥
2
¯ℓ∞(C2)

= ∥(tlm)∥
2
¯ℓ∞(C2)

= 1 and

∥(γlm)− (tlm)∥
2
¯ℓ∞(C2)

= sup
l,m∈N

{∥γlm − tlm∥C2 : l,m ∈ N}

= sup
l,m∈N

{∥∥∥∥∥(22 − 2
√
3

2
i1)e1 + (

2

2
+

2
√
3

2
i1)e2

∥∥∥∥∥
C2

}

= 2.

and ε ≤ ∥(γlm)− (tlm)∥
2
¯ℓ∞(C2)

= 2.

On the other hand,∥∥∥∥∥(γlm) + (tlm)

2

∥∥∥∥∥
2
¯ℓ∞(C2)

= sup
l,m∈N

∥∥∥∥∥γlm + tlm
2

∥∥∥∥∥
C2

= sup
l,m∈N

{∥∥∥∥∥
(

1√
3
+

√
2√
3
i1

)
e1 +

(
1√
3
−

√
2√
3
i1

)
e2

∥∥∥∥∥
C2

,

∥∥∥∥∥
(

1√
3
+

√
2√
3
i1

)
e1 +

(
1√
3
−

√
2√
3
i1

)
e2

∥∥∥∥∥
C2

,

∥∥∥∥∥
(

1√
5
+

2√
5
i1

)
e1 +

(
1√
5
− 2√

5
i1

)
e2

∥∥∥∥∥
C2

}

= 1.

Thus, there does not exist δ(ε) such that∥∥∥∥∥(γlm) + (tlm)

2

∥∥∥∥∥
2
¯ℓ∞(C2)

≤ 1− δ.

Therefore, we have 2
¯ℓ∞(C2) is not BC-uniformly convex.

Similarly, other classes can also be proved.

Acknowledgments. The authors would like to thank the referee for some useful com-
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According to legend, a precocious primary school student by the name of Carl Friedrich
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almost without effort. His trick was to consider the sum twice, once adding in ascending

order, and once in descending order, then adding them side-by-side. In modern notation,

2S =
100∑
n=1

n+
100∑
n=1

(101− n) =
100∑
n=1

101 = 100× 101 = 10, 100.

Once Gauss had calculated twice the sum he wanted, the only thing left was to divide his

result by 2, and voila! He had obtained S = 5, 050. Extending his technique to compute the

sum of the first N positive integers, the general formula

N∑
n=1

n = 1 + 2 + · · ·+N =
N(N + 1)

2

is easily obtained. The elegance of Gauss’s technique is made more evident when we consider

that it can be used to compute the sum of any finite arithmetic sequence {a, a+r, . . . , a+Nr}.

Indeed, we obtain

N∑
n=0

(a+ rn) =
(2a+ rN)(N + 1)

2
.

Despite the brilliance of young Gauss’s tenacious tallying, the formulas above were known

at least 2000 years before his birth! In fact, formulas for the sum of squares and the sum of

cubes,

N∑
n=1

n2 = 12 + 22 + · · ·+N2 =
N(N + 1)(2N + 1)

6
,

N∑
n=1

n3 = 13 + 23 + · · ·+N3 =
N2(N + 1)2

4
,

respectively, were known in antiquity [20, 27, 19, 2, 18, 17, 3]. The former was described

by the legendary Greek polymath Archimedes in his work On Conoids and Spheroids [1, 6],

and the latter is famously attributed to Nicomachus of Gerasa, another well-known Greek

mathematician, who published the result in his Introduction to Arithmetic [2, 5]. Due to the

nature of ancient Greek mathematics, these proofs are geometric in nature, and certainly

valuable from both a mathematical and a historical standpoint. The interested reader can

find more information in David M. Burton’s historical treatise [2].

A formula for the sum of the fourth powers of the first N natural numbers,
∑

n4, is

described by Pierre de Fermat in letters written in 1636 to Gilles Persone de Roberval and

Marin Mersenne, all of whom were prominent mathematicians at the time [2]. It is possible

that Fermat was under the impression that such a formula was unknown at the time [27].

Fermat’s belief notwithstanding, formulas for the sums of powers of integers up to the 17th
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power, and even as high as the 23rd power, were known to the German mathematician Johann

Faulhaber as late as 1631 [27, 8, 21]. Arguably, Faulhaber’s greatest contribution was the

discovery of the fact that, in the case of an odd exponent k, the sum
∑N

n=1 n
k is a polynomial

in terms of the variable a = N(N+1)
2 and, moreover, for odd k > 1 the polynomial is divisible

by a2. He also described a method to obtain a formula for the sum
∑

n2k once the formula

for the sum
∑

n2k+1 is known [27, 26, 8, 21, 23, 16]. It is not clear whether Faulhaber knew

how to prove his assertions in generality; in his day, mathematical discoveries were usually

kept secret, given as challenges to other mathematicians, or intentionally written in code!

[27, 15, 21]

A proof of the general explicit formula for the sum
∑

nk, and its rigorous verification,

would have to wait until 1834, with the publication of Carl Jacobi’s paper De usu legitimo

formulae summatoriae Maclaurinianae [9]. Jacobi’s formula incorporates the Bernoulli num-

bers, which is the sequence of rational numbers {BN}∞N=0 given recursively by the formula

1

B0 = 1,
N∑
n=0

(
N + 1

n

)
Bn = 0, N ≥ 1. (1.1)

The first few nonzero Bernoulli numbers are given in Table 1.1 below. Note that for all odd

N > 1, BN = 0.

Table 1.1. Bernoulli numbers.

N 0 1 2 4 6 8 10 12

BN 1 −1
2

1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730

The numbers BN can also be defined explicitly by the formula

BN =
N∑
n=0

n∑
k=0

(−1)k
(
n

k

)
kN

n+ 1
, where 00 and

(
0

0

)
are both taken to be 1.

Though this will not be necessary for our discussion, it is still an important observation, since

any explicit formula for calculating sums of powers of integers which utilizes the Bernoulli

numbers would be easily stymied by requiring the Bernoulli numbers to be calculated recur-

sively. We will refer to the Bernoulli numbers again in Section 2.2.

The Bernoulli numbers were discovered independently by the Swiss mathematician Jakob

Bernoulli, as well as the Japanese mathematician Seki Takakazu [2, 11, 10]. Specifically,

1There are two common conventions for defining the Bernoulli numbers, but only the sign of B1 is affected

by the choice. We use the convention in which B1 = − 1
2
.
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Bernoulli discovered the sequence while attempting to derive formulas for the sums of powers

of integers. As an interesting side note, both Bernoulli’s and Takakazu’s discoveries were

published posthumously, the former in 1713 and the latter a year earlier in 1712 [11, 10].

Armed with the Bernoulli numbers, Jacobi was able to rigorously verify Faulhaber’s formula

(often referred to as Bernoulli’s formula) [9],

N∑
n=1

nk =
N + 1

k + 1

k∑
m=0

(
k + 1

m

)
(N + 1)k−mBm. (1.2)

Our goal is to find a Faulhaber-type formula for sums of powers of finite arithmetic se-

quences, i.e., sums of the form

SN,k[a, r] :=

N∑
n=0

(a+ rn)k,

where a and r are arbitrary real numbers, and k and N are nonnegative integers. Using the

binomial theorem and changing the order of summation yields

SN,k[a, r] =

N∑
n=0

(a+ nr)k

=
N∑
n=0

k∑
m=0

(
k

m

)
ak−mnmrm

=
k∑

m=0

(
k

m

)
ak−mrm

N∑
n=0

nm

=

k∑
m=0

(
k

m

)
ak−mrmSN,m[0, 1].

(1.3)

The aforementioned formula provides a straightforward recursive approach for calculating

SN,k[a, r], contingent upon having knowledge of the sums SN,m[0, 1]. If the values of these

sums are unknown, this method can become quite laborious. As an example, let us use the

formula above to find closed formulas for the first few sums SN,k[a, r]. Note that

SN,0[0, 1] = N + 1,
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and that

SN,1[a, r] = (N + 1)a+
N(N + 1)

2
r,

SN,2[a, r] = (N + 1)a2 + 2
N(N + 1)

2
ar +

N(N + 1)(2N + 1)

6
r2,

SN,3[a, r] = (N + 1)a3 + 3
N(N + 1)

2
a2r + 3

N(N + 1)(2N + 1)

6
ar2

+
N2(N + 1)2

4
r3.

The next important development in our story comes courtesy of Blaise Pascal [27, 2]. In

his famous work Treatise on the Arithmetic Triangle [12], the author outlines a formula for

the sums of powers of terms in an arithmetic sequence. He illustrates his process via the

example

P = 53 + 83 + 113 + 143 = 4712,

and claims that the process can be generalized. In fact, his approach is similar to the one

we will begin with in Section 2, before using it to derive our explicit formula. First, Pascal

showed (using techniques he had developed earlier in the paper) that

(t+ 3)4 − t4 = 12t3 + 54t2 + 108t+ 81.

He then substituted t = 5, t = 8, t = 11, and t = 14 into this identity and added the results,

noticing that the left side “telescopes.” At this point, we are left with

174 − 54 = 12(53 + 83 + 113 + 143) + 54(52 + 82 + 112 + 142)

+ 108(5 + 8 + 11 + 14) + 81(1 + 1 + 1 + 1),

from which we compute

174 − 54 = 12P + 54(406) + 108(38) + 81(4).

Finally, solving for P gives P = 4712 as expected.

More generally, Pascal recognized that on one hand, the sum

N∑
n=1

[
(a+ (n+ 1)r)k+1 − (a+ nr)k+1

]
“telescopes” to the expression [a+ (N + 1)r]k+1 − ak+1, while on the other hand, it can be

expanded (using the entries from his eponymous triangle) into a combination of sums with

exponents lower than k + 1. At this point, he solved for SN,k[a, r] in terms of the sums of

lower powers, i.e., the sums Sn,0[a, r], Sn,1[a, r], . . ., and Sn,k−1[a, r].
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Observe that Pascal’s method is recursive in nature, requiring the formulas for the sums

of all lower powers in order to compute the desired sum. This makes the method easy to

describe, but impractical to use directly for larger numbers of terms or for higher powers.

However, this recursive approach is the first step to obtaining our Faulhaber-type formulas,

which do not rely on recursion. These formulas exhibit a remarkable level of effectiveness,

which is made apparent by their resilience and their ability to unify and generalize various

formulas involving the summation of different powers of integers. This potent set of formulas

demonstrates its versatility when applied to the computation of exceedingly high powers of

arithmetic sums, as well as when dealing with a substantial number of terms within these

sums of arithmetic sequences.

In Section 2, we derive an explicit formula to calculate SN,k[a, r] which is quite similar to

Equation (1.2). We first obtain a recursive formula in the style of Pascal. Next, we develop

a unique approach to proving Faulhaber’s formula without induction. The crux of our proof

relies on a clever argument in which we show that a particular expression, which we call

QN,k(j), is invariant with respect to j. It turns out that N+1
k+1 QN,k(0) and

N+1
k+1 QN,k(k−1) are

equal to the left- and right-hand sides of Equation (1.2), respectively, from which Faulhaber’s

formula follows immediately. We also provide a more traditional inductive proof of Equation

(1.2). Finally, we combine Faulhaber’s formula with our recursive formula, culminating in

Theorem 2.3.

In Section 3, we use methods from the theory of finite differences to derive a somewhat

different version of Faulhaber’s formula which does not require any knowledge of the Bernoulli

numbers. As in Section 2, we take inspiration from Pascal and consider a special telescoping

sum; the notation of difference operators arises naturally as a result, and provides us with

an alternate, yet equally robust, Faulhaber-type formula, stated explicitly in Theorem 3.1.

2. Faulhaber’s Formula with Bernoulli Numbers

In what follows, N and k are always nonnegative integers, a and r are real numbers, and

we use the conventions that 00 = 1 and
(
0
0

)
= 1.

2.1. Recursive Formulas. Recall that in Section 1 we introduced the notation

SN,k[a, r] =
N∑
n=0

(a+ nr)k = ak + (a+ r)k + · · ·+ (a+Nr)k.

Our first theorem is a recursive formula for SN,k[a, r] in terms of the sums SN,m[a, r] with

lower exponents m = 0, 1, . . . , k − 1. This is an important first step in finding an explicit
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formula for SN,k[a, r], and a generalization of Pascal’s method, which we discussed in Section

1. Immediately thereafter, we provide as a corollary a recursive formula for the sums SN,k[0, 1]

in terms of the sums SN,m[0, 1]. We make extensive use of this corollary in our deductive proof

of Faulhaber’s formula for SN,k[0, 1], as well as the Faulhaber-type formula for SN,k[a, r].

Theorem 2.1. The sums SN,k[a, r] are given recursively in k by the formula

SN,k[a, r] = (N + 1)ak +

k∑
m=1

(
k

m

)
rm

m+ 1

[
(N + 1)m+1ak−m − SN,k−m[a, r]

]
.

Proof. The result is trivial when r = 0, so we prove it for nonzero r. We begin by considering

the telescoping sum

T (N) :=
N∑
n=0

(
[a+ (n+ 1)r]k+1 − [a+ nr]k+1

)
.

On one hand, if we first telescope T (N), then use the binomial theorem to expand the

expression [a+ (N + 1)r]k+1, we obtain

T (N) = [a+ (N + 1)r]k+1 − ak+1

=
k+1∑
m=0

[(
k + 1

m

)
(N + 1)mrmak+1−m

]
− ak+1

=
k+1∑
m=1

(
k + 1

m

)
(N + 1)mrmak+1−m

=

k∑
m=0

(
k + 1

m+ 1

)
(N + 1)m+1rm+1ak−m

= (k + 1)r
k∑

m=0

(
k

m

)
(N + 1)m+1rm

m+ 1
ak−m.
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On the other hand, if we first distribute the sum in n, then use the binomial theorem to

expand the expression [a+ (n+ 1)r]k+1 = [(a+ nr) + r]k+1, we are left with

T (N) =
N∑
n=0

[
k+1∑
m=0

(
k + 1

m

)
rm(a+ nr)k+1−m

]
− SN,k+1[a, r]

=

k+1∑
m=0

[
rm

(
k + 1

m

) N∑
n=0

(a+ nr)k+1−m

]
− SN,k+1[a, r]

=
k+1∑
m=0

[(
k + 1

m

)
rmSN,k+1−m[a, r]

]
− SN,k+1[a, r]

=
k+1∑
m=1

(
k + 1

m

)
rmSN,k+1−m[a, r]

=

k∑
m=0

(
k + 1

m+ 1

)
rm+1SN,k−m[a, r]

= (k + 1)r
k∑

m=0

(
k

m

)
rm

m+ 1
SN,k−m[a, r].

Equating the two expressions above and dividing by (k + 1)r gives us

k∑
m=0

(
k

m

)
(N + 1)m+1rm

m+ 1
ak−m =

k∑
m=0

(
k

m

)
rm

m+ 1
SN,k−m[a, r],

from which we deduce

SN,k[a, r] =

k∑
m=0

(
k

m

)
(N + 1)m+1rm

m+ 1
ak−m −

k∑
m=1

(
k

m

)
rm

m+ 1
SN,k−m[a, r]

= (N + 1)ak +
k∑

m=1

(
k

m

)
rm

m+ 1

(
(N + 1)m+1ak−m − SN,k−m[a, r]

)
,

which is the desired result. □

Corollary 2.1. The sums SN,k[0, 1] are given recursively in k by the formula

SN,k[0, 1] =
(N + 1)k+1

k + 1
− 1

k + 1

k−1∑
m=0

(
k + 1

m

)
SN,m[0, 1].

Proof. First, consider the mth term

τm :=

(
k

m

)
rm

m+ 1
(N + 1)m+1ak−m

from the sum in Theorem 2.1. Observe that when a = 0 and r = 1,

τm =
(N + 1)k+1

k + 1
δk(m),
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where δk(m) is the Kroenecker delta. If we substitute the revised τm back into the sum from

Theorem 2.1, then channel our “inner Gauss” and rewrite the sum in descending order, we

conclude

SN,k[0, 1] =
(N + 1)k+1

k + 1
−

k∑
m=1

(
k

m

)
1

m+ 1
SN,k−m[0, 1]

=
(N + 1)k+1

k + 1
−

k−1∑
m=0

(
k

k −m

)
1

k −m+ 1
SN,m[0, 1]

=
(N + 1)k+1

k + 1
− 1

k + 1

k−1∑
m=0

(
k

m

)
k + 1

k + 1−m
SN,m[0, 1]

=
(N + 1)k+1

k + 1
− 1

k + 1

k−1∑
m=0

(
k + 1

m

)
SN,m[0, 1].

This is precisely the desired result. □

Before moving on to the next section and demonstrating one of our main results, it is

worth noting that Theorem 2.1 remains a labor-intensive method for directly computing the

sums SN,k[a, r], yet it yields identical outcomes to those previously observed.

SN,1[a, r] = (N + 1)a+
r

2
((N + 1)2 − SN,0[a, r])

= (N + 1)a+
r

2
((N + 1)2 − (N + 1))

= (N + 1)a+
N(N + 1)

2
r,

SN,2[a, r] = (N + 1)a2 + r((N + 1)2a− SN,1[a, r]) +
r2

3
((N + 1)3 − SN,0[a, r])

= (N + 1)a2 + r

(
(N + 1)2a− (N + 1)a− N(N + 1)

2
r

)
+

r2

3
((N + 1)3 − (N + 1))

= (N + 1)a2 + 2
N(N + 1)

2
ar +

N(N + 1)(2N + 1)

6
r2,

and, after much simplification which we leave to the reader,

SN,3[a, r] = (N + 1)a3 +
3r

2
((N + 1)2a2 − SN,2[a, r])

+ r2((N + 1)3a− SN,1[a, r]) +
r3

4
((N + 1)4 − SN,0[a, r])

= (N + 1)a3 + 3
N(N + 1)

2
a2r + 3

N(N + 1)(2N + 1)

6
ar2

+
N2(N + 1)2

4
r3.
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As we can see, even for small k, direct use of Theorem 2.1 to calculate a formula for SN,k[a, r]

is quite time-consuming. However, without an efficient algorithm for generating formulas for

the sums SN,k[0, 1], it remains our only option. This is precisely the issue we address in the

next section, and unsurprisingly, it is Theorem 2.1 (or rather, its corollary) which we rely on

most heavily to obtain our results.

2.2. Connections with Bernoulli numbers. In Section 1, we introduced the Bernoulli

numbers {Bj}, which are a recursively defined sequence of rational numbers. For our pur-

poses, we shall utilize the following reformulation of Equation (1.1):

B0 = 1, Bj+1 = − 1

j + 2

j∑
n=0

(
j + 2

n

)
Bn, j ≥ 0. (2.4)

In order to prove the main results for this section, we first establish two intermediate lemmas.

The first of these can be regarded as an alternate recursive definition of the Bernoulli numbers.

The second lemma invokes the first to demonstrate the invariance under j of a particular

quantity, which we refer to as QN,k(j), via repeated use of Corollary 2.1. Before embarking

on this quest of quantification, we introduce a bit of notation to clean up future calculations.

Let j, k, and m be integers, with 0 ≤ j,m < k, and define the sums

Θj,k(m) :=

j∑
n=0

Bn

(
k + 1

n

)(
k + 1− n

m

)
,

and

QN,k(j) :=

j∑
m=0

(
k + 1

m

)
(N + 1)k−mBm − 1

N + 1

k−j−1∑
m=0

Θj,k(m)SN,m[0, 1].

Armed with this new notation, we are in position to establish the lemmas.

Lemma 2.1. For any integers j and k satisfying 0 ≤ j < k, we have

Θj,k(k − j − 1) = −(k − j)

(
k + 1

j + 1

)
Bj+1.

Proof. We use the well-known identities

(
n

k

)
=

(
n

n− k

)
,

(
n

k

)(
n− k

ℓ− k

)
=

(
n

ℓ

)(
ℓ

k

)
, and

(
n

k + 1

)
=

n− k

k + 1

(
n

k

)
,
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along with the recursive definition of the Bernoulli numbers expressed in Equation (2.4), to

establish the equality

Θj,k(k − j − 1) =

j∑
n=0

(
k + 1

n

)(
k + 1− n

j + 2− n

)
Bn

=

(
k + 1

j + 2

) j∑
n=0

(
j + 2

n

)
Bn

=
k − j

j + 2

(
k + 1

j + 1

) j∑
n=0

(
j + 2

n

)
Bn

= −(k − j)

(
k + 1

j + 1

)
Bj+1,

which is precisely the desired result. □

Lemma 2.2. For all integers j, 0 ≤ j < k,

QN,k(j) = QN,k(j + 1).

Proof. Before beginning, in order to prevent heads from unnecessarily spinning, we briefly

outline the process. We first suitably partition QN,k(j) into two terms A(j) and B(j).

Following this, with surgical precision we will introduce an auxiliary term C(j) which in

turn is split into two more terms D(j) and E(j) so that A(j) + D(j) = A(j + 1) and

E(j) +B(j)− C(j) = B(j + 1). In the end, we will have

QN,k(j) = A(j) +B(j)

= A(j) + C(j) +B(j)− C(j)

= [A(j) +D(j)] + [E(j) +B(j)− C(j)] (2.5)

= A(j + 1) +B(j + 1)

= QN,k(j + 1).

Now for the gory details. Let

A(j) :=

j∑
m=0

(
k + 1

m

)
(N + 1)k−mBm,

B(j) := − 1

N + 1

k−j−1∑
m=0

Θj,k(m)SN,m[0, 1],
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so that QN,k(j) = A(j) + B(j). Next, we define C(j) to be the last term in B(j), which

corresponds to m = k − j − 1. In other words,

C(j) := − 1

N + 1
Θj,k(k − j − 1)SN,k−j−1[0, 1].

Using our result from Lemma 2.1, we reformulate C(j) to be

C(j) =
k − j

N + 1

(
k + 1

j + 1

)
SN,k−j−1[0, 1]Bj+1. (2.6)

Subsequently, we apply the recursive formula from Corollary 2.1 to the sum SN,k−j−1[0, 1]

and obtain

SN,k−j−1[0, 1] =
1

k − j

[
(N + 1)k−j −

k−j−2∑
m=0

(
k − j

m

)
SN,m[0, 1]

]
. (2.7)

Inserting (2.7) into (2.6), we are left with the following decomposition of C(j):

C(j) =: D(j) + E(j)

=

(
k + 1

j + 1

)
(N + 1)k−(j+1)Bj+1 +

−Bj+1

N + 1

k−j−2∑
m=0

(
k − j

m

)(
k + 1

j + 1

)
SN,m[0, 1].

Notice that adding D(j) to A(j) gives A(j + 1). Explicitly, we have

A(j) +D(j) =

j∑
m=0

(
k + 1

m

)
(N + 1)k−mBm +

(
k + 1

j + 1

)
(N + 1)k−(j+1)Bj+1

=

j+1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm

= A(j + 1).

Furthermore, adding E(j) to B(j)− C(j) gives B(j + 1). Indeed,

E(j) + (B(j)− C(j)) =
−1

N + 1
Bj+1

k−j−2∑
m=0

(
k − j

m

)(
k + 1

j + 1

)
SN,m[0, 1]+

+
−1

N + 1

k−j−2∑
m=0

Θj,k(m)SN,m[0, 1]

=
−1

N + 1

k−j−2∑
m=0

[(
k + 1

j + 1

)(
k + 1− (j + 1)

m

)
Bj+1 +Θj,k(m)

]
SN,m[0, 1]

=
−1

N + 1

k−(j+1)−1∑
m=0

Θj+1,k(m)SN,m[0, 1]

= B(j + 1).

This completes the proof as previously outlined in Equation (2.5). □
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We are now ready to present two different proofs of Faulhaber’s eponymous Formula. The

first is a direct proof which, as far as the authors are aware, is a novel approach to the

problem. Thanks to the work put into Lemmas 2.1 and 2.2, it is both short and elegant.

The second proof invokes the principle of strong induction on k, and relies on the recursion

formula of Corollary 2.1. Faulhaber’s Formula is well-known, yet is instrumental in proving

the first of our two main results, a Faulhaber-type formula for SN,k[a, r] which utilizes the

Bernoulli numbers.

Theorem 2.2 (Faulhaber’s Formula). For any k ≥ 0,

SN,k[0, 1] =

N∑
n=0

nk =
N + 1

k + 1

k∑
m=0

(
k + 1

m

)
(N + 1)k−mBm. (2.8)

Remark 2.1. It is worth nothing that it is common to use N instead of N +1 in (2.8) when

B1 is taken to be 1/2 instead of −1/2 . That is, for any k ≥ 0, if B1 = 1/2, then

SN,k[0, 1] =
N∑
n=0

nk =
1

k + 1

k∑
m=0

(
k + 1

m

)
Nk−m+1Bm. (2.9)

Direct Proof. On the one hand, the recursion formula of Corollary 2.1 is equivalent to the

equation

QN,k(0) =
k + 1

N + 1
SN,k[0, 1].

On the other hand, using the recursive definition of the Bernoulli numbers from Equation

(2.4), we observe that

Θk−1,k(0) =

k−1∑
n=0

Bn

(
k + 1

n

)(
k + 1− n

0

)

=
k−1∑
n=0

Bn

(
k + 1

n

)
= −(k + 1)Bk

= −
(
k + 1

k

)
(N + 1)k−kBk.
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Consequently, after recalling that SN,0[0, 1] = N + 1, we arrive at

QN,k(k − 1) =
k−1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm − 1

N + 1

k−(k−1)−1∑
m=0

Θk−1,k(m)SN,m[0, 1]

=
k−1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm − 1

N + 1
Θk−1,k(0)SN,0[0, 1]

=

k−1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm +

(
k + 1

k

)
(N + 1)k−kBk

=
k∑

m=0

(
k + 1

m

)
(N + 1)k−mBm.

Finally, by the invariance of QN,k(j) under j, which we painstakingly established in Lemma

2.2, we conclude

QN,k(0) = QN,k(k − 1),

from which the desired result follows immediately. □

And now we present our strong induction proof of Theorem 2.2.

Strong Induction Proof. In the base case where k = 0, we know SN,0[0, 1] = (N+1). Keeping

in mind that B0 = 1, the right-hand side of Equation (2.8) is

N + 1

0 + 1

(
0 + 1

0

)
(N + 1)0−0B0 = N + 1,

hence the base case is proved. Next, suppose that for some K > 0 Equation (2.8) holds

whenever 0 ≤ k ≤ K − 1. We will show that the result also holds when k = K. Indeed, by

Corollary 2.1, we have

SN,K [0, 1] =
(N + 1)K+1

K + 1
− 1

K + 1

K−1∑
m=0

(
K + 1

m

)
SN,m[0, 1]. (2.10)

We now use the induction hypothesis, reverse the order of summation a la Gauss, and utilize

the identity

1

m+ ℓ+ 1

(
K + 1

m+ ℓ

)(
m+ ℓ+ 1

m

)
=

1

ℓ+ 1

(
K + 1

ℓ

)(
K − ℓ+ 1

m

)
,
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to compute

K−1∑
m=0

(
K + 1

m

)
SN,m[0, 1] =

K−1∑
m=0

(
K + 1

m

)[
N + 1

m+ 1

m∑
ℓ=0

(
m+ 1

ℓ

)
(N + 1)m−ℓBℓ

]

=
K−1∑
m=0

(
K + 1

m

)[
N + 1

m+ 1

m∑
ℓ=0

(
m+ 1

m− ℓ

)
(N + 1)ℓBm−ℓ

]

=

K−1∑
ℓ=0

(N + 1)ℓ+1
K−1∑
m=ℓ

1

m+ 1

(
K + 1

m

)(
m+ 1

m− ℓ

)
Bm−ℓ

=

K−1∑
ℓ=0

(N + 1)ℓ+1
K−ℓ−1∑
m=0

1

m+ ℓ+ 1

(
K + 1

m+ ℓ

)(
m+ ℓ+ 1

m

)
Bm

=

K−1∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)ℓ+1

ℓ+ 1

K−ℓ−1∑
m=0

(
K − ℓ+ 1

m

)
Bm.

At this stage, we use the definition of the Bernoulli numbers from Equation (2.4) to write

K−1∑
m=0

(
K + 1

m

)
SN,m[0, 1] = −

K−1∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)ℓ+1

ℓ+ 1
(K − ℓ+ 1)BK−ℓ.

Additionally, multiplication by a clever choice of 1 yields

(N + 1)K+1 =

(
K + 1

K

)
(N + 1)K+1

K + 1
(K −K + 1)BK−K ,

which, when substituted into Equation (2.10) above, enables us to conclude

SN,K [0, 1] =
1

K + 1

K∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)ℓ+1

ℓ+ 1
(K − ℓ+ 1)BK−ℓ

=
1

K + 1

K∑
ℓ=0

(
K + 1

K − ℓ

)
(N + 1)K−ℓ+1

K − ℓ+ 1
(ℓ+ 1)Bℓ

=
1

K + 1

K∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)K−ℓ+1Bℓ

=
N + 1

K + 1

K∑
m=0

(
K + 1

m

)
(N + 1)K−mBm.

This completes the induction proof. □

Our main result for this paper is a byproduct of all we have done thus far, but especially

Equation (1.3) and Theorem 2.2.

Theorem 2.3 (Faulhaber’s Formula for SN,k[a, r]). For all a, r ∈ R, we have

SN,k[a, r] =

k∑
m=0

(
k

m

)
ak−mrm

m+ 1

 m∑
j=0

(
m+ 1

j

)
(N + 1)m−j+1Bj

 .
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Proof. The result follows from Equation (1.3), which states

SN,k[a, r] =

k∑
m=0

(
k

m

)
ak−mrmSN,m[0, 1],

along with a straightforward use of Theorem 2.2 to replace the expression SN,m[0, 1]. □

There are a number of alternative formulations and proofs of Faulhaber’s formula. They

are proven using tools which include, but are not limited to, generating functions, matrix

techniques, Bernoulli polynomials, the Stirling numbers of the first and second kinds, and

finite discrete convolutions [21, 14, 23]. In this section, we have explored Faulhaber’s Formula

through the use of the Bernoulli numbers. In what follows, we turn our attention to the

versatile theory of finite differences, which is applied extensively in fields as far-flung as

statistics, combinatorics, numerical analysis, differential equations, and even particle physics.

In particular, we make use of the finite discrete difference operator, which we introduce in

the next section.

3. Faulhaber’s Formula via Differencing

We have already seen that the sums of powers of integers can be calculated using a tele-

scoping sum. We formalize this notion by introducing the (forward, finite) difference operator

∆ whose action on a functions f is defined by [4]

∆[f ](x) = f(x+ 1)− f(x).

Further, for m a nonnegative integer, the mth order difference operator ∆m is given recur-

sively by

∆0[f ] = f, ∆m+1[f ] = ∆[∆m[f ]], m ≥ 1.

For example,

∆[f ](x) = f(x+ 1)− f(x)

∆2[f ](x) = f(x+ 2)− 2f(x+ 1) + f(x)

∆3[f ](x) = f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x).

In general, we can express ∆m[f ] in the following manner.

Lemma 3.1. For any function f and integer m ≥ 0,

∆m[f ](x) =

m∑
j=0

(−1)m−j
(
m

j

)
f(x+ j).
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Proof. We use induction on m. When m = 0, we have ∆0[f ](x) = f(x) by definition, and

0∑
j=0

(−1)0−j
(
0

j

)
f(x+ j) = (−1)0

(
0

0

)
f(x+ 0) = f(x),

thus the result holds in the base case. Now, suppose the result holds for some natural number

m. Recalling Pascal’s identity, (
m

j − 1

)
+

(
m

j

)
=

(
m+ 1

j

)
,

we compute

∆m+1[f ](x) = ∆ [∆m[f ]] (x)

= ∆

 m∑
j=0

(−1)m−j
(
m

j

)
f(·+ j)

 (x)

=
m∑
j=0

(−1)m−j
(
m

j

)
f(x+ 1 + j)−

m∑
j=0

(−1)m−j
(
m

j

)
f(x+ j)

=
m+1∑
j=0

(−1)m+1−j)
(

m

j − 1

)
f(x+ j) +

m+1∑
j=0

(−1)m+1−j
(
m

j

)
f(x+ j)

=
m+1∑
j=0

(−1)(m+1)−j)
[(

m

j − 1

)
+

(
m

j

)]
f(x+ j)

=

m+1∑
j=0

(−1)m+1−j
(
m+ 1

j

)
f(x+ j).

This completes the induction proof. □

Since it will be relevant later in the discussion, we also present a special case of Lemma

3.1 as a corollary.

Corollary 3.1. If P (x) = (a+ rx)k, then

∆m[P ](0) =
m∑
j=0

(−1)m−j
(
m

j

)
(a+ jr)k. (3.11)

From here on, we focus our attention to the case in which ∆ is acting on a polynomial P ,

despite the richness of the more general theory [4]. It is not difficult to see that the operator

∆ reduces the degree of a polynomial P by 1. That is to say, if P is a polynomial of degree

deg(P ), then ∆[P ] is a polynomial of degree deg(P )−1. This follows easily from the binomial

theorem. Indeed,

(x+ 1)d − xd =
d−1∑
j=0

(
d

j

)
xj .
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Furthermore, for any integer m > deg(P ), we observe that ∆m[P ] = 0.

One important advantage of using difference operators is it gives us the ability to write

polynomials evaluated at integer inputs, say n ≥ 0, as

P (n) =

deg(P )∑
j=0

∆j [P ](0)

(
n

j

)
. (3.12)

This special case of a far more general result (called the Gregory-Newton interpolation for-

mula, first published by Newton in 1687 [13]) can be easily verified by a robust and interesting

use of induction on n. Indeed, in the base case of n = 0, both sides of Equation (3.12) are

equal to P (0). Now assume Equation (3.12) holds true for some n ≥ 0. Then, noticing

that P (n + 1) = P (n) + ∆[P ](n), and appealing to Pascal’s identity and the fact that

∆deg(P )+1[P ] = 0, we can conclude

P (n+ 1) = P (n) + ∆[P ](n)

=

deg(P )∑
j=0

∆j [P ](0)

(
n

j

)
+

deg(P )∑
j=0

∆j+1[P ](0)

(
n

j

)

=

deg(P )∑
j=0

∆j [P ](0)

(
n

j

)
+

deg(P )∑
j=1

∆j [P ](0)

(
n

j − 1

)

= P (0) +

deg(P )∑
j=1

∆j [P ](0)

[(
n

j

)
+

(
n

j − 1

)]

= P (0) +

deg(P )∑
j=1

∆j [P ](0)

(
n+ 1

j

)

=

deg(P )∑
j=0

∆j [P ](0)

(
n+ 1

j

)
.

Now that Equation (3.12) has been verified, we are ready to take the plunge back into our

original problem. Recall that we are seeking a way to reduce the number of computations

required to evaluate the sums SN,k[a, r], which are merely sums of the form
∑N

n=0 P (n) for

a particular polynomial P . Armed with Equation (3.12), and the aptly named “hockey stick

identity,” that is,

N∑
n=0

(
n

j

)
=

N∑
n=j

(
n

j

)
=

(
N + 1

j + 1

)
, (3.13)
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we can convert a sum
∑N

n=0 P (n) with N + 1 terms into a sum with only deg(P ) + 1 terms.

This can be quite advantageous if N is significantly greater than deg(P ). Indeed, interchang-

ing the finite sums in n and j allows us to write [4]

N∑
n=0

P (n) =
N∑
n=0

deg(P )∑
j=0

∆j [P ](0)

(
n

j

) =

deg(P )∑
j=0

∆j [P ](0)

(
N + 1

j + 1

)
. (3.14)

Let us consider a simple polynomial: the monic monomial P (n) = nk of degree k ≥ 1. In

light of Corollary 3.1, it is not difficult to see that we can write

∆j [nk](0) = j!

{
k

j

}
,

where
{
k
j

}
denotes the Stirling number of the second kind given by{

k

j

}
=

1

j!

j∑
ℓ=0

(−1)j−ℓ
(
j

ℓ

)
ℓk, j ≥ 0.

In view of Equation (3.14) and the fact
{
k
0

}
= 0, we obtain the formula

N∑
n=1

nk =
k∑
j=1

j!

{
k

j

}(
N + 1

j + 1

)
. (3.15)

We now illustrate the utility of the formulas discussed above by way of a concrete example.

Example 3.1. Let P (n) = n2. We have

∆[n2](0) = 1!

{
2

1

}
= 1, and ∆2[n2](0) = 2!

{
2

2

}
= 2,

and hence, by (3.12) we are able to write n2 as the sum

n2 = ∆P (0)

(
n

1

)
+∆2P (0)

(
n

2

)
=

(
n

1

)
+ 2

(
n

2

)
.

In light of Equation (3.13), we have recovered the well-known formula

N∑
n=0

n2 =
2∑
j=1

j!

{
2

j

}(
N + 1

j + 1

)
=

(
N + 1

2

)
+ 2

(
N + 1

3

)
=

N(N + 1)(2N + 1)

6
.

We are now ready to present yet another Faulhaber-type formula, one which does not

make use of the Bernoulli numbers, but makes use of the terms of the original sum SN,k[a, r],

rather than being written in powers of a, r, and N + 1.

Theorem 3.1 (Faulhaber-type Formula for SN,k[a, r]). For all a, r ∈ R,

SN,k[a, r] =
k∑

m=0

(N + 1

m+ 1

) m∑
j=0

(−1)m−j
(
m

j

)
(a+ jr)k

 . (3.16)
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Proof. Letting P (n) = (a + rn)k in Corollary 3.1, and substituting into Equation 3.14, we

get

SN,k[a, r] =

N∑
n=0

(a+ nr)k =

N∑
n=0

P (n) =

k∑
m=0

∆m[P ](0)

(
N + 1

m+ 1

)

=
k∑

m=0

 m∑
j=0

(−1)m−j
(
m

j

)
(a+ jr)k

(
N + 1

m+ 1

)
from which we get the formula in Equation 3.16, completing the proof. □

As a parting gift, we illustrate the utility of Theorems 2.3 and 3.1 with a worked example.

One common aspect of the calculations which should be noted is the number of terms required

to evaluate the sum. In fact, a careful inspection of the two formulas reveals that they both

require that (k + 1)(k + 2)/2 terms be taken into account. In the example presented below,

we have k = 2, and there are indeed (3)(4)/2 = 6 terms in both calculations. This is far

better than the 101 terms it would take in order to calculate the sum directly.

Example 3.2. Let us compute

S100,2[5, 3] =
100∑
n=0

(5 + 3n)2 = 52 + 82 + 112 + · · ·+ 3052.

Recalling the values B0 = 1, B1 = −1/2, and B2 = 1/6, Theorem 2.3 states

S100,2[5, 3] =

2∑
m=0

(
2

m

)
52−m3m

m+ 1

 m∑
j=0

(
m+ 1

j

)
101m+1−jBj


=

(
2

0

)
5230

1

 0∑
j=0

(
1

j

)
1011−jBj

+

(
2

1

)
5131

2

 1∑
j=0

(
2

j

)
1012−jBj


+

(
2

2

)
5032

3

 2∑
j=0

(
3

j

)
1013−jBj


= 2525B0 + 15

[(
2

0

)
1012B0 +

(
2

1

)
1011B1

]
+ 3

[(
3

0

)
1013B0 +

(
3

1

)
1012B1 +

(
3

2

)
1011B2

]
= 3(1013)− 3

2
(1012)− 1

2
(101)

= 3, 199, 175,
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while the formula from Theorem 3.1 yields

S100,2[5, 3] =
2∑

m=0

( 101

m+ 1

) m∑
j=0

(−1)m−j
(
m

j

)
(5 + 3j)2


=

(
101

1

)
(−1)0

(
0

0

)
52 +

(
101

2

)(
(−1)1

(
1

0

)
52 + (−1)0

(
1

0

)
82
)

+

(
101

3

)(
(−1)2

(
2

0

)
52 + (−1)1

(
2

1

)
82 + (−1)0

(
2

2

)
112

)
= 3, 199, 175.

As expected, the two results above are in agreement. It is also worth noting that the second

calculation from Theorem 3.1 is a more robust and practical choice, as it avoids the use of

Bernoulli numbers.
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Abstract. The aim of this paper is two-fold. First, we will provide clarity on a result

concerning the strong connectivity, a concept whose usefulness is readily apparent in several

fields of study including social networking and transport networks, of a bridgeless connected

graph achieved through the depth-first search (DFS) technique. To this end, we will demon-

strate two rigorous mathematical proofs of this robust and well-known result. One proof

takes the approach of seeking a contradiction by investigating the relationship between di-

rected paths and maximal strongly connected subgraphs after the application of DFS. The

other proof features a direct approach that demonstrates that for each tree edge {U, V },

there is a directed path from V to U by utilizing the fact that each edge in a connected

multigraph on at least two vertices is either a bridge or is included in some cycle. Second, for

a multigraph without a bridge, we provide two different proofs ensuring the existence of an

assignment of edge directions that induces strong connectivity. One of these proofs utilizes

the previous fact, whereas the second proof is independent of it and features a technique

that focuses on collapsing entire connected multigraphs into a single vertex.
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1. Introduction

Graph theory has rich history dating back to 1736, when Leonhard Euler published a pa-

per using this versatile branch of mathematics to approach a problem concerning the seven

bridges of Königsberg [8, 17]. Today, graph theory has garnered interest and found appli-

cations in other branches of mathematics as well as in several disciplines within academia.

Specifically, some applications of graph theory include additive number theory [1], cryptogra-

phy [28], molecular topology [5], Alzheimer’s Disease [12], algebra [29], the study of DNA and

biological networks [27], spectroscopy and quantum chemistry [7], chemistry [6, 16], social

media and social networking [10, 24, 2, 4], blockchain technologies [22], social trust models

[31], maze solving [18, 23, 25] and GPS networks [19]. In particular, we would like to examine

the applications of graph theory in computer science as well as the inherent mathematical

beauty therein.

In the realm of graph theory and the computational sciences, various algorithms, such as

Depth-First Search (DFS), Breadth-First Search, Dijkstra’s Algorithm, and Floyd-Warshall’s

Algorithm [11, 17, 15] play important roles in understanding graph structures. Each of

these algorithms have a variety of applications. For more information pertaining to some

applications of these algorithms, see [11, 21] and the references therein. Particularly, the

Depth-First Search Algorithm serves as a means of graph traversal for the sake of identifying

vertices and their relationships to underlying structures embedded within a given graph

and an associated directed graph. This algorithm commences its journey from the root, an

arbitrarily selected vertex from the given graph, and thoroughly explores each and every

vertex as far as possible before traversing its moves backward.

Ever since a version of DFS was introduced as a means of solving mazes [18], it has been

widely regarded as a versatile tool for approaching problems in both theory and practice

pertaining to, for example, finding strongly connected components in a directed graph [11]

and topological sorting [11]. With regard to applications in the computational sciences, DFS

sees use in various areas including, but not limited to, image recognition [3] and computing

search trees [30]. For further information concerning the implementation and execution of

DFS in the computational sciences and the associated data structures, see [18]. Before we

continue, we will revisit some graph theoretic definitions that will assist us in this article.

Additionally, we will provide some motivating examples for some of the concepts introduced.
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In this paper, a graph is a simple graph G = (V, E) where V ̸= ∅ is a nonempty set of

vertices and E is a set of edges. A multigraph is a graph that can have parallel edges as

well as loops, neither of which are possessed by (simple) graphs. Two vertices U and V are

said to be adjacent if there is an edge between them. The degree of a vertex V ∈ V is the

number of vertices to which V is adjacent and is denoted deg(V ). Sometimes, we wish to

assign directions to the edges of a graph. To see an example of this, let us recall the Collatz

Conjecture. That is, let us define the function C : N → N given by

C(n) =


3n+ 1, if n is odd

n/2, if n is even.

The Collatz Conjecture states that for any n ∈ N, repeated applications of C will eventually

result in 1. For example, let n = 6. Observe that

C8(6) = C7(3) = C6(10) = C5(5) = C4(16) = C3(8) = C2(4) = C(2) = 1.

Now, observe that we can represent this repeated application of C as a graph whose edges

represent the notion that adjacent numbers have the property that one of the numbers is the

result of applying C to the other. To indicate which number is obtained from applying C to

another number, we can use arrows as is done in Figure 1

6 3 10 5 16

8421

Figure 1. A graphical visualization of applying C to n = 6.

Above is an example of a directed graph. A directed graph (or digraph) is a graph whose

edges are each assigned a direction. A graph G1 = (V1, E1) is called a subgraph of another

graph G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. If this is the case, then we can write G1 ⊆ G2.

If we have a graph G along with a nonempty set X ⊆ V(G), then the subgraph of G induced

by X is the graph with vertex set X and edge set consisting of all edges {U, V } with both U

and V elements of X.

Let us again consider the graph depicted in Figure 1. Suppose that each number denotes

a particular building in a city. Suppose further that if two buildings are joined by an edge,

then there exists a one-way, road, whose direction is dictated by the direction of the edge,

connecting these buildings. For example, one could travel from building 10 to building 4
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through the roads creating the sequence 10 → 5 → 16 → 8 → 4. However, in the way that

these roads are directed, one would be unable to travel from building 4 to building 10. Let

us make the graph-theoretic phenomenon in this example more precise.

The connectivity of an undirected graph depends on its vertices’ capacity to reach one

another along the edges of the graph. A walk is a sequence of adjacent vertices and can be

thought of as moving between the vertices of a graph along the edges. A closed walk is a

walk that begins and ends on the same vertex. A path is a walk that does not repeat vertices.

A cycle is a closed path of the form {V1, . . . , Vk, Vk+1 = V1}. A chord is an edge that is not

contained within a cycle, but joins two vertices within said cycle. It is said that two vertices

are connected if there exists a path between them. It is said that a graph G is connected

if for any two vertices u, v ∈ V(G), u and v are connected. Furthermore, a graph is called

disconnected if it is not connected. For a connected graph G, an edge e ∈ E(G) is called a

bridge if the graph obtained by removing the edge e from the graph G is disconnected. On the

other hand, the concept of strong connectivity is applicable solely to directed graphs. In the

context of a directed graph, a graph G is strongly connected if and only if there is a directed

path from a vertex V to a vertex U , as well as a directed path from U to V , for each pair of

vertices U and V in V(G). The study of strongly connected graphs has various applications

as well as additional routes for further inquiry in, for example, disciplines concerned with the

reduction of complexity in certain problems [9, 11, 13]. A strongly connected component of a

directed graph is a subgraph that is maximal with respect to the property of being strongly

connected [14]. For an example of the study of strongly connected graphs and how it pertains

to social networking, see [14]. For an example of how the study of strongly connected graphs

can be considered in the study of public transport networks as well as their efficiency, see

[26].

Recalling the Collatz Conjecture, let us consider a directed graph whose vertices consist

of all elements of N and whose edges are constructed in the following way. Suppose m,n ∈ N

are such that C(m) = n. Then we construct a directed edge from m to n. Let us refer to this

graph as the Collatz Graph. Then observe that disproving the Collatz Conjecture could be

simplified to locating a directed cycle in the Collatz Graph other than the cycle {4, 2, 1, 4}.

Using our new terminology, we can again consider the graph in Figure 1 as a network of

buildings in a city. Recall that there exists a path from 10 to 4 but that there does not exist

a path from 4 to 10. From this, we can conclude that this graph is not strongly connected.

Why is this? In fact, there is a direct relationship between the existence of bridges in a graph
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and the existence of an edge direction assignment that makes the resulting directed graph

strongly connected. Observe that in the graph in Figure 1, every edge is a bridge other than

the edges of the cycle {4, 2, 1, 4}. However, if we simply add the directed edge {1, 6}, we

obtain the following graph.

6 3 10 5 16

8421

Figure 2. The graph in Figure 1 along with the directed edge {1, 6}.

Notice that in this graph, for each pair of vertices, there exists a directed path from one to

the other. As such, we can conclude that this graph is strongly connected. Observe further

that there does not exist a bridge in this graph. That is, the removal of any edge will not

leave the resulting graph disconnected. It may, however, leave the resulting directed graph

no longer strongly connected. In this paper, we will further explore the connection between

the lack of bridges in a connected graph, and that graph’s potential to have a strongly

connected edge direction assignment. Thus, notice that if we think of the graph in Figure

2 as a transportation network with the directed edges representing one-way roads and the

vertices representing buildings, one could travel between any two buildings. Let us wrap up

our discussion of graph-theoretic terminology with a brief discussion about trees.

A tree is a connected graph containing no cycles. It can be observed that the number of

vertices in a tree is one more than the number of edges. The converse is not necessarily true.

For j = i, . . . , k − 1, Vj is called the parent of Vj+1 in the DFS tree, and the edge (Vk, Vi)

is called a back-edge. See [17, 20] for the properties of trees and rooted trees. Observe that

every edge of a tree is a bridge. As an example, referring back to Figure 1, if we think of the

cycle {4, 2, 1, 4} as a single vertex 4 . Then the resulting graph would be as follows.

6 3 10 5 16

84

Figure 3. A graphical visualization of collapsing the cycle {4, 2, 1, 4} into

a single vertex 4 .
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Observe that this graph is a tree, and that, indeed, each edge of this graph is a bridge and

that this graph is not strongly connected. We will utilize this concept of collapsing subgraphs

into a single vertex in a later proof. For this, see our second proof of Theorem 6.1.

This paper is organized in the following manner. In Section 2, we provide a motivating

example demonstrating the usefulness of strong connectivity in network survivability and

how it relates to trust networks. In Section 3, after recalling the Depth-First Search Algo-

rithm, we discuss Theorem 3.1, concerning a technique for constructing a strongly connected

edge direction assignment in a connected bridgeless graph, by presenting an example demon-

strating its applicability. In Section 4, after presenting important facts concerning strong

connectivity and cycles, we provide a proof of Theorem 3.1 by contradiction. In Section 5,

we provide a second proof of Theorem 3.1 after proving Lemma 5.1, which states that each

edge in a connected multigraph on at least two vertices is either a bridge or is included in a

cycle. In Section 6, we provide two proofs of Theorem 6.1, which states that in a connected,

bridgeless multigraph, there exists an edge direction assignment that makes the resulting

directed graph strongly connected. One of these proofs invokes Lemma 5.1 and the other

does not. Finally, we present concluding remarks in Section 7.

2. A Motivating Example of Strong Connectivity

The study of graph and multigraph connectivity can be used in a variety of real-world

applications including the study of network survivability [20]. Let G be a simple, undirected,

connected graph. Let κv(G) denote the vertex connectivity of G, or the smallest number

of vertices whose removal from G can disconnect G or turn it into the trivial graph on a

single vertex [20]. Similarly, let κe(G) denote the edge connectivity of G, or the smallest

number of edges whose removal from G can disconnect G [20]. Both κv(G) and κe(G) are

used to assess the network survivability of a network, or ”the capacity of a network to retain

connections among its nodes after some edges or nodes are removed” [20]. To further explore

the applications of graph and multigraph connectivity, we can consider the concept of a fault-

tolerant communications network, which is a communications network that ”has at least two

alternative paths between each pair of vertices” [20]. For additional details regarding network

survivability and fault-tolerant communications networks, see Chapter 5 of [20].

Let us consider the following motivating example for the sake of demonstrating the appli-

cability of network survivability.
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Example 2.1. Suppose we have a simple, undirected, connected graph G whose vertices

represent people and whose edges represent a friendship between two people. It would be

reasonable to infer, that if two vertices are connected, then the two corresponding people can

have information transferred between them. Suppose G is the graph represented in Figure 4.

A B C D

Figure 4. A group of people and their corresponding friendships as a graph G.

Observe that this is a quite fragile network, as removing B or C from the group would

preclude A and D from sharing information. That is, κv(G) = 1. Similarly, if any two people

choose to end their friendship with one another, then the graph will become disconnected, and

thus, there will be at least two people who cannot share information. As such, κe(G) = 1.

However, if the people in this group acknowledge this fact about their network survivability,

they can act to strengthen their friend group’s ability to share information by suggesting that

the people represented by vertices A and D form a friendship, as shown in Figure 5.

A B C D

Figure 5. A stronger friendship network than in Figure 4.

In this graph, which we will call G′, there is no vertex, nor edge, that can be removed to

cause the resulting graph to be disconnected. Removing two vertices or edges, however, will

cause the graph to be disconnected. As such, κv(G′) = κe(G′) = 2. We can further observe

that the network represented by the graph in Figure 5 is fault-tolerant. Since there is no

single edge in G′ that disconnects the graph upon removal, we acknowledge that G′ (and the

friendship network represented therein) has stronger network survivability than G since no

bridge exists in G′. In fact, we observe that for a simple, undirected, connected graph G, if

κe(G) > 1, then G does not contain a bridge.

Continuing with our supposition that the vertices of a graph G represent people and edges

of G represent a friendship between two people, let us further assume that the friend group

represented by G has a method of communication dependent on the trust one person has

in another. That is, suppose that for any two vertices v1, v2 ∈ V(G), either the person

represented by v1 can receive information given by the person represented by v2 or they

can give information to the person represented by v2. In this case, the graph becomes a
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directed graph. Now, the friend group may be inclined to ponder whether or not they can

share information throughout the network if they were to impose the trust-dependent structure

described above. Asking this question would be equivalent to determining whether the graph

representing the network could be made strongly connected. If κe(G) > 1, then the answer to

this question is ”yes.”

3. DFS and its Relation to Strong Connectivity

One purpose of this paper is to provide two different mathematically rigorous proofs of

Theorem 3.1, a well-known result, which appears in [17]. Although the result is fairly intu-

itive, the demonstration of this fact is quite intricate. Moving forward, we will include several

figures to supplement the reader’s understanding of the theorems, proofs, and applications

discussed.

Before we begin, let us recall the Depth-First Search Algorithm which inductively operates

on a graph with n vertices in the following manner.

(1) Start by picking any vertex from the graph. Label that vertex as V1.

(2) Visit an adjacent vertex of the vertex labeled V1 and label it V2.

(3) Visit an adjacent unlabeled vertex of the vertex labeled V2 and label it V3.

(4) Continue this process until vertices have been labeled V1, V2, . . . , Vr and the vertex

labeled Vr is not adjacent to an unlabeled vertex for 1 ≤ r ≤ n.

(5) If r < n, select the largest i, 1 ≤ i ≤ r, such that Vi is adjacent to an unlabeled

vertex. Assign the label Vr+1 to that vertex and return to step (4). Otherwise, if

r = n, we are done.

Now, we can state the theorem, as referenced in [17], Theorem 5.8 on page 259.

Theorem 3.1. [17] Suppose we apply depth-first search to a connected, bridgeless graph. If

we assign directions to tree edges from lower depth-first search label to higher and to back

edges from higher label to the lower, then the resulting directed graph is strongly connected.

In order to comprehend this result, let us commence by examining an illustrative example

that highlights the potency of Theorem 3.1.

Example 3.1. Let us consider the connected graph G depicted in Figure 6, which does not

possess a bridge.
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A B

C D E

FG

H

Figure 6. A connected graph G without a bridge.

Let us demonstrate the flexibility and versatility of DFS by exemplifying three distinct

applications and the resulting strongly connected graphs. In any application of DFS, the des-

ignation of the root is arbitrary. As such, we could begin the algorithm on vertex A,B,C,D,

or any other vertex. For the sake of simplicity and readability, we will start with A as our root

in the following applications of DFS. Let us again consider the friendship and trust network

as in Example 2.1. We see that through this application of DFS, we can determine a trust

structure that would allow for strong connectivity, or in the example, a flow of information

between all members of the friend group.

V1 V2

V3 V4 V5

V6V7

V8

V1 V8

V2 V4 V5

V7V6

V3

V1 V3

V6 V4 V8

V2V7

V5

Figure 7. Three applications of DFS to G in Figure 6 with dashed back-edges.

Having applied DFS to G, we can display the resulting strongly connected graphs using the

directions assigned in Figure 7.

V1 V2

V3 V4 V5

V6V7

V8

V1 V8

V2 V4 V5

V7V6

V3

V1 V3

V6 V4 V8

V2V7

V5

Figure 8. Three distinct strongly connected directed representations of G

as in Figure 6.

We encourage the reader to ensure the strong connectivity of each graph presented in Figure

8 by confirming the existence of closed walks containing all of the vertices of G therein.
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4. First Proof: A Contradiction

Prior to commencing our proof, we shall first revisit certain preliminary and relatively-

easy-to-verify facts about strong connectivity of finite directed graphs. These simple facts

are crucial for understanding the proofs we present in this article; therefore, we provide

statements and straightforward examples for each fact for the sake of completeness. We

encourage the reader to verify these facts for themself.

(I) A directed cycle is strongly connected.

A

B

C

D

Figure 9. An illustration of Fact (I).

(II) A graph consisting solely of two directed cycles that share a common vertex (an “8”

or “∞” shape) is strongly connected.

A

B

C

D

E

F

G

Figure 10. An illustration of Fact (II) with common vertex C.

(III) A graph consisting solely of two directed cycles that share a common directed edge

is strongly connected.

A B C

DEF

Figure 11. An illustration of Fact (III) with common directed edge {B,E}.

(IV) A graph containing two strongly connected directed subgraphs with some common

vertex, or some common directed edge, is strongly connected.
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A

B

C

D

E

F

G

or

A B C

DEF

Figure 12. Two illustrations of Fact (IV).

Now that we have equipped ourselves with the appropriate mathematical instruments, let

us discuss our first proof of Theorem 3.1.

Proof of Theorem 3.1. Let V1, V2, . . . , Vn be the labels of the depth-first search tree T where

i designates the label number of vertex Vi.

Now, we will follow these steps to execute the proof.

(1) {V1, V2} is a tree edge, i.e., a directed path from V1 to V2.

(2) Let {V1, V2, . . . , Vn1−1, Vn1} be a longest directed path with consecutive labels starting

from V1 in T as in Figure 13.

V1 V2 · · · Vn1−1 Vn1

Figure 13. A longest directed path in a depth-first search.

Then, we first make the following observations:

(a) deg(Vn1) = 1 in T . Indeed, if deg(Vn1) > 1 in T , then

{V1, V2, . . . , Vn1−1, Vn1}

would not be a longest directed path in a depth-first search. Consequently, Vn1

is not adjacent to any vertex in {Vn1+1, Vn1+2, . . . , Vn−1, Vn} according to the

depth-first search.

(b) deg(Vn1) > 1 in G. This must be the case because otherwise, {Vn1−1, Vn1} would

be a bridge.

(c) Hence, by (a) and (b), there is a vertex Vb1 in {V1, V2, . . . , Vn1−1} such that

{Vn1 , Vb1} is a back edge, and so {Vb1 , Vb1+1, . . . , Vn1−1, Vn1} is a directed cycle

as in Figure 14. Therefore, the directed cycle

{Vb1 , Vb1+1, . . . , Vn1−1, Vn1}
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is a strongly connected subgraph of G.

Vb1 Vb1+1 · · · Vn1−1 Vn1

Figure 14. A directed cycle of G.

(d) Let s1 be the smallest number less than or equal to b1 and m1 be the maximum

number greater than or equal to n1 such that

(i) {V1, V2, . . . , Vs1−1, Vs1} is a directed path in T and

(ii) G1 = {Vs1 , Vs1+1, . . . , Vm1−1, Vm1} is a strongly connected subgraph of G.

V1 V2 · · · Vs1−1 {Vs1 , Vs1+1, . . . , Vm1−1, Vm1} = G1

Figure 15. A directed path to a maximal strongly connected subgraph G1 of G.

(3) We shall prove that s1 = 1 and m1 = n, and so the graph induced by the vertices

{V1, V2, . . . , Vn} is strongly connected.

Suppose that m1 < n. Then there is an integer, denoted as i1, which represents

the largest label less than or equal to m1, such that {Vi1 , Vm1+1} is a tree edge. By

the depth-first search, there is no vertex in {Vi1+1, Vi1+2, . . . , Vm1} adjacent to any

vertex in {Vm1+1, Vm1+2, . . . , Vn}.

First, we will demonstrate that i1 ≥ s1. That is to say, Vi1 ∈ G1. In fact, if i1 < s1,

then no vertex in G1 is adjacent to any vertex in {Vm1+1, Vm1+2, . . . , Vn}. Hence there

is a vertex Vm in G1 which is adjacent to a vertex Vs in {V1, V2, . . . Vs1−2}. This must

be the case because otherwise, {Vs1−1, Vs1} would be a bridge. Using this back edge

{Vm, Vs}, we have a directed path {Vm, Vs, Vs+1, . . . , Vs1−1, Vs1}.

· · · Vs Vs+1 · · · Vs1−1 Vs1 · · · Vm · · · Vm1 · · ·

Figure 16. A larger directed cycle of G when i1 < s1.

Since G1, induced by {Vs1 , Vs1+1, Vs1+2, . . . , Vm1}, is a strongly connected subgraph

of G, there is a directed path from Vs1 to Vm, and so we have a directed cycle from

Vm to Vs to Vs1 to Vm as shown in Figure 16. Therefore, if we had i1 < s1, then
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the subgraph induced by {Vs, Vs+1, . . . , Vs1−1, Vs1 , Vs1+1, . . . , Vm1} would be strongly

connected by Fact (IV). This contradicts the selection of the minimum value s1 and

the maximum value m1 in (2d). Therefore, we know that i1 ≥ s1. Let

{Vi1 , Vm1+1, Vm1+2, . . . , Vn2}

be a longest directed path beginning with the tree edge {Vi1 , Vm1+1} and with con-

secutive labels m1 + 1,m1 + 2, . . . , n2 in T .

V1 V2 · · · Vs1−1 {Vs1 , . . . , Vi1 , . . . , Vm1}

Vm1+1Vm1+2· · ·Vn2

Figure 17. A directed path from Vi1 to the vertex Vn2 .

Then

(a) deg(Vn2) = 1 in T by the longest property. Hence, Vn2 is not adjacent to any

vertex in {Vn2+1, Vn2+2, . . . , Vn} by the depth-first search.

(b) deg(Vn2) > 1 in G. This must be the case because otherwise, {Vn2−1, Vn2} would

be a bridge.

(c) Hence, there is a vertex Vb2 in {V1, V2, . . . Vn2−1} such that {Vn2 , Vb2} is a back

edge.

Now we consider 3 cases: b2 < s1, s1 ≤ b2 ≤ m1, and b2 > m1.

Case 1: b2 < s1. If this is the case, then

{Vi1 , Vm1+1, Vm1+2, . . . Vn2 , Vb2 , Vb2+1, . . . , Vs1}

is a directed path. Since G1, the graph induced by

{Vs1 , Vs1+1, Vs1+2, . . . , Vm1}

is a strongly connected subgraph, there is a directed path from Vs1 to Vi1 , and

so we have a directed cycle from Vi1 to Vn2 to Vb2 to Vs1 to Vi1 . Hence, the graph

induced by

{Vb2 , Vb2+1, . . . , Vs1 , . . . , Vii , . . . , Vm1 , Vm1+1, Vm1+2, . . . , Vn2}

is a strongly connected subgraph of G by Fact (IV). This contradicts the selection

of s1 and m1.
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V1 · · · Vb2 · · · {Vs1 , . . . , Vi1 , . . . , Vm1}

Vm1+1Vm1+2· · ·Vn2

Figure 18. A directed path from Vi1 through Vm1+1, Vn2 , Vb2 to Vs1 .

Case 2: s1 ≤ b2 ≤ m1. If this is the case, then similar to Case 1, we will have a

directed cycle from Vi1 to Vn2 to Vb2 to Vi1 . Hence, the graph induced by

{Vs1 , Vs1+1, Vs1+2, . . . , Vm1 , Vm1+1, Vm1+2, . . . , Vn2}

is a strongly connected subgraph of G by Fact (IV). This contradicts the selection

of s1 and m1.

V1 · · · Vs1−1 {Vs1 , . . . , Vb2 , . . . , Vi1 , . . . , Vm1}

Vm1+1Vm1+2· · ·Vn2

Figure 19. A directed cycle from Vi1 through Vm1+1, Vn2 , Vb2 to Vi1 .

Case 3: b2 > m1. In this case, {Vb2 , Vb2+1, . . . , Vn2 , Vb2} becomes a directed cycle.

Let s2 be the smallest number less than or equal to b2 and m2 be the maximum

number greater than or equal to n2 such that G2, the graph induced by

{Vs2 , Vs2+1, . . . , Vb2 , Vb2+1, . . . , Vn2 , . . . , Vm2},

is a strongly connected subgraph with consecutive labels. Note that, by the

selection of G1, m1 < s2. Also,

{Vi1 , Vm1+1, Vm1+2, . . . , Vs2}

is a directed path from G1 to G2. Moreover, there is no back edge from a vertex

in G2 to any vertex with label less than s2 by the “maximum” property. By re-

peating this finitely many, say r, times, we will have disjoint “maximal” strongly

connected subgraphs Gj , induced by

{Vsj , Vsj+1, Vsj+2, . . . , Vij , . . . , Vmj},

for 1 ≤ j ≤ r, such that {V1, V2, . . . , Vs1} is a directed path in the DFS tree T ,

{Vij , Vmj+1, Vmj+2, . . . , Vsj+1
} is a directed path from Gj to Gj+1, and Vmr = Vn.
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V1 V2 · · · Vs1−1 {Vs1 , . . . , Vi1 , . . . , Vm1} = G1

Vm1+1Vm1+2· · ·Vs2−1

{Vs2 , . . . , Vi2 , . . . , Vm2} = G2

Vm2+1 • • • {Vsr−2 , . . . , Vir−2 , . . . , Vmr−2}= Gr−2

Vmr−2+1Vmr−2+2· · ·Vsr−1−1

{Vsr−1,, . . . , Vir−1 , . . . , Vmr−1} = Gr−1

Vmr−1+1 Vmr−1+2 · · · Vsr−1

{Vsr , . . . , Vn} = Gr

Figure 20. A structure of disjoint, maximal, and strongly connected subgraphs.

Now, if no vertex in {V1, V2, . . . , Vmr−1} is adjacent to any vertex in Gr, then

the first edge {Vir−1 , Vmr−1+1} in the directed path from Gr−1 to Gr would be

a bridge, which is a contradiction. If there is a vertex Vs in {V1, V2, . . . , Vmr−1}

which is adjacent to a vertex Vm in Gr, then {Vs, Vm} is a back edge, which

would contradict the “maximal” property of Gis. Hence r must be equal to 1

and m1 = n.

Furthermore, we will prove (by contradiction) that s1 must be equal to 1. In

fact, if s1 > 1, then there is a vertex Vs in {V1, V2, . . . , Vs1−1} and a vertex Vm

in

G1 = {Vs1 , Vs1+1, . . . , Vn}

such that {Vm, Vs} is a back edge. This must be the case because otherwise,

{Vs1−1, Vs1} would be a bridge.

{V1, V2, . . . , Vs, . . . , Vs1−1, Vs1 , . . . , Vmr−1} · · · {Vsr , . . . , Vm, . . . , Vn} = Gr

Figure 21. A critical back edge {Vm, Vs}.
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Hence, the graph induced by

{Vs, Vs+1, . . . , Vs1 , Vs1+1, . . . , Vn}

is a strongly connected subgraph of G by Fact (IV). This contradicts the selection

of s1. Therefore, s1 must be equal to 1.

This completes the proof. □

5. Second Proof: A Direct Method

We will now focus our efforts on proving the following lemma, which will assist us in our

second proof of Theorem 3.1.

Lemma 5.1. Let G be a connected multigraph with n > 1 vertices. Then each edge in G is

either a bridge or is included in a cycle.

Proof. Let {U, V } be an edge in G. Now, we perform a DFS algorithm beginning with

U = V1 and V = V2 and let V1, V2, . . . , Vn be the labels in the resulting tree T . By assigning

a direction for each edge in T from lower label to higher label, T becomes a rooted tree with

vertex V1 as its root and there is a (unique) directed path Pi from V1 to any vertex Vi. Now,

we divide all the Vis into two parts:

PU = {Vi | Pi does not include V2} and PV = {Vj | Pj includes V2}. (5.1)

Then PU and PV are disjoint and {U, V } is the only edge in T joining PU and PV . If there

is no other edge in G connecting PU and PV , then {U, V } is a bridge. If there is some edge

{Vi, Vj} in G where Vi ∈ PU and Vj ∈ PV , then {U, V } is included in the (undirected) cycle

{Vi, . . . , V1 = U, V2 = V, . . . , Vj , Vi}.

Thus, we can conclude that each edge in G is either a bridge or is included in a cycle. □

For an illustration of the sets PU and PV as used in Equation (5.1) within Lemma 5.1 as

well as the cases contemplated in the Lemma, let us consider the following examples.

Example 5.1. (a) Let G1 be the graph on the left depicted in Figure 22. To its right is an

application of DFS to G1.
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A

V U

C

B D

V3
V2 V1

V5

V4 V6

Figure 22. An illustration of Lemma 5.1 with {U, V } as a bridge.

In this case, we observe that PU = {V1, V5, V6} and PV = {V2, V3, V4} and thus, we have

that PU ∩PV = ∅. Furthermore, we observe that {U, V } is the only edge of G1 connecting PU

and PV . Hence, {U, V } is a bridge of G1.

(b) Let G2 be the graph on the left depicted in Figure 23. To its right is an application of

DFS.

A

V U

C

B D

V3
V2 V1

V5

V4 V6

Figure 23. An illustration of Lemma 5.1 with {U, V } as an edge of a cycle.

In this case, we observe that PU = {V1} and PV = {V2, V3, V4, V5, V6} and thus, we have

that PU ∩ PV = ∅. In this case, {U, V }, {U,C}, and {U,D} all join PU with PV in G2, and

as such, {U, V } is not the only edge connecting the sets. Moreover, we see that {U, V } is not

a bridge of G2, and thus, is included in a cycle of G2.

We will now provide another proof of Theorem 3.1 using the machinery we have established

in Lemma 5.1.

Proof of Theorem 3.1. Suppose depth-first search is applied to a connected graph G without

a bridge. Let us assign a tree edge from lower to higher depth-first search number and assign

a back edge from higher to lower depth-first search number.

We will prove that the resulting directed graph is strongly connected. To this end, let us

assign V1, V2, . . . , Vn as the labels of the depth-first search tree T with i the label number of

Vi. Then T is a rooted tree with V1 as the root and there is a directed path from V1 to any

vertex Vi by DFS.

We shall prove that for any vertex Vi, there is a directed path from Vi to V1. Doing so will

ensure that G is strongly connected. To this end, it suffices to show that there is a directed

path from V to U for each tree edge {U, V }.
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Let {U, V } be an arbitrary tree edge. Then, by Lemma 5.1, since G is bridgeless, the edge

{U, V } is included in some cycle C. Let m be the lowest label among the vertices in C and

TVm be the subtree of T formed by Vm and its descendants. To illustrate this, consider the

graph on the left of Figure 24, and the designation of TVm after the application of DFS.

V1

V2

V3

Vm Vm+1 U

VVr

V1

V2

V3

Vm Vm+1 U

VVr

Figure 24. An example graph G and the corresponding TVm identified.

Then we have that Vm is the root of TVm . If we denote the (undirected) cycle C by

{U1 = Vm, U2, . . . , Us, U1} such that U = Ui and V = Ui+1 for some i, then {U1, U2, . . . , Us}

is a directed path in TVm and (Us, U1) is a back edge. As such, {U1, U2, . . . , Us, U1} becomes

a directed cycle. Moreover, (U, V ) is included in the directed cycle C = {U1, U2, . . . , Us, U1}.

Hence, there is a directed path from V to U . To further illustrate this, included in Figure 25

is the graph from Figure 24 with the cycle in question highlighted in red on the left as well

as assigned directions such that there exists both a directed path from U = Ui to V = Ui+1

and from V = Ui+1 to U = Ui on the right.

V1

V2

V3

U1 U2 Ui

Ui+1Us

V1

V2

V3

U1 U2 Ui

Ui+1Us

Figure 25. An undirected cycle C and directed paths from U = Ui to

V = Ui+1 and from V = Ui+1 to U = Ui.

Since {U, V } was selected arbitrarily, this process guarantees that performing DFS in the

way provided will ensure the existence of a directed path from V to U for every tree edge

{U, V }. Thus, G becomes strongly connected. □
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6. Strong Connectivity of a Bridgeless Multigraph

Let us consider and acknowledge the fact that given a bridgeless multigraph on at least

two vertices, we can ensure the existence of a strongly connected graph as a result of some

assignment of directions to the edges of said graph.

Theorem 6.1. Let G be a connected multigraph with n > 1 vertices without a bridge. Then

we can make G a strongly connected multigraph by assigning a direction to each edge in G.

We will prove this theorem in two ways. One of these ways will rely on Lemma 5.1, whereas

the other will not.

Proof of Theorem 6.1 (Using Lemma 5.1). Pick up an edge {U, V } in G. Then by Lemma

5.1, {U, V } is contained in some cycle C1. We can assign a direction to each edge in the cycle

C1 to make it a directed cycle.

If C1 contains all the vertices in G, then G is strongly connected regardless of the directions

of edges not in the cycle C1.

If C1 does not contain all the vertices in G. Let G1 be the subgraph induced by C1. Then

there is an edge {V1, V2} such that V1 is in G1 and V2 is not in G1. By Lemma 5.1, {V1, V2}

is contained in some cycle C2. This leads us to contemplate the two following cases.

(a) If V1 is the only common vertex of G1 and C2, then we can assign a direction to each

edge in the cycle C2 to make it a directed cycle, and so the subgraph G2 induced by

G1 ∪ C2 is strongly connected regardless the directions of edges not in G1 and C2.

(b) If there is more than one common vertex between G1 and C2, then let V ′
1 be the first

other common vertex in the portion of C2 formed by the directed path {V1, V2, . . . , V ′
1}.

Then along the directed path from V ′
1 to V1 in G1, we can assign a direction to each

edge in V1, V2, . . . , V
′
1 to form a directed cycle C ′

2, and so G2, the graph induced by

the vertices of C1 ∪C ′
2, is strongly connected regardless of the directions of edges not

in the cycles C1 and C ′
2. Since G has finitely many vertices, after r iterations of this

procedure, we will have Gr, the graph induced by the vertices of C1 ∪ C ′
2 ∪ · · · ∪ C ′

r,

which contains all the n vertices in G, and so Gr = G is strongly connected.

This concludes the proof. □

Below is a simple illustration of the central concepts of the above proof.
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Example 6.1. First, let us consider Case (a). That is, below are two cycles that share

exactly one common vertex. Here, we consider the cycles

C1 = {V1, U, V, V1} and C2 = {V1, V2, V3, V4, V1}.

Observe that, in Figure 26, the graph induced by C1 ∪ C2 is strongly connected, since it

contains the closed walk

W := {V1, U, V, V1, V2, V3, V4, V1}.

U
V1

V2

V V4

V3

Figure 26. Case (a) with C1 and C2.

Furthermore, below are simple illustrations of an instance where Case (b) is in effect. Let

G be the graph in Figure 27 on the left. First, we acknowledge G1, the graph induced by

C1 = {U, V, V1, V5, V ′
1 , U},

and assign directions to the edges.

U

V1

V2
V

V3

V ′
1

V4

V5

U

V1

V2
V

V3

V ′
1

V4

V5

Figure 27. An example of Case (b) with C1 designated.

Notice that G1 is strongly connected. Now, we observe that the vertices V1, V2, V
′
1 , V3, and

V4 induce another cycle. We will call this cycle C2. Then, we identify the path {V1, V2, V ′
1}

as the portion of C2 that shares two common vertices with C1 and construct the cycle

C ′
2 = {V1, V2, V ′

1 , U, V, V1}. Thus, we have assigned directions to the edges in G2, the graph

induced by the vertices in C1 ∪ C ′
2. Observe that G2 is strongly connected. Now, we observe

the cycle

C3 = {V1, V4, V3, V ′
1 , U, V, V1}.

Next, we identify the path {V1, V4, V3, V ′
1} as the portion of C3 that shares two common

vertices with G2 and construct the cycle C ′
3 = {V1, V4, V3, V ′

1 , U, V, V1}.



INT. J. MAPS MATH. (2025) 8(2):791-815 / EDGE DIRECTION ASSIGNMENTS 811

U

V1

V2
V

V3

V ′
1

V4

V5

U

V1

V2
V

V3

V ′
1

V4

V5

Figure 28. An example of Case (b) with C1 ∪ C ′
2 ∪ C ′

3 designated.

Now, after appending C ′
3, we have that each edge of the graph has been assigned a direction.

Moreover, G3, the graph induced by C1 ∪C ′
2 ∪C ′

3, contains all of the vertices and edges of G.

Furthermore, we have that G3 is strongly connected and that G3 = G. Therefore, G is strongly

connected with the assigned directions.

Proof of Theorem 6.1 (Without using Lemma 5.1). First, we know that since G has no bridges,

G is not a tree. Hence G contains a cycle C1 = {V1, V2, . . . , Vk, V1}. Assigning directions

(V1, V2), . . . , (Vk−1, Vk), (Vk, V1),

we obtain a directed cycle C1 and consequently achieve a strongly connected subgraph of

G. If there are any chords in C1, we arbitrarily assign a direction to the chords in question.

Moving forward, we have a strongly connected submultigraph C∗
1 of G consisting of all vertices

in C1 and all the edges of G which have both end vertices in C1. Now, we will employ C∗
1 to

construct a new connected multigraph G1 without a bridge. To this end, we will consider C∗
1

as a single vertex, say V , and all the vertices in G but not in C∗
1 as the other vertices in a new

graph G1, with vertex set V ∪ (V (G) − V (C∗
1)), and keep all the edges in G while collapsing

all the edges in C∗
1 into the vertex V . Then, we are left with the following cases.

(a) If G1 contains only one vertex V , then C∗
1 = G, and so we are done.

(b) If G1 contains more than one vertex, then G1 is a connected multigraph with n1 > 1

vertices without a bridge and n1 < n. Since n is a finite number, after finitely many,

say r, steps, we will have that Gr contains a single vertex. As a result, the entire

graph G becomes a strongly connected multigraph.

This concludes our proof. □

Let us illustrate the above proof.

Example 6.2. First, we will consider Case (a). Observe that the graph in Figure 29 is a

cycle with a single chord, and so we can assign directions to the edges of the graph in such a
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way that the resulting graph is strongly connected. Furthermore, this allows us to immediately

collapse the entire directed graph into V , thus completing our procedure.

A B

CD

−→
A B

CD

−→ •V

Figure 29. An example of Case (a).

Note that we could have assigned the cycle to be counter-clockwise and the chord in the

other direction.

Now, we will contemplate an instance of Case (b). Consider the graph in Figure 30.

A B

CD

E

F

G

H

Figure 30. An example of a graph satisfying Case (b).

Next, we will identify cycles, direct each corresponding cycle, and collapse them one by one

until we are left with a single ”vertex” representing the entire graph as a strongly connected

portion. First, we consider C1.

A B

CD

E

F

G

H

A B

CD

E

F

G

H

A B

CV 1

G

H

−→ −→

Figure 31. The identification of C1, direction of C∗
1 , and collapse of C∗

1 into V 1.

Next, we turn our attention to C2.

A B

CV 1

G

H

A B

CV 1

G

H

A V 2

CV 1

−→ −→

Figure 32. The identification of C2, direction of C∗
2 , and collapse of C∗

2 into V 2.

Finally, we will acknowledge C3.
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A V 2

CV 1

−→
A V 2

CV 1

−→ •V 3

Figure 33. The identification of C3, direction of C∗
3 , and collapse of C∗

3 into V 3.

Now, since each V i is strongly connected and we have simplified the given graph to V 3, we

are done and have a strongly connected graph.

7. Conclusion

As mentioned in the introduction, studying strong connectivity in graphs is instrumental in

various real-world applications of graph theory, including social networks and transportation

systems. The ability to determine whether a graph’s edges can be oriented to produce a

strongly connected directed graph is particularly valuable for analyzing graph structures and

the relationships they model. Furthermore, understanding exactly how to construct such an

edge direction assignment could also prove to be a very useful endeavor. Within our paper,

we have presented two proofs of a known result regarding the ability of the Depth-First

Search Algorithm to generate a strongly connected graph from a bridgeless graph as well

as two proofs of the existence of a strongly connected assignment of edge directions for a

bridgeless multigraph.

For a potential application of the content of this manuscript, note that the algorithms

that we provided in the proofs can be implemented into software for the purpose of uti-

lizing computers to extrapolate information concerning computationally complex strongly

connected graphs, multigraphs, and components that could potentially pertain to real-world

applications.

Acknowledgments. The authors would like to thank the referee for some useful com-

ments and their helpful suggestions that have improved the quality of this paper.
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