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EDITORIAL

BAYRAM ŞAHİN ID ∗

This issue of International Journal of Maps in Mathematics is dedicated to the memory of

Professor Krishan Lal Duggal. Dr. Krishan Lal Duggal passed away peacefully on December

1 st of 2023 at 92 years of age.

Figure 1. Professor Krishan L. Duggal and me at Windsor University

Professor Krishan Lal Duggal was well knownn for his passion of Mathematics and he

inspired greatness and guided all he had contact with in achieving their goal of learning.

Greatly respected in his field, he authored and published numerous books and research

papers. He was an avid musician in his free time singing Bhajans and playing the sitar and

harmonium.

I was familiar with Professor Duggal’s publications. But I met him face to face in 2003,

when I had the opportunity to be his post-doctoral student at the University of Windsor,

Canada. We co-authored many research papers with Professor Duggal, and we also co-

authored the book titled “Differential Geometry of Lightlike Submanifolds” published by

Springer in 2010.

I will remember Professor Duggal with respect and gratitude. I will also remember him

saying “The sky is not too high”.

Ege University, Faculty of Science, Department of Mathematics, 35100, İzmir, Türkiye

∗ Editor-in-chief.
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A NEW PARAMETRIZATION OF CARTAN NULL BERTRAND CURVE

IN MINKOWSKI 3-SPACE
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Dedicated to the memory of the late Professor Krishan Lal Duggal(1929-2022)

Abstract. We define and study a new parametrization of a Bertrand pair {α, α∗}, where

α is a Cartan null Bertrand curve and α∗ is a Bertrand partner curve of α in Minkowski 3-

space by not taking the principal normal vector of the Cartan null Bertrand curve α parallel

to
−−→
α∗ α. We characterize both cases when the curve α∗ is non-null and the null Bertrand

partner of the curve α. Further, we investigate this type of Bertrand pair curve as a helix

and a slant helix. Also, we provide some examples.

Keywords: Bertrand curves, general helices, slant helices, Cartan null curve, non-null

curve, Minkowski 3-space.

2020 Mathematics Subject Classification: 53B30.

1. Introduction

In 1802, Lancret [14] defined a helix as a curve whose tangent vector makes a constant

angle with a fixed straight line called the directrix. Later in 1845, Saint Venant [16] obtained

a necessary and sufficient condition for a curve to be a general helix if its ratio of curvature

to torsion is constant. In 1995, Scofield studied closed-form arc-length parametrizations for

curves of constant precession and slant helices with a constant speed of precession [17]. In

2004, Izumiya and Takeuchi introduced the concept of the slant helix in E3 saying that the

principal normal lines make a constant angle with a fixed direction. They characterized a

Received:2023.05.10 Revised: 2023.09.25 Accepted:2023.11.23
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curve as a slant helix if and only if the principal image of the major normal indicatrix has a

constant geodesic curvature [10].

In 2010, Kula et al. studied the relationship between slant helices and helices, and they

characterized slant helices in E3 in terms of differential equations [13]. In 2011, Ali and Lopez

[1] characterized a non-null spacelike and timelike curve with a spacelike principal normal

vector to be a slant helix in E3
1 if and only if either one of the two functions(τ

k

)′ k2

(k2 − τ2)3/2
or

(τ
k

)′ k2

(τ2 − k2)3/2
(1.1)

is a constant function and τ2 − k2 ̸= 0.

In 2019, Liu and Pei [15] characterized a null Cartan curve α to be a slant helix in E3
1

if and only if the principal image of the major normal indicatrix has a constant geodesic

curvature kg, i.e.,

kg =
τ ′(s)

2
√
2|τ(s)|3/2

(1.2)

is a constant function for a non-zero torsion τ(s) of the curve.

In the fields of computer-aided design and computer graphics, helices can be used for tool

path description, the simulation of kinematic motion, the design of highways, etc. [21]. Also,

helix and slant helix play an important role in curve theory with numerous applications in

the biological sciences, physics, etc. For instance, in the biological sciences, curves are used in

the analysis of Deoxyribonucleic Acid (DNA), and in physics, they are used in characterizing

the motion of particles in a magnetic field.

In 1845, Saint Venant [16] posed the question of whether the principal normal of a curve

is the principal normal of another curve on the surface generated by the principal normal of

the given one. Bertrand [4] gave an answer to this question in 1850 and introduced curves

with the property that the principal normal vector of a curve α coincides with the principal

normal vector of another curve α∗ at their corresponding points. Further, these curves

were characterized in E3 with condition ak + bτ = 1, where a and b are nonzero constants

and k and τ are the curvature and torsion of the curve, respectively [7]. Also, Bertrand

curves and their characterizations were studied by many researchers in Minkowski 3-space

(see [2, 3, 9, 11, 20]). In [3], Balgetir et al. studied the Cartan null Bertrand pair curve

{α, α∗} in E3
1. Later in 2021, Gokcek and Erdem [8] studied the Cartan null Bertrand curve

α with the non-null Bertrand partner curve α∗ in E3
1. In [6], Camci, et al. introduced a new

relationship between a Bertrand pair α and α∗ in E3 by not taking the vector
−−→
α∗α parallel to



4 S. TAMTA AND R. S. GUPTA

a normal vector of Bertrand curve α. Using this approach, the present authors studied a new

parametrization of Bertrand partner curves and spherical indicatrices in Euclidean 3-space

[18, 19].

In view of this, we define and study a new parametrization of a Bertrand pair {α, α∗},

where α is a Cartan null Bertrand curve and α∗ is a Bertrand partner curve of α in Minkowski

3-space by not taking the vector
−−→
α∗ α parallel to N of α in Minkowski 3-space.

2. Preliminaries

The Lorentz-Minkowski E3
1 is a space with metric,

⟨, ⟩ = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system. With respect to this metric, an arbi-

trary vector α = (α1, α2, α3) is said to be spacelike if ⟨α, α⟩ > 0, timelike if ⟨α, α⟩ < 0, and

null if ⟨α, α⟩ = 0. Similarly, if α = α(s) denotes the position vector of an arbitrary non-null

curve in E3
1, then it is called timelike and spacelike if all of its velocity vectors α′(s) are

timelike and spacelike, respectively. The norm of the vector α is given by ||α′|| =
√

|⟨α′, α′⟩|.

A non-null curve α(s) is parameterized by arc length s if ⟨α′(s), α′(s)⟩ = ±1. A null curve

is parameterized by pseudo-arc s if ⟨α′′(s), α′′(s)⟩ = 1. If a null curve is parameterized by a

pseudo-arc function, it is referred to as a Cartan null curve.

Let {T, N, B} be the moving Frenet frame along a curve in E3
1, consisting of the tangent,

the principal normal, and the binormal vector field, respectively. Depending on the causal

character of α, the Frenet equations have the following forms:

Case I. If α is a non-null curve, the Frenet formulas are [12]:
T ′

N ′

B′

 =


0 ϵ1k1 0

−ϵ0k1 0 ϵ2 k2

0 −ϵ1k2 0




T

N

B

 , (2.3)

where ⟨T, T ⟩ = ϵ0, ⟨N,N⟩ = ϵ1, ⟨B,B⟩ = ϵ2, and ϵ0, ϵ1, ϵ2 ∈ {−1, 1}, and k(s), τ(s) are

curvature and torsion of α.

Case II. If α is a Cartan null curve, the Frenet formulas are [5]:
T ′

N ′

B′

 =


0 k1 0

k2 0 −k1

0 −k2 0




T

N

B

 , (2.4)
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where ⟨T, B⟩ = ⟨N, N⟩ = 1, and ⟨T, T ⟩ = ⟨B, B⟩ = ⟨T, N⟩ = ⟨N, B⟩ = 0, and k1(s), k2(s)

are curvature and torsion of α.

In [3, 8], the authors defined the Cartan null Bertrand curve α : I → E3
1 with Bertrand

partner curve α∗ : I∗ → E3
1 as follows:

α∗(s∗) = α(s) + λ(s)N(s), (2.5)

such that the principal normal vectors of α(s) and α∗(s∗) coincides at s ∈ I, s∗ ∈ I∗, where

λ(s) is C∞-function on I.

Now, we define a new parametrization of a Bertrand pair {α, α∗}, where α is a Cartan

null curve and α∗ is a Bertrand partner curve of α in E3
1 such that the vector

−−→
αα∗ does not

have to be parallel to N , which is given by

α∗(s∗) = α(s) + u(s)T (s) + v(s)N(s) + w(s)B(s), (2.6)

where u(s), v(s) and w(s) are differentiable functions and {T (s), N(s), B(s)} is the Frenet-

Serret frame of α(s). If we take u = w = 0 in (2.6), we obtain (2.5). Hence, (2.6) is the

generalization of Cartan null Bertrand curves in E3
1.

3. New parametrization of Cartan null Bertrand curve in E3
1

In this section, we study a pair curve {α, α∗} in E3
1 satisfying (2.6), where α is a Cartan

null curve with curvature k1 and torsion k2, and α∗ is a Bertrand partner curve of α with

curvature k∗1 and torsion k∗2.

Now onwards, we denote the geodesic curvatures of the principal normal indicatrices (im-

ages) of a Cartan null Bertrand curve α by Γ, and that of a timelike and spacelike Bertrand

partner curve α∗ by Γ∗
1 and Γ∗

2, respectively.

Also, we set

µ =
(1 + u′ + v k2)

ds∗

ds

, ν =
(w′ − v k1)

ds∗

ds

, h =
µ

ν
, (3.7)

and 
β = (µk1−ν k2)

k∗1
ds∗
ds

= ±1, ρ(s) =
(w′−v k1) (h2 k21−k22)

2 k∗1

(
ds∗
ds

)2 ,

η(s) = − (w′−v k1) (h2 k21−k22)

2h k∗1

(
ds∗
ds

)2 , ρ(s) = −h η(s).

(3.8)

Next, we have:
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Theorem 3.1. Let α : I → E3
1 be a Cartan null curve in E3

1 with curvatures k1(s) ̸= 0 and

k2(s) satisfying (2.6).

(i) If α∗ is a timelike curve with k∗1 ̸= 0, then {α, α∗} is a Bertrand pair in E3
1 if and only

if there exist differentiable functions u, v, w, and a real number h satisfying

v′ + u k1 − w k2 = 0, h < 0, ν2 = − 1

2h
, h k1 − k2 ̸= 0. (3.9)

(ii) If α∗ is a spacelike curve with k∗1 ̸= 0 and having a spacelike principal normal vector,

then {α, α∗} is a Bertrand pair in E3
1 if and only if there exist differentiable functions u, v, w,

and a real number h satisfying

v′ + u k1 − w k2 = 0, h > 0, ν2 =
1

2h
, h k1 − k2 ̸= 0. (3.10)

Further, in both the cases (i) and (ii), if


k∗2 ̸= 0, then h k1 + k2 ̸= 0,

k∗2 = 0, then h k1 + k2 = 0.

Proof. (i) Let {α, α∗} be a Bertrand pair in E3
1 satisfying (2.6) such that α is a Cartan null

curve and α∗ is a timelike curve. Differentiating (2.6) with respect to s and then using (2.3)

and (2.4), we obtain

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (v′ + u k1 − w k2)N + (w′ − v k1)B. (3.11)

Taking the inner product of (3.11) with N , we get

v′ + u k1 − w k2 = 0. (3.12)

Using (3.12) in (3.11), we obtain

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (w′ − v k1)B. (3.13)

Using (3.7) in (3.13), we have

T ∗ = µT + ν B. (3.14)

If we take the inner product of the equation (3.14) first with T and then with N , the

following results are obtained

−1 = 2µ ν, (3.15)

which gives µ ̸= 0 and ν ̸= 0. Consequently, from (3.7), we find that 1 + u′ + v k2 ̸= 0 and

w′ − v k1 ̸= 0.
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Using the third relation of (3.7) in (3.15), we get

2h ν2 = −1, (3.16)

which gives h < 0.

Now, differentiating (3.14) with respect to s and then using (2.3) and (2.4), we obtain

k∗1 N
∗ ds

∗

ds
= µ′ T + (µk1 − ν k2)N + ν ′B. (3.17)

Taking the inner product of (3.17) with T and B, we find

ν ′ = 0, µ′ = 0. (3.18)

Using (3.18) in (3.17), we obtain

k∗1 N
∗ ds

∗

ds
= (µk1 − ν k2)N. (3.19)

Now, taking the inner product of (3.19) with itself and using (3.16) and the third relation

of (3.7), we get

(k∗1)
2
(ds∗
ds

)2
= − 1

2h
(h k1 − k2)

2, (3.20)

which gives (h k1 − k2) ̸= 0. Now, using the first relation of (3.8), we have

N∗ = β N. (3.21)

Differentiating (3.21) with respect to s and then using (2.3) and (2.4), we obtain

k∗2 B
∗ ds

∗

ds
= β (k2 T − k1B)− k∗1 T

∗ ds
∗

ds
. (3.22)

Using (3.13) in (3.22), we get

k∗2 B
∗ ds

∗

ds
=

(
β k2 − k∗1 (1 + u′ + v k2)

)
T −

(
β k1 + k∗1 (w

′ − v k1)
)
B. (3.23)

Using the first relation of (3.8) in (3.23), we have

k∗2 B
∗ ds

∗

ds
=

(ν k2 (h k1 − k2)

k∗1
ds∗

ds

− k∗1 (1 + u′ + v k2)
)
T −

(ν k1 (h k1 − k2)

k∗1
ds∗

ds

+ k∗1 (w
′ − v k1)

)
B.

(3.24)

Now, using (3.7) in (3.24), we find

k∗2 B
∗ ds

∗

ds
= (w′ − v k1)

((k2 (h k1 − k2)− k∗21 h (ds
∗

ds )
2

k∗1 (
ds∗

ds )
2

)
T

−
(k1 (h k1 − k2) + k∗21 (ds

∗

ds )
2

k∗1 (
ds∗

ds )
2

)
B
)
.

(3.25)
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Using (3.20), and the second and third relations of (3.8) in (3.25), we obtain

k∗2 B
∗ ds

∗

ds
= ρ(s)T (s) + η(s)B(s). (3.26)

Taking the inner product of (3.26) with itself, we get

k∗22

(ds∗
ds

)2
= 2 ρ(s) η(s) = −2h η(s)2. (3.27)

From (3.27), depending upon k∗2 = 0 or k∗2 ̸= 0, we find that h k1+k2 = 0 or h k1+k2 ̸= 0.

Conversely, let α be a Cartan null curve with curvatures k1 ̸= 0 and k2 in E3
1 satisfying

(3.10). Then, we can define the curve α∗ as (2.6). Differentiating (2.6) with respect to s and

then using (2.4), we obtain

T ∗ = µT + ν B. (3.28)

Using the third relation of (3.7) and the third relation of (3.9) in (3.28), we get

T ∗ =
1√
−2h

(hT +B), ⟨T ∗, T ∗⟩ = −1. (3.29)

Now, differentiating (3.29) with respect to s and then using (2.4), we get

dT ∗

ds
=

1√
−2h

(h k1 − k2)N, (3.30)

which gives

k∗1 = ||dT
∗

ds∗
|| = ξ1 (h k1 − k2)√

−2h ds∗

ds

, (3.31)

where ξ1 = ±1. Now, N∗ can be obtained as

N∗ = ξ1N, ⟨N∗, N∗⟩ = 1. (3.32)

Differentiating (3.32) with respect to s and using ϵ0 = −1, ϵ2 = 1, (2.3) and (2.4), we

obtain

(k∗1 T
∗ + k∗2 B

∗)
ds∗

ds
= ξ1 (k2 T − k1B). (3.33)

Taking the inner product of (3.33) with itself, we get

(−k∗21 + k∗22 )
(ds∗
ds

)2
= −2k1 k2. (3.34)

Using (3.31) in (3.34), we get

k∗2 =
ξ2 (h k1 + k2)√

−2h ds∗

ds

, (3.35)

where ξ2 = ±1.
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Using (3.29), (3.31), and (3.35) in (3.33), we find

B∗ =
ξ1 ξ2√
−2h

(−hT +B), ⟨B∗, B∗⟩ = 1. (3.36)

Then, α∗ is a timelike curve, and the Bertrand partner curve of the null Cartan curve α.

Thus, α is a Bertrand curve.

(ii) Let {α, α∗} be a Bertrand pair in E3
1 satisfying (2.6) such that α is a Cartan null curve

and α∗ is a spacelike curve. Differentiating (2.6) with respect to s, and using (2.3) and (2.4),

we get

T ∗ds
∗

ds
= (1 + u′ + v k2)T + (v′ + u k1 − w k2)N + (w′ − v k1)B. (3.37)

Taking the inner product of (3.37) with N , we obtain

v′ + u k1 − w k2 = 0. (3.38)

Using (3.38) in (3.37), we obtain

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (w′ − v k1)B. (3.39)

Using (3.7) in (3.39), we have

T ∗ = µT + ν B. (3.40)

Taking the inner product of (3.40) with itself, we find

1 = 2µ ν, (3.41)

which gives ν ̸= 0 and µ ̸= 0. Consequently, from (3.7), we find that 1 + u′ + v k2 ̸= 0 and

w′ − v k1 ̸= 0.

Using the third relation of (3.7) in (3.41), we obtain

2h ν2 = 1, (3.42)

which gives h > 0.

Now, differentiating (3.40) with respect to s and then using (2.3) and (2.4), we get

k∗1 N
∗ ds

∗

ds
= µ′ T + (µk1 − ν k2)N + ν ′B. (3.43)

If we take the inner product of the equation (3.43) first with T and then with B, the

following results are obtained

ν ′ = 0, µ′ = 0. (3.44)
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Using (3.44) in (3.43), we obtain

k∗1 N
∗ ds

∗

ds
= (µk1 − ν k2)N. (3.45)

Now, taking the inner product of (3.45) with itself and using (3.42) and the third relation

of (3.7), we get

(k∗1)
2
(ds∗
ds

)2
=

1

2h
(h k1 − k2)

2, (3.46)

which gives (h k1 − k2) ̸= 0. Now, using the first relation of (3.8), we have

N∗ = β N. (3.47)

Differentiating (3.47) with respect to s and then using (2.3) and (2.4), we get

−k∗2 B
∗ ds

∗

ds
= β (k2 T − k1B) + k∗1 T

∗ ds
∗

ds
. (3.48)

Using (3.39) in (3.48), we get

−k∗2 B
∗ ds

∗

ds
= β (k2 T − k1B) + k∗1

(
(1 + u′ + v k2)T + (w′ − v k1)B

)
. (3.49)

Using (3.7), (3.8) and (3.46) in (3.49), we get

−k∗2 B
∗ ds

∗

ds
= ρ(s)T (s)− η(s)B(s). (3.50)

Taking the inner product of (3.50) with itself, we get

k∗22

(ds∗
ds

)2
= 2 ρ(s) η(s) = −2h η(s)2. (3.51)

From (3.51), depending upon k∗2 = 0 or k∗2 ̸= 0, we find that h k1+k2 = 0 or h k1+k2 ̸= 0.

Conversely, let α be a Cartan null curve in E3
1 with curvatures k1 ̸= 0 and k2 satisfying

(3.10). Then, we can define the curve α∗ as (2.6). Now, differentiating (2.6) with respect to

s and then using (2.4), we get

T ∗ = µT + ν B. (3.52)

Using the third relation of (3.7) and the third relation of (3.10) in (3.52), we obtain

T ∗ =
1√
2h

(hT +B), ⟨T ∗, T ∗⟩ = 1. (3.53)

Now, differentiating (3.53) with respect to s and then using (2.4), we get

dT ∗

ds
=

1√
2h

(h k1 − k2)N, (3.54)
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which gives

k∗1 = ||dT
∗

ds∗
|| = ξ3 (h k1 − k2)√

2h ds∗

ds

, (3.55)

where ξ3 = ±1. Now, N∗ can be obtained as

N∗ = ξ3N, ⟨N∗, N∗⟩ = 1. (3.56)

Differentiating (3.56) with respect to s and using ϵ0 = 1, ϵ2 = −1, (2.3) and (2.4), we

obtain

(−k∗1 T
∗ − k∗2 B

∗)
ds∗

ds
= ξ3 (k2 T − k1B). (3.57)

Taking the inner product of (3.57) with itself, we get

(k∗21 − k∗22 )
(ds∗
ds

)2
= −2k1 k2. (3.58)

Using (3.55) in (3.58), we obtain

k∗2 =
ξ4 (h k1 + k2)√

2h ds∗

ds

, (3.59)

where ξ4 = ±1.

Using (3.53), (3.55), and (3.59) in (3.57), we find

B∗ =
−ξ3 ξ4√

2h
(hT −B), ⟨B∗, B∗⟩ = −1. (3.60)

Then, α∗ is a spacelike curve with a spacelike principal normal vector and the Bertrand

partner curve of α. As a result, α is a Bertrand curve, and the proof of the Theorem is

complete. □

Now, from Theorem 3.1, we have:

Corollary 3.1. Let α : I ⊂ R → E3
1 be a Cartan null Bertrand curve in E3

1 with non-zero

curvature k1 ̸= 0, k2, and the curve α∗ given in (2.6) be a non-null Bertrand partner curve

of α with the non zero curvatures k∗1, k
∗
2. Then α∗ is a general helix if and only if α is a

general helix.

Proof. Let α : I ⊂ R → E3
1 be a Cartan null Bertrand curve in E3

1 with the curvatures k1, k2

and the curve α∗ is a Bertrand partner curve of α.

(i) If α∗ is a timelike curve, then from (3.31) and (3.35), we have

k∗1
k∗2

= ξ1 ξ2
h k1

k2
− 1

h k1
k2

+ 1
. (3.61)
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(ii) If α∗ is a spacelike curve, then from (3.55) and (3.59), we have

k∗1
k∗2

= ξ3 ξ4
h k1

k2
− 1

h k1
k2

+ 1
. (3.62)

Combining (3.61) and (3.62), the proof is complete. □

Corollary 3.2. Let α : I ⊂ R → E3
1 be a Cartan null Bertrand curve in E3

1 with non-zero

curvatures k1 = 1, k2, and the curve α∗ be a non-null Bertrand partner curve of α with the

non zero curvatures k∗1, k
∗
2 satisfying (2.6). Then α∗ is a slant helix if and only if α is a

slant helix. Moreover, we have

Γ∗
1 = −ξ1 ξ2 Γ, Γ∗

2 = ξ3 ξ4 Γ. (3.63)

Proof. Assume that α : I ⊂ R → E3
1 is a Cartan null Bertrand curve in E3

1 with curvature

k1 ̸= 0, k2 and the curve α∗ is a Bertrand partner curve of α with the non-zero curvatures

k∗1, k
∗
2 satisfying (2.6). Now, if the curve α is a slant helix, and then for the principal normal

vector N of α and a constant vector field U , we have

⟨N, U⟩ = constant. (3.64)

Since N is parallel to N∗ from (3.64) we find

⟨N∗, U⟩ = constant, (3.65)

which implies α∗ is also a slant helix and converse is easy to prove. Further, we have:

(i) If α∗ is a timelike curve, then using k∗1 and k∗2 from (3.31) and (3.35) in (1.1), we have

Γ∗
1 = −ξ1 ξ2

k′2

2
√
2 k

3/2
2

. (3.66)

(ii) If α∗ is a spacelike curve, then using k∗1 and k∗2 from (3.55) and (3.59) in (1.1), we have

Γ∗
2 = ξ3 ξ4

k′2

2
√
2 k

3/2
2

. (3.67)

Then, using (1.2), (3.66), and (3.67), we have (3.63). Thus, the proof is complete. □

Now, we have:

Theorem 3.2. Let α and α∗ be a Cartan null curves in E3
1. Then, α∗ is a Bertrand partner

curve of the Bertrand curve α if

(i) there exist differentiable functions u, v, and w satisfying

v′ + u k1 − w k2 = 0, w′ − v k1 = 0, (3.68)
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and its Cartan null frames are related by

T ∗ = µT, N∗ = ξ5N, B∗ =
1

µ
B, (3.69)

or

(ii) there exist differentiable functions u, v, and w satisfying

v′ + u k1 − w k2 = 0, 1 + u′ + v k2 = 0, (3.70)

and its Cartan null frames are related by

T ∗ = ν B, N∗ = −ξ6N, B∗ =
1

ν
T, (3.71)

where ξ5 = ±1, ξ6 = ±1.

Proof. Let α is a Cartan null Bertrand curve in E3
1 with k1 ̸= 0, k2 and the curve α∗ is the

Cartan null Bertrand partner curve of the curve α satisfying (2.6). Now, differentiating (2.6)

with respect to s and then using (2.4), we get

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (v′ + u k1 − w k2)N + (w′ − v k1)B. (3.72)

Taking the inner product of (3.72) with N , we obtain

v′ + u k1 − w k2 = 0. (3.73)

Using (3.73) in (3.72), we get

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (w′ − v k1)B. (3.74)

Using (3.7) in (3.74), we have

T ∗ = µT + ν B. (3.75)

Taking the inner product of (3.75) with itself, we find

0 = 2µ ν. (3.76)

Now, we have two cases:

Case (i) If ν = 0, then we have

T ∗ = µT. (3.77)

Now, differentiating (3.77) with respect to s and then using (2.4), we get

k∗1 N
∗ ds

∗

ds
= µ′ T + µk1N. (3.78)
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Taking the inner product of (3.78) with B, we find

µ′ = 0. (3.79)

Using (3.79) in (3.78), we obtain

k∗1 N
∗ ds

∗

ds
= µk1N. (3.80)

Taking the inner product of (3.80) with itself, we get

(k∗1)
2
(ds∗
ds

)2
= µ2 k21, (3.81)

which gives

k∗1 =
ξ5 µk1

ds∗

ds

. (3.82)

Using (3.82) in (3.80), we obtain

N∗ = ξ5N. (3.83)

Differentiating (3.83) with respect to s and then using (2.4), we get

(k∗2 T
∗ − k∗1 B

∗)
ds∗

ds
= ξ5 (k2 T − k1B). (3.84)

Taking the inner product of (3.84) with itself, we get

k∗1 k
∗
2

(ds∗
ds

)2
= k1 k2. (3.85)

Using (3.82) in (3.85), we obtain

k∗2 =
ξ5 k2

µ ds∗

ds

. (3.86)

Using (3.77), (3.82), and (3.86) in (3.84), we get

B∗ =
1

µ
B. (3.87)

Case (ii) If µ = 0, then we have

T ∗ = ν B. (3.88)

Now, differentiating (3.88) with respect to s and then using (2.4), we get

k∗1 N
∗ ds

∗

ds
= ν ′B − ν k2N. (3.89)

Taking the inner product of (3.89) with T , we find

ν ′ = 0. (3.90)
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Using (3.90) in (3.89), we obtain

k∗1 N
∗ ds

∗

ds
= −ν k2N. (3.91)

Now, taking the inner product of (3.91) with itself, we get

(k∗1)
2
(ds∗
ds

)2
= ν2 k22, (3.92)

which gives

k∗1 =
ξ6 ν k2

ds∗

ds

. (3.93)

Using (3.93) in (3.91), we obtain

N∗ = −ξ6N. (3.94)

Differentiating (3.94) with respect to s and then using (2.4), we get

(k∗2 T
∗ − k∗1 B

∗)
ds∗

ds
= −ξ6 (k2 T − k1B). (3.95)

Taking the inner product of (3.95) with itself, we get

k∗1 k
∗
2

(ds∗
ds

)2
= k1 k2. (3.96)

Using (3.93) in (3.96), we obtain

k∗2 =
ξ6 k1

ν ds∗

ds

. (3.97)

Using (3.88), (3.93), and (3.97) in (3.95), we get

B∗ =
1

ν
T. (3.98)

Thus, the proof is complete. □

4. Examples

Example 4.1. Let α(s) be a Cartan null curve in E3
1 given by

α(s) =
( 1√

2
sinh(

√
2 s) +

1

2
cosh(

√
2 s),

1√
2
cosh(

√
2 s) +

1

2
sinh(

√
2 s),

1√
2
s
)
,

with curvature k1 = 1 and torsion k2 = 1.
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The Frenet frame of α(s) is given by
T =

(
cosh(

√
2 s) + 1√

2
sinh(

√
2 s), sinh(

√
2 s) + 1√

2
cosh(

√
2 s), 1√

2

)
,

N =
(√

2 sinh(
√
2s) + cosh(

√
2s),

√
2 cosh(

√
2s) + sinh(

√
2s), 0

)
,

B = −
(
cosh(

√
2 s) + 1√

2
sinh(

√
2 s), sinh(

√
2 s) + 1√

2
cosh(

√
2 s), − 1√

2

)
.

If we take u = 2 s, v = 5 s2

2 , w = −3 s in (2.6), we find the Bertrand partner curve α∗(s∗)

as:

α∗ =
(
sinh(

√
2 s)A(s) + cosh(

√
2 s)B(s), cosh(

√
2 s)A(s) + sinh(

√
2 s)B(s), 0

)
,

where A(s) = 1+5 s−5 s2√
2

, B(s) = 1+10 s−5 s2

2 .

By computing the curvature and torsion of α∗, we get

k∗1 =
2√

6− 5 s2
, k∗2 = 0.

Further, the Frenet frame of α∗ is given by
T ∗ =

(
sinh(

√
2 s) +

√
2 cosh(

√
2 s), cosh(

√
2 s) +

√
2 sinh(

√
2 s), 0

)
,

N∗ =
(√

2 sinh(
√
2s) + cosh(

√
2s),

√
2 cosh(

√
2s) + sinh(

√
2s), 0

)
,

B∗ =
(
0, 0, 1

)
.

Thus, α∗(s∗) is a timelike Bertrand partner curve of the curve α(s).

Figure 1. Curve α (red) and α∗ (blue) in E3
1

Example 4.2. Let α1(s) be a Cartan null curve in E3
1 given by

α1(s) =
(
sinh(s), cosh(s), s

)
,

with curvature k1 = 1 and torsion k2 = 1/2.
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The Frenet frame of α1(s) is given by
T1 =

(
cosh(s), sinh(s), 1

)
,

N1 =
(
sinh(s), cosh(s), 0

)
,

B1 =
(− cosh(s)

2
,
− sinh(s)

2
,
1

2

)
.

If we take u = s
2 , v = −1

3 , w = s in (2.6), we find the Bertrand partner curve α∗
1(s

∗) as:

α∗
1 =

(2
3
sinh(s),

2

3
cosh(s), 2 s

)
.

By computing the curvature and torsion of α∗
1, we get

k∗1 =
3

16
, k∗2 =

9

16
.

Further, the Frenet frame of α∗
1 is given by

T ∗
1 = 1

2
√
2

(
cosh(s), sinh(s), 3

)
,

N∗
1 =

(
sinh(s), cosh(s), 0

)
,

B∗
1 = − 1

2
√
2

(
3 cosh(s), 3 sinh(s), 1

)
.

Thus, α∗
1(s

∗) is a spacelike Bertrand partner curve of the curve α1(s).

Figure 2. Curve α1 (red) and α∗
1 (blue) in E3

1

Example 4.3. If we take u = s
4 , v = 1

2 , w = s
2 in (2.6) for the Cartan null curve α1(s) in

Example 4.2, we find the Bertrand partner curve α∗
2(s

∗) as:

α∗
2 =

1

2

(
3 sinh(s), 3 cosh(s), 3 s

)
.

By computing the curvature and torsion of α∗
2, we get

k∗1 = 1, k∗2 =
1

3
.
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Further, the Frenet frame of α∗
2 is given by

T ∗
2 =

√
3
2

(
cosh(s), sinh(s), 1

)
,

N∗
2 =

(
sinh(s), cosh(s), 0

)
,

B∗
2 = 1√

6

(
− cosh(s), − sinh(s), 1

)
.

Thus, α∗
2(s

∗) is a Cartan null Bertrand partner curve of the curve α1(s).

Figure 3. Cartan null Bertrand partner curve α∗
2 of a null Cartan curve α1

in E3
1
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generalizes forms of Sasakian, Kenmotsu and cosymplectic manifolds. A trans-Sasakian man-

ifold of type (0, 0), (α, 0) and (0, β) are Cosymplectic, α-Sasakian and β-Kenmotsu manifolds

respectively, where α, β are smooth functions. In particular, a trans-Sasakian manifold will

be Kenmotsu and Sasakian manifold, if α = 0, β = 1 and α = 1, β = 0 respectively. β-

Kenmotsu manifold provides a large variety of Kenmotsu manifolds. Recently, Kenmotsu

manifolds have been studied by several authors (cf. [8, 6, 11, 13, 23, 24]).

On differentiable manifolds, A. Friedmann and J. A. Schouten [12] first proposed a semi-

symmetric linear connection. On Riemannian manifolds, semi-symmetric metric connection

was first systematically examined by K. Yano [25], which was further studied by authors,

including S. Ahmad and S. I. Hussain [21], M. M. Tripathi [22] and others. Semi-symmetric

non-metric connection was established in a Riemannian manifold by N. S. Agashe and M. R.

Chafle [1]. In line with this, S. K. Chaubey et al. [2] introduced the notion of non-symmetric

non-metric connection. It has been further studied in [4, 5, 7, 17, 18, 19].

A torsion tensor of a connection is a mapping T ′ : χ(Ω)× χ(Ω) → χ(Ω) defined by

T ′ (X1,X2) = ∇̂X1X2 − ∇̂X2X1 − [X1,X2] . (1.1)

A connection ∇̂ is symmetric if T ′ = 0 and it is non-symmetric if T ′ ̸= 0. The connection

∇̆ is metric if ∇̆X ĝ = 0 and it is non-metric if ∇̆X ĝ ̸= 0. It was further studied by several

geometers [10, 9].

In a Riemannian manifold (Ω2n+1, ĝ), ĝ is a Ricci soliton if

(£V ĝ)(X1,X2) + 2S†(X1,X2) + 2Θĝ(X1,X2) = 0, (1.2)

∀ X1, X2 and V on Ω2n+1, where £V denote the Lie-derivative along the vector field V, S†

is Ricci tensor and Θ is a constant. The Ricci soliton is shrinking, steady and expanding if

Θ < 0, Θ = 0 and Θ > 0 respectively.

This paper is organized as follows: In Section 2, we present an informative introduction

of β-Kenmotsu manifold. In Section 3, we define non-symmetric non-metric connection.

In Section 4, we find the curvature tensor with non-symmetric non-metric connection. In

Section 5, we investigate projectively and conformally flat β-Kenmotsu manifolds with defined

connection. In Section 6, we show that the manifold with the defined connection satisfying

the condition R̆† · S̆†=0 is an Einstein manifold.
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2. Preliminaries

A smooth manifold Ω2n+1 is almost contact metric [15] if it admits a (1, 1)-tensor field φ̂,

an associated vector field ζ̂, a 1-form η̂ and the Riemannian metric ĝ satisfying

φ̂2X1 = −X1 + η̂ (X1) ζ̂, η̂(ζ̂) = 1, φ̂ζ̂ = 0, η̂ (φ̂X 1) = 0, (2.3)

ĝ(φ̂X 1, φ̂X 2) = ĝ (X1,X2)− η̂ (X1) η̂ (X2) , ĝ(X1, ζ̂) = η̂(X1), (2.4)

for all X1,X2 ∈ T ′Ω.

An almost contact metric manifold Ω2n+1 is a β-Kenmotsu manifold [20] if and only if

(∇̂X1φ̂)X2 = β[ĝ (φ̂X 1,X2) ζ̂ − η̂ (X2) φ̂(X 1)]. (2.5)

From (2.5), we have

∇̂X1 ζ̂ = β[X1 − η̂ (X1) ζ̂], (2.6)

(∇̂X1 η̂)X2 = βĝ (φ̂X 1, φ̂X2) = β[ĝ (X1,X2)− η̂ (X1) η̂ (X2)]. (2.7)

Further, the curvature tensor R†, Ricci tensor S† and Ricci operator Q† in β-Kenmotsu

manifold with the Levi-Civita connection ∇̂ satisfy [20].

R† (X1,X2) ζ̂ = −β2[η̂ (X2)X1 − η̂ (X1)X2] + (X1β)[X2 − η̂(X 2)ζ̂]

−(X2β)[X1 − η̂(X 1)ζ̂], (2.8)

R†(ζ̂,X1)X2 = (β2 + ζ̂β)[η̂ (X2)X1 − ĝ (X1,X2) ζ̂], (2.9)

R†(ζ̂,X1)ζ̂ = (β2 + ζ̂β)[X1 − η̂ (X1) ζ̂], (2.10)

S†(X1, ζ̂) = −(2nβ2 + ζ̂β)η̂ (X1)− (2n− 1)(X1β), (2.11)

S†(ζ̂, ζ̂) = −(2nβ2 + ζ̂β), (2.12)

Q†ζ̂ = −(2nβ2 + ζ̂β)ζ̂ − (2n− 1)gradβ. (2.13)

Definition 2.1. A β-Kenmotsu manifold Ω2n+1 is known as a generalized η-Einstein man-

ifold if its Ricci tensor S† of type (0, 2) satisfies

S† = λ1ĝ + λ2η̂ ⊗ η̂ + λ3[η̂ ⊗ ω + ω ⊗ η̂], (2.14)

where, λ1, λ2 and λ3 are smoth functions, ω is a 1-form defined by ω(X1) = ĝ(X1, ρ) ∀ X1,

ρ and ζ̂ are mutually orthogonal to each other.
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Definition 2.2. The projective curvature tensor of a (2n + 1)-dimensional β-Kenmotsu

manifold Ω is given by [4]

P♭ (X1,X2)X3 = R† (X1,X2)X3 −
1

2n
[S† (X2,X3)X1 − S† (X1,X3)X2]. (2.15)

Definition 2.3. The conformal curvature tensor C♭ of a (2n+ 1)-dimensional β-Kenmotsu

manifold Ω [20] is given by

C♭ (X1,X2)X3 = R† (X1,X2)X3 −
1

2n− 1
[S† (X2,X3)X1 − S† (X1,X3)X2

+ĝ (X2,X3)Q†X1 − ĝ (X1,X3)Q†X2]

+
k

2n(2n− 1)
[ĝ (X2,X3)X1 − ĝ (X1,X3)X2] (2.16)

where R†, S†, Q† and k is the curvature tensor, Ricci tensor, Ricci opretor and scalar

curvature respectively with ∇̂.

3. Non-symmetric non-metric connection

The relation between non-symmetric non-metric connection ∇̆ and the Levi-Civita con-

nection ∇̂ [2, 3] is given as

∇̆X1X2 = ∇̂X1X2 + ĝ (φ̂X 1,X2) ζ̂, (3.17)

which satisfies

T̆ ′ (X1,X2) = 2ĝ (φ̂X 1,X2) ζ̂ (3.18)

and

(∇̆X1 ĝ)(X2,X3) = −η̂ (X3) ĝ (φ̂X 1,X2)− η̂ (X2) ĝ (φ̂X 1,X3) (3.19)

for arbitrary vector fields X1, X2 and X3.

Let Ω2n+1 be a β-Kenmotsu manifold with a non-symmetric non-metric connection ∇̆,

then

(∇̆X1φ̂)(X2) = (∇̂X1φ̂) (X2) + ĝ (φ̂X 1, φ̂X2) ζ̂, (3.20)

(∇̆X1 η̂) (X2) = (∇̂X1 η̂) (X2)− ĝ (φ̂X 1,X2) , (3.21)

∇̆X1 ζ̂ = ∇̂X1 ζ̂. (3.22)

From (3.22), the following theorem yields:

Theorem 3.1. The vector field ζ̂ is invariant with respect to the connections ∇̂ and ∇̆ [18].
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4. Curvature tensor on a β-Kenmotsu manifold with non-symmetric

non-metric connection

If R† and R̆† are the curvature tensors of connections ∇̂ and ∇̆ respectively, we have

R̆† (X1,X2)X3 = ∇̆X1∇̆X2X3 − ∇̆X2∇̆X1X3 − ∇̆[X1,X2]X3, (4.23)

from (2.5), (2.6) and (3.17), we have

R̆† (X1,X2)X3 = R† (X1,X2)X3 + β[2ĝ (φ̂X 1,X2) η̂(X3)ζ̂

+ĝ (φ̂X 2,X3)X1 − ĝ (φ̂X 1,X3)X2]. (4.24)

Putting X1 = ei in (4.24) and summing over 1 ≤ i ≤ (2n+ 1), we get

S̆† (X2,X3) = S† (X2,X3) + 2nβĝ (φ̂X 2,X3) , (4.25)

Q̆† (X2) = Q† (X2) + 2nβ (φ̂X 2) . (4.26)

Thus we state the following theorem:

Theorem 4.1. In a β-Kenmotsu manifold, Ricci tensor and Ricci operator are defined by

the equations (4.25) and (4.26) respectively endowed with ∇̆ and ∇̂.

Contracting (4.25), it follows that

k̆ = k. (4.27)

Here R̆†, S̆†, Q̆† and k̆ is the curvature tensor, Ricci tensor, Ricci operator and scalar

curvature respectively with ∇̆.

Thus with the help of (4.27), we have following theorem:

Theorem 4.2. If a β-Kenmotsu manifold Ω2n+1 admits ∇̆, then the scalar curvatures cor-

responding to ∇̆ and ∇̂ coincide.

By replacing X3 = ζ̂, in (4.24) and in view of (2.3), (2.4) and (2.8), we get

R̆† (X1,X2) ζ̂ = β2 (η̂(X 1)X2 − η̂(X2)X1) + 2βĝ (φ̂X1,X2) ζ̂

+(X1β)[X2 − η̂(X2)ζ̂]− (X2β)[X1 − η̂(X1)ζ̂]. (4.28)

From (2.3), (2.9) and (4.24), we get

R̆†(ζ̂,X2)X3 = (β2 + ζ̂β)[η̂ (X3)X2 − ĝ (X2,X3) ζ̂] + βĝ (φ̂X 2,X3) ζ̂. (4.29)
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By using (2.3), (2.4), (2.10) and (4.24), we get

R̆†(ζ̂,X1)ζ̂ = R†(ζ̂,X1)ζ̂

= (β2 + ζ̂β)[X1 − η̂(X1)ζ̂]. (4.30)

Putting X3 = ζ̂ in (4.25) and using (2.11), we get

S̆†(X2, ζ̂) = S†(X2, ζ̂)

= −(2nβ2 + ζ̂β)η̂ (X2)− (2n− 1)(X2β) (4.31)

and

Q̆† (X2) = −(2nβ2 + ζ̂β)ζ̂ − (2n− 1)gradβ. (4.32)

5. projectively curvature tensor on β-Kenmotsu manifold with

non-symmetric non-metric connection

From Definition 2.2, we have

P̆♭ (X1,X2)X3 = R̆† (X1,X2)X3 −
1

2n
[S̆† (X2,X3)X1 − S̆† (X1,X3)X2]. (5.33)

Using (4.24), (4.25) in (5.33), we acquire

P̆♭ (X1,X2)X3 = P♭ (X1,X2)X3 + 2βĝ (φ̂X 1,X2) η̂(X3)ζ̂. (5.34)

Thus, we have the following results:

Theorem 5.1. If a β-Kenmotsu manifold Ω2n+1 admits ∇̆, then the projective curvature

tensors corresponding to ∇̆ and ∇̂ are related by the equation (5.34).

If Ω2n+1 is C̆♭-flat, then from Definition 2.3 we obtain

R̆† (X1,X2)X3 =
1

2n− 1
[S̆† (X2,X3)X1 − S̆† (X1,X3)X2

+ĝ (X2,X3) Q̆†X1 − ĝ (X1,X3) Q̆†X2]

− k̆

2n(2n− 1)
[ĝ (X2,X3)X1 − ĝ (X1,X3)X2]. (5.35)

Putting X3 = ζ̂ in (5.35) and using (4.25), (4.26), (4.27) and (4.28), we have

η̂(X2)Q̆†X1 − η̂(X1)Q̆†X2 = (β2 + ζ̂β +
k

2n
)[η̂(X2)X1 − η̂(X1)X2]

−(2n− 1)[(X1β)η̂(X2)− (X2β)η̂(X1)]ζ̂

+2(2n− 1)βĝ(φ̂X 1,X2)ζ̂. (5.36)
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Again putting X2 = ζ̂ in (5.36), we obtain

Q̆†X1 = (β2 + ζ̂β +
k

2n
)X1 − ((2n+ 1)β2 − (2n− 3)ζ̂β +

k

2n
)η̂(X1)ζ̂

−(2n− 1)((X1β)ζ̂ + η̂(X1)gradβ). (5.37)

Hence

S̆† (X1,X2) = (β2 + ζ̂β +
k

2n
)ĝ(X1,X2)− (2n− 1)((X1β)η̂(X2) + (X2β)η̂(X1))

−((2n+ 1)β2 − (2n− 3)ζ̂β +
k

2n
)η̂(X1)η̂(X2). (5.38)

Let ω(X1) = ĝ(X1, ρ) = (X1β) = ĝ(gradβ,X1) ∀ X1. If ρ and ζ̂ are orthogonal then ζ̂β = 0

and (5.38) takes the form of (2.14). Therefore, we have the following theorem:

Theorem 5.2. A conformally flat β-Kenmotsu manifold endowed with ∇̆ is a generalised

η-Einstein manifold equipped with ∇̆.

6. β-Kenmotsu manifold satisfying R̆† · S̆†=0

We consider a β-Kenmotsu manifold with ∇̆ connection satisfying

R̆†(X1,X2).S̆† = 0. (6.39)

Therefore, we get

S̆†(R̆†(X1,X2)X3,X4) + S̆†(X3, R̆†(X1,X2)X4) = 0. (6.40)

Replacing X1 by ζ̂ in (6.40), it follows that

S̆†(R̆†(ζ̂,X2)X3,X4) + S̆†(X3, R̆†(ζ̂,X2)X4) = 0. (6.41)

In view of (4.29), we have

(β2 + ζ̂β)[η̂(X3)S̆†(X2,X4)− ĝ(X2,X3)S̆†(ζ̂,X4)]

+ βĝ(φ̂X 2,X3)S̆†(ζ̂,X4) + (β2 + ζ̂β)[η̂(X4)S̆†(X3,X2)

− ĝ(X2,X4)S̆†(X3, ζ̂)] + βĝ(φ̂X 2,X4)S̆†(X3, ζ̂) = 0.

(6.42)

Again replacing X3 by ζ̂ and using (2.3) and (4.31), we have

S̆†(X2,X4) =− (2nβ2 + ζ̂β)ĝ(X2,X4) + (2n− 1)((X2β)η̂(X4)

− (X4β)η̂(X2)) + 2nβĝ(φ̂X 2,X4).
(6.43)
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Using (4.25), we have

S†(X2,X4) =− (2nβ2 + ζ̂β)ĝ(X2,X4) + (2n− 1)(X2β)η̂(X4)

− (2n− 1)(X4β)η̂(X2).
(6.44)

Taking X4 = ζ̂ in (6.44), we get

2(X2β) = (ζ̂β)η̂(X2). (6.45)

Again we take X2 = ζ̂ in (6.45), we get

ζ̂β = 0. (6.46)

Using (6.45) and (6.46) in (6.44), we have

S†(X2,X4) = −2nβ2ĝ(X2,X4). (6.47)

Thus we leads to the theorem:

Theorem 6.1. A β-Kenmotsu manifold satisfying the condition R̆† · S̆†=0 with ∇̆ is an

Einstien manifold with ∇̂.

A Ricci soliton in β-Kenmotsu manifold is defined by equation (1.2). Naturally, two cases

appear corresponding to the vector field V : V ∈ Spanζ̂ and V ⊥ ζ̂. We consider only the

case V = ζ̂. The Ricci soliton (ĝ, ζ̂,Θ) on a β-Kenmotsu manifold endowed with ∇̆ is defined

as

(£̆ζ̂ ĝ)(X1,X2) + 2S̆†(X1,X2) + 2Θĝ(X1,X2) = 0. (6.48)

Here

(£̆ζ̂ ĝ)(X1,X2) = (∇̆ζ̂ ĝ)(X1,X2) + ĝ(∇̆X1 ζ̂,X2) + ĝ(X1, ∇̆X2 ζ̂). (6.49)

Now using (2.6) and (3.22) in (6.49), we have

(£̆ζ̂ ĝ)(X1,X2) = 2β[ĝ(X1,X2)− η̂(X1)η̂(X2)]. (6.50)

Now, from (6.48) and (6.50), we obtain

S̆†(X1,X2) = −(β +Θ)ĝ(X1,X2) + βη̂(X1)η̂(X2). (6.51)

Replacing X1,X2 by ζ̂ and using (6.43), we get

Θ = 2n(β2 + ζ̂β).

Since β is some non-zero function, we have Θ ̸= 0, so we state the following theorem:



28 A. SINGH, M. AHMAD, S. K. YADAV, AND S. PATEL

Theorem 6.2. A Ricci soliton (ĝ, ζ̂,Θ) in β-Kenmotsu manifold Ω2n+1 with ∇̆ can not be

steady but is expanding if β2 + ζ̂β > 0 and shrinking if β2 + ζ̂β < 0.

7. Example of β-Kenmotsu Manifold with non-symmetric non-metric

connection

Example 7.1. Let us consider the 3-dimensional manifold Ω2n+1 = [(x; y; z) ∈ R3|z ̸= 0];

where (x; y; z) are the standard coordinates in R3. Consider the vector fields

ϱ1 = z2
∂

∂x
, ϱ2 = z2

∂

∂y
, ϱ3 =

∂

∂z
= ζ̂.

At each point of Ω2n+1, ϱ1, ϱ2 and ϱ3 are linearly independent. Suppose the Riemannian

metric ĝ is defined as

ĝ (ϱ1, ϱ2) = ĝ (ϱ2, ϱ3) = ĝ (ϱ3, ϱ1) = 0,

ĝ (ϱ1, ϱ1) = ĝ (ϱ2, ϱ2) = ĝ (ϱ3, ϱ3) = 1, (7.52)

and φ̂ is defined by

φ̂(ϱ1) = −ϱ2, φ̂(ϱ2) = ϱ1, φ̂(ϱ3) = 0. (7.53)

According to the Lie bracket definition, we get

[ϱ1, ϱ2] = 0, [ϱ1, ϱ3] = −2

z
ϱ1, [ϱ2, ϱ3] = −2

z
ϱ2. (7.54)

Also

2ĝ(∇̂X1X2,X3) = X1ĝ (X2,X3) + X2ĝ (X3,X1)−X3ĝ (X1,X2)

+ ĝ ([X1,X2] ,X3)− ĝ ([X2,X3] ,X1) + ĝ ([X3,X1] ,X2) .
(7.55)

Using Koszul’s formula, we get

∇̂ϱ1ϱ1 =
2

z
ϱ3, ∇̂ϱ1ϱ2 = 0, ∇̂ϱ1ϱ3 = −2

z
ϱ1,

∇̂ϱ2ϱ1 = 0, ∇̂ϱ2ϱ2 =
2

z
ϱ3, ∇̂ϱ2ϱ3 = −2

z
ϱ2,

∇̂ϱ3ϱ1 = 0, ∇̂ϱ3ϱ2 = 0, ∇̂ϱ3ϱ3 = 0.

(7.56)
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Also X1 = X 1ϱ1 + X 2ϱ2 + X 3ϱ3 and ζ̂ = ϱ3, then we have

∇̂X1 ζ̂ = ∇̂X 1ϱ1+X 2ϱ2+X 3ϱ3ϱ3

= X 1∇̂ϱ1ϱ3 + X 2∇̂ϱ2ϱ3 + X 3∇̂ϱ3ϱ3

= −2

z

(
X 1ϱ1 + X 2ϱ2

)
(7.57)

and

∇̂X1 ζ̂ = β[X1 − η̂(X1)ζ̂]

= β[
(
X 1ϱ1 + X 2ϱ2 + X 3ϱ3

)
− ĝ

(
X 1ϱ1 + X 2ϱ2 + X 3ϱ3, ϱ3

)
ϱ3]

= −2

z
[X 1ϱ1 + X 2ϱ2 + X 3ϱ3 −X 3ϱ3]

= −2

z
[X 1ϱ1 + X 2ϱ2]. (7.58)

From (7.57) and (7.58), the structure (φ̂, ζ̂, η̂, ĝ) is a β-Kenmotsu manifold structure. There-

fore Ω3(φ̂, ζ̂, η̂, ĝ) is a β-Kenmotsu manifold. From (2.3), (2.5), (3.17) and (7.56), we have

∇̆ϱ1ϱ1 =
2

z
ϱ3, ∇̆ϱ1ϱ2 = −ϱ3, ∇̆ϱ1ϱ3 = −2

z
ϱ1,

∇̆ϱ2ϱ1 = ϱ3, ∇̆ϱ2ϱ2 =
2

z
ϱ3, ∇̆ϱ2ϱ3 = −2

z
ϱ2,

∇̆ϱ3ϱ1 = 0, ∇̆ϱ3ϱ2 = 0, ∇̆ϱ3ϱ3 = 0.

(7.59)

From equations (3.18) and (3.19), we have

T̆ ′ (ϱ1, ϱ2) = 2ĝ (φ̂ϱ1, ϱ2) = −2ϱ3 ̸= 0

and

(∇̆ϱ1 ĝ) (ϱ2, ϱ3) = −η̂(ϱ3)ĝ (φ̂ϱ1, ϱ2)− η̂(ϱ2)ĝ (φ̂ϱ1, ϱ3)

= 1 ̸= 0.

Consequently, a non-symmetric non-metric connection ∇̆ is defined in (3.17). Also,

∇̆X1 ζ̂ = ∇̆X 1ϱ1+X 2ϱ2+X 3ϱ3ϱ3

= X 1∇̆ϱ1ϱ3 + X 2∇̆ϱ2ϱ3 + X 3∇̆ϱ3ϱ3

= −2

z
X 1ϱ1 −

2

z
X 2ϱ2, (7.60)

The equation (3.22) can be verified using equations (7.57) and (7.60).
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The components of R† of ∇̂ are defined as

R† (ϱ1, ϱ2) ϱ1 =
4

z2
ϱ2,R† (ϱ1, ϱ3) ϱ1 =

4

z2
ϱ3,R† (ϱ2, ϱ3) ϱ1 = 0,

R† (ϱ1, ϱ2) ϱ2 = − 4

z2
ϱ1,R† (ϱ1, ϱ3) ϱ2 = 0,R† (ϱ2, ϱ3) ϱ2 =

4

z2
ϱ3,

R† (ϱ1, ϱ2) ϱ3 = 0,R† (ϱ1, ϱ3) ϱ3 = − 4

z2
ϱ1,R† (ϱ2, ϱ3) ϱ3 = − 4

z2
ϱ2,

(7.61)

hence we can verify the equations (2.8), (2.9), (2.10) and (2.12).

Similarly, the components of curvature tensor R̆† of connection ∇̆ are as under:

R̆† (ϱ1, ϱ2) ϱ1 =
4

z2
ϱ2 −

2

z
ϱ1, R̆† (ϱ1, ϱ3) ϱ1 =

4

z2
ϱ3, R̆† (ϱ2, ϱ3) ϱ1 =

2

z
ϱ3,

R̆† (ϱ1, ϱ2) ϱ2 = − 4

z2
ϱ1 −

2

z
ϱ2, R̆† (ϱ1, ϱ3) ϱ2 = −2

z
ϱ3, R̆† (ϱ2, ϱ3) ϱ2 =

4

z2
ϱ3,

R̆† (ϱ1, ϱ2) ϱ3 =
4

z
ϱ3, R̆† (ϱ1, ϱ3) ϱ3 = − 4

z2
ϱ1, R̆† (ϱ2, ϱ3) ϱ3 = − 4

z2
ϱ2.

(7.62)

Thus, we can verify (4.24), (4.28), (4.29) and (4.30).

S†(X1,X2) of connection ∇̂ can be derived by using (7.61) in

S†(X1,X2) =
3∑

i=1
ĝ
(
R† (ϱi,X1)X2, ϱi

)
. It is as under:

S† (ϱ1, ϱ1) = S† (ϱ2, ϱ2) = S† (ϱ3, ϱ3) = − 8

z2
. (7.63)

S̆†(X1,X1) of connection ∇̆ can be derived by using equation (7.62) in

S̆†(X1,X2) =
3∑

i=1
ĝ(R̆† (ϱi,X1)X2, ϱi). It is as follows:

S̆† (ϱ1, ϱ1) = S̆† (ϱ2, ϱ2) = S̆† (ϱ3, ϱ3) = − 8

z2
. (7.64)

In view of (7.63) and (7.64), the scalar curvature can be calculated as under:

k =

3∑
i=1

S† (ϱi, ϱi) = S† (ϱ1, ϱ1) + S† (ϱ2, ϱ2) + S† (ϱ3, ϱ3) = −24

z2
,

k̆ =

3∑
i=1

S̆† (ϱi, ϱi) = S̆† (ϱ1, ϱ1) + S̆† (ϱ2, ϱ2) + S̆† (ϱ3, ϱ3) = −24

z2
.

Thus we see that the example also verify Theorem 4.2.
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Abstract. In the current article we characterize φ-Ricci symmetric (φ-RS) and weakly

φ-Ricci symmetric (weakly φ-RS) LP-Kenmotsu m-manifolds ((LP-K)m). We also examine

the characteristic of an (LP-K)3 of scalar curvature 6. Moreover, we study (LP-K)m admit-

ting ω-parallel Ricci tensor. At last, we construct an example of φ-RS (LP-K)3 to verify

some of our results.
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1. Introduction

Approximately five decades ago, the notion of Kenmotsu manifold as a class of almost

contact metric manifolds was introduced by Kenmotsu [19]. Kenmotsu has proved that a

locally Kenmostu manifold is a warped product I×f ℵ of an interval I and a Kähler manifold

ℵ with warping function f(t) = ρet, where ρ (̸= 0) is a constant. In 1976, the idea of almost

para-contact Riemannian manifolds was proposed by Sato [20]. Then, as a class of almost

contact Riemannian manifolds, para-Sasakian and Special para-Sasakian manifolds have been
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defined and studied in [1] by Adati and Matsumoto. In 1989, Matsumoto [14] defined and

studied Lorentzian para-Sasakian manifolds. Later, Mihai and Rosca also contribured some

remarks on this manifold [16]. The authors Sinha and Prasad [22] studied para-Kenmotsu

manifolds. In 2018, the first and second authors proposed and investigated a new class

of Lorentzian almost para-contact metric manifolds namely LP-Kenmotsu manifolds [11].

Recently, numerous geometers studied LP-Kenmotsu manifolds in many ways to different

point of views such as [2, 17, 12, 9, 15] and many others. Several mathematicians have

studied the notion of weakly local symmetric Riemannian manifolds with different approaches

in various fields. In 1977, Takahashi [23] introduced the concept of locally φ-symmetric

Sasakian manifolds. The φ-symmetric notion in contact geometry was initiated and studied

by Vanhecke, Buecken and Boeckx [5]. About two decades ago, the authors De, Shaikh and

Biswas have studied φ-recurrent Sasakian manifolds [6] by generalizing the idea of locally φ-

symmetric manifolds. In [8], the author studied φ-symmetric Kenmotsu manifolds in which

he had given a number of examples. In 2008, De and Sarkar [7] studied φ-RS Sasakian

manifolds. Later in 2009, φ-RS Kenmotsu manifold was studied by Shukla and Shukla [21].

This paper is structured in the following manner: Section 2 contains preliminaries, where

some basic results are mentioned. In section 3, we study φ-RS (LP-K)m and prove that an

(LP-K)m is Einstein manifold, if it is φ-symmetric. In section 4, we study of φ-RS (LP-K)3,

here we proved that an (LP-K)3 is locally φ-RS, if and only if r
¯
is constant. Section 5 is

devoted to the study of weakly φ-RS (LP-K)m and it is proven that a weakly φ-RS (LP-K)m

is an ω-Einstein manifold. Section 6 deals with the study of (LP-K)m admitting ω-parallel

Ricci tensor. At last an example of (LP-K)3 is modeled to inquire some of our findings.

2. Preliminaries

Let Mm (φ, ζ, ω, g) be a Lorentzian metric manifold, where φ: (1, 1) tensor field, ζ: a

characteristic vector field, ω: a 1-form and g: the Lorentz metric. We are well acquainted

with the following results [3, 4, 18]:


φζ = 0,

ω(φU
¯
) = 0,

ω(ζ) + 1 = 0,

(2.1)
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φ2U

¯
−U

¯
− ω(U

¯
)ζ = 0,

g(U
¯
, ζ)− ω(U

¯
) = 0,

(2.2)

g(φU
¯
, φV

¯
)− g(U

¯
,V
¯
) = ω(U

¯
)ω(V

¯
), (2.3)

(∇̄U
¯
φ)V

¯
= −g(φU

¯
,V
¯
)ζ − ω(V

¯
)φU

¯
, (2.4)

∇̄U
¯
ζ = −U

¯
− ω(U

¯
)ζ, (2.5)

for all vector fields U
¯
,V
¯
on Mm and ∇̄ represents the Levi-Civita connection of g, then Mm

(φ, ζ, ω, g) is said to be an (LP-K)m [11, 10].

In (LP-K)m, the following results hold:

(∇̄U
¯
ω)V

¯
= −ω(U

¯
)ω(V

¯
)− g(U

¯
,V
¯
), (2.6)

ω(R
¯
(U
¯
,V
¯
)Z
¯
) = g(V

¯
,Z
¯
)ω(U

¯
)− g(U

¯
,Z
¯
)ω(V

¯
), (2.7)

R
¯
(U
¯
,V
¯
)ζ = ω(V

¯
)U
¯
− ω(U

¯
)V
¯
, (2.8)

R
¯
(ζ,U

¯
)V
¯
= g(U

¯
,V
¯
)ζ − ω(V

¯
)U
¯
, (2.9)

S(U
¯
, ζ) = (m− 1)ω(U

¯
), Q̧ζ = (m− 1)ζ, (2.10)

(∇̄Z
¯
R
¯
)(U
¯
,V
¯
)ζ = g(U

¯
,Z
¯
)V
¯
g(V

¯
,Z
¯
)U
¯
+ R

¯
(U
¯
,V
¯
)Z
¯
, (2.11)

S(φU
¯
, φV

¯
) = S(U

¯
,V
¯
) + (m− 1)ω(U

¯
)ω(V

¯
) (2.12)

for all vector fields U
¯
,V
¯
,Z
¯
on (LP-K)m, where R

¯
is the Riemannian curvature tensor, S is

the Ricci tensor and Q̧ indicates the Ricci operator such that S(U
¯
,V
¯
) = g(Q̧U

¯
,V
¯
).

Remark 2.1. [13] If an (LP-K)m possesses the constant scalar curvature, then r = m(m−1).

3. φ-RS (LP-K)m

We start this section with the following definitions:

Definition 3.1. An (LP-K)m is called

(i) φ-RS if

φ2((∇̄U
¯
Q̧)(V

¯
)) = 0, (3.13)

(ii) φ-symmetric if

φ2((∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
) = 0 (3.14)

for any vector fields U
¯
, V
¯
, Z
¯
, K
¯

on (LP-K)m. In case, U
¯
,V
¯

are orthogonal to ζ, then φ-RS

(LP-K)m is named locally φ-RS.
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Definition 3.2. An (LP-K)m is called Einstein manifold, if its S is of the form

S(U
¯
,V
¯
) = λg(U

¯
,V
¯
),

where λ is a constant.

Theorem 3.1. An (LP-K)m is φ-RS, iff it is Einstein manifold.

Proof. Let an (LP-K)m be φ-RS. Then we have

φ2((∇̄U
¯
Q̧)(V

¯
)) = 0,

which by using (2.2) becomes

(∇̄U
¯
Q̧)V

¯
+ ω((∇̄U

¯
Q̧)V

¯
)ζ = 0. (3.15)

The inner product of (3.15) with Z
¯
lead to

g((∇̄U
¯
Q̧)V

¯
,Z
¯
) + ω((∇̄U

¯
Q̧)V

¯
)ω(Z

¯
) = 0,

which after simplification takes the form

g(∇̄U
¯
(Q̧V

¯
),Z
¯
)− S(∇̄U

¯
V
¯
,Z
¯
) + ω((∇̄U

¯
Q̧)V

¯
)ω(Z

¯
) = 0. (3.16)

By taking V
¯
= ζ in (3.16), then using (2.5) and (2.10), we have

(m− 1)g(∇̄U
¯
ζ,Z

¯
) + S(U

¯
,Z
¯
) + ω(U

¯
)S(ζ,Z

¯
) + ω((∇̄U

¯
Q̧)ζ)ω(Z

¯
) = 0. (3.17)

Now by virtue of (2.5) and (2.10), (3.17) turns to

S(U
¯
,Z
¯
)− (m− 1)g(U

¯
,Z
¯
) + ω((∇̄U

¯
Q̧)ζ)ω(Z

¯
) = 0. (3.18)

Substituting U
¯
→ φU

¯
as well as Z

¯
→ φZ

¯
in (3.18), we find

S(φU
¯
, φZ

¯
) = (m− 1)g(φU

¯
, φZ

¯
). (3.19)

Keeping in mind (2.3) and (2.12), (3.19) leads to

S(U
¯
,Z
¯
) = (m− 1)g(U

¯
,Z
¯
). (3.20)

Conversely, we assume that (LP-K)m is an Einstein manifold. Therefore, by the Definition

3.2, we have Q̧U
¯
= λU

¯
, from which we conclude

φ2((∇̄U
¯
Q̧)(V

¯
)) = 0.

This completes the proof. □

Corollary 3.1. An (LP-K)m is Einstein manifold, if it is φ-symmetric.
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Proof. Let an (LP-K)m be φ-symmetric manifold. Then we have

φ2((∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
) = 0 (3.21)

for any vector fields U
¯
, V
¯
, Z
¯
, K
¯
on (LP-K)m.

By using (2.2) in (3.21), it yields

(∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
− g((∇̄K

¯
R
¯
)(U
¯
,V
¯
)ζ,Z

¯
)ζ = 0. (3.22)

Now in view of (2.11), (3.22) takes the form

(∇̄K
¯
R
¯
)(U
¯
,V
¯
)Z
¯
− g(U

¯
,K
¯
)g(V

¯
,Z
¯
)ζ (3.23)

+g(V
¯
,K
¯
)g(U

¯
,Z
¯
)ζ − g(R

¯
(U
¯
,V
¯
)K
¯
,Z
¯
)ζ = 0.

On contracting (3.23), we obtain

(∇̄K
¯
S)(V

¯
,Z
¯
)− g(V

¯
,Z
¯
)ω(K

¯
) + g(V

¯
,K
¯
)ω(Z

¯
) + ω(R

¯
(K
¯
,Z
¯
)V
¯
) = 0. (3.24)

By virtue of (2.7), equation (3.24) reduces to

(∇̄K
¯
S)(V

¯
,Z
¯
) = 0. (3.25)

Consequenty, we obtain

φ2((∇̄K
¯
S)(V

¯
,Z
¯
)) = 0. (3.26)

Thus φ-symmetric (LP-K)m is φ-RS. And hence Corollary 3.1 follows from Theorem 3.1. □

4. φ-RS (LP-K)3

Theorem 4.1. In case, the scalar curvature r
¯
of an (LP-K)3 is 6, then (LP-K)3 is φ-RS.

Proof. In an (LP-K)3, the curvature tensor R
¯
is given by [11, 24]

R
¯
(U
¯
,V
¯
)Z
¯

= (
r
¯
2
− 2)[g(V

¯
,Z
¯
)U
¯
− g(U

¯
,Z
¯
)V
¯
] (4.27)

+(
r
¯
2
− 3)[g(V

¯
,Z
¯
)ω(U

¯
)ζ − g(U

¯
,Z
¯
)ω(V

¯
)ζ]

+(
r
¯
2
− 3)[ω(V

¯
)ω(Z

¯
)U
¯
− ω(U

¯
)ω(Z

¯
)V
¯
]

for all vector fields U
¯
,V
¯
,Z
¯
on (LP-K)3.

The inner product of (4.27) with K
¯
leads to

g(R
¯
(U
¯
,V
¯
)Z
¯
,K
¯
) = (

r
¯
2
− 2)[g(V

¯
,Z
¯
)g(U

¯
,K
¯
)− g(U

¯
,Z
¯
)g(V

¯
,K
¯
)] (4.28)

+(
r
¯
2
− 3)[g(V

¯
,Z
¯
)ω(U

¯
)ω(K

¯
)− g(U

¯
,Z
¯
)ω(V

¯
)ω(K

¯
)]

+(
r
¯
2
− 3)[ω(V

¯
)ω(Z

¯
)g(U

¯
,K
¯
)− ω(U

¯
)ω(Z

¯
)g(V

¯
,K
¯
)].
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Let {l
¯1
, l
¯2
, l
¯3
} be the orthonormal basis of the tangent space at every point of (LP-K)3. Now

setting U
¯

= K
¯

= l
¯i

as well as proceeding for sum from i = 1 to 3 in equation (4.28), it

provides

S(V
¯
,Z
¯
) = (

r
¯
2
− 1)g(V

¯
,Z
¯
) + (

r
¯
2
− 3)ω(V

¯
)ω(Z

¯
). (4.29)

From (4.29) it follows that

Q̧V
¯
= (

r
¯
2
− 1)V

¯
+ (

r
¯
2
− 3)ω(V

¯
)ζ. (4.30)

Differentiating (4.30) covariantly along K
¯
, we have

(∇̄K
¯
Q̧)V

¯
+ Q̧(∇̄K

¯
V
¯
) = (

r
¯
2
− 1)∇̄K

¯
V
¯
+

dr
¯
(K
¯
)

2
V
¯
+

dr
¯
(K
¯
)

2
ω(V

¯
)ζ + (

r
¯
2
− 3)(∇̄K

¯
ω)(V

¯
)ζ

+(
r
¯
2
− 3)ω(∇̄K

¯
V
¯
)ζ + (

r
¯
2
− 3)ω(V

¯
)∇̄K

¯
ζ. (4.31)

By virtue of (4.30), (4.31) takes the form

(∇̄K
¯
Q̧)V

¯
=

dr
¯
(K
¯
)

2
V
¯
+

dr
¯
(K
¯
)

2
ω(V

¯
)ζ + (

r
¯
2
− 3)(∇̄K

¯
ω)(V

¯
)ζ (4.32)

+(
r
¯
2
− 3)ω(V

¯
)∇̄K

¯
ζ.

By using (2.5) and (2.6) in (4.32), we have

(∇̄K
¯
Q̧)V

¯
=

dr
¯
(K
¯
)

2
V
¯
+

dr
¯
(K
¯
)

2
ω(V

¯
)ζ − (

r
¯
2
− 3)g(V

¯
,K
¯
)ζ (4.33)

− (
r
¯
2
− 3)ω(V

¯
)ω(K

¯
)ζ − (

r
¯
2
− 3)[ω(V

¯
)K
¯
+ ω(V

¯
)ω(K

¯
)ζ].

By operating φ2 on both the sides of (4.33), then using (2.1) and (2.2), we arrive at

φ2((∇̄K
¯
Q̧)V

¯
) =

dr
¯
(K
¯
)

2
[V
¯
+ ω(V

¯
)ζ]− (

r
¯
2
− 3)[ω(V

¯
)(K
¯
+ ω(K

¯
)ζ)]. (4.34)

Since r
¯
= 6, therefore, from (4.34) it follows that

φ2((∇̄K
¯
Q̧)V

¯
) = 0. (4.35)

Hence, this completes the proof. □

Corollary 4.1. An (LP-K)3 is locally φ-RS, if and only if r
¯
is constant.

Proof. By taking V
¯
as orthogonal to ζ, then (4.34) provides

φ2((∇̄K
¯
Q̧)V

¯
) =

dr
¯
(K
¯
)

2
V
¯
. (4.36)

The result follows from (4.36) and Theorem 4.1. □
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5. Weakly φ-RS (LP-K)m

Definition 5.1. An (LP-K)m is called weakly φ-RS if its Ricci operator Q̧ satisfies

φ2((∇̄U
¯
Q̧)(V

¯
)) = A(U

¯
)φ2(Q̧(V

¯
)) +B(V

¯
)φ2(Q̧(U

¯
)) + S(V

¯
,U
¯
)φ2(ρ), (5.37)

where U
¯
,V
¯

∈ (LP-K)m. A, B, D are 1-forms and ρ is a vector field associated with 1-form

D, i.e., g(ρ,Z
¯
) = D(Z

¯
).

If the 1-forms A = B = D = 0, then the relation (5.37) reduces to the concept of φ-RS

given by

φ2((∇U
¯
Q̧)(V

¯
)) = 0. (5.38)

This concept was initiated by Shukla and Shukla [21].

Now, we consider an (LP-K)m, which is weakly φ Ricci symmetric. Consequently, the

relation (5.37) together with (2.2) gives

(∇̄U
¯
Q̧)(V

¯
) + ω((∇̄U

¯
Q̧)(V

¯
))ζ = A(U

¯
)[Q̧V

¯
+ ω(Q̧V

¯
)ζ] +B(V

¯
)[Q̧U

¯
+ ω(Q̧U

¯
)ζ]

+S(V
¯
,U
¯
)[ρ+ ω(ρ)ζ],

which can be written as

∇̄U
¯
(Q̧V

¯
)− Q̧(∇̄U

¯
V
¯
) + ω(∇̄U

¯
(Q̧V

¯
)− Q̧(∇U

¯
V
¯
))ζ = A(U

¯
)Q̧V

¯

+A(U
¯
)ω(Q̧V

¯
)ζ +B(V

¯
)[Q̧U

¯
+ ω(Q̧U

¯
)ζ] + S(V

¯
,U
¯
)ρ+ S(V

¯
,U
¯
)ω(ρ)ζ. (5.39)

Taking the inner product of (5.39) with Z
¯
and using (2.2), we have

g(∇̄U
¯
(Q̧V

¯
),Z
¯
)− g(Q̧(∇U

¯
V
¯
),Z
¯
) + ω(∇̄U

¯
(Q̧V

¯
)− Q̧(∇U

¯
V
¯
))ω(Z

¯
) (5.40)

= A(U
¯
)g(Q̧V

¯
,Z
¯
) +A(U

¯
)ω(Q̧V

¯
)ω(Z

¯
) +B(V

¯
)[g(Q̧U

¯
,Z
¯
)

+ω(Q̧U
¯
)ω(Z

¯
)] + S(V

¯
,U
¯
)D(Z

¯
) + S(V

¯
,U
¯
)ω(ρ)ω(Z

¯
),

where g(ρ,Z
¯
) = D(Z

¯
).

Setting V
¯
= ζ in (5.40), it yields

g(∇̄U
¯
(Q̧ζ),Z

¯
)− g(Q̧(∇̄U

¯
ζ),Z

¯
) + ω(∇̄U

¯
(Q̧ζ)− (Q̧∇̄U

¯
ζ))ω(Z

¯
) (5.41)

= A(U
¯
)g(Q̧ζ,Z

¯
) +A(U

¯
)ω(Q̧ζ)ω(Z

¯
) +B(ζ)[g(Q̧U

¯
,Z
¯
)

+ω(Q̧U
¯
)ω(Z

¯
)] + S(ζ,U

¯
)D(Z

¯
) + S(ζ,U

¯
)ω(ρ)ω(Z

¯
).
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By using (2.5) and (2.10) in (5.41), it gives

S(U
¯
,Z
¯
)[1−B(ζ)] = (m− 1)[g(U

¯
,Z
¯
) + ω(U

¯
)D(Z

¯
)] (5.42)

+(m− 1)[B(ζ) + ω(ρ)]ω(U
¯
)ω(Z

¯
).

Applying U
¯
−→ φU

¯
and Z

¯
−→ φZ

¯
in (5.42), then using relation (2.1), (2.3) and (2.12), we

lead to

[1−B(ζ)]S(U
¯
,Z
¯
) + (m− 1)[1−B(ζ)]ω(U

¯
)ω(Z

¯
) = (m− 1)[g(U

¯
,Z
¯
) + ω(U

¯
)ω(Z

¯
)],

which is of the form

S(U
¯
,Z
¯
) = µg(U

¯
,Z
¯
) + νω(U

¯
)ω(Z

¯
), (5.43)

where µ =
(m− 1)

1−B(ζ)
and ν =

(m− 1)B(ζ)

1−B(ζ)
, provided, 1 − B(ζ) ̸= 0. Thus, we state the

following theorem:

Theorem 5.1. A weakly φ-RS (LP-K)m is an ω-Einstein manifold.

6. (LP-K)m admitting ω-Parallel Ricci tensor

Definition 6.1. The Ricci tensor of an (LP-K)m is said to be ω-parallel if it satisfies

(∇̄U
¯
S)(φV

¯
, φZ
¯
) = 0, (6.44)

for all vector fields U
¯
,V
¯
,Z
¯

on (LP-K)m.

Let the Ricci tensor of an (LP-K)m be ω-parallel, therefore (6.44) holds. By the covariant

differentiation of S(φV
¯
, φZ

¯
) along U

¯
, we have

(∇̄U
¯
S)(φV

¯
, φZ

¯
) = ∇̄U

¯
(S(φV

¯
, φZ

¯
))− S((∇̄U

¯
φ)V

¯
, φZ

¯
)

− S(φ(∇̄U
¯
V
¯
), φZ

¯
)− S(φV

¯
, (∇̄U

¯
φ)Z

¯
)− S(φV

¯
, φ(∇̄U

¯
Z
¯
)),

which by virtue of (2.12) takes the form

(∇̄U
¯
S)(φV

¯
, φZ

¯
) = (∇̄U

¯
S)(V

¯
,Z
¯
) + S(∇̄U

¯
V
¯
,Z
¯
) + S(V

¯
, ∇̄U

¯
Z
¯
)

+ (n− 1)[(∇̄U
¯
ω)(V

¯
)ω(Z

¯
) + ω(∇̄U

¯
V
¯
)ω(Z

¯
)

+ ω(V
¯
)(∇̄U

¯
ω)(Z

¯
) + ω(V

¯
)ω(∇̄U

¯
Z
¯
)]− S((∇̄U

¯
φ)V

¯
, φZ

¯
)

− S(φ(∇̄U
¯
V
¯
), φZ

¯
)− S(φV

¯
, (∇̄U

¯
φ)Z

¯
)− S(φV

¯
, φ(∇̄U

¯
Z
¯
)).
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In view of (2.4), (2.6), (2.10) and (2.12) the foregoing equation turns to

(∇̄U
¯
S)(φV

¯
, φZ

¯
) = (∇̄U

¯
S)(V

¯
,Z
¯
)− (n− 1)g(U

¯
,V
¯
)ω(Z

¯
)

− (n− 1)g(U
¯
,Z
¯
)ω(V

¯
) + S(U

¯
,Z
¯
)ω(V

¯
) + S(U

¯
,V
¯
)ω(Z

¯
),

which by virtue of (6.44) gives

(∇̄U
¯
S)(V

¯
,Z
¯
) = (n− 1)[g(U

¯
,V
¯
)ω(Z

¯
) + g(U

¯
,Z
¯
)ω(V

¯
)] (6.45)

−[S(U
¯
,Z
¯
)ω(V

¯
) + S(U

¯
,V
¯
)ω(Z

¯
)].

Let {l
¯1
, l
¯2
, l
¯3
......., l

¯m
} be the orthonormal basis of the tangent space at every point of (LP-

K)m. Now setting V
¯

= Z
¯
= l

¯i
as well as proceeding for sum from i = 1 to m in equation

(6.45), it provides

m∑
i=1

ϵi(∇̄U
¯
S)(l

¯i
, l
¯i
) = (n− 1)

m∑
i=1

ϵi[g(U
¯
, l
¯i
)g(l

¯i
, ζ) + g(U

¯
, l
¯i
)g(l

¯i
, ζ)] (6.46)

−
m∑
i=1

ϵi[g(Q̧U
¯
, l
¯i
)g(l

¯i
, ζ) + g(Q̧U

¯
, l
¯i
)g(l

¯i
, ζ)],

where ϵi = g(e1, ei). From (6.46) it follows that

dr(U
¯
) = 0. (6.47)

Thus, we conclude that dr = 0, i.e., r is constant and it is given by r = m(m−1). Moreover,

since S(U
¯
,V
¯
) = g(Q̧U

¯
,V
¯
), then we obtain

∇U |Q̧|2 = 2

n∑
i=1

ϵig((∇̄U
¯
Q̧)ei, Q̧ei). (6.48)

By using (6.45) in above equation, we find

∇U
¯
|Q̧|2 = 2

n∑
i=1

ϵig((∇̄U
¯
Q̧)ei, Q̧ei) = 0. (6.49)

This implies that

|Q̧|2 = constant, (6.50)

where Q̧ is the Ricci operator. Hence, the relations (6.47) and (6.50) lead to the following

result:

Theorem 6.1. The scalar curvature of an (LP-K)m>3 with the ω-parallel Ricci tensor is

constant. Moreover, the norm of the Ricci operator is also constant.
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7. Illustration

We take a 3-dimensional smooth manifold M3 = {(u
¯
, v
¯
,w
¯
) ∈ R3 : w

¯
> 0)}, where (u

¯
, v
¯
,w
¯
)

denotes the basic coordinates on a 3-dimensional real space R3. Consider the vector fields

{l
¯1
, l
¯2
, l
¯3
}, which is linearly independent on M3 and defined as

l
¯1

= (sinhw
¯
+ coshw

¯
)
∂

∂u
¯

, l
¯2

= (sinhw
¯
+ coshw

¯
)
∂

∂v
¯

, l
¯3

=
∂

∂w
¯

= ζ.

We define the Lorentz metric g on M3 as:

gpq = g(l
¯p
, l
¯q
) =


−1 for p = q = 3,

0 for p ̸= q,

1 p = q = 1, 2.

Assume ω be a 1-form corresponding to the Lorentz metric g such that

ω(U
¯
) = g(U

¯
, l
¯3
)

for any U
¯
∈ X(M3), where X(M3), denotes the collection of all smooth vector fields on M3.

We define φ as follows

φ(l
¯1
) = l

¯2
, φ(l

¯2
) = l

¯1
, φ(l

¯3
) = 0.

Since φ and g have linear nature, so it can be easily proved the following results:

ω(l
¯3
) + 1 = 0, φ2(U

¯
)−U

¯
− ω(U

¯
)l
¯3

= 0, g(φU
¯
, φV

¯
)− g(U

¯
,V
¯
)− ω(U

¯
)ω(V

¯
) = 0

for all U
¯
,V
¯

∈ X(M3). This implies that for l
¯3

= ζ, the structure (φ, ζ, ω, g) defines a

Lorentzian paracontact structure and (M3, φ, ζ, ω, g) is a Lorentzian paracontact manifold

of dimension 3. The non-zero constituents of the Lie bracket are given as

[l
¯3
, l
¯p
] =


l
¯p
, p = 1, 2,

0, otherwise.

The well-known Koszul’s formula provides

∇̄l
¯p
l
¯q

=


−l
¯3
, p = q = 1, 2,

−l
¯p
, p = 1, 2, q = 3,

0, otherwise.

From the above equations, it can be easily verified that ∇̄U
¯
l
¯3

= −{U
¯
+ ω(U

¯
)l
¯3
} and

(∇̄U
¯
φ)V

¯
= −g(φU

¯
,V
¯
)ζ − ω(V

¯
)φU

¯
holds for each U

¯
,V
¯

∈ X(M3). Hence the Lorentzian
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paracontact manifold is an (LP-K)3. From the above equations, the non-zero constituents of

R
¯
are evaluated as follows

R
¯
(l
¯2
, l
¯1
)l
¯2

= −l
¯1
, R

¯
(l
¯2
, l
¯3
)l
¯2

= −l
¯3
, R

¯
(l
¯3
, l
¯1
)l
¯3

= l
¯1
,

R
¯
(l
¯2
, l
¯3
)l
¯3

= −l
¯2
, R

¯
(l
¯2
, l
¯1
)l
¯1

= l
¯2
, R

¯
(l
¯1
, l
¯3
)l
¯1

= −l
¯3
.

Thus we have

R
¯
(U
¯
,V
¯
)Z
¯
= −g(U

¯
,Z
¯
)V
¯
+ g(V

¯
,Z
¯
)U
¯
, (7.51)

which is a space of constant curvature 1.

The matrix representation of S is given by

S =


2 0 0

0 2 0

0 0 −2

.
Thus we find r

¯
= 6. From (7.51) it follows that S(U

¯
,V
¯
) = 2g(U

¯
,V
¯
) =⇒ Q̧U

¯
= 2U

¯
, which

implies that φ2((∇̄W
¯
Q̧)U

¯
) = 0. As we see that M3 is φ-RS with the scalar curvature 6.

Thus this illustration proves Theorem 4.1. Since M3 is φ-RS and Einstein, this illustration

also admits Theorem 3.4 for three dimensional case.

Acknowledgments. The authors would like to thank the referees for some useful comments

and their helpful suggestions that have improved the quality of this paper.

References

[1] Adati, T. & Matsumoto, K. (1977). On conformally recurrent and conformally symmetric para-Sasakian

manifolds. TRU Math., 13, 25-32.

[2] Azami, S. (2023). Generalized η-Ricci solitons on LP -Kenmotsu manifolds associated to the Schouten-Van

Kampen connection. U.P.B. Sci. Bull., Series A, 85(1), 53-64.

[3] Blair, D. E. (1976). Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics. Vol. 509.

Spinger-Verlag, Berlin-New York.

[4] Blair, D. E. (2002). Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics,

203, Boston, MA: Birkhauser Boston, Inc.

[5] Boeckx, E., Buecken, P. & Vanhecke, L. (1999). φ-symmetric contact metric spaces. Glawsgo Math. J.,

41, 409-416.

[6] De, U. C., Shaikh, A. A. & Biswas, S. (2003). On φ-recurrent Sasakian manifolds. Novi Sad J. Math., 33,

43-48.

[7] De, U. C. & Sarkar, A. (2008). On φ-Ricci Symmetric Sasakian manifolds. Proceedings of the Jangjeon

Mathematical Soc., 11(1), 47-52.

[8] De, U. C. (2008). On φ-symmetric Kenmotsu manifolds. International Electronic J. Geom., 1(1), 33-38.



44 R. PRASAD, A. HASEEB, A. VERMA, AND V. S. YADAV

[9] Devi, S. S., Prasad, K. L. S. & Satyanarayana, T. (2022). Certain curvature connections on Lorentzian

para-Kenmotsu manifolds. RT&A, 17(2)(68) , 413-421.

[10] Haseeb, A. & Prasad, R.(2020). Some results on Lorentzian para-Kenmotsu Manifolds, Bulletin of the

Transilvania University of Brasov, Series III : Mathematics, Informatics, physics, 13(62), 185-198.

[11] Haseeb, A. & Prasad, R. (2021). Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc.

Paran. Mat., 39(3), 201-220.

[12] Haseeb, A. & Almusawa, H. (2022). Some results on Lorentzian para-Kenmotsu manifolds admitting

η-Ricci solitons. Palestine Journal of Mathematics, 11(2), 205-213

[13] Haseeb, A., Bilal, M., Chaubey, S. K. & Ahmadini, A. A. H. (2023). ζ-conformally flat LP-Kenmotsu

manifolds and Ricci-Yamabe solitons. Mathematics, 11(1), 212.

[14] Matsumoto, K. (1989). On Lorentzian paracontact manifolds. Bulletin of the Yamagata University, Nat-

ural Science, 12(2), 151-156.

[15] Mert, T. & Atceken, M. (2023). Almost η-Ricci solitons on the pseudosymmetric Lorentzian para-

Kenmotsu manifolds. Earthline Journal of Mathematical Sciences, 12(2), 183-206.

[16] Mihai, I. & Rosca, R. (1992). On Lorentzian P-Sasakian manifolds, Classical Analysis. World Scientific

Publ., Singapore, 155-169.

[17] Pandey, S., Singh, A. & Mishra, V. N. (2021). η-Ricci soliton on Lorentzian para-Kenmotsu manifolds.

Facta Universitatis (NIS), 36(2), 419-434.

[18] Prasad, R. & Haseeb, A. (2016). On a Lorentzian para-Sasakian manifold with respect to the quarter

symmetric-metric connection. Novi Sad J. Math., 46(2), 103-116.

[19] Kenmotsu, K. (1972). A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103.

[20] Sato, I. (1976). On a structure similar to the almost contact structure. Tensor (N.S.), 30, 219-224.

[21] Shukla, S. S. & Shukla, M. K. (2009). On φ-Ricci symmetric Kenmotsu manifolds. Novi Sad J. Math.,

39(2), 89-95.

[22] Sinha, B. B. & Prasad, K. L. (1995). A class of almost para-contact metric manifold. Bulltein of the

Calcutta mathematical society, 87, 307-312.

[23] Takahashi, T. (1977). Sasakian φ-symmetric space. Tohoku Math. J., 29, 91-113.

[24] Yano, K. & Kon, M. (1984). Structures on manifolds. Series in Pure Math., World Scientific, Vol. 3.

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.

Department of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of

Saudi Arabia.

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.



International Journal of Maps in Mathematics

Volume 7, Issue 1, 2024, Pages:45-57

E-ISSN: 2636-7467

www.journalmim.com

YAMABE SOLITONS ON Sol3 SPACE

SAVITA RANI ID AND RAM SHANKAR GUPTA ID ∗

Dedicated to the memory of the late Professor Krishan Lal Duggal(1929-2022)

Abstract. The aim of this work is to find the existence/non-existence of Yamabe solitons

and gradient Yamabe solitons of Sol3 space with left-invariant Riemannian and Lorentzian

metric. We show that there exists an expanding Yamabe soliton and a gradient Yamabe

soliton with a constant potential function on Sol3 space.
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1. Introduction

Thurston [12] gave a classification of 3-dimensional homogeneous manifolds into eight

model spaces, which are real space forms having groups of isometries of dimension 6, S2×R,

H2 × R, Nil3 the Heisenberg group, the universal covering S̃L2R of SL2R having a group

of isometries of dimension 4, and Sol3 space with a group of isometries of dimension 3. The

Sol3 space is a simply connected homogeneous 3-dimensional manifold having the smallest

number of isometries. The Poincaré conjecture is a special case of the Thurston conjecture,

which states that every compact orientable 3-manifold has a canonical decomposition into

pieces that each have one of the eight types of geometric structures. In the last three decades,

there have been extensive studies to understand this problem; however, the most important
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efforts are due to R. Hamilton [5]. G. Perelman gave a proof of the Thurston conjecture

using Ricci flow. Henceforth, this technique attracted the attention of researchers to study

problems in homogeneous spaces. Although most of the investigation has been done in the

case of the Riemannian setting using the Ricci flow technique (see [9, 10, 8] and references

therein). However, in the Lorentzian setting, it has been studied in the last decade (see

[2, 7]). Yamabe flows are well-posed in the Riemannian setting, which may not be true in

the Lorentzian case due to the non-existence of short-time solutions in general because of the

lack of parabolicity. In this paper, we study Yamabe soliton and gradient Yamabe soliton on

Sol3 space with left-invariant Riemannian and Lorentzian metrics.

A Yamabe soliton on a complete Riemannian manifold satisfies [5] :

1

2
LV g = (ν − r)g, (1.1)

where LV is the Lie-derivative along the smooth potential field V , g is the Riemannian metric,

ν a real scalar, and r is the scalar curvature of g. Also, Yamabe solitons serve as solutions

of the Yamabe flow of Hamilton [5], which develops along the symmetries of the flow. The

soliton is steady, shrinking or expanding if ν = 0, > 0, or < 0, respectively. If V = gradF

for some real-valued function F ∈ C∞(M), then it is called the gradient Yamabe soliton.

On a smooth Riemannian manifold (M, g0), the evolution of the metric g0 in time t to

g = g(t) through the equation

∂

∂t
gt = −rg, g(0) = g0,

is known as the Yamabe flow [5]. Yamabe flow is significant as it is a natural geometric

deformation to metrics of constant scalar curvature. In mathematical physics, Yamabe flow

corresponds to the fast diffusion case of the porous medium equation (the plasma equation).

A Yamabe soliton is a special solution of the Yamabe flow. If V is Killing, then Yamabe

soliton is called trivial Yamabe soliton.

In 2012, Calviño-Louzao et al. [3] gave a geometric characterization of Yamabe solitons on

three-dimensional homogeneous Lorentzian manifolds. In 2013, Daskalopoulos and Sesum

[4] classified the locally conformally flat gradient Yamabe solitons with positive sectional

curvature. In 2017, Neto and Tenenblat [6] investigated gradient Yamabe solitons, conformal

to an n−dimensional pseudo-Euclidean space. Recently, Shaikh et al. [11] examined a

gradient Yamabe soliton with some additional conditions and proved that it must be of

constant scalar curvature.
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The article is organised as follows: In Section 2, we recall the group structure, connection,

and curvature of the Sol3 group. In Section 3, we investigate Yamabe and gradient Yamabe

solitons on Sol3 space with the Riemannian metric. In Section 4, we examine Yamabe and

gradient Yamabe solitons on Sol3 space with the Lorentzian metric.

2. Preliminaries

In this section we recall some basic facts on Sol3 given in [1].

The Sol3 space is defined as a group of 3× 3 matrices
e−z 0 x

0 ez y

0 0 1

 ,

with the group structure given by

(x′, y′, z′) ⋆ (x, y, z) = (e−z′x+ x′, ez
′
y + y′, z + z′),

where (x, y, z) ∈ R3.

We denote by ∇ and R the Levi-Civita connection and the Riemann curvature tensor of

(Sol3, g), respectively, such that R is given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

and by Ric the Ricci tensor of (Sol3, g), which is defined by

Ric(X,Y ) =

3∑
k=1

g(Ek, Ek)g(R(Ek, X)Y,Ek),

where {Ek}k=1,...,3 is an orthonormal basis.

3. Yamabe and gradient Yamabe solitons on Sol3 space with Riemannian

metric

In this section, we examine the existence of Yamabe and gradient Yamabe solitons on a

three-dimensional solvable Lie group (Sol3, g) with the Riemannian metric.

We consider Sol3 space with a left-invariant Riemannian metric

g = e2zdx2 + e−2zdy2 + dz2, (3.2)
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with a left-invariant orthonormal frame {E1, E2, E3} given by

E1 = e−z ∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
, (3.3)

where (x, y, z) ∈ R3.

The non-vanishing Lie brackets are

[E1, E3] = E1, [E2, E3] = −E2. (3.4)

Using (3.2), (3.3), and (3.4), the Levi-Civita connection ∇ is given by

(∇EiEj) =


−E3 0 E1

0 E3 −E2

0 0 0

 , (3.5)

where i, j = 1, 2, 3.

The non-vanishing components of Riemann curvature tensor and Ricci tensor are
R(E1, E2)E1 = −E2 = R(E2, E3)E3, R(Ej , E3)Ej = E3, for j = 1, 2,

R(E1, E3)E3 = −E1, R(E1, E2)E2 = E1, S(E3, E3) = −2.

(3.6)

The scalar curvature r of the Riemannian Sol3 Lie group is

r =
3∑

i=1

g(Ei, Ei)S(Ei, Ei) = −2. (3.7)

Let

V = f1E1 + f2E2 + f3E3, (3.8)

be an arbitrary potential vector field on (Sol3, g), where f1, f2 and f3 are smooth functions

of x, y and z. We denote the coordinate basis { ∂
∂x ,

∂
∂y ,

∂
∂z} by {∂x, ∂y, ∂z}.

Now, we have

Theorem 3.1. The Sol3 space with a left-invariant Riemannian metric given by (3.2) sat-

isfies a Yamabe soliton equation

LV g = 2(−2− r)g,

with

V = (α1 − δ4x)∂x + (α2 + δ4y)∂y + δ4∂z,

where α1, α2, δ4 ∈ R. Moreover, the left-invariant Riemannian metric (3.2) is an expanding

Yamabe soliton.
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Proof. In view of (3.2) and (3.8), we have
(LV g)(E1, E1) = 2(f3 + e−z∂xf1), (LV g)(E1, E2) = e−z∂xf2 + ez∂yf1,

(LV g)(E1, E3) = e−z∂xf3 − f1 + ∂zf1, (LV g)(E2, E2) = −2(f3 − ez∂yf2),

(LV g)(E2, E3) = ez∂yf3 + f2 + ∂zf2, (LV g)(E3, E3) = 2∂zf3.

(3.9)

Thus, by using (3.2), (3.7), and (3.9) in (1.1), we find that (Sol3, g) is a Yamabe soliton if

and only if the following system of equations holds :

f3 + e−z∂xf1 = ν + 2, (3.10)

e−z∂xf2 + ez∂yf1 = 0, (3.11)

e−z∂xf3 − f1 + ∂zf1 = 0, (3.12)

−f3 + ez∂yf2 = ν + 2, (3.13)

ez∂yf3 + f2 + ∂zf2 = 0, (3.14)

∂zf3 = ν + 2. (3.15)

From (3.15), we get

f3 = (ν + 2)z + F (x, y), (3.16)

where F = F (x, y) is a real-valued smooth function on R2.

From (3.10), we obtain

∂xf1 = ez
(
(ν + 2)− (ν + 2)z − F

)
. (3.17)

Differentiating (3.17) with respect to z, we get

∂z∂xf1 = −ez
(
(ν + 2)z + F

)
. (3.18)

Differentiating (3.12) with respect to x, and using (3.16), (3.17), and (3.18) therein we

find ν = −2 and

∂2
xF = 0. (3.19)

Further, (3.13) gives

∂yf2 = e−z
(
(ν + 2) + (ν + 2)z + F

)
. (3.20)

Differentiating (3.20) with respect to z, we obtain

∂z∂yf2 = −e−z
(
(ν + 2)z + F

)
. (3.21)
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Next, differentiating (3.14) with respect to y and therein using (3.16), (3.20), and (3.21),

we find ν = −2 and

∂2
yF = 0. (3.22)

From (3.16), (3.19), and (3.22), we derive that

f3 = F (x, y) = δ1x+ δ2y + δ3xy + δ4, (3.23)

where δi ∈ R.

From (3.10) and (3.23), we get

f1 = −ez
(δ1x2

2
+ δ2xy +

δ3yx
2

2
+ δ4x

)
+ T (y, z), (3.24)

where T is a smooth function.

From (3.13) and (3.23), we obtain

f2 = e−z
(
δ1xy +

δ2y
2

2
+

δ3xy
2

2
+ δ4y

)
+ I(x, z), (3.25)

where I is a smooth function.

Using (3.24) and (3.25) in (3.11), we get(
ez∂yT + e−2z

(
δ1y +

δ3y
2

2

))
+

(
e−z∂xI − e2z

(
δ2x+

δ3x
2

2

))
= 0. (3.26)

Since (3.26) holds for all values of z, therefore, it implies that

ez∂yT + e−2z
(
δ1y +

δ3y
2

2

)
= 0, e−z∂xI − e2z

(
δ2x+

δ3x
2

2

)
= 0. (3.27)

By integration (3.27) gives

T = −e−3z
(δ1y2

2
+

δ3y
3

6

)
+ T̄ (z), I = e3z

(δ2x2
2

+
δ3x

3

6

)
+ Ī(z), (3.28)

where T̄ and Ī are smooth functions. So,
f1 = −ez

(
δ1x2

2 + δ2xy +
δ3yx2

2 + δ4x
)
− e−3z

(
δ1y2

2 + δ3y3

6

)
+ T̄ (z),

f2 = e−z
(
δ1xy +

δ2y2

2 + δ3xy2

2 + δ4y
)
+ e3z

(
δ2x2

2 + δ3x3

6

)
+ Ī(z).

(3.29)

Now putting the values of f1 and f3 in (3.12), we obtain

e−z
(
δ1 + δ3y

)
+ 4e−3z

(δ1y2
2

+
δ3y

3

6

)
− T̄ (z) + T̄ ′(z) = 0. (3.30)

Since (3.30) holds for all z, therefore, it gives that δ1 = δ3 = 0, and

T̄ = α1e
z,

where α1 ∈ R.
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Putting the values of f2 and f3 in (3.14), we find

ez
(
δ2 + δ3x

)
+ 4e3z

(δ2x2
2

+
δ3x

3

6

)
+ Ī(z) + Ī ′(z) = 0. (3.31)

Since (3.31) holds for all z, therefore, it implies that δ2 = δ3 = 0, and

Ī = α2e
−z,

where α2 ∈ R.

Hence, the solution of the system of equations (3.10)∼(3.15) is given by

f1 = (α1 − δ4x)e
z, f2 = (α2 + δ4y)e

−z, f3 = δ4, (3.32)

where α1, α2, δ4 ∈ R.

Hence, the Riemannian three-dimensional Lie group Sol3 admits an expanding Yamabe

soliton for appropriate vector fields given by (3.32). □

Theorem 3.2. The Sol3 space with a left-invariant Riemannian metric given by (3.2) sat-

isfies a gradient Yamabe soliton equation

LgradF g = 2(−2− r)g,

where the potential function F is constant.

Proof. Let V = gradF be an arbitrary gradient vector field on (Sol3, g) with potential

function F . Then V is given by

gradF = e−2z∂xF ∂x + e2z ∂yF ∂y + ∂zF ∂z.

From (3.32), we see that (Sol3, g) is a gradient Yamabe soliton if and only if the potential

function F satisfies the following systems:

∂xF = e2z(α1 − δ4x), (3.33)

∂yF = e−2z(α2 + δ4y), (3.34)

∂zF = δ4. (3.35)

Differentiating (3.33) with respect to z and (3.35) with respect to x, and equating them

we obtain

2e2z(α1 − δ4x) = 0, (3.36)
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which gives α1 = 0 and δ4 = 0. Further, taking the derivative of (3.34) with respect to z and

(3.35) with respect to y and equating them we get

2e−2z(α2 + δ4y) = 0, (3.37)

which gives α2 = 0 and δ4 = 0. So, F = constant. Hence the result. □

4. Yamabe and gradient Yamabe solitons on Sol3 space with Lorentzian

metric

In this section, we examine the existence of Yamabe and gradient Yamabe solitons on a

three-dimensional solvable Lie group with the Lorentzian metric.

We consider Sol3 space with a left-invariant Lorentzian metric

g = e2zdx2 − e−2zdy2 + dz2, (4.38)

with a left-invariant orthonormal frame {E1, E2, E3} given by

E1 = e−z ∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
, (4.39)

where (x, y, z) ∈ R3.

The non-vanishing Lie brackets are

[E1, E3] = E1, [E2, E3] = −E2. (4.40)

Using (4.38), (4.39), and (4.40) the Levi-Civita connection is given by

(∇EiEj) =


−E3 0 E1

0 −E3 −E2

0 0 0

 , (4.41)

where i, j = 1, 2, 3.

The non-vanishing components of Riemann curvature tensor and Ricci tensor are
R(E1, Ej)Ej = −E1, for j = 2, 3, R(E1, E2)E1 = −E2 = R(E2, E3)E3,

R(E1, E3)E1 = E3 = −R(E2, E3)E2, S(E3, E3) = −2.

(4.42)

The scalar curvature r of the Lorentzian Sol3 Lie group is

r =
3∑

i=1

g(Ei, Ei)S(Ei, Ei) = −2. (4.43)

Now, we have
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Theorem 4.1. The Sol3 space with a left-invariant Lorentzian metric given by (4.38) satis-

fies a Yamabe soliton equation

LV g = 2(−2− r)g,

with

V = (β1 − γ4x)∂x + (β2 + γ4y)∂y + γ4∂z,

where β1, β2, γ4 ∈ R. Moreover, the left-invariant Lorentzian metric (4.38) is an expanding

Yamabe soliton.

Proof. In view of (3.8) and (4.38), we have
(LV g)(E1, E1) = 2(f3 + e−z∂xf1), (LV g)(E1, E2) = −e−z∂xf2 + ez∂yf1,

(LV g)(E1, E3) = e−z∂xf3 − f1 + ∂zf1, (LV g)(E2, E2) = 2(f3 − ez∂yf2),

(LV g)(E2, E3) = ez∂yf3 − f2 − ∂zf2, (LV g)(E3, E3) = 2∂zf3.

(4.44)

Thus, by using (4.38), (4.43), and (4.44) in (1.1), we find that (Sol3, g) is a Yamabe soliton

if and only if the following system of equations holds,

f3 + e−z∂xf1 = ν + 2, (4.45)

−e−z∂xf2 + ez∂yf1 = 0, (4.46)

e−z∂xf3 − f1 + ∂zf1 = 0, (4.47)

f3 − ez∂yf2 = −ν − 2, (4.48)

ez∂yf3 − f2 − ∂zf2 = 0, (4.49)

∂zf3 = ν + 2. (4.50)

From (4.50), we get

f3 = (ν + 2)z +H(x, y), (4.51)

where H = H(x, y) is a real-valued smooth function on R2.

Using (4.51) in (4.48), we obtain

∂yf2 = e−z
(
(ν + 2) + (ν + 2)z +H

)
. (4.52)

Differentiating (4.52) with respect to z, we get

∂z∂yf2 = −e−z
(
(ν + 2)z +H

)
. (4.53)
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Further, diferentiating (4.49) with respect to y and using (4.51)∼(4.53), we find that

ν = −2 and

∂2
yH = 0. (4.54)

On the other hand, using (4.51) in (4.45), we obtain

∂xf1 = ez
(
(ν + 2)− (ν + 2)z −H

)
. (4.55)

Differentiating (4.55) with respect to z, we get

∂z∂xf1 = −ez
(
(ν + 2)z +H

)
. (4.56)

Further, differentiating (4.47) with respect to x and using (4.51), (4.55), and (4.56), we

find that ν = −2 and

∂2
xH = 0. (4.57)

From (4.51), (4.54), and (4.57), we derive that

f3 = H(x, y) = γ1x+ γ2y + γ3xy + γ4, (4.58)

where γi ∈ R.

From (4.45) and (4.58), we get

f1 = −ez
(γ1x2

2
+ γ2xy +

γ3yx
2

2
+ γ4x

)
+K(y, z), (4.59)

where K is a smooth function.

From (4.48) and (4.58), we obtain

f2 = e−z
(
γ1xy +

γ2y
2

2
+

γ3xy
2

2
+ γ4y

)
+ L(x, z), (4.60)

where L is a smooth function.

Using (4.59) and (4.60) in (4.46), we get(
ez∂yK − e−2z

(
γ1y +

γ3y
2

2

))
−
(
e−z∂xL+ e2z

(
γ2x+

γ3x
2

2

))
= 0. (4.61)

Since (4.61) holds for all values of z, therefore, it implies that

ez∂yK − e−2z
(
γ1y +

γ3y
2

2

)
= 0, e−z∂xL+ e2z

(
γ2x+

γ3x
2

2

)
= 0. (4.62)

By integration (4.62) gives

K = e−3z
(γ1y2

2
+

γ3y
3

6

)
+ K̄(z), L = −e3z

(γ2x2
2

+
γ3x

3

6

)
+ L̄(z), (4.63)
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where K̄ and L̄ are smooth functions. So, from (4.59) and (4.60), we get
f1 = −ez

(
γ1x2

2 + γ2xy +
γ3yx2

2 + γ4x
)
+ e−3z

(
γ1y2

2 + γ3y3

6

)
+ K̄(z),

f2 = e−z
(
γ1xy +

γ2y2

2 + γ3xy2

2 + γ4y
)
− e3z

(γ2x2

2 + γ3x3

6

)
+ L̄(z).

(4.64)

Now, putting the values of f1 and f3 in (4.47), we obtain

e−z
(
γ1 + γ3y

)
− 4e−3z

(γ1y2
2

+
γ3y

3

6

)
− K̄(z) + K̄ ′(z) = 0. (4.65)

Since (4.65) holds for all z, therefore, it gives that γ1 = γ3 = 0, and

K̄ = β1e
z,

where β1 ∈ R.

Putting the values of f2 and f3 in (4.49), we find

ez
(
γ2 + γ3x

)
+ 4e3z

(γ2x2
2

+
γ3x

3

6

)
− L̄(z)− L̄′(z) = 0. (4.66)

Since (4.66) holds for all z, therefore, it implies that γ2 = γ3 = 0, and

L̄ = β2e
−z,

where β2 ∈ R.

Hence, the solution of the system of equations (4.45)∼(4.50) is given by

f1 = (β1 − γ4x)e
z, f2 = (β2 + γ4y)e

−z, f3 = γ4, (4.67)

where β1, β2, γ4 ∈ R.

Hence Lorentzian three-dimensional Lie group Sol3 admits an expanding Yamabe soliton

for appropriate vector fields given by (4.67). □

Theorem 4.2. The Sol3 space with a left-invariant Lorentzian metric given by (4.38) satis-

fies a gradient Yamabe soliton equation

LgradF g = 2(−2− r)g,

where the potential function F is constant.

Proof. Let V = gradF be an arbitrary gradient vector field on (Sol3, g) with potential

function F . Then V is given by

gradF = e−2z∂xF ∂x + e2z ∂yF ∂y + ∂zF ∂z.
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From (4.67), we see that (Sol3, g) is a gradient Yamabe soliton if and only if the potential

function F satisfies the following systems:

∂xF = e2z(β1 − γ4x), (4.68)

∂yF = e−2z(β2 + γ4y), (4.69)

∂zF = γ4. (4.70)

Differentiating (4.68) with respect to z and (4.70) with respect to x, and equating them

we obtain

2e2z(β1 − γ4x) = 0, (4.71)

which gives β1 = 0 and γ4 = 0. Further, taking the derivative of (4.69) with respect to z and

(4.70) with respect to y and equating them we get

2e−2z(β2 + γ4y) = 0, (4.72)

which gives β2 = 0 and γ4 = 0. So, F = constant. Hence the result. □
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Dedicated to the memory of the late Professor Krishan Lal Duggal(1929-2022)
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1. Introduction

The most important geometrical tool to explain the geometric structures in Riemannian

geometry (semi-Riemannian) over the last two decades has been the theory of geometric

flows. Since they arise as potential models of discontinuities, the study of discontinuities
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Oğuzhan Bahadir ⋄ oguzbaha@gmail.com ⋄ https://orcid.org/0000-0001-5054-8865.

58

HTTPS://ORCID.ORG/0000-0002-1713-6831
HTTPS://ORCID.ORG/0000-0003-3895-7548
HTTPS://ORCID.ORG/0000-0001-5054-8865


INT. J. MAPS MATH. (2024) 7(1):58-75 / GENERALIZED SOLITONIC CHARACTERISTICS IN · · · 59

(singularities) of the flows involves a special class of solutions where the metric changes

via dilations and diffeomorphisms. They are often called soliton solutions. In 1982, R. S.

Hamilton [10] developed the idea of Ricci flow such that

∂g

∂t
= −2Sric(g). (1.1)

On a Riemannian manifold (M, g), a Ricci soliton struture (g, V, λ) can be expressed by

Sric +
1

2
Lθg + Λg = 0, (1.2)

here Lθ is the Lie derivative along the vector field θ, Λ is a scalar, and Sric is the Ricci tensor.

Ricci soliton is defined as Λ < 0,Λ = 0, and Λ > 0, respectively. It can also be described as

expanding, stable, or shrinking.

Equation (1.2) takes on the form of a gradient Ricci soliton if the vector field θ = grad(ψ),

where ψ is potential function on manifold.

Hessψ = Sric + Λg. (1.3)

Pigola et al. [21] argue that if we consider Λ ∈ C∞(M), sometimes referred to as a soliton

function, so we could assert that (M, g) is almost generalized Ricci solitons (AGRS).

Plenty of mathematicians are drawn to this idea. Therefore, how self-similar solutions

are categorized to Ricci flows has received a lot of attention in recent years.This problem

has significant practical implications in fields such as thermodynamics, control theory, op-

tics, mechanics, phase space of dynamical systems, and many other departments of pure

mathematics.

Ricci solitons are significant because they are both logical generalizations of Einstein met-

rics. A few generalizations, for example quasi-Einstein manifolds [4], generalized quasi-

Einstein manifolds [5] and gradient Ricci solitons [3], are crucial in the solutions of some

manifolds have their local structure derived from Ricci flows.

Overarching in reference [19], Nurowski and Randall initially defined Ricci soliton as a

kind of over determined framework for equations.

1

2
Lθg − bSric − Λg + aU ♯ ⊗ U ♯ = 0, (1.4)
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where U ♯ denotes the canonical 1-from and a, b are real constants .

If U = ∇ψ , where ψ ∈ C∞(M), (M, g) is referred to as a gradient almost generalized

Ricci soliton (GAGRS) in that case. As a result, (1.4) becomes

∇2ψ − 2bSric − 2Λg + 2aU ♯ ⊗ U ♯ = 0. (1.5)

However, Kaneyuki and Konzai started researching an almost para-contact structure on

semi-Riemannian manifolds [12]. Zamkovoy has done extensive research on para contact

metric manifolds [35]. Furthermore, trans-para-Sasakian manifold geometry was given by

Zamkovoy in 2019 [37]. Siddiqi also has investigated lightlike hypersurfaces [27] and null

hypersurfaces of trans-para-Sasakian manifold [26].

Structures that are an almost contact manifold M are known as trans-Sasakian structures

[20], if M ×R, the product manifolds, are members of class W4 [9]. Marrero and Chinea are

fully characterized trans-Sasakian structures of type (α, β) in [16].

The trans-para-Sasakian manifolds are seen by Zamkovoy in [37] as an analogy of the

trans-Sasakian manifolds. A trans-para-Sasakian structure of type (α, β), where α and β

are smooth functions, is called a trans-para-Sasakian manifold [28]. The manifolds of type

(α, β) that are trans-para-Sasakian are the para-Sasakian manifolds in the case of α = 1,

the para-Kenmostu manifolds in the case of β = 1 [37], and the para-cosympletic manifolds

(α = β = 0) [13].

During last two decades, many geometers exclusively studied the Ricci solitons and an

extension [24] of Ricci solitons namely, η-Ricci solitons on different manifolds such as Rie-

mannian manifold [22], Kenmotsu manifold [18], K-contact manifolds and (k, µ)-contact

manifolds [29] and trans-Sasakian manifolds [31]. Following Siddiqi [25], who also discussed

generalized Ricci soliton. Mekki and Cherif studied another generic concept known as gener-

alized Ricci soliton on Sasakian manifolds [17]. In this research note, we studied the almost

generalized Ricci soliton and almost gradient generalized Ricci soliton in trans-para-Sasakian

manifolds as a result of the aforementioned sources and comments.

2. Preliminaries

If a (2n + 1)-dimensional smooth manifold Θ admits a vector field ζ, a 1-form γ, and

a tensor field Φ of type (1, 1), and a pseudo-Riemannian metric g then it has an almost
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paracontact structure (Φ, ζ, γ, g) such that [2]

Φ2p = p− γ(p)ζ, Φ(ζ) = 0, γ ◦ Φ = 0, γ(ζ) = 1. (2.6)

The definition of almost paracontact structure immediately leads to the rank 2n of the

endomorphism Φ.

g(Φp,Φq) = −g(p, q) + γ(p)γ(q), (2.7)

then g is said to be compatible with signature (n + 1, n) and Θ has an almost paracontact

metric structure.

Observe that when q = ζ is set, γ(p) = g(p, ζ). Moreover, a compatible metric admits any

almost paracontact structure. If

g(p,Φq) = dγ(p, q),

where dγ(p, q) = 1
2(pγ(q) − qγ(p) − γ([p, q]), then γ is a paracontact form and the almost

paracontact metric manifold (Θ,Φ, γ, ζ, g) is defined as a paracontact metric manifold.

An almost paracomplex structure on the product Θ(2n+1)×R easily arises from a paracon-

tact structure on a Θ(2n+1). The provided paracontact metric manifold is called para-Sasakian

if this almost paracomplex structure is integrable. Comparably, a paracontact metric mani-

fold is a para-Sasakian if and only if (see [36]).

(∇pΦ)q = −g(p, q)ζ + γ(q)p, (2.8)

the manifold (Θ,Φ, ζ, γ, g) of dimension (2n+1) is said to be trans-para-Sasakian manifolds

(TPS-manifolds) if and only if

(∇pΦ)Y = α(−g(p, q)ζ + γ(q)p) + β(g(p,Φq)ζ + γ(q)Φp), (2.9)

from (2.9), we also have

∇pζ = −αΦp− β(p− γ(p)ζ). (2.10)

The gradient of a smooth function ψ on Θ is defined as follows

g(gradψ, p) = p(ψ). (2.11)

The definition of ψ’s Hessian is

(HessΨ)(p, q) = g(∇pgradΨ, q), (2.12)
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where p, q ∈ Γ(TΘ).

We defined p ∈ Γ(TΘ). U ♯ ∈ Γ(T̄Θ) by

U ♯(q) = g(p, q). (2.13)

The AGRS equation in Riemannian manifold Θ is given by [19]

Lθg = −2aU ♯ ⊙ U ♯ + 2bSric + 2Λg, (2.14)

where p ∈ Γ(TΘ) and the Lie-derivative is defined as

(Lθg)(q, t) = g(∇qθ, t) + g(∇tθ, q) (2.15)

where q, t ∈ Γ(TΘ). Equation (1.4), furthermore, is refers to an expansion of

(1) If a = b = Λ = 0, then Killing’s equation.

(2) If a = b = 0, then equation for homotheties.

(3) If a = 0, b = −1,then Ricci soliton.

(4) If a = 1, b = −1
n−2 , then Einstein-Weyl geometry.

(5) If a = 1, b = −1
n−2 , λ = 0, then we have metric projective structures with skew-

symmetric Ricci tensor in projective class.

(6) If a = 1, b = 1
2 , then we have Vacuum near-horzion geometry equation ( for more

details see [7], [8], [11], [14]).

A generalization of Einstein manifolds [5] is given by equation (1.4). Observe that the

gradient AGRS equation is provided by: if p = gradψ, where ψ,Λ ∈ C∞(Θ)

Hessψ + adf ⊙ df = bSric + Λg. (2.16)

3. Gradient almost generalized Ricci soliton on trans para Sasakian

manifolds

The following relations hold in a (2n+ 1)-dimensional TPS manifold Θ [37]:

ℜ(p, q)ζ = −(α2 + β2)[γ(q)p− γ(p)q]− 2αβ[γ(q)Φp− γ(p)Φq] (3.17)

+[(qα)Φp− (pα)Φq + (qβ)Φ2p− (pβ)Φ2q].

Sric(p, ζ) = [(−2n(α2 + β2)− (ζβ)]γ(p) + ((Φp)α) + (n− 2)(pβ), (3.18)

Qζ = −2n(α2 + β2)− (ζβ))ζ +Φ(gradα)− (n− 2)(gradβ), (3.19)
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where Q is the Ricci operator provided by Sric(p, q) = g(Qp, q), and ℜ is the curvature tensor.

Furthermore, we have a TPS manifold

Φ(gradα) = −(2n− 1)(gradβ), (3.20)

2αβ − (ζα) = 0. (3.21)

Lemma [15] follows from combining (3.17) and (3.21) for constants α and β.

Lemma 3.1. [15] Let (Θ(2n+1),Φ, γ, ζ, g) be a TPS-manifold. Then we have

ℜ(p, q)ζ = −(α2 + β2)[γ(q)p− γ(p)q], (3.22)

ℜ(ζ, q)t = −(α2 + β2)[g(q, t)ζ − γ(t)q], (3.23)

Sric(p, ζ) = −2n(α2 + β2)γ(p), (3.24)

(∇pγ)q = αg(p,Φq)− β(g(p, q)− γ(p)γ(q)), (3.25)

Qζ = −[2n(α2 + β2)]ζ, (3.26)

where for all p, q, t ∈ T (Θ).

Example 3.1. Let (x, y, z) be the Cartesian coordinates in R3. Assume a 3-dimensional

manifold Θ = {(x, y, z) ∈ R3|z ̸= 0}. Let the linearly independent vector fields E1, E2, E3 are

linearly independent at each point of Θ defined as

E1 = ez(
∂

∂x
+ y

∂

∂z
), E2 = ez

∂

∂y
, E3 =

∂

∂z
.

Let g be the pseudo-Riemannian metric defined by

g(E1, E1) = −g(E2, E2) = g(E3, E3) = 1, g(E1, E2) = g(E2, E3) = g(E3, E1) = 0.

Moreover, the 1-form γ is given by ζ = E3 and γ(p) = g(p, E3). Let Φ be the (1,1) tensor

field defined by

Φ(E1) = E2, Φ(E2) = E1, Φ(E3) = 0,

for any vector field p on Θ. Using the linearity of Φ and g, we then obtain γ(E3) = 1,

ϕ2p = p− γ(p)ζ, with ζ = E3.
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Moreover, for all vector fields p and q on Θ, we have

g(Φp,Φq) = −g(p, q) + γ(p)γ(q).

Therefore, in R3, the structure (Φ, ζ, γ, g) defines a paracontact structure for E3 = ζ [36]. Let

ℜ be the curvature tensor of g and ∇ be the Levi-Civita connection with respect to metric

g. Next, we have

[E1, E2] = yezE2 − e2zE3[E1, E3] = −E3 [E2, E3] = −E2.

Now, we have Koszul’s formula

2g(∇pq, t) = pg(q, t) + qg(t, p)− tg(p, q)− g(p, [q, t])

−g(q, [p, t]) + g(t, [p, q]).

Therefore, in light of above formula, we turn up

∇E1E1 = E3, ∇E1E2 = −1

2
e2zE3, ∇E1E3 = −E1 −

1

2
e2zE2, (3.27)

∇E2E2 = −yezE1 − E3, ∇E2E1 = −yezE2 +
1

2
e2zE3,

∇E3E1 = −1

2
e2zE2, ∇E3E2 = −1

2
e2zE1, ∇E3E3 = 0.

The fact that (Φ, ζ, γ, g) is a TPS-structure on Θ is evident from the above. Thus, Θ3(Φ, ζ, γ, g),

with β = 1 and α = 1
2e

2z ̸= 0, is a TPS- manifold.

Theorem 3.1. If Θ(2n+1) be a TPS-manifolds, and satisfies the AGRS (1.4) with restriction

a[λ − 2nb(α2 + β2)] ̸= −1. Then ψ is a constant function. In addition, if b ̸= 0, then Θ is

an Einstein.

Lemma 3.1 gives us the following observations:

Corollary 3.1. If Θ(2n+1) be a TPS-manifolds, and satisfies the AGRS Hessψ+Sric = Λg,

then ψ is a constant function and Θ is an Einstein.

Corollary 3.2. In a TPS-manifolds Θ, there is no non-constant smooth function ψ, such

that Hessψ = Λg, for some constant Λ.

We must first show the following lemmas in order to proceed with the proof of the Theorem

(3.1).



INT. J. MAPS MATH. (2024) 7(1):58-75 / GENERALIZED SOLITONIC CHARACTERISTICS IN · · · 65

Lemma 3.2. Let Θ be a TPS-manifold. Then we have

(Lζ(Lpg))(q, ζ) = −(α2 + β2)g(p, q) + g(∇ζ∇ζp, q) + qg(∇ζp, ζ), (3.28)

where p, q ∈ Γ(TΘ) and q is orthogonal to ζ.

Proof. Based on the Lie-derivative property, we may observe that

(Lζ(Lpg))(q, ζ) = ζ((Lpg)(q, ζ))− (Lpg)(Lζq, ζ)− (Lpg)(q,Lζζ). (3.29)

Since Lζq = [ζ, q], Lζζ = [ζ, ζ], by adopting (2.16) and (4.51), we have

(Lζ(Lpg))(q, ζ) = ζg(∇qp, ζ) + ζg(∇ζp, q)− g(∇[ζ,q]p, ζ) (3.30)

−g(∇ζp, [ζ, q])

= g(∇ζ∇qp, ζ) + g(∇qp,∇ζζ) + g(∇ζ∇ζp, q)

+g(∇ζp,∇ζq)− g(∇ζp,∇ζq)− g(∇[ζ,q]p, ζ) + g(∇ζp,∇qζ).

By (1.4), we turn up ∇ζζ = Φζ = 0, therefore we gain

(Lζ(Lpg))(q, ζ) = g(∇ζ∇qp, ζ) + g(∇ζ∇ζp, q)− g(∇[ζ,q]p, ζ) (3.31)

+qg(∇ζp, ζ)− g(∇q∇ζp, ζ).

Utilizing (4.51) and (3.29), we turn up

(Lζ(Lpg))(q, ζ) = g(ℜ(ζ, q)p, ζ) + g(∇ζ∇ζp, q) + qg(∇ζp, ζ). (3.32)

When g(q, ζ) = 0 is taken from (4.51), we find

g(ℜ(ζ, q)p, ζ) = g(R(q, ζ)ζ, p) = (α2 + β2)g(p, q). (3.33)

(3.29) and (4.52) provide the Lemma. □

We now have another helpful Lemma.

Lemma 3.3. If Θ be a Riemannian manifold, and let ψ ∈ C∞(Θ). Then we have

(Lζ(df ⊙ df))(q, ζ) = q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ξ(ψ)), (3.34)

where ζ, q ∈ Γ(TΘ).
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Proof. We compute

(Lζ(df ⊙ df))(q, ζ) = ζ(q(ψ)ζ(ψ)− [ζ, q](ψ)ζ(ψ)− q(ψ)[ζ, ζ](ψ)

= ζ(q(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ))− [ζ, q](ψ)ζ(ψ).

Since [ζ, q](ψ) = ζ(q(ψ))− q(ζ(ψ)), we gain

(Lζ(df ⊙ df))(q, ζ) = [ζ, q](ψ)ζ(ψ) + q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ))− [ζ, q](ψ)ζ(ψ)

= q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ)).

□

Lemma 3.4. If Θ2n+1 be a TPS-manifold and satisfies the AGRS equation (2.16). Then

we have

∇ζ gradψ = [Λ− 2nb(α2 + β2)]ζ − aζ(ψ)gradψ. (3.35)

Proof. Let q ∈ Γ(TΘ), adopting the definition of Ricci curvature Sric (1.4) , and the curvature

restriction (4.51), we gain

Sric(p, q) = g(ℜ(ζ, Ei)Ei, q)

= g(ℜ(Ei, q)ξ, Ei)

= −(α2 + β2)[γ(q)g(Ei, Ei)− γ(Ei)g(p, Ei)

= (α2 + β2)[(2n+ 1)γ(q)− γ(q)]

= −2n(α2 + β2)γ(q)

= −2n(α2 + β2)g(ζ, q),

where {E1, E2, · · · , Ei} , and 1 ≤ i ≤ n is an orthonormal frame of Θ, indicates that

Λg(ζ, q) + bSric(ζ, q) = Λg(ζ, q)− 2nb(α2 + β2)g(ζ, q) (3.36)

= [Λ− 2nb(α2 + β2)]g(ζ, q).

In light of (1.4) and (3.35), we turn up

(Hessψ)(ζ, q) = −aζ(ψ)(q)(ψ) + [Λ− 2nb(α2 + β2)]g(ζ, q) (3.37)

= −aζ(ψ)g(gradψ, q) + [Λ− 2nb(α2 + β2)]g(ζ, q).

Accordingly, Lemma is inferred from both equation (3.35) and Hessian Definition (1.5). □

We can now establish Theorem 3.1 with the aid of Lemma 3.2, Lemma 3.3, and Lemma

3.4.
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Proof. (Proof of Theorem 3.1) Consider q ∈ Γ(TΘ), such that g(ζ, q) = 0. Lemma 3.1 gives

us that, given X = grad ψ,

2(Lζ(Hessψ))(q, ζ) = q(ψ) + g(∇ζ∇ζ gradψ, q) + qg(∇ζ gradψ, ζ). (3.38)

Using equation (3.37) and Lemma 3.1, we obtain

2(Lζ(Hessψ))(q, ζ) = q(ψ) + [Λ + b(n− 1)(α2 + β2)]g(∇ζ , q)− ag(∇ζ(ζ(ψ)grad ψ), q)

+[Λ + b(n− 1)(α2 + β2)]qg(ζ, ζ)− aq(ζ(ψ)2). (3.39)

Since ∇ζζ = 0 and g(ζ, ζ) = 1, in view of equation (3.38), we get

2(Lζ(Hessψ))(q, ζ) = q(ψ)− aζ(ζ(ψ))q(ψ)− aζ(ψ)g(∇ζ gradψ, q) (3.40)

−2aζ(ψ)q(ζ(ψ)).

Given g(ξ, Y ) = 0 and Lemma 3.1 and equation (3.39), we have

2(Lζ(Hessψ))(q, ζ) = q(ψ)− aζ(ζ(ψ))q(ψ) + a2ζ(ψ)2q(ψ) (3.41)

−2aζ(ψ)q(ζ(ψ)).

Observe that Lζg = 0, a Killing vector filed, follows from (1.4) and (1.5). This suggests that

LζS = 0, which is what the Lie derivative to the GRS equation (2.16) delivers.

q(ψ)− aζ(ζ(ψ))q(ψ) + a2ζ(ψ)2q(ψ)− 2aζ(ψ)q(ζ(ψ)) (3.42)

= −2aq(ζ(ψ))ζ(ψ)− 2aq(ψ)ζ(ζ(ψ)),

is equivalent to

q(ψ)[1 + aζ(ζ(ψ)) + a2ζ(ψ)2] = 0. (3.43)

Lemma 3.1 states that we have

aζ(ζ(ψ)) = aζg(ζ, grad ψ) (3.44)

= ag(ζ,∇ζ gradψ)

= a[Λ− 2nb(α2 + β2)]− a2ζ(ψ)2.

In view of equations (3.42) and (3.43), we gain

q(ψ)[Λ− 2nb(α2 + β2)] = 0. (3.45)

[Λ− 2nb(α2 + β2)] ̸= −1,
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which indicates that gradψ is parallel to ζ, and so q(ψ) = 0. Since D = kerγ is not integrable

anywhere, grad ψ = 0, indicating that ψ is a constant function. □

Now, the following scenarios exist for specific values of α and β:

Case 1.: For α = 0 or (β = 1), we can state:

Corollary 3.3. If Θ(2n+1) be a β-para Kenmotsu (or para Kenmotsu) manifold and satisfies

the AGRS (1.5) with condition a[Λ − 2nbβ2)] ̸= −1, then ψ is a constant function. In

addition, if b ̸= 0, then Θ(2n+1) is Einstein .

Case 2.: For β = 0, or (α = 1) we can state:

Corollary 3.4. If Θ(2n+1) be a α-para Sasakian (or para Sasakian) manifold and satisfies

the AGRS (1.5) with condition a[Λ−2nbα2)] ̸= −1, then ψ is a constant function. Moreover,

if b ̸= 0, then Θ(2n+1) is Einstein.

4. Almost generalized Ricci solitons on compact trans para Sasakian

manifolds

de Rham-Hodge’s classical theorem states that harmonic forms can express the cohomology

of an oriented closed Riemannian manifold. For an orientated compact Riemannian manifold

with boundary, the analogous one still holds by imposing certain boundary requirements,

including relative and absolute ones. However, these examples come from fully Riemannian

manifolds. The following are some helpful definitions.

Definition 4.1. [33] A C2-function ω : Θ −→ R is considered to be harmonic if ∆ω = 0.

The function ω is named subharmonic (resp. superharmonic) if ∆ ≥ 0 (resp. ∆ω ≤ 0),

where ∆ is the Laplacian operator in Θ.

Definition 4.2. [35] A function ω : Θ −→ R is called convex if the following inequality holds

ω ◦ δ(T ) ≤ (1− T )ω ◦ δ(0) + Tω ◦ δ(1), ∀T ∈ [0, 1],

for any geodesic δ : [0, 1] −→ Θ. Therefore in this case ω is differentiable, then ω is convex

if and only if ω satisfies

g(∇ω, p) ≤ ω(ex∇ω)− ω(x), ∀p ∈ TxΘ.
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Let p ∈ χ(Θ) and Θ be compact orientable TPS- manifolds. Then, according to the [1]

Hodge-de Rham decomposition theorem, p can be stated as

p = ∇ℏ+ q, (4.46)

where ℏ ∈ C∞(Θ) and div(q) = 0. The Hodge-de Rham potential is the name given to the

function h [22].

Let (g, p, λ) be a compact AGRS on compact TPS-manifold Θ, we turn up

div(p) + 2n(2n+ 1)b(α2 + β2) = nΛ− tr(aU ♯ ⊗ U ♯). (4.47)

div(X) = ∆ℏ is implied by the Hodge-de Rham decomposition, so, using equation(4.47), we

obtain

2n(2n+ 1)b(α2 + β2) = nΛ−∆ℏ− tr(aU ♯ ⊗ U ♯). (4.48)

Since Θ is GAGRS with potential function, we obtain

2n(2n+ 1)b(α2 + β2) = nΛ−∆f − tr(aU ♯ ⊗ U ♯). (4.49)

Now, on equating (4.48) and (4.49), we turn

∆(f − ℏ) = 0.

Consequently, although Θ is compact, f is a harmonic function in Θ. Thus, for some constant

c, f = ℏ+ c. As so, we possess the following outcome.

Theorem 4.1. If (g, p,Λ) is a compact GAGRS. If TPS- manifold Θ is also a GAGRS

with potential function f , then, up to constant, f equals to the Hodge-de Rham potential.

Theorem 4.2. Let (Θ, ζ, γ,Φ, g) be a complete TPS-manifold satisfying

1

2
Lpg − bSric ≥ Λg − aU ♯ ⊗ U ♯, (4.50)

where U ♯ is a canonical 1-from associated with p, a, b, and Λ are smooth functions, and p

is a smooth vector field. If one of the following requirements is fulfilled and ∥p∥ is bounded,

then the TPS-manifold Θ is compact:

(1) Λ ≥ 0 and a > 0, c > 0,

(2) Λ > c > 0 and a ≥ 0,

for a constant c > 0.
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Proof. If π ∈ Θ be a fixed point and δ : (0,∞] −→ Θ be a geodesic such that δ(0) = p. Then

along δ we compute

Lpg(δ1, δ1) = 2g(∇δ1p, δ1) = 2
d

dt
[g(p, δ1)]. (4.51)

Now, from (4.50) and (4.51), we have

−
∫ T

0
bSric(δ1, δ1)dt ≥

∫ T

0
Λ(δ(t))g(δ1, δ1)dt−

∫ T

0

d

dt
[g(p, δ1)dt−

∫ t

0
a(δ(T ))(U ♯⊗U ♯)(δ1, δ1)dt

= −1

b

[∫ T

0
Λ(δ(t))dt+ g(pπ, δ1(0))− g(pδ(T ), δ1(T )) +

∫ T

0
a(δ(T ))U ♯2(δ1)dt

]

≥ −1

b

[∫ T

0
Λ(δ(t))dt+ g(pπ, δ1(0))−

∥∥Xδ(T )

∥∥+

∫ T

0
a(δ(T ))U ♯2(δ1)dt

]
.

Cauchy-Schwarz inequality leads to the final inequality. If either of the two conditions (1)

or (2) is true, the inequality above suggests that

∫ ∞

0
bSric(δ1, δ1)dt = ∞. (4.52)

Hence by Ambrose’s Compactness Theorem [1] implies that TPS-manifold Θ is compact.

□

5. Gradient almost generalized Ricci soliton on compact trans para

Sasakian manifolds

In this segment, we discuss some results based on gradient almost generalized Ricci

solitonon compact trans-para Sasakian manifold n ≥ 2. Next, we articulate the following.

Theorem 5.1. [32] IF (Θ,Φ, γ, ζ, g) be a compact TPS-manifold with constant scalar curva-

ture and Θ admits a non-trivial conformal vector field p. If LpSric = ρg for some ρ ∈ C∞(Θ),

then Θ is isometric to the Euclidean sphere Sn.

Hence, from Theorem (5.1) we can also state the next theorem:

Theorem 5.2. Let (Θ,Φ, ζ, γ, g) be a compact GAGRS with Einstein potential f . If ∇f is

non-trivial conformal vector field, then TPS-manifold Θ is isometric to the Euclidean sphere

Sn.
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Proof. Let (Θ, g) be a GAGRS. Then from (1.4) we deduce

∇2f − bSric = Λg − aU ♯ ⊗ U ♯.

For each ψ ∈ C∞(Θ), ∇2f − ψg, if ∇f is a conformal vector field. The equation above now

takes the form

bSric = (ψ − Λ)g − aU ♯ ⊗ U ♯. (5.53)

As a result, Sric is only dependent on Θ points. Schur’s lemma thus implies that R is

constant. Once more, using p = ∇f , we get

aLpSric = (ψ − Λ)Lpg − aLp(U ♯ ⊗ U ♯) (5.54)

aLpSric = (ψ − Λ)ψg − a[q(ζ(ψ))ζ(ψ) + q(ψ)ζ(ζ(ψ))]. (5.55)

This completes the proof. □

In [32] Yano already proved a following results.

Theorem 5.3. [32] A compact manifold Θ with constant scalar curvature admits a non-

trivial conformal vector field p such that Lpg = 2ψg, ψ ̸= 0, then∫
Θ
ψdV = 0. (5.56)

Therefore in light of Theorem 5.3 we can state.

Theorem 5.4. Let (Θ,Φ, ζ, γ, g) be a compact GAGRS with Einstein potential f and (α2+

β2) ≤ 0. If ∇f is conformal vector field then TPS manifold Θ is shrinking or steady GAGRS.

Proof. Taking the trace in (5.53)

2n(2n+ 1)b(α2 + β2) = (2n+ 1)(ψ − Λ)− a |ζ|2 (5.57)

which implies ∫
Θ
2nb(α2 + β2) +

a

(2n+ 1)
|ζ|2 =

∫
Θ
(ψ − Λ). (5.58)

If p is conformal vector field and the scalar curvature of Θ is constant 2n(2n+ 1)(α2 + β2),

then applying Theorem (5.3) we get

2n(2n+ 1)(α2 + β2)

∫
Θ

[
b+

a

2n(2n+ 1)(α2 + β2)
|ζ|2

]
= −(2n+ 1)

∫
Θ
Λ. (5.59)

Now, if Λ < 0, then above equation reduced

2n(2n+ 1)(α2 + β2)

∫
Θ

[
b+

a

2n(2n+ 1)(α2 + β2)
|ζ|2

]
< 0. (5.60)
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If M is a compact TPS-manifold, then Theorem (5.2) implies that Θ is isometric to Sn.

Because scalar curvature is preserved via isometry so 2n(2n + 1)(α2 + β2) > 0. Hence the

above equation entails that

V ol(M) <
1

2n(2n+ 1)

∫
Θ

[
2n(2n+ 1)b+

a

(α2 + β2)
|ζ|2

]
. (5.61)

□

Lemma 5.1. [5] If (Θ,Φ, ζ, γ, g) be a GAGRS with Einstein potential f . Then we have

∆f = 2n(2n+ 1)b(α2 + β)2) + (2n+ 1)Λ− a |ζ|2 . (5.62)

Currently, function f convexity suggests that it is harmonic, or that ∆f = 0, [32]. There-

fore, (5.62) implies

2n(2n+ 1)b(α2 + β)2) + (2n+ 1)Λ− a |ζ|2 = 0. (5.63)

Λ =
a |ζ|2

(2n+ 1)
− 2nb(α2 + β2). (5.64)

Therefore, this leads the following result:

Theorem 5.5. If f is a convex harmonic function on TPS-manifold (Θ,Φ, ζ, γ, g) and

has non negative scalar curvature, then admitting a GAGRS with Einstein potential f is

expanding, stable, or shrinking according as

(1) a|ζ|2
(2n+1) > 2nb(α2 + β2),

(2) a|ζ|2
(2n+1) = 2nb(α2 + β2) and

(3) a|ζ|2
(2n+1) < 2nb(α2 + β2), respectively.

Moreover, Lemma 5.1 entails the following:

Corollary 5.1. If (Θ,Φ, ζ, γ, g) be a TPS-manifold admitting a GAGRS with Einstein

potential f , then the Poisson equation satisfied by f becomes

∆f = 2n(2n+ 1)b(α2 + β)2) + (2n+ 1)Λ− a |ζ|2 . (5.65)

Example 5.1. Let (Θ,Φ, ζ, γ, g) be the 3-dimensional TPS-manifold considered in example

3.1.
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Let ∇ be a Levi-Civita connection. From (3.27), we obtain the following components of

Riemannina curvature tensor and Ricci tensor:

ℜ(E1, E2)E2 =
(
−3

4
e4z + 1

)
E1, ℜ(E1, E3)E3 = −

(
1

4
e4z + 1

)
E1, ℜ(E1, E3)E2 = −e3zyE1,

(5.66)

ℜ(E2, E3)E3 = −
(
1

4
e4z + 1

)
E2, ℜ(E2, E3)E2 = −

(
1

4
e4z + 1

)
E3,

ℜ(E1, E2)E1 = −e2zE1 −
(
1

2
e4z + 1

)
E2 + e3zyE3, ℜ(E2, E3)E1 = 0,

ℜ(E1, E3)E1 = e3zye2 +

(
1

4
e4z + 1

)
E3, ℜ(E1, E2)E3 = −e3zyE1.

Sric(E1, E1) = −3

4
e4z − 2, Sric(E2, E2) = −1

2
e4z + 2E2, Sric(E3, E3,) = −1

2
e4z − 2. (5.67)

From (2.14), we have

bSric(Ei, Ei) = −(β + Λ)g(Ei, Ei) + (a− β)δij , {i = 1, 2, 3} (5.68)

Now, we find the following cases corresponding to the different values of a and b in equation

(2.14):

Case(1). For Killing vector field i.e., a = b = 0, from (5.68) we find Λ = −2β, which is

shrinking.

Case(2). In case of Ricci soliton a = 0, b = −1, from (5.68), Λ = −
(
3
4e

4z + 2
)
−β. Therefore,

the data (g, ζ,Λ, a, b) is an AGRS on TPS-manifold (Θ,Φ, ζ, γ, g), is steady and shrinking

according as 3
4e

4z + 2 < −β, 3
4e

4z + 2 = β, respectively.

Case(3). For Einstein-Weyl geometry case a = 1, b = −1
n−2) , from (5.68), Λ = (2β + 1) −

1
(n−2)

(
1
2e

4z + 2
)
. Now, the data (g, ζ,Λ, a, b) is an AGRS on TPS-manifold (Θ,Φ, ζ, γ, g)

is steady, shrinking or expanding according as (2β + 1) = 1
(n−2)

(
1
2e

4z + 2
)
, (2β + 1) <

1
(n−2)

(
1
2e

4z + 2
)
or (2β + 1) > 1

(n−2)

(
1
2e

4z + 2
)
, respectively.

Case(4). For the geometry of Vacuum near horizon equation a = 1, b = 1
2 , from (5.68),

Λ = (2β − 2) −
(
1
4e

4z
)
. The data (g, ζ,Λ, a, b) is an AGRS on TPS-manifold (Θ,Φ, ζ, γ, g),

is steady, shrinking or expanding according as (2β − 2) =
(
1
4e

4z
)
, (2β − 2) <

(
1
4e

4z
)
or

(2β − 2) >
(
1
4e

4z
)
, respectively.



74 M. D. SIDDIQI, A. N. SIDDIQUI, AND O. BAHADIR

Acknowledgments

We express our sincere thanks to the referee for many helpful suggestions.

References

[1] Aquino, C., Barros, A. and Riberio, E. Jr. (2011), Some applications of Hodge-de Rham decomposition

to Ricci solitons, Results. Math. 60, 235-246.

[2] Blair, D. E. and Oubina, J. A. (1990). Conformal and related changes of metric on the product of two

almost contact metric manifolds, Publ. Mat., 34, 199-207.

[3] Cao, H. D. (2009). Recent progress on Ricci solitons, Adv. Lect. Math. (ALM), 11, 1-38.

[4] Case, J. S., Shu, Y. and Wei, G. (2011). Rigidity of quasi Einstein metrics, Diff. Geo. Appl., 20, 93-100.

[5] Catino, G. (2012). Generalized quasi Einstein manifolds with harmonic Weyl tensor, Math. Z., 271, 751-

756.

[6] Chinea, D., Gonzales, C. (1990). A classification of almost contact metric manifolds, Ann. Mat. Pura

Appl., 156, 15-30.

[7] Chrusciel, P. T., Reall, H. S. and Tod, P. (2006). On non-existence of static vacuum black holes with

degenerate components of the event horizon, Classical Quantum Gravity, 23, 549-554.

[8] Friedan, D. (1985). Non-linear models in 2 + ϵ dimensions, Ann. Phys., 163, 318-419.

[9] Gray, A. and Harvella, L. M. (1980). The sixteen classes of almost Hermitian manifolds and their linear

invariants, Ann. Mat. Pura Appl., 123(4), 35-58.

[10] Hamilton, R. S. (1988). The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz. CA,

1986), Contemp. Math. 71, Amer. Math. Soc., 237-262.

[11] Jezierski, J. (2009). On the existence of Kundt’s metrics and degenerate (or extremal) Killing horizons,

Classical Quantum Gravity, 26, 035011, 11 pp.

[12] Kaneyuki, S. and Konzai, M. (1985). Paracomplex structure and affine symmetric spaces, Tokyo J. Math.,

8, 301-308.

[13] Kenmotsu, K. (1972). A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(2), 93-103.

[14] Kunduri, H. K and J. Lucietti, J. (2013). Classification of near-horizon geometries of extremal black

holes, Living Rev. Relativity, 16(8).

[15] Levy, H. (1925). Symmetric tensors of the second order whose covariant derivatives vanish, Ann. Math.,

27(2), 91-98.

[16] Marrero, J. C. (1992). The local structure of Trans-Sasakian manifolds, Annali di Mat. Pura ed Appl.

162, 77-86.

[17] Mekki, El. A. M. and Cherif, A. M. (2017). Generalised Ricci soliton on Sasakian manifolds. Kyungpook

Math. J., 57(4), 677–682.

[18] Nagaraja, H.G. and Premalatha, C. R. (2012). Ricci solitons in Kenmotsu manifolds, J. Math. Anal.

3(2), 18-24.

[19] Nurowski, P. and Randall, M. (2016). Generalized Ricci solitons, J. Geom. Anal., 26, 1280-1345.

[20] Oubina, J. A. (1985). New classes of almost contact metric structures, Publ. Math. Debrecen 32, 187-193.



INT. J. MAPS MATH. (2024) 7(1):58-75 / GENERALIZED SOLITONIC CHARACTERISTICS IN · · · 75

[21] Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A. G. (2011). Ricci almost solitons, Ann. Sc. Norm. Super.

Pisa Cl. Sci. 10(5), 757-799.

[22] Siddiqi. M. D. (2018). Generalized Ricci solitons on trans-Sasakian manifolds. Khayyam J. Math., 4(2),

178–186.

[23] Siddiqi. M. D. (2018). Generalized η-Ricci solitons on trans-Sasakian manifolds, Eurasian Bull. Math.

EBM, 1(3), 107-116.

[24] Siddiqi, M. D. (2018). Conformal η-Ricci solitons in δ-Lorentzian Trans Sasakian manifolds, Int. J. Maps

Math., 1, 15–34.

[25] Siddiqi, M. D. (2019). η -Ricci soliton in (ε, δ)-trans-Sasakian manifolds. Facta. Univ. (Nis), Math.

Inform., 34(1), 45–56.

[26] Siddiqi, M. D, (2019). Pseudo-Slant Submanifolds in Trans-Para Sasakian Manifolds, South Asian Journal

of Mathematics, 9 (2), 59-69.

[27] Siddiqi, M. D. (2020). Characteristics of lightlike hypersurfaces of trans-para Sasakian manifolds, Inter-

national Journal of Maps in Mathematics, 3(2), 109–128.

[28] Siddiqi, M. D. (2022). Inspection on Null Hypersurfaces of Trans-Para Sasakian manifolds, Acta Univer-

sitatis Apulensis, 71, 101-116.

[29] Shaikh, A. A. and Mondal, C. K. (2019). Some results in η-Ricci soitons and gradient ρ-Einstein solitons

in a complete Riemannian manifold, Commun. Korean. Math. Soc., 34(4), 1303-1313.

[30] Sharma, R. (2008). Certain results onK-contact and (κ, µ)-contact manifolds, J. Geom., 89(1-2), 138-147.

[31] Tanno, S. (1969). The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J.

21, 21-38 .

[32] Udriste, C. (1994). Convex function and Optimization Methods on Riemannian manifolds, Kluwer Aca-

demic Publisher.

[33] Yano. K. (1970). Integral formula in Riemannian geometry, Marcel Dekker, Inc.

[34] Yau, S. T. (1975). Harmonic function on complete Riemannian manifolds, Commu. Pure. Appl. Math.,

28, 201-228 .

[35] Zamkovoy, S. (2009). Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geom., 36, 37-60.

[36] Zamkovoy, S. (2018). On para-Kenmotsu manifolds, Filomat, 32(14), 4971-980.

[37] Zamkovoy, S. (2019). On the geometry of Trans-Para Sasakian manifolds, Filomat, 33(18), 6015-6029.

Department of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 4512,

Saudi Arabia

Division of Mathematics, School of Basic Sciences, Galgotias University, Greater Noida,

Uttar Pradesh 203201, India

Department of Mathematics, Faculty of Science and Letters, Kahramanmaras Sutcu Imam

University Kahrmanmaras, TURKEY



International Journal of Maps in Mathematics

Volume 7, Issue 1, 2024, Pages:76-96

E-ISSN: 2636-7467

www.journalmim.com

POINTWISE HEMI-SLANT RIEMANNIAN MAPS INTO ALMOST

HERMITIAN MANIFOLDS AND CASORATI INEQUALITIES
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have been studied these maps between manifolds in ([1, 2, 9, 10, 12, 13, 14, 16, 18, 19, 25,

27, 32, 34, 33, 36, 35, 40, 37, 45, 48, 49]).

As a natural generalization of isometric immersions and Riemannian submersions, Fischer

[17] defined the concept of Riemannian maps between Riemannian manifolds as follows: Let

(M, g) and (N, ḡ) be Riemannian manifolds and Ψ is a smooth map between them. Then

the tangent bundle of M has the following decompostion

TM = kerΨ∗ ⊕ (kerΨ∗)
⊥,

where kerΨ∗ denotes the kernel space of Ψ∗ and (kerΨ∗)
⊥ is the orthogonal complementary

space to kerΨ∗. In a similar way, the tangent bundle of N has the following decompostion

TN = (rangeΨ∗)⊕ (rangeΨ∗)
⊥

where rangeΨ∗ denotes the range of Ψ∗ and rangeΨ∗)
⊥ is the orthogonal complementary

space to rangeΨ∗. Now, if the horizontal restriction Ψh
∗p1 : (kerΨ⊥

∗ ) −→ (rangeΨ∗p1)

is a linear isometry between the inner product spaces ((kerΨ∗p1)
⊥, g(p1) |(kerΨ∗p1 )

⊥) and

(rangeΨ∗p1 , ḡ(p2) |(rangeΨ∗)p1
), p2 = Ψ(p1) then a smooth map Ψ : (M, g) −→ (N, ḡ) is called

Riemannian map at p1 ∈ M. One can see that Riemannian submersions and isometric im-

mersions are particular Riemannian maps with (rangeΨ∗)
⊥ = 0 and kerΨ∗ = 0, respectively.

Inspried by Fischer’s article, B. Şahin introduced anti invariant Riemannian maps, holo-

morphic Riemannian maps and semi-invariant Riemannian maps to almost Hermitian man-

ifolds and studied the geomerty of total spaces and base spaces ([39, 41]). This notion

has opened a new original and effective area in the theory of Riemannian maps. Since

then many geometers have studied Riemannian maps in different kinds of structures in

[3, 4, 5, 20, 29, 28, 31, 38, 44, 43]. Recent developments in the theory of Riemannian map

can be found in the books [30, 42].

On the other hand, in [11], Casorati introduced Casorati curvature which is a very natural

concept of regular surfaces in the three-dimensional Euclidean space. One can see some

optimal inequalities involving Casorati curvatures in ([7, 6, 15, 22, 24, 46, 47, 23, 51, 52]).

Hemi-slant submanifolds were introduced by Carriazo (Bi-slant immersions. in: Proc.

ICRAMS 2000, Kharagpur, India, 2000, 88–97.) and Şahin (Annales Polonici Mathematici

95 (2009), 207-226) as a generalization of slant submanifolds. Hemi-slant submersions were

introduced by Taştan, Şahin and Yanan (Mediterr. J. Math. 13, 2171–2184 (2016)) as

a natural generalization of slant submersions. On the other hand, hemi-slant Riemannian
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maps were defined by Şahin (Mediterr. J. Math. 14, 10 (2017)) as a natural generalization

of hemi-slant submanifolds and hemi-slant submersions. In 2022, Gündüzalp and Akyol

defined pointwise slant Riemannian maps as a generalization of pointwise slant submanifolds

[14] and pointwise slant submersions [25] in a natural way in [21]. They obtained simple

characterizations and geometrical properties of pointwise slant Riemannian maps. As far as

we know, no author has studied pointwise hemi-slant Riemannian maps so far. In the present

paper, we are motivated to fill a gap in the literature by giving the notion of pointwise hemi-

slant Riemannian maps, in which the base space consist of an anti-invariant and a slant

distribution, as a special case of slant submanifold, hemi-slant submanifold, pointwise slant

submanifold, slant submersions, hemi-slant submersions and hemi-slant Riemannian map

and investigate the geometry of these maps.

The paper is organized as follows. Section 2 includes the main properties of the Riemannian

maps, the tensors introduced by B. O’Neill and the second fundamental form of a map.

Section 3 contains the definition of pointwise hemi-slant Riemannian maps from Riemannian

manifolds to almost Hermitian manifolds, many examples and investigate the geometry of

foliations which are arisen from the definition of a pointwise hemi-slant Riemannian map and

obtain decomposition theorems by using these maps. We also find necessary and sufficient

conditions for pointwise hemi-slant Riemannian maps to be totally geodesic. Finally, we

obtain Casorati curvatures for pointwise hemi-slant Riemannian maps in complex space form.

2. Preliminaries

Let (M1, gM1 , J1) be an almost Hermitian manifold. This means that M1 admits a tensor

field J1 of type (1, 1) on M1 such that

J2
1 = −I, gM1(J1ξ1, J1ξ2) = gM1(ξ1, ξ2), ξ1, ξ2 ∈ Γ(TM1). (2.1)

An almost Hermitian manifold M1 is called Kaehler manifold [50] if

(∇ξ1J1)ξ2 = 0, ξ1, ξ2 ∈ Γ(TM1), (2.2)

where ∇ denotes the Riemannian connection of the metric gM1 on M1.

Let (M1, gM1) and (M2, gM2) be Riemannian manifolds and Ψ is a differentiable map

between them. Then the differential Ψ∗ of Ψ can be viewed a section of the bundle

Hom(TM1,Ψ
−1TM2) →M1, where Ψ−1TM2 is the pullback bundle which has fibres

(Ψ−1TM2)q = TΨ(q)M2, q ∈ M1. Hom(TM1,Ψ
−1TM2) has a connection ∇ induced from
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the Levi-Civita connection ∇M1 and the pullback connection. The second fundamental form

of Ψ is given by [8]

(∇Ψ∗)(ξ1, ξ2) = ∇Ψ
ξ1Ψ∗ξ2 −Ψ∗(∇M1

ξ1
ξ2) (2.3)

for ξ1, ξ2 ∈ Γ(TM1), where ∇Ψ is the pullback connection. On the other hand, it is shown in

([39]) that (∇Ψ∗)(ξ1, ξ2) has no components in ImΨ∗, provided that ξ1, ξ2 ∈ Γ((kerΨ∗)
⊥).

More exactly,

(∇Ψ∗)(ξ1, ξ2) ∈ Γ((ImΨ∗)
⊥), ∀ξ1, ξ2 ∈ Γ((kerΨ∗)

⊥), (2.4)

here (ImΨ∗)
⊥ is the subbundle of Ψ−1(TM2) with fibre Γ(Ψ∗(TqM1)

⊥), q ∈M1.

Let Ψ be a Riemannian map from a Riemannian manifold (M1, gM1) to a Riemannian man-

ifold (M2, gM2). Then ∀ξ1, ξ2, Y3 ∈ Γ((kerΨ∗)
⊥), we have

gM2((∇Ψ∗)(ξ1, ξ2),Ψ∗(Y3)) = 0. (2.5)

O’Neill’s tensors T and A are defined by, respectively,

Tξ1ξ2 = h∇vξ1vξ2 + v∇vξ1hξ2 (2.6)

and

Aξ1ξ2 = v∇hξ1hξ2 + h∇hξ1vξ2 (2.7)

for every ξ1, ξ2 ∈ Γ(TM1), where ∇ is the Levi-Civita connection of gM1 . Here h and v are

the projections on horizontal and vertical distributions, respectively. It is known that the

tensor fields T is symetric and A is anti-symetric tensors. By using (2.6) and (2.7), we obtain

∇η1η2 = Tη1η2 + ∇̂η1η2; (2.8)

∇η1ξ1 = Tη1ξ1 + h∇η1ξ1; (2.9)

∇ξ1η1 = Aξ1η1 + v∇ξ1η1; (2.10)

∇ξ1ξ2 = Aξ1ξ2 + h∇ξ1ξ2, (2.11)

for any ξ1, ξ2 ∈ Γ((kerΨ∗)
⊥), η1, η2 ∈ Γ(kerΨ∗), here ∇̂η1η2 = v∇η1η2.

We denote by ∇2 both the levi-Civita connection of (M2, gM2) and its pullback along Ψ.

Then according to [26], for any vector field ξ1 onM1 and any section η1 of (rangeΨ∗)
⊥, where

(rangeΨ∗)
⊥ is the subbundle of Ψ−1(TM2) with fiber (Ψ∗(TqM1))

⊥− orthogonal complement

of (Ψ∗(TqM1)) for gM2 over q, we have ∇Ψ⊥
ξ1
η1 which is the orthogonal projection of ∇2

ξ1
η1

on (Ψ∗(TqM1))
⊥−such that ∇Ψ⊥gM2 = 0. We now define Sη1 as

∇2
Ψ∗ξ1η1 = −Sη1Ψ∗ξ1 +∇Ψ⊥

ξ1 η1 (2.12)
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where Sη1Ψ∗ξ1 is tangential component of ∇2
Ψ∗ξ1

η1. It is easy to see that Sη1Ψ∗ξ1 is bilinear in

η1 and Ψ∗ξ1 and Sη1Ψ∗ξ1 at q depends only on U1q and Ψ∗qY1q. Thus,for ξ1, ξ2 ∈ Γ((kerΨ⊥
∗ )

and η1 ∈ Γ((rangeΨ∗)
⊥), we get

gM2(Sη1Ψ∗ξ1,Ψ∗ξ2) = gM2(η1, (∇Ψ∗)(ξ1, ξ2)). (2.13)

Since (∇Ψ∗) is symmetric, it follows that Sη1 is a symmetric linear transformation of rangeΨ∗.

3. Pointwise hemi-slant Riemannian maps to Kaehler manifolds

Let Ψ : (M1, gM1) → (M2, gM2 , J2) be a Riemannian map from a Riemannian manifold

(M1, gM1) to an almost Hermitian manifold (M2, gM2 , J2). If, at each given point p ∈ M2,

the Wirtinger angle ϕ(X) between J2Ψ∗(X) and the space rangeΨ∗ is independent of the

choice of the nonzero tangent vector Ψ∗(X) in rangeΨ∗, then we say that Ψ is a pointwise

slant Riemannian map. In this case, the angle ϕ can be regarded as a function on M2, which

is called the slant function of the pointwise slant Riemannian map.

Let D be a differentiable distribution on M2. Then D is pointwise slant if and only if

there exists a function µ ∈ [−1, 0] such that (γQϕ)
2η = µη for η ∈ D, where Qϕ denotes the

orthogonal projection on D. Moreover, in this case µ = − cos2 ϕ.

Definition 3.1. Let (M1, gM1) be a Riemannian manifold and (M2, gM2 , J2) be an almost

Hermitian manifold. Then we say that a Riemannian map Ψ : M1 → M2 is a pointwise

hemi-slant Riemannian map if there exists a pair of orthogonal distributions Dϕ and D⊥ on

rangeΨ∗ such that

(1) The space rangeΨ∗ admits the orthogonal direct decomposition Dϕ ⊕D⊥.

(2) The distribution D⊥ is totally real.

(3) The distribution Dϕ is pointwise slant with slant function ϕ.

In this case, the angle ϕ can be regarded as a function onM2, which is called the hemi-slant

function of the pointwise hemi-slant Riemannian map.

Now we say that the pointwise hemi-slant Riemannian map Ψ is proper if D⊥ ̸= {0} and

ϕ ̸= 0, π2 .

Then, for η1 ∈ Γ(rangeΨ∗), we can write

J2η1 = N1η1 +N2η1, (3.14)

here N1η1 ∈ Γ(Dϕ) and N2η1 ∈ Γ(D⊥) and we can write

J2η1 = γη1 + δη1, (3.15)
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here γη1 ∈ Γ(rangeΨ∗) and δη1 ∈ Γ((rangeΨ∗)
⊥). Also, for any Y1 ∈ Γ((rangeΨ∗)

⊥), we get

J2Y1 = γ̄Y1 + δ̄Y1, (3.16)

here γ̄Y1 ∈ Γ(rangeΨ∗) and δ̄Y1 ∈ Γ((rangeΨ∗)
⊥).

Theorem 3.1. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian man-

ifold (M1, gM1) to an almost Hermitian manifold (M2, gM2 , J2) with hemi-slant function ϕ.

γ2η1 = −(cos2 ϕ)η1 (3.17)

for any η1 ∈ Γ(Dϕ).

Proof. Since,

cosϕ =
gM2(J2η1, γη1)

|J2η1||γη1|
= −gM2(η1, γ

2η1)

|η1||γη1|

and cosϕ == |γη1|
|J2η1| , for η1 ∈ Γ(Dϕ) we obtain

cos2 ϕ = −gM2(η1, γ
2η1)

|η1|2
.

Hence,

γ2η1 = −(cos2 ϕ)η1.

Also converse of Theorem 3.1, it can be directly verified. □

Moreover, for any η1, U2 ∈ Γ(Dϕ) we have

gM2(γη1, γU2) = cos2 ϕgM2(η1, U2) (3.18)

gM2(δη1, δU2) = sin2 ϕgM2(η1, U2). (3.19)

Furthermore, for η1 ∈ Γ(Dϕ) we obtain

γ̄δη1 = − sin2 ϕη1, δ̄δη1 = −δγη1. (3.20)

Example 3.1. Let (R8, gR8) be the Euclid space. Consider {J1, J2} a pair of almost complex

structures on R8 satisfying J1J2 = −J2J1, here

J1(a1, ..., a8) = (−a3,−a4, a1, a2,−a7,−a8, a5, a6)

and

J2(a1, ..., a8) = (−a2, a1, a4,−a3,−a6, a5, a8,−a7).

For any real-valued function λ : R8 → R, we define new almost complex structure Jλ on R8

by Jλ = (cosλ)J1 + (sinλ)J2.



82 Y. GÜNDÜZALP, M. A. AKYOL, AND B. ŞAHİN

Then R8
λ = (R8, Jλ, gR8) is an almost Hermitian manifold.

Consider a Riemannian map Ψ : R8 → R8
λ by

Ψ(y1, ..., y8) = (y1, y3, y6, y8, π, e, c1, c2).

Then the map Ψ is a proper pointwise hemi-slant Riemannian map with the hemi-slant func-

tion λ such that

Dϕ = span{ ∂

∂z6
,
∂

∂z8
}, and D⊥ = span{ ∂

∂z2
,
∂

∂z3
}.

Also, we obtain

(range∗)
⊥ = span{ ∂

∂z1
,
∂

∂z4
,
∂

∂z5
,
∂

∂z7
},

here z1, ..., z8 are the local coordinates on R8.

Theorem 3.2. Let Ψ1 be a Riemannian submersion from a Riemannian manifold (M1, gM1)

onto an almost Hermitian manifold (M2, gM2 , J2) and Ψ2 a poitwise hemi-slant immersion

from (M2, gM2 , J2) to an almost Hermitian manifold (M3, gM3 , J2). Then Ψ2 ◦Ψ1 is a point-

wise hemi-slant Riemannian map.

This theorem is obvious from ([38], Theorem 5.2), and therefore we omit its proof.

As an application of the above Theorem, we give the following example of proper pointwise

hemi-slant Riemannian map.

Example 3.2. Let (R8, gR8) be the Euclid space. Consider {J1, J2} a pair of almost complex

structures on R8 satisfying J1J2 = −J2J1, here

J1(a1, ..., a8) = (−a2, a1,−a4, a3,−a6, a5,−a8, a7)

and

J2(a1, ..., a8) = (−a3, a4, a1,−a2,−a7, a8, a5,−a6).

For any real-valued function λ : R8 → R, we define new almost complex structure Jλ on R8

by Jλ = (cosλ)J1 + (sinλ)J2.

Then, R8
λ = (R8, Jλ, gR8) is an almost Hermitian manifold. Consider the map

Ψ : (R8, g) → (R8
λ, Jλ, gR8), Ψ(y1, ..., y8) = (y1, 0, 0, y4, 0, 0, y8, y7)

which is the the composition of the Riemannian submersion

Ψ1 : (R8, g) → E4, Ψ1(y1, ..., y8) = (y1, y4, y7, y8)
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followed by the pointwise hemi-slant immersion

Ψ2 : E4 → (R8, Jλ, gR8), Ψ2(u1, ..., u4) = (u1, 0, 0, u2, 0, 0, u4, u3).

It is easy to verify that Ψ is a pointwise hemi-slant Riemannian map with the slant function

ϕ = f such that

Dϕ = span{ ∂

∂z7
,
∂

∂z8
}, and D⊥ = span{ ∂

∂z1
,
∂

∂z4
}.

Also, we obtain

(range∗)
⊥ = span{ ∂

∂z2
,
∂

∂z3
,
∂

∂z5
,
∂

∂z6
},

here z1, ..., z8 are the local coordinates on R8
λ.

First note that for Ψ∗ξ1 ∈ Dϕ and Ψ∗ξ2 ∈ D⊥, we get gM2(Ψ∗ξ1,Ψ∗ξ2) = 0. Then,

Riemannian map Ψ implies that gM1(ξ1, ξ2) = 0. So we obtain two orthogonal distributions

D̃ϕ and D̃⊥ such that

(kerΨ∗)
⊥ = D̃ϕ ⊕ D̃⊥.

Let Ψ be a C∞−map from a Riemannian manifold (M1, gM1) to a Riemannian manifold

(M2, gM2). Then, the adjoint map ∗(Ψ∗)q1 of the differential (Ψ∗)q1 , q1 ∈M1, is given by

gM2((Ψ∗)q1η1, Y1) = gM1(η1,
∗ (Ψ∗)q1Y1) (3.21)

for any η1 ∈ Tq1M1 and Y1 ∈ TΨ(q1)M2. Furthermore if the map Ψ is a Riemannian map,

then for η1 ∈ (rangeΨ∗)Ψ(q1) and Y1 ∈ (ker(Ψ∗)q1)
⊥, we obtain

(Ψ∗)
∗
q1(Ψ∗)q1η1 = η1,

∗(Ψ∗)q1(Ψ∗)q1Y1 = Y1,

thus the linear map ∗(Ψ∗)q1 : (rangeΨ∗)Ψ(q1) → (ker(Ψ∗)q1)
⊥ is an isomorphism. Define

C =∗ (Ψ∗)q1γ(Ψ∗). From Theorem 3.1, we obtain:

Corollary 3.1. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian mani-

fold (M1, gM1) to an Hermitian manifold (M2, gM2 , J2) with the hemi-slant function ϕ. Then,

η1 ∈ Γ(Dϕ) we have

C2η1 = − cos2 ϕη1. (3.22)

For Y1, Y2, Ý2 ∈ (ker(Ψ∗)q1)
⊥ with Ψ∗Ý2 = γΨ∗Y2, we define

(∇Ψ
Y1
δ)Ψ∗Y2 = δ̄(∇Ψ∗)(Y1, Y2)− (∇Ψ∗)(Y1, Ý2). (3.23)
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Proposition 3.1. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian

manifold (M1, gM1) to a Kaehler manifold (M2, gM2 , J2) with the hemi-slant function ϕ. If

the tensor δ is parallel,then η1, U2 ∈ Γ(Dϕ) we obtain

(∇Ψ∗)(Cη1,CU2) = − cos2 ϕ(∇Ψ∗)(η1, U2). (3.24)

Proof. Assume that δ is parallel. Then, using (3.24), for η1, U2 ∈ Γ(Dϕ) we get

δ̄(∇Ψ∗)(η1, U2) = (∇Ψ∗)(η1,CU2).

By replacing η1 and U2 , we have

δ̄(∇Ψ∗)(U2, η1) = (∇Ψ∗)(U2,Cη1).

Since the tensor (∇Ψ∗) is symmetric, we obtain

(∇Ψ∗)(η1,CU2) = (∇Ψ∗)(U2,Cη1).

Thus we have

(∇Ψ∗)(Cη1,CU2) = (∇Ψ∗)(η1,C
2U2) = − cos2 ϕ(∇Ψ∗)(η1, U2).

□

Theorem 3.3. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian man-

ifold (M1, gM1) to a Kaehler manifold (M2, gM2 , J2) with the hemi-slant function ϕ. Then,

the following assertions are equivalent:

(a) distribution D⊥ defines a totally geodesic foliation on M2,

(b)

gM2((∇Ψ∗)(η1,
∗Ψ∗((γΨ∗(U3)))), J2Ψ∗(U2)) = gM2(∇Ψ⊥

η1 δΨ∗(U3), J2Ψ∗(U2))

and

gM2((∇Ψ∗)(η1,
∗Ψ∗(γ̄Y1)), J2Ψ∗(U2)) = gM2(∇Ψ⊥

η1 J2Ψ∗(U2), δ̄Y1), (3.25)

(c) Ψ satisfies (3.25) and

gM2((∇Ψ∗)(η1, U2), δγΨ∗(U3)) = gM2(γ̄∇Ψ⊥
η1 δΨ∗(U3),Ψ∗(U2))

for any Ψ∗(η1),Ψ∗(U2) ∈ Γ(D⊥), Ψ∗(U3) ∈ Γ(Dϕ) and Y1 ∈ Γ((rangeΨ∗)
⊥).
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Proof. For any Ψ∗(η1),Ψ∗(U2) ∈ Γ(D⊥) and Ψ∗(U3) ∈ Γ(Dϕ), using (2.2),(3.15) and (2.12)

we obtain

gM2(∇Ψ
η1Ψ∗(U2),Ψ∗(U3)) = −gM2(SJ2Ψ∗(U2)Ψ∗(η1), γΨ∗(U3))

+ gM2((∇Ψ⊥
η1 J2Ψ∗(U2), δΨ∗(U3)).

From (2.13), we arrive at

gM2(∇Ψ
η1Ψ∗(U2),Ψ∗(U3)) = −gM2((∇Ψ∗)(η1,

∗Ψ∗(γΨ∗(U3))), J2Ψ∗(U2))

+ gM2(∇Ψ⊥
η1 J2Ψ∗(U2), δΨ∗(U3)). (3.26)

On the other hand, using (2.2),(3.16) and (2.12), for Y1 ∈ Γ((rangeΨ∗)
⊥) we have

gM2(∇Ψ
η1Ψ∗(U2), Y1) = −gM2(SJ2Ψ∗(U2)Ψ∗(η1), γ̄Y1)

+ gM2(∇Ψ⊥
η1 J2Ψ∗(U2), δ̄Y1).

From (2.13), we get

gM2(∇Ψ
η1Ψ∗(U2), Y1) = −gM2((∇Ψ∗)(η1,

∗Ψ∗(γ̄Y1)), J2Ψ∗(U2))

+ gM2(∇Ψ⊥
η1 J2Ψ∗(U2), δ̄Y1). (3.27)

(3.26) and (3.27) gives (a) ⇔ (b). For any Ψ∗(η1),Ψ∗(U2) ∈ Γ(D⊥) and Ψ∗(U3) ∈ Γ(Dϕ),

from (2.2) and (3.15) we get

gM2(∇Ψ
η1Ψ∗(U2),Ψ∗(U3)) = gM2(∇Ψ

η1γ
2Ψ∗(U3),Ψ∗(U2))

+ gM2(∇Ψ
η1δγΨ∗(U3),Ψ∗(U2))

− gM2(∇Ψ⊥
η1 δΨ∗(U3), J2Ψ∗(U2)).

Using (2.12)and (3.17), we obtain

sin2 ϕgM2(∇Ψ
η1Ψ∗(U2),Ψ∗(U3)) = sin 2ϕΨ∗η1(ϕ)gM2(Ψ∗(U3),Ψ∗(U2)

− gM2(SδγΨ∗(U3)Ψ∗(η1),Ψ∗(U2))

− gM2(∇Ψ⊥
η1 δΨ∗(U3), J2Ψ∗(U2)).

So, from (2.13) we arrive at

sin2 ϕgM2(∇Ψ
η1Ψ∗(U2),Ψ∗(U3)) = −gM2((∇Ψ∗)(η1, U2), δγΨ∗(U3))

− gM2(∇Ψ⊥
η1 δΨ∗(U3), J2Ψ∗(U2)). (3.28)

(3.27) and (3.28) gives (a) ⇔ (c). □
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In a similar way we obtain:

Theorem 3.4. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian man-

ifold (M1, gM1) to a Kaehler manifold (M2, gM2 , J2) with the hemi-slant function ϕ. Then,

the following assertions are equivalent:

(a) distribution Dϕ defines a totally geodesic foliation on M2,

(b)

gM2((∇Ψ∗)(U2,
∗Ψ∗((γΨ∗(U3)))), J2Ψ∗(η1)) = gM2(∇Ψ⊥

U2
J2Ψ∗(η1), δΨ∗(U3))

and

gM2((∇Ψ∗)(U2,
∗Ψ∗(γ̄Y1)), δΨ∗(U3)) = gM2(∇Ψ⊥

U2
δΨ∗(U3), δ̄Y1)

− gM2(∇Ψ⊥
U2
δγΨ∗(U3), Y1), (3.29)

(c) Ψ satisfies (3.29) and

gM2((∇Ψ∗)(U2, η1), δγΨ∗(U3)) = gM2(γ̄∇Ψ⊥
U2
δΨ∗(U3),Ψ∗(η1))

for any Ψ∗(η1) ∈ Γ(D⊥), Ψ∗(U2),Ψ∗(U3) ∈ Γ(Dϕ) and Y1 ∈ Γ((rangeΨ∗)
⊥).

Using Theorems 3.3 and 3.4, we obtain:

Theorem 3.5. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian mani-

fold (M1, gM1) to a Kaehler manifold (M2, gM2 , J2) with integrable distribution and the hemi-

slant function ϕ. Then, the leaf of (rangeΨ∗) is a locally product Riemannian manifold

M⊥
1 ×Mϕ

2 if and only if

gM2((∇Ψ∗)(η1,
∗Ψ∗γ̄(Y1)), δΨ∗(U2)) = gM2(∇Ψ⊥

η1 δΨ∗(U2), δ̄Y1)

− gM2(∇Ψ⊥
η1 δγΨ∗(U2), Y1)

and

gM2((∇Ψ∗)(η1, U2), δΨ∗(U3)) = gM2(γ̄∇Ψ⊥
η1 δΨ∗(U3),Ψ∗(U2))

for any η1, U2 ∈ Γ((kerΨ∗)⊥), Ψ∗(U3) ∈ Γ(Dϕ) and Y1 ∈ Γ((rangeΨ∗)
⊥), here M⊥

1 and Mϕ
2

denotes the leaves of D⊥ and Dϕ, respectively.

Theorem 3.6. Let Ψ be a pointwise hemi-slant Riemannian map from a Riemannian man-

ifold (M1, gM1) to a Kaehler manifold (M2, gM2 , J2) with the hemi-slant function ϕ. Then,
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Ψ is totally geodesic if and only if the following conditions are satisfied:

(a)

gM2((∇Ψ∗)(η1,
∗Ψ∗γ̄(Y1)), δΨ∗(U2)) = gM2(∇Ψ⊥

η1 δΨ∗(U2), δ̄Y1)

− gM2(∇Ψ⊥
η1 δγΨ∗(U2), Y1)

for any η1, U2 ∈ Γ((kerΨ∗)⊥) and Y1 ∈ Γ((rangeΨ∗)
⊥),

(b)

sin 2ϕη1(ϕ)gM2(Ψ∗(U2),Ψ∗(U3)) = gM2((∇Ψ∗)(η1, U3), δγΨ∗(U2))

− gM2(SδΨ∗(U2)η1, γΨ∗(U3)

+ gM2(∇Ψ⊥
η1 δΨ∗(U2), δΨ∗(U3))

− sin2 ϕgM1(h∇η1U2, U3)

for any η1, U2, U3 ∈ Γ((kerΨ∗)
⊥),

(c) the distribution kerΨ∗ is totally geodesic,

(d) the distribution (kerΨ∗)
⊥ is integrable.

Proof. For any η1, U2, U3 ∈ Γ((kerΨ∗)
⊥), from (2.2),(2.3),(2.11) and (3.15) we have

gM2((∇Ψ∗)(η1, U2),Ψ∗(U3)) = −gM2(∇Ψ
η1γ

2Ψ∗(U2),Ψ∗(U3))

− gM2(∇Ψ
η1δγΨ∗(U2),Ψ∗(U3))

+ gM2(∇Ψ
η1δΨ∗(U2), γΨ∗(U3))

+ gM2(∇Ψ
η1δΨ∗(U2), δΨ∗(U3))− gM1(h∇η1U2, U3).

Then, using (2.12),(2.13) and (3.17) we obtain

sin2 ϕgM2((∇Ψ∗)(η1, U2),Ψ∗(U3)) = − sin 2ϕη1(ϕ)gM2(Ψ∗(U2),Ψ∗(U3))

+ gM2((∇Ψ∗)(η1, U3), δγΨ∗(U2))

− gM2(SδΨ∗(U2)η1, γΨ∗(U3)

+ gM2(∇Ψ⊥
η1 δΨ∗(U2), δΨ∗(U3))

− sin2 ϕgM1(h∇η1U2, U3). (3.30)

On the other hand, for η1, U2 ∈ Γ((kerΨ∗)
⊥) and V1, V2 ∈ Γ(kerΨ∗), using (2.3), (2.8) and

(2.11) we get

gM2((∇Ψ∗)(V1, V2),Ψ∗(η1)) = −gM1(TV1V2, η1) (3.31)
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and

gM2((∇Ψ∗)(η1, V1),Ψ∗(U2)) = −gM1(Aη1U2, V1). (3.32)

Now, by using (3.30),(3.31), (3.32) and Theorem 3.3, the proof is completed. □

4. Casorati Inequalities along hemi-slant Riemannian maps to complex space

forms

Lemma 4.1. [46] Let W = {(y1, y2, ..., ym) ∈ Rm : y1 + y2 + ...+ ym = z} be a hyperplane of

Rm, and g : Rm → R a quadratic form given by

g(y1, y2, ..., ym) = cΣm−1
k=1 (yk)

2 + d(ym)2 − 2Σ1≤k<s≤mykys, c > 0, d > 0.

Then the constrained extremum problem min(y1,y2,...,ym)∈W g has the following solution:

y1 = y2 = ... = ym−1 =
z

c+ 1
, ym =

z

d+ 1
=
z(m− 1)

(c+ 1)d
= (c−m+ 2)

z

c+ 1
,

provided that d = m−1
c−m+2 .

Let (M2, gM2 , J2) be a Kaehler manifold. The Riemannian-Christoffel curvature tensor of

a complex space form M2(ν) of constant holomorphic sectional curvature ν satisfies

RB2(Y1, Y2,Y3,Y4) =
ν

4
{gB2(Y1,Y4)gB2(Y2,Y3)− gB2(Y1,Y3)gB2(Y2,Y4)

+ gB2(Y1, J2Y3)gB2(J2Y2,Y4)− gB2(Y2, J2Y3)gB2(J2Y1,Y4)

+ 2gB2(Y1, J2Y2)gB2(J2Y3,Y4)} (4.33)

for all vector fields Y1, Y2, Y3, Y4 ∈ Γ(TM2) ([50]).

Let Ψ be a Riemannian map from a Riemannian manifold (M1, gM1) to a Riemannian

manifold (M2, gM2). Let RM1 and RM2 be the curvature tensor fields of ∇M1 and ∇M2 ,

respectively. Then, for all Y1, Y2, Y3, Y4 ∈ Γ((kerΨ∗)
⊥, we obtain the Gauss formula given by

([40])

gM2(RB2(Ψ∗Y1,Ψ∗Y2)Ψ∗Y3,Ψ∗Y4) = gM1(RB1(Y1, Y2)Y3, Y4)

+ gB2((∇Ψ∗)(Y1, Y3), (∇Ψ∗)(Y2, Y4))

− gB2((∇Ψ∗)(Y1, Y4), (∇Ψ∗)(Y2, Y3)). (4.34)

Now, we suppose that Ψ is a pointwise hemi-slant Riemannian map from a Riemannian

manifold (M b1
1 , gM1) to the complex space form (M b2

2 (ν), J2, gM2) such that 3 ≤ p = rankΨ <
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min{b1, b2}. Using (4.33) and (4.34) , for all Y1, Y2, Y3, Y4 ∈ Γ((kerΨ∗)
⊥, we obtain

gM1(RB1(Y1, Y2)Y3, Y4) =
ν

4
{gB2(Y1, Y4)gB2(Y2, Y3)− gB2(Y1, Y3)gB2(Y2, Y4)

+ gB2(Ψ∗Y1, J2Ψ∗Y3)gB2(J2Ψ∗Y2,Ψ∗Y4)

− gB2(Ψ∗Y2, J2Ψ∗Y3)gB2(J2Ψ∗Y1,Ψ∗Y4)

+ 2gB2(Ψ∗Y1, J2Ψ∗Y2)gB2(J2Ψ∗Y3,Ψ∗Y4)}

− gB2((∇Ψ∗)(Y1, Y3), (∇Ψ∗)(Y2, Y4))

+ gB2((∇Ψ∗)(Y1, Y4), (∇Ψ∗)(Y2, Y3)). (4.35)

Let q ∈M1 and consider

{Ψ∗E1,Ψ∗E2 = secϕγΨ∗E1, ...,Ψ∗E2n−1,Ψ∗E2n = secϕγΨ∗E2n−1,Ψ∗E2n+1, ...,Ψ∗Ep} and

{Ep+1, Ep+2, ..., Eb2} two orthonormal bases of (kerΨ∗)
⊥ and (rangeΨ∗)

⊥, respectively. Then,

it follows that the dimension of rangeΨ∗ is p. We defined the scalar curvature τ (kerΨ∗)⊥ on

the horizontal space (kerΨ∗q)
⊥ by

τ (kerΨ∗)⊥ = Σp
k,s=1gM1(RM1(Ek, Es)Es, Ek) (4.36)

and the normalized scalar curvature κ(kerΨ∗)⊥ of (kerΨ∗q)
⊥ as

κ(kerΨ∗)⊥ =
2τ (kerΨ∗)⊥

p(p− 1)
. (4.37)

Then, we can write

ψβ
ks = gB2((∇Ψ∗)(Ek, Es), Eβ), k, s = 1, ..., p, β = p+ 1, ..., b2, (4.38)

∥ψ∥2 = Σp
k,s=1gB2((∇Ψ∗)(Ek, Es), (∇Ψ∗)(Ek, Es)) (4.39)

traceψ = Σp
k=1(∇Ψ∗)(Ek, Ek), ∥traceψ∥2 = gB2(traceψ, traceψ). (4.40)

The squared norm of ψ, the second fundamental form of the horizontal space (kerΨ∗)
⊥ over

the manifold (M b2
2 , J2, gM2), is denoted by C and is called the Casorati curvature of the

horizontal space (kerΨ∗)
⊥. Thus, we obtain

C =
1

p
∥ψ∥2 = 1

p
Σb2
β=p+1Σ

p
k,s=1(ψ

β
ks)

2. (4.41)

Now, assume that L(kerΨ∗)⊥ is a t−dimensional subspace (kerΨ∗)
⊥
q , 2 ≤ t and

let {E1, E2, ..., Et} be an orthonormal basis of L(kerΨ∗)⊥ . Then the Casorati curvature

C(kerΨ∗)⊥(L(kerΨ∗)⊥ of L(kerΨ∗)⊥ defined as

C(kerΨ∗)⊥(L(kerΨ∗)⊥) =
1

t
∥T∥2 = 1

t
Σb2
β=p+1Σ

t
k,s=1(T

β
ks)

2.
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The normalized σ(kerΨ∗)⊥− Casorati curvatures σ
(kerΨ∗)⊥
C (p − 1) and σ̄

(kerΨ∗)⊥

C (p − 1) of

(kerΨ∗)q)
⊥ are given by

[σ
(kerΨ∗)⊥

C (p− 1)]q =
1
2C

(kerΨ∗)⊥
q + p+1

2p inf{C
(kerΨ∗)⊥(L(kerΨ∗)⊥) : L(kerΨ∗)⊥ a hyperplane of

(kerΨ∗)q)
⊥}, and

[σ̄
(kerΨ∗)⊥

C (p − 1)]q = 2C(kerΨ∗)⊥
q − 2p−1

2p inf{C(kerΨ∗)⊥(L(kerΨ∗)⊥) : L(kerΨ∗)⊥ a hyperplane

of (kerΨ∗)
⊥
q }.

Using (4.35), (4.36) and (4.41) we arrive at

ν

4
(p2 − p) +

3nν

2
cos2 ϕ = 2τ (kerΨ∗)⊥(q) + pC(kerΨ∗)⊥ − ∥traceψ∥2, (4.42)

here τ (kerΨ∗)⊥ is the scalar curvature of (kerΨ∗)
⊥.

Now we define a function Q(kerΨ∗)⊥ associated with the following quadratic polynomial with

respect to the components of ψ :

Q(kerΨ∗)⊥ =
1

2
[(p2 − p)C(kerΨ∗)⊥ + (p2 − 1)C(kerΨ∗)⊥(L(kerΨ∗)⊥)]

− 2τ (kerΨ∗)⊥ +
ν

4
(p2 − p) +

3nν

2
cos2 ϕ.

Without loos of generality, by supposing that the hyperplane L(kerΨ∗)⊥ is spanned by

{E1, ..., Ep−1}, using (4.42) one can produce

Q(kerΨ∗)⊥ = Σb2
β=p+1Σ

p−1
k=1[p(ψ

β
kk)

2 + (p+ 1)(ψβ
kp)

2]

+ Σb2
β=p+1[2(p+ 1)Σp−1

1=k<s(ψ
β
ks)

2

− 2Σp
1=k<sψ

β
kkψ

β
ss +

p− 1

2
(ψβ

pp)
2]

≥ Σb2
β=p+1[Σ

p−1
k=1p(ψ

β
kk)

2 +
p− 1

2
(ψβ

pp)
2

− 2Σp
1=k<sψ

β
kkψ

β
ss]. (4.43)

For β = p+ 1, ..., b2, let us consider the quadratic form gβ : Rb2 → R defined by

gβ(ψ
β
11, ..., ψ

β
pp) = Σp−1

k=1p(ψ
β
kk)

2 +
p− 1

2
(ψβ

pp)
2 − 2Σp

k<s=1ψ
β
kkψ

β
ss, (4.44)

and the constrained extremum problem, mingβ, subject to

Φβ : ψβ
11 + ...+ ψβ

pp = zβ,

here zβ is a real constant. From Lemma 4.1, we obtain c = p, d = p−1
2 .

Thus, by Lemma 4.1 we get the critical point (ψβ
11, ..., ψ

β
pp), given by

ψβ
11 = ψβ

22 = ... = ψβ
p−1 p−1 =

zβ

p+ 1
, ψβ

pp =
2zβ

p+ 1
,
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is a global minimum point. Also, gβ(ψ
β
11, ..., ψ

β
pp) = 0. Moreover we obtain

Q(kerΨ∗)⊥ ≥ 0, (4.45)

which implies

2τ (kerΨ∗)⊥ ≤ 1

2
[(p2 − p)C(kerΨ∗)⊥ + (p2 − 1)C(kerΨ∗)⊥(L(kerΨ∗)⊥)]

+
ν

4
(p2 − p) +

3nν

2
cos2 ϕ (4.46)

and using (4.46) we obtain

κ(kerΨ∗)⊥ ≤ [
1

2
C(kerΨ∗)⊥ +

p+ 1

2p
C(kerΨ∗)⊥(L(kerΨ∗)⊥)]

+
ν

4
+

3nν

2p(p− 1)
cos2 ϕ (4.47)

for all hyperplane L(kerΨ∗)⊥ of (kerΨ∗)
⊥.

Similarly, we can write

Z(kerΨ∗)⊥ = 2(p2 − p)C(kerΨ∗)⊥ − 1

2
(2p2 − 3p+ 1)C(kerΨ∗)⊥(L(kerΨ∗)⊥)

− 2τ (kerΨ∗)⊥ +
ν

4
(p2 − p) +

3nν

2
cos2 ϕ,

here hyperplane L(kerΨ∗)⊥ is a hyperplane of (kerΨ∗)
⊥. From here,

Z(kerΨ∗)⊥ ≥ 0, (4.48)

which implies

κ(kerΨ∗)⊥ ≤ 2C(kerΨ∗)⊥ − 2p− 1

2p
C(kerΨ∗)⊥(L(kerΨ∗)⊥)]

+
ν

4
+

3nν

2p(p− 1)
cos2 ϕ. (4.49)

Now, taking the infimum in (4.47) and the supremum in (4.49) over all hyperplanes

L(kerΨ∗)⊥ of (kerΨ∗)
⊥ and analyzing the equality case in (4.45) and (4.48), respectively,

we get:

Theorem 4.1. Let Ψ be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M b1
1 , gM1) to a complex space form (M b2

2 (ν), J2, gM2) with hemi-slant function ϕ, 3 ≤ p =

rankΨ < min{b1, b2}. Then the normalized σ− Casorati curvatures σ
(kerΨ∗)⊥

C and σ̄
(kerΨ∗)⊥

C

on (kerΨ∗)
⊥
q satisfy

(i) κ(kerΨ∗)⊥ ≤ σ
(kerΨ∗)⊥

C (p− 1) +
ν

4
+

3nν

2p(p− 1)
cos2 ϕ, (4.50)
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(ii) κ(kerΨ∗)⊥ ≤ σ̄
(kerΨ∗)⊥

C (p− 1) +
ν

4
+

3nν

2p(p− 1)
cos2 ϕ. (4.51)

Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if

with respect to suitable orthonormal basis {E1, ..., Ep} on (kerΨ∗)
⊥
q and {Ep+1, ..., Eb2} on

((rangeΨ∗)q)
⊥, the components of ψ satisfy

ψβ
11 = ψβ

22 = ... = ψβ
p−1p−1 =

1

2
ψβ
pp, β ∈ {p+ 1, p+ 2, ..., b2},

ψβ
ks = 0, k, s ∈ {1, , ..., p}(k ̸= s), β ∈ {p+ 1, p+ 2, ..., b2}.

Using the Theorem 4.1, we obtain the following results.

Corollary 4.1. Let Ψ be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M b1
1 , gM1) to a complex space form (M b2

2 (ν), J2, gM2) with hemi-slant function ϕ = π
2 , 3 ≤

p = rankΨ < min{b1, b2}. Then the normalized σ− Casorati curvatures σ
(kerΨ∗)⊥

C and

σ̄
(kerΨ∗)⊥

C on (kerΨ∗)
⊥
q satisfy

(i) κ(kerΨ∗)⊥ ≤ σ
(kerΨ∗)⊥

C (p− 1) +
ν

4

(ii) κ(kerΨ∗)⊥ ≤ σ̄
(kerΨ∗)⊥

C (p− 1) +
ν

4
.

Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if

with respect to suitable orthonormal basis {E1, ..., Ep} on (kerΨ∗)
⊥
q and {Ep+1, ..., Eb2} on

((rangeΨ∗)q)
⊥, the components of ψ satisfy

ψβ
11 = ψβ

22 = ... = ψβ
p−1p−1 =

1

2
ψβ
pp, β ∈ {p+ 1, p+ 2, ..., b2},

ψβ
ks = 0, k, s ∈ {1, , ..., p}(k ̸= s), β ∈ {p+ 1, p+ 2, ..., b2}.

Corollary 4.2. Let Ψ be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M b1
1 , gM1) to a complex space form (M b2

2 (ν), J2, gM2) with hemi-slant function ϕ = 0, 3 ≤

p = rankΨ < min{b1, b2}. Then the normalized σ− Casorati curvatures σ
(kerΨ∗)⊥

C and

σ̄
(kerΨ∗)⊥

C on (kerΨ∗)
⊥
q satisfy

(i) κ(kerΨ∗)⊥ ≤ σ
(kerΨ∗)⊥

C (p− 1) +
ν

2
(
1

2
+

3n

p(p− 1)
)

(ii) κ(kerΨ∗)⊥ ≤ σ̄
(kerΨ∗)⊥

C (p− 1) +
ν

2
(
1

2
+

3n

p(p− 1)
).
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Furthermore, the equality case holds in any inequalities at a point q ∈ M1 if and only if

with respect to suitable orthonormal basis {E1, ..., Ep} on (kerΨ∗)
⊥
q and {Ep+1, ..., Eb2} on

((rangeΨ∗)q)
⊥, the components of ψ satisfy

ψβ
11 = ψβ

22 = ... = ψβ
p−1p−1 =

1

2
ψβ
pp, β ∈ {p+ 1, p+ 2, ..., b2},

ψβ
ks = 0, k, s ∈ {1, , ..., p}(k ̸= s), β ∈ {p+ 1, p+ 2, ..., b2}.

Corollary 4.3. Let Ψ be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M b1
1 , gM1) to the complex Euclidean space C

b2
2 with hemi-slant function ϕ, 3 ≤ p = rankΨ <

min{b1, b2}. Then we get

(i) κ(kerΨ∗)⊥ ≤ σ
(kerΨ∗)⊥

C (p− 1), (ii) κ(kerΨ∗)⊥ ≤ σ̄
(kerΨ∗)⊥

C (p− 1).

Acknowledgments. The paper has been supported by TÜBİTAK with project number
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[42] Ş. ahin , B. (2017). Riemannian submersions, Riemannian maps in Hermitian geometry, and their appli-

cations. Academic Press.
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Abstract. In this paper, first we obtain the conditions for the existence and uniqueness

of non-null framed curves as well as non-null framed surfaces in Minkowski 3-space. Fur-

ther, we study the timelike and spacelike translation framed surfaces generated by non-null

framed curves and obtain the basic invariants of such surfaces in E3
1. We also find the cur-

vatures of timelike and spacelike translation framed surfaces generated by non-null framed

curves. Finally, we classify the translation framed surfaces generated by non-null framed

curves lying in mutually perpendicular coordinate planes of E3
1 with µK ≡ 0 and µH ≡ 0.

Keywords: Framed curve, Framed surface, Translation framed surface, Curvature and in-

variants of a translation framed surface.
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1. Introduction

A translation surface is a special case of Darboux surface which is the union of ‘equivalent’

curves (‘equivalent’ in the sense that, the curves are images of one another by some isometries

of the space), also known as generating curves of the surface. A Darboux surface is defined

as the movement of curves by rigid motions of the space. Therefore, it can be parametrized

as X(u, v) = A(v).α(u) + β(v), where α, β are two space curves and A is an orthogonal

matrix. When the orthogonal matrix A is identity matrix the surface is called a translation
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surface. Thus, a generalized type of a translation surface is given by

X(u, v) = α(u) + β(v).

Translation surface which is known as the double curve in differential geometry is base for

roofing structures. The construction and design of free form glass roofing structures are

generally created with the help of curved (formed) glass panes or planar triangular glass

facets. Recently, classification of translation surfaces under some conditions on curvatures

has been studied in Euclidean as well as Minkowski space ([1],[10],[11],[15]).

A framed curve in Minkowski 3-space is a curve with an assigned frame which moves along

the curve. In [7], Honda and Takahashi defined the curvature functions of the framed curve

in E3, similar to a regular curve. By using curvature functions, they obtained the existence

and the uniqueness theorem for the framed curves. The curvature functions of a framed

curve are used to investigate the curve along with its singularities. On the other hand, a

framed surface is defined to be a surface with an assigned moving frame which is used to

analyze properties and singularities of the surface. In [4], by using the moving frames in E3,

the basic invariants and the curvatures of framed surfaces are introduced by Fukunaga and

Takahashi. They studied the properties of framed surfaces using the basic invariants of the

surfaces and gave some examples.

In [5], Fukunaga and Takahashi reviewed the theories for framed surfaces, framed curves

and one-parameter families of framed curves in E3. They showed that up to congruence,

the surface along with the moving frame can be determined by the basic invariants of the

framed surface and the curvature of a one parameter family of framed curves. In [6], the

authors studied the translation surfaces with assigned moving frame and discussed the various

singularities that arise on such surfaces with help of the notion of framed curves and surfaces.

In this paper, we study the non-null translation framed surfaces generated by non-null framed

curves in E3
1. The paper is arranged as follows. There are some basic results in section 2. In

section 3, we study non-null framed curves in E3
1 and obtain the conditions for the existence

and uniqueness of non-null framed curves. In section 4, first we study non-null framed

surfaces in E3
1 and find their curvatures and existence and uniqueness conditions. Further,

we study the timelike and spacelike translation framed surfaces generated by non-null framed

curves and obtain the basic invariants of such surfaces in E3
1. We also find the curvatures

of timelike and spacelike translation framed surfaces generated by non-null framed curves.
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Finally, we classify the translation framed surfaces generated by non-null framed curves lie

in the coordinate planes of E3
1 with µK ≡ 0 and µH ≡ 0.

2. Preliminaries

The Minkowski 3-space, denoted by E3
1, is a three dimensional real vector space R3 endowed

with the metric tensor ⟨., .⟩ = −dx2 + dy2 + dz2. The (Lorentzian) scalar and cross product

are defined by: 
⟨x, y⟩ = −x1y1 + x2y2 + x3y3,

x× y = (−x2y3 + x3y2, x3y1 − x1y3, x1y2 − x2y1),

(2.1)

where x = (x1, x2, x3), y = (y1, y2, y3) belong to E3
1. This space is also known as Lorentz-

Minkowski space. A vector x ∈ E3
1 is said to be spacelike when ⟨x, x⟩ > 0 or x = 0, timelike

when ⟨x, x⟩ < 0 and lightlike(null) when ⟨x, x⟩ = 0, x ̸= 0. A curve in E3
1 is called spacelike,

timelike or lightlike when the velocity vector of the curve is spacelike, timelike or lightlike,

respectively. The norm of a vector x ∈ E3
1 is defined as ∥x∥ =

√
|⟨x, x⟩|. The hyperbolic and

Lorentzian unit spheres are defined as

H2
0 = {x ∈ E3

1∥⟨x, x⟩ = −1}

and

S2
1 = {x ∈ E3

1∥⟨x, x⟩ = 1},

respectively. Let γ = γ(s) : I → E3
1 be an arbitrary curve. The curve γ is said to be an unit

speed curve (or parameterized by the arc-length parameter s) if ⟨γ′(s), γ′(s)⟩ = ±1 for any

s ∈ I.

For a spacelike curve γ : I → E3
1 parametrized with arclength parameter s, let {t, n, b} be the

moving Frenet frame along the curve, where t(s) = γ′(s) is the unit tangent vector, n is the

unit normal vector defined as the unit vector in the direction t′(s) such that t′(s) = κ(s) n(s),

where κ(s) is the curvature of the curve and b(s) = t(s)×n(s). The second curvature (torsion)

of the curve is given by τ = ϵ⟨b′, n⟩, where ϵ = ⟨n, n⟩.The Frenet-Serret equations of the

spacelike curve are given as 
t′

n′

b′

 =


0 κ 0

−ϵκ 0 τ

0 τ 0

 =


t

n

b

 ,
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where ⟨t, t⟩ = 1, ⟨n, n⟩ = ϵ, ⟨b, b⟩ = −ϵ, ⟨t, b⟩ = ⟨t, n⟩ = ⟨n, b⟩ = 0. If ϵ = 1, γ(s) is a spacelike

curve with the spacelike principal normal n and the timelike binormal b, while if ϵ = -1 then

γ is a spacelike curve with the timelike principal normal n and the spacelike binormal b.

For a timelike curve γ, we define Frenet frame in similar way except for the torsion is given

by τ = −⟨b′, n⟩. The Frenet-Serret equations are given by
t′

n′

b′

 =


0 κ 0

κ 0 τ

0 −τ 0

 =


t

n

b

 ,

where ⟨t, t⟩ = -1, ⟨n, n⟩ = 1, ⟨b, b⟩ = 1, ⟨t, n⟩ = ⟨t, b⟩ = ⟨n, b⟩ = 0.

A surface in E3
1 is said to be a spacelike, timelike or lightlike if the metric on the surface

is positive definite, indefinite or degenerate, respectively. The type of a surface can also be

expressed in terms of the causal character of the normal vector of the surface by the following

lemma.

Lemma 2.1. [8] A surface in Minkowski 3-space is spacelike, timelike or lightlike if and only

if at every point of the surface there exists a normal which is timelike, spacelike or lightlike,

respectively.

Definition 2.1. [14] Let v and w be two spacelike vectors. Then, there exists a unique

non-negative real number θ ≥ 0, such that ⟨v, w⟩ = ∥v∥∥w∥ cos θ.

Definition 2.2. [14] Let v be a spacelike vector and w be a timelike vector in E3
1. Then,

there exists a unique non-negative real number θ ≥ 0, such that ⟨v, w⟩ = ∥v∥∥w∥ sinh θ.

Definition 2.3. [12] Let v and w be two timelike vectors in the same time cone of E3
1,

i.e. ⟨v, w⟩ < 0. Then, there exists a unique non-negative real number θ ≥ 0, such that

⟨v, w⟩ = −∥v∥∥w∥ cosh θ.

Lagrange’s Identity: For any vectors η, ξ ∈ E3
1, we have ⟨η×ξ, η×ξ⟩ = −⟨η, η⟩⟨ξ, ξ⟩+⟨η, ξ⟩2.

3. Framed curves in Minkowski 3-space

In this section we define the Frenet type formula for the framed curves and give existence

and uniqueness theorem of the framed curves in E3
1.

Definition 3.1. [9] Let γ : I → E3
1 be a curve in E3

1. Then the map (γ, ϑ1, ϑ2) : I → E3
1 ×Θ

is called a spacelike framed curve if

⟨γ′(t), ϑ1(t)⟩ = 0, ⟨γ′(t), ϑ2(t)⟩ = 0, ∀t ∈ I,
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such that ρ(t) = ϑ1(t)× ϑ2(t) is an arbitrary spacelike vector field, where

Θ = {(u, v) ∈ S2
1 ×H2

0 |⟨u, v⟩ = 0} or Θ = {(u, v) ∈ H2
0 × S2

1 |⟨u, v⟩ = 0}.

Definition 3.2. [9] Let γ : I → E3
1 be an arbitrary curve in E3

1. Then the map (γ, ϑ1, ϑ2) :

I → E3
1 ×Θ is called a timelike framed curve if

⟨γ′(t), ϑ1(t)⟩ = 0, ⟨γ′(t), ϑ2(t)⟩ = 0,∀t ∈ I,

such that ρ(t) = ϑ1(t)× ϑ2(t) is a timelike vector field, where

Θ = {(u, v) ∈ S2
1 × S2

1 |⟨u, v⟩ = 0}.

Definition 3.3. Let (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) : I → E3
1 ×Θ are framed curves. We say that

γ and γ̄ have the same causal character of the moving frame if the vector triplets {ϑ1, ϑ2, ρ}

and {ϑ̄1, ϑ̄2, ρ̄} have the same causal characters, respectively.

3.1. Frenet-Serret type formula for framed curves. Let (γ, ϑ1, ϑ2) : I → E3
1×Θ be an

spacelike framed curve and ρ(t) = ϑ1(t)× ϑ2(t). The Frenet-Serret type formula is given by
ϑ′
1

ϑ′
2

ρ′

 =


0 −δκ1 κ2

−δκ1 0 κ3

−δκ2 δκ3 0



ϑ1

ϑ2

ρ

 , (3.2)

where δ = ⟨ϑ1, ϑ1⟩ = −⟨ϑ2, ϑ2⟩. κ1 = ⟨ϑ′
1, ϑ2⟩, κ2 = ⟨ϑ′

1, ρ⟩, κ3 = ⟨ϑ′
2, ρ⟩. Moreover

we can find a smooth function τ(t) such that γ′(t) = τ(t)ρ(t). We call the functions

(τ(t), κ1(t), κ2(t), κ3(t)) the curvature of the framed curve.

Similarly, the Frenet-Serret type formula for a timelike framed curve (γ, ϑ1, ϑ2) can be given

by 
ϑ′
1

ϑ′
2

ρ′

 =


0 κ1 −κ2

−κ1 0 −κ3

−κ2 −κ3 0



ϑ1

ϑ2

ρ

 , (3.3)

where κ1 = ⟨ϑ′
1, ϑ2⟩, κ2 = ⟨ϑ′

1, ρ⟩, κ3 = ⟨ϑ′
2, ρ⟩.

3.2. Existence and uniqueness of the framed curves in E3
1.

Theorem 3.1. Let (τ(t), κ1(t), κ2(t), κ3(t)) : I → R4 be a smooth map. Then there exist

framed curves (γ, ϑ1, ϑ2) : I → E3
1 × Θ with three different causality whose curvatures are

(τ(t), κ1(t), κ2(t), κ3(t)).
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Proof. Let t0 ∈ I and let {e1, e2, e3} be an pseudo orthonormal basis for E3
1. First we suppose

that e3 is a timelike vector and the basis is positively oriented. We need to solve the following

ODE system

ϑ′
1 = κ1ϑ2 + κ2ρ, (3.4)

ϑ′
2 = −κ1ϑ1 + κ3ρ,

ρ′ = κ2ϑ1 + κ3ϑ2,

with initial conditions, ϑ1(t0) = e1, ϑ2(t0) = e2, ρ(t0) = e3. Then by existence and uniqueness

of the solution of a system of ODE, we get {ϑ1, ϑ2, ρ} to be the unique solution and define

γ(t) =

∫ t

t0

τ(s)ρ(s)ds. (3.5)

Then we have to prove that the framed curve (γ(t), ϑ1(t), ϑ2(t)) is a timelike curve with

curvature functions (τ, κ1, κ2, κ3). We first show that the moving frame {ϑ1(t), ϑ2(t), ρ(t)}

is an pseudo orthonormal basis of E3
1 with the same causal properties as of the initial basis

{e1, e2, e3}. Consider the ODE system,

⟨ϑ1, ϑ1⟩′ = 2κ1⟨ϑ1, ϑ2⟩+ 2κ2⟨ρ, ϑ1⟩,

⟨ϑ2, ϑ2⟩′ = −2κ1⟨ϑ1, ϑ2⟩+ 2κ3⟨ρ, ϑ2⟩,

⟨ρ, ρ⟩′ = 2κ2⟨ϑ1, ρ⟩+ 2κ3⟨ρ, ϑ2⟩,

⟨ϑ1, ϑ2⟩′ = κ1⟨ϑ2, ϑ2⟩+ κ2⟨ρ, ϑ2⟩ − κ1⟨ϑ1, ϑ1⟩+ κ3⟨ρ, ϑ1⟩,

⟨ϑ1, ρ⟩′ = κ1⟨ϑ2, ρ⟩+ κ2⟨ρ, ρ⟩+ κ2⟨ϑ1, ϑ1⟩+ κ3⟨ϑ2, ϑ1⟩,

⟨ϑ2, ρ⟩′ = −κ1⟨ϑ1, ρ⟩+ κ3⟨ρ, ρ⟩+ κ2⟨ϑ1, ϑ2⟩+ κ3⟨ϑ2, ϑ2⟩,

with initial conditions ⟨ϑ1, ϑ1⟩ = 1, ⟨ϑ2, ϑ2⟩ = 1, ⟨ρ, ρ⟩ = −1, ⟨ϑ1, ϑ2⟩ = 0, ⟨ϑ1, ρ⟩ = 0, ⟨ϑ2, ρ⟩ =

0. On the other hand, the constant functions f1(t) = 1, f2(t) = 1, f3(t) = −1, f4(t) =

0, f5(t) = 0, f6(t) = 0 satisfy the same ODE system and initial conditions, so by uniqueness

of the solution,

−⟨ρ, ρ⟩ = ⟨ϑ1, ϑ1⟩ = ⟨ϑ2, ϑ2⟩ = 1, ⟨ϑ1, ϑ2⟩ = ⟨ϑ1, ρ⟩ = ⟨ϑ2, ρ⟩ = 0.

This implies that {ϑ1, ϑ2, ρ} is a pseudo orthonormal basis of E3
1. From (3.4), γ′(t) = τ(t)ρ(t),

and hence ⟨γ′, γ′⟩ = τ2⟨ρ, ρ⟩ = −τ2 < 0, considering τ ̸= 0, this implies that γ is a timelike

framed curve with curvatures (τ, κ1, κ2, κ3).
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Similarly, we can show that (γ, ϑ1, ϑ2) is a spacelike framed curve with the spacelike vector

ϑ1 if e2 is timelike, and is a spacelike framed curve with the timelike vector ϑ1 if e1 is

timelike. □

Proposition 3.1. [2] For any vectors a, b ∈ E3
1 and an isometry M ∈ SO1(3), we have

⟨a, b⟩ = ⟨Ma,Mb⟩, (3.6)

a× b = Ma×Mb.

Definition 3.4. [9] Let (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) : I → E3
1 × Θ be framed curves of same

causal character. We say that (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) are congruent as framed curves

through a Lorentzian motion if there exists a matrix M ∈ SO1(3) and a constant vector

c ∈ E3
1 such that

γ̄(t) = M(γ(t)) + c, (3.7)

ϑ̄i(t) = M(ϑi(t)),

for all t ∈ I, where the matrix M satisfies MTGM = G, Det(M) = 1, G =


−1 0 0

0 1 0

0 0 1

 .

Lemma 3.1. [9] Let the framed curves (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) be congruent. Then their

curvatures coincide, i.e. the curvatures (τ, κ1, κ2, κ3) are invariant under a Lorentzian mo-

tion.

Theorem 3.2. Let (γ, ϑ1, ϑ2) and (γ̄, ϑ̄1, ϑ̄2) : I → E3
1 × Θ be framed curves that have the

same causal character of the moving frames. If they have the same corresponding curvatures

then they are congruent as framed curves through a Lorentzian motion.

Proof. Let t0 ∈ I and consider the isometry A ∈ SO1(3) such that ϑ̄i(t0) = Aϑi(t0), ρ̄(t0) =

Aρ(t0). If c = γ̄(t0) − A ◦ γ(t0), define the rigid motion Mx = Ax + c. We know that by

above lemma 3.6, that the framed curve (M ◦ γ,Aϑ1, Aϑ2) satisfies the same ODE system as

(γ̄, ϑ̄1, ϑ̄2). As the initial conditions coincide, then by uniqueness of ODE system,

γ̄(t) = M ◦ γ(t),

ϑ̄i(t) = Aϑi(t), i = 1, 2,

which completes the proof. □



104 A. YADAV AND A. K. YADAV

4. Translation Framed surfaces in E3
1

Definition 4.1. A smooth map (σ, ξ, η) : Ω ⊂ E2 → E3
1 ×Θ is said to be a spacelike framed

surface if the following conditions hold

σs(s, t).ξ(s, t) = 0, σt(s, t).ξ(s, t) = 0, ∀(s, t) ∈ Ω, (4.8)

where Θ = {(u, v) ∈ H2
0 × S2

1 |u.v = 0}.

Also, we say that the map (σ, ξ, η) : Ω ⊂ E2 → E3
1×Θ is a timelike framed surface if condition

(4.8) holds with Θ = {(u, v) ∈ S2
1 × S2

1 |u.v = 0} or Θ = {(u, v) ∈ S2
1 ×H2

0 |u.v = 0}.

For a framed surface (σ, ξ, η), the map (ξ, η) : Ω → Θ, is a moving frame while σ : Ω → E3
1

is called the framed base surface.

4.1. Basic invariants of a framed surface. Let’s define ζ(s, t) = ξ(s, t) × η(s, t), then

with respect to the moving frame {ξ(s, t), η(s, t), ζ(s, t)} along σ(s, t), the basic invariants

are defined as follows

Case(i):- For the spacelike surface, ξ is a timelike vector and η, ζ are spacelike vectors.

Then σs
σt

 =

c1 d1

c2 d2

η
ζ

 , (4.9)

where c1 = σs.η, c2 = σt.η, d1 = σs.ζ, d2 = σt.ζ.
ξs

ηs

ζs

 =


0 l1 m1

l1 0 n1

m1 −n1 0



ξ

η

ζ

 , (4.10)


ξt

ηt

ζt

 =


0 l2 m2

l2 0 n2

m2 −n2 0



ξ

η

ζ

 ,

where l1 = ξs.η, m1 = ξs.ζ, n1 = ηs.ζ and l2 = ξt.η, m2 = ξt.ζ, n2 = ηt.ζ.

We call the smooth functions ci, di, li,mi, ni : Ω → R, i = 1, 2 the basic invariants of the

framed surface. Let the above matrices be denoted by Λ,∆1,∆2, respectively, as follows

Λ =

c1 d1

c2 d2

 , ∆1 =


0 l1 m1

l1 0 n1

m1 −n1 0

 , ∆2 =


0 l2 m2

l2 0 n2

m2 −n2 0

 .
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Then, using the integrability condition σst = σts and ∆2,s −∆1,t = ∆1∆2 −∆2∆1, the basic

invariants satisfy the following conditions:


c1,t − d1g2 = c2,s − d2n1,

d1,t − c2g1 = d2,s − c1n2,

c1e2 + d1f2 = c2e1 + d2m1.

(4.11)


l1,t −m1n2 = l2,s −m2n1,

m1,t − l2n1 = m2,s − l1n2,

n1,t + l1m2 = n2,s + l2m1.

(4.12)

Case(ii):- For the timelike surface, ξ is a spacelike vector and one of the vectors η or ζ is a

timelike vector and other is spacelike. So let ⟨η, η⟩ = δ = −⟨ζ, ζ⟩, where δ = ±1, accordingly.

Then

σs
σt

 = δ

c1 −d1

c2 −d2

η
ζ

 , (4.13)

where c1 = σs.η, c2 = σt.η, d1 = σs.ζ, d2 = σt.ζ.


ξs

ηs

ζs

 = δ


0 l1 −m1

−δl1 0 −n1

−δm1 −n1 0



ξ

η

ζ

 , (4.14)


ξt

ηt

ζt

 = δ


0 l2 −m2

−δl2 0 −n2

−δm2 −n2 0



ξ

η

ζ

 ,

where l1 = ξs.η, m1 = ξs.ζ, n1 = ηs.ζ and l2 = ξt.η, m2 = ξt.ζ, n2 = ηt.ζ.

In particular, if we assume that the vector field η is timelike, then the basic invariants are

given by

Λ =

−c1 d1

−c2 d2

 , ∆1 =


0 −l1 m1

−l1 0 n1

−m1 n1 0

 , ∆2 =


0 −l2 m2

−l2 0 n2

−m2 n2 0

 .

Again using the integrability conditions, the basic invariants satisfy the following conditions:
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
c1,t − d1n2 = c2,s − d2n1,

d1,t + c2n1 = d2,s + c1n2,

c1l2 − b1m2 = c2l1 − d2m1.

(4.15)


l1,t −m1n2 = l2,s −m2n1,

m1,t + l2n1 = m2,s + l1n2,

n1,t − l1m2 = n2,s − l2m1.

(4.16)

4.2. Existence and Uniqueness of framed surfaces in E3
1.

Theorem 4.1. For arbitrary given smooth functions ci, di, li,mi, ni : Ω → R, i = 1, 2, defined

on a simply connected domain Ω, satisfying the integrability conditions (4.11) and (4.12)

(respectively, (4.15) and (4.16)), there exists a spacelike (respectively, timelike) framed surface

(σ, ξ, η) : Ω → E3
1 ×Θ such that ci, di, li,mi, ni are the basic invariants of the surface.

Proof. By the integrability condition (4.12) (respectively, (4.16)), there exists a pseudo or-

thonormal frame {ξ, η, ζ} such that it satisfy ODE system (4.10) (respectively, (4.14)). Fur-

ther, by the integrability condition (4.11) and (4.15), there exists a smooth map σ : Ω → E3
1

which satisfies the condition (4.9) and (4.13). Thus, we get a spacelike (respectively, timelike)

framed surface (σ, ξ, η) with basic invariants (Λ,∆1,∆2). □

Theorem 4.2. Let (σ, ξ, η) and (σ̄, ξ̄, η̄) : Ω → E3
1 × Θ be framed surfaces of same causal

character with basic invariants (Λ,∆1,∆2) and (Λ̄, ∆̄1, ∆̄2), respectively. Then (σ, ξ, η) and

(σ̄, ξ̄, η̄) are congruent as framed surfaces if and only if the basic invariants coincide.

Proof. Let (s0, t0) ∈ U0 and consider the isometry A ∈ O1(3), such that ξ̄(s0, t0) = A ◦

ξ(s0, t0), η̄(s0, t0) = A ◦ η(s0, t0) and ζ̄(s0, t0) = A ◦ ζ(s0, t0). If c = σ̄(s0, t0) − A ◦ σ(s0, t0),

define the rigid motion Mx = Ax + c. Using the proposition 3.1, we see that the framed

surface (M ◦ σ,A ◦ ξ, A ◦ η) and (σ̄, ξ̄, η̄) both satisfy the same linear system of differential

equations (4.13) and (4.14), i.e., basic invariants coincide. Now since initial conditions are

same, by uniqueness theorem of system of ordinary differential equations, we find thatM◦σ =

σ̄, A ◦ ξ = ξ̄, A ◦ η = η̄, A ◦ ζ = ζ̄. Conversely, If (σ, ξ, η) and (σ̄, ξ̄, η̄) are congruent then

M ◦σ = σ̄, A◦ ξ = ξ̄, A ◦ η = η̄, A◦ ζ = ζ̄, then again using proposition 3.1, we find that both

framed surfaces have common basic invariants. □



INT. J. MAPS MATH. (2024) 7(1):97–121 / TRANSLATION FRAMED SURFACES IN E3
1 107

4.3. Curvatures of a Framed surface in E3
1. We define curvatures of a framed surface

(σ, ξ, η) : Ω → E3
1 × Θ using the moving frame {ξ, η, ζ = ξ × η} instead of {σs, σt, ξ} as at

singular points it may not be well defined. So first we obtain the matrix associated with the

Weingarten map W : TM → TM with respect to the frame {ξ, η, ζ = ξ× η} and then define

the curvatures as determinant and trace of the map, where TM = span{η, ζ}. Thus,

W (η) = −ηξ, W (ζ) = −ζξ, (4.17)

where ηξ and ζξ are the derivatives of the unit normal ξ with respect to the vector fields η

and ζ, respectively. By using equation (4.9), we get

η
ζ

 =
1

λ

 d2 −d1

−c2 c1

σs
σt

 ,

where λ = det

c1 d1

c2 d2

 .

W (η) = −ηξ = − 1

λ
(d2σs − d1σt)ξ = − 1

λ
(d2ξs − d1ξt),

W (ζ) = −ζξ = − 1

λ
(−c2σs + c1σt)ξ = − 1

λ
(−c2ξs + c1ξt).

Also using (4.10), we get

W (η) = − 1

λ
((d2l1 − d1l2)η + (m1d2 −m2d1)ζ),

W (ζ) = − 1

λ
((c1l2 − c2l1)η + (c1m2 − c2m1)ζ).

Thus, we get the Weingarten matrix as follows

W = − 1

λ

 l1d2 − l2d1 c1l2 − c2l1

m1d2 −m2d1 c1m2 − c2m1

 .

Now, we define µK = λ.detW and µH = λ.12trace(W ). By direct calculation we obtain

λ = det

c1 d1

c2 d2

 , µK = det

l1 m1

l2 m2

 , (4.18)

µH = −1

2
{det

c1 m1

c2 m2

− det

d1 l1

d2 l2

}. (4.19)
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Where κf = (λ, µK , µH) is the curvature of a spacelike framed surface. Similarly we find the

curvature of a timelike framed surface as follows

λ = −det

c1 d1

c2 d2

 , µK = −det

l1 m1

l2 m2

 , (4.20)

µH = −δ

2
{det

c1 −m1

c2 m2

− det

d1 −l1

d2 l2

}, (4.21)

where δ = ⟨η, η⟩.

4.4. Translation framed surface generated by framed curves in E3
1. Let (γ, ν1, ν2) :

I → E3
1 ×Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 ×Θ be framed curves with the curvatures (κ1, κ2, κ3, τ)

and (κ̄1, κ̄2, κ̄3, τ̄) in E3
1. Let σ : I × Ī :→ E3

1 be the translation surface parametrized as

σ(s, t) = γ(s) + γ̄(t).

Proposition 4.1. [5] Let (σ, νs1, ν
s
2) : Ω → E3

1 ×Θ be a one parameter family of curves with

respect to s and (σ, νt1, ν
t
2) : Ω → E3

1 ×Θ be a one parameter family of curves with respect to

t. If ρs = νs1 × νs2 and ρt = νt1 × νt2 are linearly independent for each (s, t) ∈ Ω, then (σ, ξ, η)

is a framed surface for some smooth mapping (ξ, η) : Ω → Θ.

For a translation surface σ(s, t) = γ(s) + γ̄(t) defined as above, we have (σ, ν1, ν2) and

(σ, ν̄1, ν̄2) as one parameter family of curves on the translation surface with respect to s and

t, respectively. We consider a smooth map (ξ, η) : Ω → Θ defined by ξ(s, t) = ρ(s)×ρ̄(t)
∥ρ(s)×ρ̄(t)∥ and

η(s, t) = ρ(s), where ρ = ν1 × ν2 and ρ̄ = ν̄1 × ν̄2 such that the map (σ, ξ, η) : Ω → E3
1 × Θ

is a framed surface and σ is a framed base surface by the Proposition 4.1. Considering the

above construction we have the following corollary.

Corollary 4.1. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be framed curves

in Minkowski 3-space such that ρ(s) and ρ̄(t) are linearly independent for all (s, t) ∈ I × Ī ,

then (σ, ξ, η) : I × Ī → E3
1 × Θ, defined by σ(s, t) = γ(s) + γ̄(t), ξ(s, t) = ρ(s)×ρ̄(t)

∥ρ(s)×ρ̄(t)∥ and

η(s, t) = ρ(s), is a translation framed surface.

Theorem 4.3. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be timelike framed

curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively in E3
1. Then the basic

invariants of the timelike translation framed surface (σ, ξ, η) : I × Ī → E3
1 × Θ are obtained
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as follows

c1(s, t) = −τ(s),

d1(s, t) = 0,

c2(s, t) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = τ̄(t)
√

(ρ(s).ρ̄(t))2 − 1,

l1(s, t) =
1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) =
ρ(s).ρ̄(t)

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) =
−1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν1(s).ρ̄(t) + κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = 0,

m2(s, t) =
−1

(ρ(s).ρ̄(t))2 − 1
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = 0,

where . denotes semi-Euclidean or Lorentzian scalar product.

Proof. Since the framed curves (γ(s), ν1(s), ν2(s)) and (γ̄(s), ν̄1(s), ν̄2(s)) are timelike, by

construction η(s, t) = ρ(s) is a timelike vector field which belongs to the tangent space of

the surface σ, therefore it is a timelike surface and furthermore ξ and ζ are spacelike vector.

Now by using the Lagrange’s identity ⟨u× v, u× v⟩ = −⟨u, u⟩⟨v, v⟩+ ⟨u, v⟩2 and vector triple

product (u× v)× w = ⟨v, w⟩u− ⟨u,w⟩v for Minkowski space, we have

∥ρ(s)× ρ̄(t)∥ =
√

ϵ(−⟨ρ(s), ρ(s)⟩⟨ρ̄(t), ρ̄(t)⟩+ ⟨ρ(s), ρ̄(t)⟩2) =
√
ϵ(−1 + ⟨ρ(s), ρ̄(t)⟩2),

where ϵ = ⟨ξ, ξ⟩ = 1. Since by definition (of angle), ⟨ρ(s), ρ̄(t)⟩ = − cosh θ, therefore −1 +

⟨ρ(s), ρ̄(t)⟩2 = −1 + cosh2 θ = sinh2 θ ≥ 0. Also since ρ and ρ̄ are linearly independent,

ρ.ρ̄ ̸= 1 therefore sinh2 θ > 0. Thus, we have

c1(s, t) = σs(s, t).η(s, t) = τ(s)ρ(s).ρ(s) = −τ(s),

d1(s, t) = σs(s, t).ζ(s, t) = τ(s)η(s, t).ζ(s, t) = 0,

c2(s, t) = σt(s, t).η(s, t) = τ̄(t)η̄(t).η(s) = τ̄(t)ρ(s).ρ̄(t),
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d2(s, t) = σt(s, t).ζ(s, t) = τ̄(t)ρ̄(t).(ξ(s, t)× ρ(s))

= τ̄(t)(ρ(s)× ρ̄(t)).
ρ(s)× ρ̄(t)

∥ρ(s)× ρ̄(t)∥

= τ̄(t)∥ρ(s)× ρ̄(t)∥ = τ̄(t)
√

(ρ(s).ρ̄(t))2 − 1,

Now, by using equation (3.3), we have ρs(s) = κ2(s)ν2(s)− κ3(s)ν1(s). Thus

l1(s, t) = ξs(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
((ρ(s)× ρs(s)).ρ̄(t))

=
1√

(ρ(s).ρ̄(t))2 − 1
(ρ(s)× (−κ2(s)ν1(s)− κ3(s)ν2(s)).ρ̄(t))

=
1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) = ξs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥2
(ρs(s)× ρ̄(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
1

(ρ(s).ρ̄(t))2 − 1
(ρs(s)× ρ̄(t)).((ρ(s).ρ̄(t))ρ(s) + ρ̄(t))

=
1

(ρ(s).ρ̄(t))2 − 1
(ρ(s).ρ̄(t))(ρ(s)× ρs(s)).ρ̄(t)

=
ρ(s).ρ̄(t)

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) = ηs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥
ρs(s).((ρ(s)× ρ̄(t))× ρ(s))

=
1√

(ρ(s).ρ̄(t))2 − 1
ρs(s).((ρ(s).ρ̄(t))ρ(s) + ρ̄(t))

=
1√

(ρ(s).ρ̄(t))2 − 1
(ρs(s).ρ̄(t))

=
−1√

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν1(s).ρ̄(t) + κ3(s)ν2(s).ρ̄(t)).

l2(s, t) = ξt(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
(ρ(s)× ρ̄t(t).ρ(s)) = 0,

m2(s, t) = ξt(s, t).ζ(s, t) =
1

(ρ(s).ρ̄(t))2 − 1
(ρ(s)× ρ̄t(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
1

(ρ(s).ρ̄(t))2 − 1
(ρ̄t(t)× ρ̄(t)).ρ(s)

=
1

(ρ(s).ρ̄(t))2 − 1
(−κ̄2(t)ν̄2(t).ρ(s) + κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = ηt(s, t).ζ(s, t) = ρt(s, t).ζ(s, t) = 0.ζ(s, t) = 0.

□
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Corollary 4.2. The curvature κf = (λ, µK , µH) of the timelike translation framed surface

in Theorem 4.4 is given as follows

λ = τ(s)τ̄(t)
√
(ρ(s).ρ̄(t))2 − 1,

µK =
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

((ρ(s).ρ̄(t))2 − 1)3/2
,

µH =
τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)) + τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2((ρ(s).ρ̄(t))2 − 1)
.

Proof. Using (4.20) and (4.21) and Theorem 4.4, we have

λ(s, t) = τ(s)τ̄(t)
√
(ρ(s).ρ̄(t))2 − 1,

µK(s, t) = −l1(s, t)m2(s, t)

=
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

((ρ(s).ρ̄(t))2 − 1)3/2
.

δ = ⟨η, η⟩ = −1, so

µH(s, t) =
1

2
{c1m2 + c2m1 − d2l1}

=
1

2
{τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(ρ(s).ρ̄(t))2 − 1

+
τ̄(t)(ρ(s).ρ̄(t))2

(ρ(s).ρ̄(t))2 − 1
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

− τ̄(t)
√
(ρ(s).ρ̄(t))2 − 1

1√
(ρ(s).ρ̄(t))2 − 1

(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))}

=
τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)) + τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2((ρ(s).ρ̄(t))2 − 1)
.

□

Proposition 4.2. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be timelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the xz-plane and γ̄ is contained in the xy-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ obtained by the above curves, µK ≡ 0 if and only if

σ is a generalized cylinder.

Proof. Let the curve γ be contained in the xz-plane and γ̄ be contained in the xy-plane. Then

we take ν1(s) = (0, 1, 0), ν̄1(t) = (0, 0, 1) and ρ(s) = (ρ1(s), 0, ρ3(s)), ρ̄(t) = (ρ̄1(t), ρ̄2(t), 0)

for some real smooth functions ρ1, ρ3, ρ̄1 and ρ̄2, which further gives ν2(s) = ν1(s)× ρ(s) =
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(−ρ3(s), 0,−ρ1(s)) and ν̄2(t) = ν̄1(t) × ρ̄(t) = (−ρ̄2(t),−ρ̄1(t), 0). Also since ν1 and ν̄1 are

fixed vectors, ν ′1 = 0 and ν̄ ′1 = 0 therefore from (3.3), κ1 = κ2 = κ̄1 = κ̄2 = 0. Hence

µK(s, t) =
κ3(s)κ̄3(t)ρ3(s)ρ̄2(t)

(ρ21(s)ρ̄
2
1(t)− 1)3/2

.

Thus µK ≡ 0 if and only if one of the functions κ̄3, κ3, ρ3, ρ̄2 is identically zero on an open

interval in I or Ī. So, if κ3 = 0 or ρ3 = 0 then γ is a part of a timelike straight line, while

κ̄3 = 0 or ρ̄2 = 0 implies γ̄ is a part of a timelike straight line. In either case σ is a generalized

cylinder. □

Proposition 4.3. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be timelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the xz-plane and γ̄ is contained in the xy-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ generated by the framed curves, µH ≡ 0 if and only

if σ is a point or is a part of the following surface

σ(s, t) =
(1
c
log

∣∣∣cosh(cu(s))
sinh(cv(t))

∣∣∣+B, v(t), u(s)
)
,

where B, c are some constants.

Proof. Using the similar constructions {ν1, ν2, ρ} and {ν̄1, ν̄2, ρ̄} as in Proposition 4.2, we get

κ1 = κ2 = κ̄1 = κ̄2 = 0. Hence

µH(s, t) =
−τ(s)κ̄3(t)ρ3(s)− τ̄(t)κ3(s)ρ̄2(t)

2(ρ21(s)ρ̄
2
1(t)− 1)

.

Now µH ≡ 0 if and only if τ(s)κ̄3(t)ρ3(s) + τ̄(t)κ3(s)ρ̄2(t) = 0, or

τ(s)ρ3(s)

κ3(s)
= − τ̄(t)ρ̄2(t)

κ̄3(t)
= C(constant). (4.22)

By definition κ3(s) = ν ′2(s).ρ(s) = ρ3,sρ1 − ρ1,sρ3 and κ̄3(t) = ρ̄2,tρ̄1 − ρ̄1,tρ̄2, substituting

into (4.22) we get,

C(ρ3,sρ1 − ρ1,sρ3) = τ(s)ρ3(s),

C(ρ̄2,tρ̄1 − ρ̄1,tρ̄2) = −τ̄(t)ρ̄2(t).

In the case C = 0, we have τ = 0 or ρ3 = 0 and τ̄ = 0 or ρ̄2 = 0. If ρ3 = 0 and ρ̄2 = 0 then

κ3 = 0 = κ̄3 which contradicts to the equation (4.22). Thus τ = 0 and τ̄ = 0 which implies

that σ is a point.
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Now in the case C ̸= 0, replacing c = 1
C in the above equations we get,

ρ3,sρ1 − ρ1,sρ3 = cτ(s)ρ3(s), (4.23)

ρ̄2,tρ̄1 − ρ̄1,tρ̄2 = −cτ̄(t)ρ̄2(t). (4.24)

Since ρ is a timelike unit vector we take ρ(s) = (cosh (θ(s)), 0, sinh (θ(s))), therefore ρ1,s =

θs sinh (θ) and ρ3,s = θs cosh (θ). Using equation (4.23), we get

θs = cτ(s) sinh (θ(s)),∫
1

sinh (θ)
dθ = c

∫
τ(s)ds+ b,

which gives eθ = 1+Aec
∫
τ(s)ds

1−Aec
∫
τ(s)ds , thus we get ρ(s) =

(
1+A2e2c

∫
τ(s)ds

1−A2e2c
∫
τ(s)ds , 0,

2Aec
∫
τ(s)ds

1−Ae2c
∫
τ(s)ds

)
. Now we

calculate γ(s) =
∫
τ(s)ρ(s)ds. Let γ(s) = (γ1(s), 0, γ2(s)), then we get γ1(s) =

∫
τ(s)ρ1(s)ds =

−1
c log

(
1−A2e2c

∫
τ(s)ds

ec
∫
τ(s)ds

)
and γ3(s) =

∫
τ(s)ρ3(s)ds =

1
c log

(
1+Aec

∫
τ(s)ds

1−Aec
∫
τ(s)ds

)
.

Let u(s) = 1
c log

(
1+Aec

∫
τ(s)ds

1−Aec
∫
τ(s)ds

)
, then γ is given by

γ(s) =
(1
c
log cosh (cu(s))− 1

c
log (2A), 0, u(s)

)
.

Similarly, by equation (4.24), we obtain

γ̄(t) =
(
− 1

c
log

∣∣ sinh (cv(t))∣∣+ 1

c
log (2Ā), v(t), 0

)
,

where v(t) = −1
c log

1+Āe−c
∫ ¯τ(t)dt

1−Āe−c
∫ ¯τ(t)dt

. Thus

σ(s, t) = γ(s) + γ̄(t)

=
(1
c
log

∣∣∣cosh(cu(s))
sinh(cv(t))

∣∣∣+B, v(t), u(s)
)
,

where B is a constant. In fig. 1 we have diagram of the surface when c = 1, B = 0. □

Figure 1.
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Theorem 4.4. Let (γ, ν1, ν2) : I → E3
1 × Θ a spacelike and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be

a timelike framed curve with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively in E3
1.

Then the basic invariants of the timelike translation framed surface (σ, ξ, η) : I× Ī → E3
1×Θ,

are obtained as follows

c1(s, t) = τ(s),

d1(s, t) = 0,

c2(s, t) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = τ̄(t)
√
1 + (ρ(s).ρ̄(t))2,

l1(s, t) =
1√

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) =
ρ(s).ρ̄(t)

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) =
δ√

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν1(s).ρ̄(t)− κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = 0,

m2(s, t) =
1

1 + (ρ(s).ρ̄(t))2
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = 0,

where δ = ⟨ν1, ν1⟩ = ±1.

Proof. Since the framed curves (γ(s), ν1(s), ν2(s)) is spacelike and (γ̄(s), ν̄1(s), ν̄2(s)) is time-

like, by construction σt(s, t) = γ̄′(t) is a timelike vector field which belongs to the tangent

space of the surface σ, hence σ is a timelike surface and ξ and η are spacelike vectors, ζ is a

timelike vector. Thus, we have

∥ρ(s)× ρ̄(t)∥ =
√

ϵ(⟨ρ(s), ρ(s)⟩⟨ρ̄(t), ρ̄(t)⟩+ ⟨ρ(s), ρ̄(t)⟩2) =
√
ϵ(1 + ⟨ρ(s), ρ̄(t)⟩2),

we have ⟨ρ(s), ρ̄(t)⟩ = sinh θ, 1+⟨ρ(s), ρ̄(t)⟩2 = 1+sinh2 θ = cosh2 θ > 0, hence ϵ = ⟨ξ, ξ⟩ = 1,

and ∥ρ(s)× ρ̄(t)∥ =
√

1 + ⟨ρ(s), ρ̄(t)⟩2, we have

c1(s, t) = σs(s, t).η(s, t) = τ(s)ρ(s).ρ(s) = τ(s),

d1(s, t) = σs(s, t).ζ(s, t) = τ(s)η(s, t).ζ(s, t) = 0,

c2(s, t) = σt(s, t).η(s, t) = τ̄(t)ρ̄(t).ρ(s) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = σt(s, t).ζ(s, t) = τ̄(t)ρ̄(t).(ξ(s, t)× ρ(s))
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= τ̄(t)(ρ(s)× ρ̄(t)).
ρ(s)× ρ̄(t)

∥ρ(s)× ρ̄(t)∥

= τ̄(t)∥ρ(s)× ρ̄(t)∥ = τ̄(t)
√
1 + ⟨ρ(s), ρ̄(t)⟩2,

By using (3.2), we have ρs(s) = −δκ2(s)ν1(s) + δκ3(s)ν2(s), hence

l1(s, t) = ξs(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
((ρ(s)× ρs(s)).ρ̄(t))

=
1√

1 + ⟨ρ(s), ρ̄(t)⟩2
((ρ(s)× (−δκ2(s)ν1(s) + δκ3(s)ν2(s)).ρ̄(t))

=
δ√

1 + ⟨ρ(s), ρ̄(t)⟩2
(−κ2(s)(−δν2(s)) + κ3(s)(−δν1(s))).ρ̄(t)

=
1√

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) = ξs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥2
(ρs(s)× ρ̄(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρs(s)× ρ̄(t)).((ρ(s).ρ̄(t))ρ(s) + ρ̄(t))

=
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρ(s).ρ̄(t))(ρ(s)× ρs(s)).ρ̄(t)

=
ρ(s).ρ̄(t)

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) = ηs(s, t).ζ(s, t) =
1

∥ρ(s)× ρ̄(t)∥
ρs(s).((ρ(s)× ρ̄(t))× ρ(s))

=
1√

1 + ⟨ρ(s), ρ̄(t)⟩2
ρs(s).((ρ(s).ρ̄(t))ρ(s)− ρ̄(t))

=
−1√

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρs(s).ρ̄(t))

=
δ√

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ2(s)ν1(s).ρ̄(t)− κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = ξt(s, t).η(s, t) =
1

∥ρ(s)× ρ̄(t)∥
(ρ(s)× ρ̄t(t).ρ(s)) = 0,

m2(s, t) = ξt(s, t).ζ(s, t) =
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρ(s)× ρ̄t(t)).(ρ(s)× ρ̄(t)× ρ(s))

=
−1

1 + ⟨ρ(s), ρ̄(t)⟩2
(ρ̄t(t)× ρ̄(t)).ρ(s)

=
1

1 + ⟨ρ(s), ρ̄(t)⟩2
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = ηt(s, t).ζ(s, t) = ρt(s, t).ζ(s, t) = 0.ζ(s, t) = 0.

□
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Corollary 4.3. The curvature κf = (λ, µK , µH) of the timelike translation framed surface

given in Theorem 4.5 is given as follows

λ = −τ(s)τ̄(t)
√

1 + (ρ(s).ρ̄(t))2,

µK = −(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(1 + (ρ(s).ρ̄(t))2)3/2
,

µH = −τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))− τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2(1 + (ρ(s).ρ̄(t))2)
.

Proof. Using (4.20) and (4.21) and Theorem 4.5, we have

λ(s, t) = τ(s)τ̄(t)
√
1 + (ρ(s).ρ̄(t))2,

µK(s, t) = −l1(s, t)m2(s, t)

= −(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(1 + (ρ(s).ρ̄(t))2)3/2
.

δ = ⟨η, η⟩ = 1, so

µH(s, t) =− 1

2
{c1m2 + c2m1 − d2l1}

=− 1

2
{τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

1 + (ρ(s).ρ̄(t))2

+
τ̄(t)(ρ(s).ρ̄(t))2

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

− τ̄(t)
√

1 + (ρ(s).ρ̄(t))2
1√

1 + (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))}

=− τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))− τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2(1 + (ρ(s).ρ̄(t))2)
.

□

Proposition 4.4. Let (γ, ν1, ν2) : I → E3
1×Θ be an spacelike and (γ̄, ν̄1, ν̄2) : Ī → E3

1×Θ be a

timelike framed curve with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume

that γ is contained in the yz-plane and γ̄ is contained in the xz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ, µK ≡ 0 if and only if σ is a generalized cylinder.

Proof. We take ν1(s) = (1, 0, 0), ν̄1(t) = (0, 1, 0) and ρ(s) = (0, ρ2(s), ρ3(s)), ρ̄(t) = (ρ̄1(t), 0, ρ̄3(t))

for some real smooth functions ρ2, ρ3, ρ̄1 and ρ̄3. Then we get ν2(s) = ρ(s) × ν1(s) =

(0, ρ3(s), ρ2(s)) and ν̄2(t) = ν̄1(t) × ρ̄(t) = (−ρ̄3(t), 0,−ρ̄1(t)). Since ν1 and ν̄1 are fixed

vectors, ν ′1 = 0 and ν̄ ′1 = 0 therefore κ1 = κ2 = κ̄1 = κ̄2 = 0. Now by following the similar

steps to the Proposition 4.2 we get the result. □
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Proposition 4.5. Let (γ, ν1, ν2) : I → E3
1×Θ be an spacelike and (γ̄, ν̄1, ν̄2) : Ī → E3

1×Θ be a

timelike framed curve with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume

that γ is contained in the yz-plane and γ̄ is contained in the xz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 × Θ, µH ≡ 0 if and only if σ is a point or is a part of

the following surface

σ(s, t) =
(
v(t), u(s),

1

c
log

∣∣∣2 csc(cu(s))
cosh(cv(t))

∣∣∣),
where c is some constant.

Proof. Working with the same frames {ν1, ν2, ρ} and {ν̄1, ν̄2, ρ̄} as defined in the Proposition

4.4, we get κ1 = κ2 = κ̄1 = κ̄2 = 0. Since ρ is an spacelike unit vector and ρ̄ is a timelike unit

vector so we take ρ(s) = (0, cos θ(s), sin θ(s)) and ρ̄ = (cosh θ(t), 0, sinh θ(t)) and by following

the similar steps to the Proposition 4.3 we obtain

γ(s) =
(
0, u(s),

1

c
log (2 csc (cu(s)))

)
,

γ̄(t) =
(
v(t), 0,−1

c
log cosh (cv(t))

)
,

where u(s) = −1
c log(tan (

c
2

∫
τ̄(t)dt+ b)) and v(t) = 2

c arctan (Ae
c
∫
τ̄(t)dt). Thus

X(s, t) = γ(s) + γ̄(t)

=
(
v(t), u(s),

1

c
log

∣∣∣2 csc(cu(s))
cosh(cv(t))

∣∣∣),
where c is a constant. In fig. 2 we have diagram of the surface when c = 1. □

Figure 2.



118 A. YADAV AND A. K. YADAV

Theorem 4.5. Let (γ, ν1, ν2) : I → E3
1 ×Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 ×Θ be spacelike framed

curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively in E3
1. Then the basic

invariants of the spacelike translation framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ, are obtained

as follows

c1(s, t) = τ(s),

d1(s, t) = 0,

c2(s, t) = τ̄(t)ρ(s).ρ̄(t),

d2(s, t) = −τ̄(t)
√
1− (ρ(s).ρ̄(t))2,

l1(s, t) =
1√

1− (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

m1(s, t) =
ρ(s).ρ̄(t)

1− (ρ(s).ρ̄(t))2
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t)),

n1(s, t) =
δ√

1− (ρ(s).ρ̄(t))2
(κ2(s)ν1(s).ρ̄(t)− κ3(s)ν2(s).ρ̄(t)),

l2(s, t) = 0,

m2(s, t) =
1

1− (ρ(s).ρ̄(t))2
(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s)),

n2(s, t) = 0,

where δ = ⟨ν1, ν1⟩ = ±1.

Proof. We can prove this theorem using similar steps as the Theorems 4.4, 4.5. □

Corollary 4.4. The curvature κf = (λ, µK , µH) of the spacelike translation framed surface

given in Theorem 4.7 is given as follows

λ = −τ(s)τ̄(t)
√

1− (ρ(s).ρ̄(t))2,

µK =
(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))

(1− (ρ(s).ρ̄(t))2)3/2
,

µH = −τ(s)(κ̄2(t)ν̄2(t).ρ(s)− κ̄3(t)ν̄1(t).ρ(s))− τ̄(t)(κ2(s)ν2(s).ρ̄(t)− κ3(s)ν1(s).ρ̄(t))

2(1− (ρ(s).ρ̄(t))2)
.

Proof. Proof is similar to the corollaries 4.2, 4.3. □

Proposition 4.6. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be spacelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the yz-plane and γ̄ is contained in the xz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 ×Θ, µK ≡ 0 if and only if σ is a generalized cylinder.
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Proof. We take ν1(s) = (1, 0, 0) and ν̄1(t) = (0, 1, 0) then there exist real smooth functions ρ2,

ρ3, ρ̄1 and ρ̄3 such that ρ(s) = (0, ρ2(s), ρ3(s)) and ρ̄(t) = (ρ̄1(t), 0, ρ̄3(t)). Now by definition

ν2(s) = ρ(s)×ν1(s) = (0, ρ3(s), ρ2(s)) and ν̄2(t) = ν̄1(t)× ρ̄(t) = (−ρ̄3(t), 0,−ρ̄1(t)) and since

ν1 and ν̄1 are fixed vectors, ν ′1 = 0 and ν̄ ′1 = 0 therefore κ1 = κ2 = κ̄1 = κ̄2 = 0. Now by

following the similar steps to the Proposition 4.2, we get the desired result. □

Proposition 4.7. Let (γ, ν1, ν2) : I → E3
1 × Θ and (γ̄, ν̄1, ν̄2) : Ī → E3

1 × Θ be spacelike

framed curves with curvatures (κ1, κ2, κ3, τ) and (κ̄1, κ̄2, κ̄3, τ̄), respectively. Assume that γ

is contained in the xz-plane and γ̄ is contained in the yz-plane. Then for the translation

framed surface (σ, ξ, η) : I × Ī → E3
1 × Θ, µH ≡ 0 if and only if σ is a point or is a part of

the following surface

σ(s, t) =
(
v(t), u(s),

1

c
log

∣∣∣sinh(cv(t))
sin(cu(s))

∣∣∣),
where c is some constant.

Proof. Working with the frames {ν1, ν2, ρ} and {ν̄1, ν̄2, ρ̄} as defined in the Proposition 4.6,

we have κ1 = κ2 = κ̄1 = κ̄2 = 0. Since ρ and ρ̄ are spacelike unit vectors so we take

ρ(s) = (0, cos θ(s), sin θ(s)) and ρ̄(t) = (sinh θ(t), 0, cosh θ(t)) and by following the similar

steps to the Proposition 4.3 we obtain

γ(s) =
(
0, u(s),−1

c
log (2 sin (cu(s)))

)
,

γ̄(t) =
(
v(t), 0,

1

c
log (2 sinh (cv(t)))

)
,

where u(s) = −1
c log(tan (

c
2

∫
τ̄(t)dt+ b)) and v(t) = 1

c log (
1+Āec

∫
τ̄(t)dt

1−Āec
∫
τ̄(t)dt ). Thus,

σ(s, t) = γ(s) + γ̄(t)

=
(
v(t), u(s),

1

c
log

∣∣∣sinh(cv(t))
sin(cu(s))

∣∣∣),
where c is a constant. In fig. 3 we have diagram of the surface when c = 1. □
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Figure 3.
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