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CERTAIN RESULTS OF RICCI SOLITONS ON (LCS) MANIFOLDS‡
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Abstract. In the present paper, we study Ricci solitons of (LCS)-manifolds when quasi-

conformal and pseudo projective curvature tensors of (LCS)-manifolds are irrotational and

flat. It is revealed that the results obtained by the above methods and using semi-symmetry

and Eisenhart problems are the same.
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1. Introduction

Riemannian geometry gives the study of Riemannian manifolds and Riemannian manifold

is equipped with symmetric bilinear and positive definite metric. The Lorentzian manifold

is a special case of pseudo-Riemannian manifold which is generalized Riemannian manifold

and need not have positive metric tensor.
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The study of Lorentzian concircular structure manifold shortly (LCS)-manifold initiated

through Shaikh [15] and Baishya [16] in 2003 and 2005 generalize the idea of LP -Sasakian

manifolds inaugurated through Matsumoto (1989) [8], Mihai and Rosca (1992) [9].

Ricci flow was initiated by Hamilton in 1982 and he observed that it’s an attractive

mathematical model for analyzing the fabrication of the manifold. This is a rule that defaces

the metric of a Riemannian manifold in an approach similar to the dissemination of heat. This

process is known as the geometrization conjecture of Thurston smoothing out irregularities

in the metric. It gives an understanding of the geometry and topology of the manifold. Ricci

soliton is self-similar to the Ricci flow(it is extension of Einstein metric) and it is denoted on

(M, g) by

(Lϑg)(U,W ) + 2S(U,W ) + 2Υg(U,W ) = 0 (1)

ϑ is a vector field created by {ϕt}t∈R one parameter group of transformations, Lϑ means the

Lie derivative along ϑ, Υ is scalar. The Ricci soliton is shrinking: Υ < 0, steady: Υ = 0 and

expanding: Υ > 0.

During the current two decades, many mathematicians have investigated Ricci solitons of

contact and Kähler manifolds [[13], [14]]. In particular, Praveena et. al. investigated [11, 12]

a study on Ricci solitons in generalized complex space form. Hui et. al. [6, 4] and Blaga

[3] have studied some classes of Ricci solitons in (LCS)-manifolds. The scholars Bagewadi

et. al. [2] studied geometry of Ricci solitons in (LCS)-manifolds. Prompted by the earlier

investigations in this article we investigate Ricci Solitons of (LCS)-manifolds when quasi-

conformal and pseudo-projective curvature tensors in these manifolds are irrotational and

flat. We also study compare our results with Ricci solitons of Eisenhart problem and semi

symmetric.

2. PRELIMINARIES

A Lorentzian manifoldM together with unit timelike concircular vector field ξ (g(ξ, ξ) = −1),

its associated 1-form η (g(X, ξ) = η(X)) and a (1, 1) tensor field ϕ(take ϕU = 1
α∇Uξ) is said

to be a Lorentzian concircular structure manifold (briefly, (LCS)-manifold). Especially, if we

take α = 1 then we can obtain the LP -Sasakian structure of Matsumoto in (LCS)-manifold
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for (n > 2). Moreover in (LCS)-manifold the following relations hold: [15, 16].

ϕ = I + η ⊗ ξ, η(ξ) = −1,

ϕξ = 0, η · ϕ = 0, g(X,ϕY ) = g(ϕX, Y ),

(∇Xη)(Y ) = α[g(X,Y ) + η(X)η(Y )], α ̸= 0,

∇Xξ = α[X + η(X)ξ] (2)

∇Xα = Xα = dα(X) = ρη(X), ρ = −ξα = −ξ · ∇α (3)

g(ϕU, ϕV ) = g(U, V ) + η(U)η(V ), g(U, ξ) = η(U),

R(U, V )ξ = (α2 − ρ)[η(V )U − η(U)V ], (4)

R(ξ, U)ξ = (α2 − ρ)[η(U)ξ + U ], (5)

R(ξ, U)V = (α2 − ρ)[g(U, V )ξ − η(V )U ],

for U, V ∈ T (M).

3. RICCI SOLITONS OF IRROTATIONAL QUASI-CONFORMAL CURVATURE

TENSORS

Yano and Sawaki in 1968 [17] defined and studied a quasi-conformal curvature tensor field

Q̄ on M of dimension n which includes conformal, concircular and M -projective curvature

tensors as specific cases. It is given by

Q̄(V,U)W = aR(V,U)W + b[S(U,W )V − S(V,W )U + g(U,W )QV − g(V,W )QU ]

− r

n

(
a

n− 1
+ 2b

)
[g(U,W )V − g(V,W )U ], (6)

where S(V,W ) = g(QV,W ).

Using (2) in (Lξg)(U,W ) we produce

(Lξg)(U,W ) = 2α[g(U,W )− η(U)η(W )]. (7)

((ξ,Υ, g) is a Ricci soliton in (LCS) manifold.)

Again using (7) and (2) we have

S(U,W ) = −[(α+Υ)g(U,W ) + αη(U)η(W )]. (8)
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The preceding equating yields that

QU = −[(α+Υ)U + αη(U)ξ], (9)

i.e., S(U, ξ) = −Υη(U), (10)

r = −Υn− α(n− 1). (11)

Put W = ξ in (6) and using (4), (8) we have

Q̄(V,U)ξ = A[η(U)V − η(V )U ], (12)

where A = a(α2 − ρ) − b(2Υ + α) − r
n

(
a

n−1 + 2b
)
. The rotation (curl) of quasi-conformal

curvature tensor Q̄ on a Riemannian manifold is given by

Rot Q̄ = Curl Q̄ = (∇XQ̄)(V,U,W ) + (∇V Q̄)(X,U,W )

+(∇U Q̄)(X,V,W )− (∇W Q̄)(V,U,X). (13)

Under second Bianchi identity

(∇XQ̄)(V,U,W ) + (∇V Q̄)(X,U,W ) + (∇U Q̄)(X,V,W ) = 0. (14)

Using (14) in reduces to

curl Q̄ = −(∇W Q̄)(V,U,X).

If Q̄ is irrotational then curl Q̄ = 0 and we should have

(∇W Q̄)(V,U,X) = 0

=⇒ ∇W {Q̄(V,U)X} = Q̄(∇WV,U)X + Q̄(V,∇WU)X + Q̄(V,U)∇WX. (15)

Put X = ξ in (15) and by virtue of (2), (3) and (12) we have

Q̄(V,U)W = A[g(U,W )V − g(V,W )U ]. (16)

Exercising the inner product of (16) with X

Q̄(V,U,W,X) = A[g(U,W )g(V,X)− g(V,W )g(U,X)]. (17)

On contraction of the above equation (17) over V and X and using (6) we get

S(U,W ) =

[
a(n− 1)(α2 − ρ)− b(n− 1)(2Υ + α)− br

a+ b(n− 2)

]
g(U,W ). (18)
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Put U = W = ξ in (18) and using (10), (11) we get the value of Υ as

Υ = −(n− 1)(α2 − ρ). (19)

We can consequently declare the following:

Theorem 1. A Ricci soliton (g, ξ,Υ) in irrotational quasi-conformal (LCS) manifold is

steady α2 − ρ = 0, shrinking α2 − ρ < 0 and expanding α2 − ρ > 0. i.e., α2 + ξα =

0, α2 + ξα > 0, α2 + ξα < 0.

Theorem 2. If an (LCS)-manifold is quasi-conformally flat then it is η-Einstein provided

b ̸= 0.

Proof. Suppose (LCS) is quasi-conformally flat then (6) becomes

aR(V,U)W + b[S(U,W )V − S(V,W )U + g(U,W )QV − g(V,W )QU ]

− r

n

(
a

n− 1
+ 2b

)
[g(U,W )V − g(V,W )U ] = 0.

Put V = W = ξ and using (5), (8) in preceding equation then we get

a[η(U)ξ + U ](α2 − ρ) + b[(n− 1)(α2 − ρ)η(U)ξ + (n− 1)(α2 − ρ)U

+ η(U)Qξ +QU ]− r

n

(
a

n− 1
+ 2b

)
[η(U)ξ + U ] = 0.

Taking the inner product by X

a(α2 − ρ)[η(U)η(X) + g(U,X)] + b[(n− 1)(α2 − ρ)η(U)η(X)

+ (n− 1)(α2 − ρ)g(U,X) + η(U)S(X, ξ) + S(U,X)]

− r

n

(
a

n− 1
+ 2b

)
[η(U)η(X) + g(U,X)] = 0.

=⇒ a(α2 − ρ)[η(U)η(X) + g(U,X)] + b[(n− 1)(α2 − ρ)η(U)η(X)

+ (n− 1)(α2 − ρ)g(U,X) + (n− 1)(α2 − ρ)η(Y )η(W ) + S(U,X)]

− r

n

(
a

n− 1
+ 2b

)
[η(U)η(X) + g(U,X)] = 0.

=⇒ bS(U,X) =

[
r

n

(
a

n− 1
+ 2b

)
− (α2 − ρ)(a+ 2b(n− 1))

]
η(U)η(X)

+

[
r

n

(
a

n− 1
+ 2b

)
− b(n− 1)(α2 − ρ)

]
g(U,X). (20)

∴ (LCS) manifold is η-Einstein provided b ̸= 0.
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Let (g, ξ,Υ) be Ricci soliton then

(Lξg)(U,X) + 2S(U,X) + 2Υg(U,X) = 0.

=⇒ α[η(U)η(X) + g(U,X)] + S(U,X) + Υg(U,X) = 0.

Replacing U = X = ξ in preceding equation we get

S(ξ, ξ) + Υg(ξ, ξ) = 0 =⇒ Υ = S(ξ, ξ) =⇒ bΥ = bS(ξ, ξ).

Setting U = X = ξ in (20) and equate to above we get

bΥ =

[
r

n

(
a

n− 1
+ 2b

)
− (α2 − ρ)(a+ 2b(n− 1))

]
(21)

+

[
r

n

(
a

n− 1
+ 2b

)
− b(n− 1)(α2 − ρ)

]
(−1)

=− (α2 − ρ)[a+ 2b(n− 1)− b(n− 1)]

=− (α2 − ρ)[a+ b(n− 1)]. (22)

Hence Υ exists if b = 0. So we declare the following:

Theorem 3. The Ricci soliton (g, ξ,Υ) in quasi-conformally flat (LCS)-manifold exists if

b ̸= 0.

Remark 1. (i) If a = 1, b = − 1
n−2 then Q̄ decreases to conformal curvature tensor. In this

case Υ = −(α2 − ρ).

(ii) If a = 1, b = − 1
2(n−1) then Q̄ decreases to M -projective curvature tensor. In this case

Υ = (n− 1)(α2 − ρ).

4. RICCI SOLITONS IN IRROTATIONAL PSEUDO PROJECTIVE

(LCS)-MANIFOLDS

Prasad in 2002 [10] defined and studied a pseudo projective curvature tensor field P̄ on

M of dimension n which includes projective curvature tensor as specific case. It is given by

P̄ (V,U)W = aR(V,U)W + b[S(U,W )V − S(V,W )U ]

− r
n

(
a

n−1 + b
)
[g(U,W )V − g(V,W )U ]. (23)

Put W = ξ in (23) and using (4), (8) we have

P̄ (V,U)ξ = θ[η(V )U − η(V )U ], (24)
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where θ = a(α2 − ρ)−Υb− r
n

(
a

n−1 + b
)
.

The rotation (curl) of pseudo projective curvature tensor P̄ on a Riemannian manifold is

given by

Rot P̄ = (∇X P̄ )(V,U,W ) + (∇V P̄ )(X,U,W )

+(∇U P̄ )(X,V,W )− (∇W P̄ )(V,U,X). (25)

Under second Bianchi identity we get

(∇X P̄ )(V,U,W ) + (∇V P̄ )(X,U,W ) + (∇U P̄ )(X,V,W ) = 0, (26)

using above in (25), it becomes

curl P̄ = −(∇W P̄ )(V,U,X).

If P̄ is irrotational then curl P̄ = 0 and we obtain

(∇W P̄ )(V,U,X) =0.

=⇒ ∇W {P̄ (V,U)X} = P̄ (∇WV,U)X+P̄ (V,∇WU)X + P̄ (V,U)∇WX. (27)

Put X = ξ in (27) and by virtue of (2), (3) and (24) we have

P̄ (V,U)W = θ[g(U,W )V − (V,W )U ]. (28)

Taking inner product of (28) with W

P̄ (V,U,W,X) = θ[g(U,W )g(V,X)− g(V,W )g(U,X)]. (29)

On contraction of equation (29) over V and X, and using (6) we gain

S(U,W ) =

[
(a(α2 − ρ)− bΥ)(n− 1)

a+ b(n− 1)

]
g(U,W ). (30)

Put U = W = ξ in (30) and using (10), (11) we gain the value of Υ

Υ = −(n− 1)(α2 − ρ) = −(n− 1)(α2 + ξα). (31)

We can consequently say the following:

Theorem 4. A Ricci soliton in irrotational pseudo projective (LCS)-manifold is steady,

shrinking and expanding accordingly if

α2 + ξα = 0, α2 + ξα > 0, α2 + ξα < 0

.
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Theorem 5. A pseudo projectively flat (LCS)-manifold is η-Einstein provided b ̸= 0.

Proof. Suppose (LCS) is pseudo projectively flat then (23) can write

aR(V,U)W + b[S(U,W )V − S(V,W )U − r

n

(
a

n− 1
+ b

)
[g(U,W )V − g(V,W )U ] = 0.

Put V = ξ, using and using (5), (8) in preceding equation then we gain

aR(ξ, U)W + b[S(U,W )ξ − S(ξ,W )U − r

n

(
a

n− 1
+ b

)
[g(U,W )ξ − g(ξ,W )U ] = 0.

i.e., a(α2 − ρ)[g(U,W )ξ − η(W )U ] + b[S(U,W )ξ − (n− 1)(α2 − ρ)η(W )U ]

− r

n

(
a

n− 1
+ b

)
[g(U,W )ξ − η(W )η(U)] = 0.

Taking the inner product ξ to precede equation then we obtained

a(α2 − ρ)[−g(U,W )− η(W )η(U)] + b[−S(U,W )− (n− 1)

· (α2 − ρ)η(W )η(U)] +
r

n

(
a

n− 1
+ b

)
[g(U,W ) + η(W )η(U)] = 0.

=⇒ bS(U,W ) =

[
r

n

(
a

n− 1
+ b

)
− (α2 − ρ)(a+ (n− 1)b)

]
η(U)η(W )

+

[
r

n

(
a

n− 1
+ b

)
− a(α2 − ρ)

]
g(U,W ). (32)

Thus (LCS)-manifold is η-Einstein.

Next let (ξ,Υ, g) be Ricci soliton then

(Lξg)(U,W ) + 2S(U,W ) + 2Υg(U,W ) = 0.

=⇒ α[η(U)η(W ) + g(U,W )] + S(U,W ) + Υg(U,W ) = 0.

Put U = W = ξ, then the above reduces to

S(ξ, ξ)−Υ = 0 i.e., Υ = S(ξ, ξ). (33)

From (32) and (33), Υb = bS(ξ, ξ)

Υb =

[
r

n

(
a

n− 1
+ b

)
− (α2 − ρ)(a+ (n− 1)b)

]
+

[
r

n

(
a

n− 1
+ b

)
− a(α2 − ρ)

]
=− (n− 1)b(α2 − ρ).
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Suppose b ̸= 0 then

Υ = −(n− 1)(α2 − ρ). (34)

Thus we have the following theorem:

Theorem 6. A Ricci soliton (g, ξ,Υ) in pseudo projectively flat (LCS)-manifold exists if

b ̸= 0 and Υ = −(n− 1)(α2 − ρ).

Bagewadi et. al. [2], proved the following result:

Theorem 7. If a Ricci soliton in (LCS)-manifold satisfying R(ξ,X).M̃ then

Υ = −(n− 1)(α2 − ρ).

• It is shrinking if characteristic vector field ξ is orthogonal to ∇α.

• It is shrinking of the angle between characteristic vector field ξ and the gradient vector

field ∇α is acute.

• It is shrinking if α2 > k | ∇α |, expanding if α2 < k | ∇α |, and steady if α2 = k |

∇α | .

The value Υ in (19), (22), (31) and (34) is same as Υ in above theorem. Hence we conclude

the following result:

Theorem 8. If a Ricci soliton in (LCS)-manifold satisfies conditions such as irrotational

quasi-conformal, quasi-conformally flat, irrotational pseudo projective and pseudo projective

flat then Υ = −(n− 1)(α2 − ρ). Further

• It is shrinking if characteristic vector field ξ is orthogonal to ∇α.

• It is shrinking of the angle between characteristic vector field ξ and the gradient vector

field ∇α is acute.

• It is shrinking if α2 > k | ∇α |, expanding if α2 < k | ∇α |, and steady if α2 = k |

∇α | .

Shaikh et.al. [5], proved the following result i.e., Ricci solitons using the Eisenhart problem

in (LCS)-manifolds.

Theorem 9. Suppose that in (LCS)-manifold the (0, 2) type tensor field Lϑg+2S is parallel,

where ϑ is a given vector field, then (g, ϑ) yields Ricci soliton and it is given by

Υ = −(n− 1)(α2 − ρ).
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Situated on the earlier all results we resolve that the value of Υ = −(n − 1)(α2 − ρ) is

same as Theorem (8) and Theorem (9).

5. CONCLUSION

The condition obtained for Ricci solitons of (LCS) manifold all the four methods: semi-

symmetry, irrotational, flatness and Eisenhart problem is same i.e. Υ = −(n− 1)(α2 − ρ).

Hence the geometry of (LCS) manifold is same i.e. Υ = −(n− 1)(α2 − ρ) in all these cases:

semi-symmetry, irrotational, flatness and Eisenhart problem.

References

[1] Amur, K., and Maralabhavi, Y. B. (1977). On quasi-conformal flat spaces, Tensor (N.S.) 31, 194.

[2] Ashoka, S. R., Bagewadi, C. S., and Ingalahalli, G. (2014). A geometry on Ricci solitons in(LCS)n

manifolds, Differ. Geom. Dyn. Syst. 16, 50-62.

[3] Blaga, A. M. (2018).Almost η-Ricci solitons in (LCS)n-manifolds, arXiv:1707.09343, 13, 1-16.

[4] Chandra, S. Hui, S. K., and Shaikh, A. A. (2015). Second order parallel tensors and Ricci solitons on

(LCS)n-manifolds, Commun. Korean Math. Soc., 30, 123-130.

[5] Hamilton, R. S. (1988). The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA,

1986), Contemp. Math., 71, American Math. Soc., 237-262.

[6] Hui, S. K., and Chakraborty, D. (2016). Some types of Ricci solitons on (LCS)n-manifolds, J. Math. Sci.

Advances and Applications, 37, 1-17.

[7] Ingalahalli, G., and Bagewadi, C. S. (2012). Ricci solitons in α-Sasakian manifolds, ISRN Geometry,

Article ID 421384, 14 pages.

[8] Matsumoto, K. (1989). On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci.

12, 151-156.

[9] Mihai, I., and Rosca, R. (1992). On Lorentzian para-Sasakian manifolds, Classical Anal., World Sci.

Publ., Singapore, 155-169.

[10] Prasad, B. (2002). A pseudo-projective curvature tensor on a Riemannian manifolds, Bull. Cal. Math.

soc., 94(3), 163-166.

[11] Praveena, M. M., and Bagewadi, C. S. (2016). A Study on Ricci Solitons in Generalized Complex Space

Form , extracta mathematicae, 31(2), 227–233.

[12] Praveena, M. M., and Bagewadi, C. S. (2016). On almost pseudo Bochner symmetric generalized complex

space forms, , Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 32, 149–159.

[13] Praveena, M. M., and Bagewadi, C. S. (2017). On almost pseudo symmetric Kähler manifold, Palest. J.

Math., 44:6(II), 272–278.

[14] Praveena, M. M., Bagewadi, C. S., and Krishnamurthy, M. R. (2021). Solitons of Kählerian space-time

manifolds , Int. J. Geom. Methods Mod. Phys., 18(2), 81–101.

[15] Shaikh, A. A. (2003). On Lorentzian almost paracontact manifolds with a structure of the concircular

type, Kyungpook Math. J., 43, 305-314.



INT. J. MAPS MATH. (2022) 5(2):101-111 / CERTAIN RESULTS OF RICCI SOLITONS ON (LCS) ... 111

[16] Shaikh, A. A., and Baishya, K. K. (2005).On concircular structure spacetimes, J. Math. Stat., 1, 129-132.

[17] Yano, K., and Sawaki, S. (1968). Riemannian manifolds admitting a conformal transformation group,

Journal of Differential Geometry, 2(2), 161-184.

Department of Mathematics, M S Ramaiah Institute of Technology (Affilated to VTU)

Bengaluru-560054, Karnataka, INDIA

Department of Mathematics, Jain University, Global Campus-562112, Karnataka, INDIA.

Department of Mathematics, Kuvempu University, Shivamogga, Karnataka, INDIA.



International Journal of Maps in Mathematics

Volume 5, Issue 2, 2022, Pages:112-138

ISSN: 2636-7467 (Online)

www.journalmim.com

ON f-BIHARMONIC AND BI-f-HARMONIC FRENET LEGENDRE

CURVES
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Abstract. This paper is devoted to study the f -harmonic, f -biharmonic, bi-f -harmonic,

biminimal and f -biminimal Frenet Legendre curves in three dimensional normal almost

paracontact metric manifolds and determine the necessary and sufficient conditions for these

properties. Besides these, some characterizations for such curves have been defined in par-

ticular cases of a three dimensional normal almost paracontact metric manifold and some

nonexistence theorems have been obtained.
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1. Introduction

The theory of curves is one of the most important topic in differential geometry and up

to date from the past to the present. In the theory of curves there are many special types

such as Frenet curves; slant curves, Legendre curves and these are studied in many different

manifolds. In particular, Legendre curves have an important role in geometry and topology

of almost contact manifolds. Among the papers on Legendre curves studied on contact

manifolds in the literature, the most basic ones can be listed as [3, 19].
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On the other hand, studies on Frenet Legendre curves are newer. These studies, which

are a source of motivation for us, can be briefly listed as [27, 23]. In this study, different from

previous studies which are focused on curvature and torsion, we handled the maps, which

briefly mentioned below, in terms of different cases of α, β and δ.

Harmonic maps which were defined by Sampson and Eells, in [8] have a wide field of study

due to their wide applications such as physics, mathematics and engineering.

Besides, in [14], Jiang obtained biharmonic maps between the Riemannian manifolds by

generalizing harmonic maps.

f -harmonic maps have a physical meaning as the solution of inhomogeneous Heisenberg

spin systems and continuous spin systems, [4]. For this reason, the maps in question are

of interest not only for mathematicians but also for physicists. f -harmonic maps between

Riemannian manifolds were introduced by Lichnerowicz in 1970 and then examined by Eells

and Lemaire in [9].

On the other hand, the strong relationship between f -harmonic and harmonic maps is

summarized by Perktaş et.al. as follows, in [25]. The first one, extending bienergy functional

to bi-f -energy functional and obtaining a new type of harmonic map called bi-f -harmonic

map. The second one extending the f -energy functional to the f -bienergy functional and ob-

tain another type of harmonic map called f -biharmonic map as critical points of f -bienergy

functional, [30, 22].

f -biharmonic maps, which are the generalization of biharmonic maps, are defined by Lu,

in [18]. Lu defined also f -biharmonic maps between Riemannian manifolds, in [6]. However,

Ou gave complete classification of f -biharmonic curves in three dimensional Euclidean space

and characterization of f -biharmonic curves in n-dimensional space forms, [21]. In addition,

recent studies can be summarized as; [12, 1, 13, 16].

Moreover, bi-f -harmonic maps as a generalization of biharmonic and f -harmonic maps

introduced by Ouakkas et. al., in [22]. In addition, Roth defined a non-f -harmonic, f -

biharmonic map as a proper f -biharmonic map, [26]. It should be emphasized that there is

no relationship between f -biharmonic and bi-f -harmonic maps.

Biminimal immersions and biminimal curves in a Riemannian manifold were defined by

Loubeau and Montaldo, [17].

Finally, f -biminimal immersions were defined by Karaca and Özgür, in [11]. They con-

sidered f -biminimal curves in a Riemannian manifolds.

Based on these studies in this paper, first we give basic notions which will be needed
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in other sections. In section 3.1, we show that there is no f -harmonic Frenet Legendre

curve in three dimensional normal almost paracontact metric manifold. In section 3.2, we

get f -biharmonicity condition of a Frenet Legendre curve in three dimensional normal al-

most paracontact metric manifold and determine this condition in different cases such as

β-para-Sasakian, α-para-Kenmotsu and paracosymplectic manifolds. In section 3.3, we ob-

tain bi-f -harmonicity condition of a Frenet Legendre curve in three dimensional normal

almost paracontact metric manifold and also discuss this condition in various manifolds. In

section 3.4, we obtain biminimality condition of a Frenet Legendre curve in three dimensional

normal almost paracontact metric manifold. Finally in section 3.5, we get f -biminimality

conditions of Frenet Legendre curves in three dimensional normal almost paracontact metric

manifold.

2. Preliminaries

This section, includes some definitions and propositions that will be required throughout

the paper.

Definition 2.1. Let (N, g) and (N̄ , ḡ) be Riemannian manifolds, then a harmonic map

ϕ : (N, g) → (N̄ , ḡ) is defined as the critical point of the energy functional

E(ϕ) =
1

2

∫
N
|dϕ|2dvg,

where vg is the volume element of (N, g). Then by using Euler-Lagrange equation τ(ϕ) of the

energy functional E(ϕ), where it is the tension field of map ϕ, a map called as harmonic if

τ(ϕ) := trace∇dϕ = 0. (2.1)

Here ∇ is the connection induced from the Levi-Civita connection ∇N̄ of N̄ and the pull-back

connection ∇ϕ, [11].

Biharmonic maps, which can be considered as a natural generalization of harmonic maps,

are defined as below.

Definition 2.2. A map ϕ : (N, g) → (N̄ , ḡ) is defined as a biharmonic map if it is a critical

point, for all variations, of the bienergy functional

E2(ϕ) =
1

2

∫
N
|τ(ϕ)|2dvg.



INT. J. MAPS MATH. (2022) 5(2):112-138 / ON f -BIHARMONIC AND BI-f -HARMONIC CURVES 115

Then the Euler-Lagrange equation τ2(ϕ), for the bienergy functional E2(ϕ), where τ2(ϕ) is

the bitension field of map ϕ equals to

τ2(ϕ) = trace(∇ϕ∇ϕ −∇ϕ
∇)τ(ϕ)− trace(RN̄ (dϕ, τ(ϕ))dϕ) = 0, (2.2)

if ϕ is a biharmonic map. Here RN̄ , the curvature tensor field of N̄ , is defined as

RN̄ (X,Y )Z = ∇N̄
X∇N̄

Y Z −∇N̄
Y ∇N̄

XZ −∇N̄
[X,Y ]Z,

for any X,Y, Z ∈ Γ(TN̄) and ∇ϕ is the pull-back connection, [11].

One can easily see that harmonic maps are always biharmonic. Biharmonic maps which

are not harmonic are called proper biharmonic maps, [24].

Definition 2.3. A map ϕ : (N, g) → (N̄ , ḡ) is said to be an f -harmonic if it is critical point

of f -energy functional,

Ef (ϕ) =
1

2

∫
N
f |dϕ|2dvg,

where f ∈ C∞(N,R) is a positive smooth function. Then the f -harmonic map equation

obtained by using Euler-Lagrange equation as follows;

τf (ϕ) = fτ(ϕ) + dϕ(gradf) = 0, (2.3)

where τf (ϕ) is the f -tension field of the map ϕ.

f -harmonic maps are generalizations of harmonic maps, [2, 7].

Definition 2.4. A map ϕ : (N, g) → (N̄ , ḡ) is said to be an f -biharmonic if it is critical

point of the f -bienergy functional

E2,f (ϕ) =
1

2

∫
N
f |τ(ϕ)|2dvg.

The Euler-Lagrange equation for the f -biharmonic map is given by

τ2,f (ϕ) = fτ2(ϕ) + ∆fτ(ϕ) + 2∇ϕ
gradfτ(ϕ) = 0, (2.4)

where τ2,f (ϕ) is the f -bitension field of the map ϕ.

A f -biharmonic map turns into a biharmonic map if f is a constant, [6].

Definition 2.5. A map ϕ : (N, g) → (N̄ , ḡ) is said to be a bi-f -harmonic if it is critical

point of the bi-f -energy functional

Ef,2(ϕ) =
1

2

∫
N
|τf (ϕ)|2dvg.
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The Euler-Lagrange equation for the bi-f -harmonic map is given by

τf,2(ϕ) = trace
(
(∇ϕf(∇ϕτf (ϕ))− f∇ϕ

∇N τf (ϕ) + fRN̄ (τf (ϕ), dϕ)dϕ
)
= 0, (2.5)

where τf,2(ϕ) is the bi-f -tension field of the map ϕ, [22].

Definition 2.6. An immersion ϕ : (N, g) → (N̄ , ḡ) is called biminimal if it is critical point

of the bienergy functional E2(ϕ) for variations normal to the image ϕ(N) ⊂ N̄ , with fixed

energy. Equivalently, there exists a constant λ ∈ R such that ϕ is a critical point of the

λ-bienergy functional,

E2,λ(ϕ) = E2(ϕ) + λE(ϕ).

The Euler-Lagrange equation for a λ- biminimal immersion is

[τ2,λ(ϕ)]
⊥ = [τ2(ϕ)]

⊥ − λ[τ(ϕ)]⊥ = 0, (2.6)

for some value of λ ∈ R, where [.]⊥ denotes the normal component of [.]. An immersion is

called free biminimal if it is biminimal for λ = 0, [11, 17].

Definition 2.7. An immersion ϕ : (N, g) → (N̄ , ḡ) is called f -biminimal if it is a critical

point of the f -bienergy functional E2,f (ϕ) for variations normal to the image ϕ(N) ⊂ N̄ ,

with fixed energy. Equivalently, there exists a constant λ ∈ R such that ϕ is a critical point

of the λ-f -bienergy functional,

E2,λ,f (ϕ) = E2,f (ϕ) + λEf (ϕ).

Using the Euler-Lagrange equations for f -harmonic and f -biharmonic maps, an immersion

is f -biminimal if

[τ2,λ,f (ϕ)]
⊥ = [τ2,f (ϕ)]

⊥ − λ[τf (ϕ)]
⊥ = 0, (2.7)

for some value of λ ∈ R. An immersion is called free f -biminimal if it is f -biminimal for

λ = 0. If f is a constant then the immersion is biminimal, [11].

Definition 2.8. A differentiable manifold N2n+1 is called almost paracontact metric man-

ifold if it admits a tensor field φ of type (1, 1), a vector field ξ, a 1-form η and a pseudo-

Riemannian metric g satisfying the following conditions:

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, g(φX,φY ) = −g(X,Y ) + η(X)η(Y ), (2.8)
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where X, Y ∈ TN and I is the identity endomorphism on vector fields. g is called compatible

metric and any compatible metric is necessarily of signature (n+1, n). In an almost paracon-

tact metric manifold N, η ◦ φ = 0 and rank(φ) = 2n. From (2.8), g(X,φY ) = −g(φX, Y )

and g(X, ξ) = η(X), for any X, Y ∈ TN . The fundamental 2-form of N is defined by

Φ(X,Y ) = g(X,φY ). An almost paracontact metric manifold (N,φ, ξ, η, g) is said to be nor-

mal if N (X,Y )− 2dη(X,Y )ξ = 0, where N is the Nijenhuis torsion tensor of φ, [15, 29].

Proposition 2.1. [27] For a three dimensional almost paracontact metric manifold N , the

following conditions are mutually equivalent:

i- N is normal,

ii- there exist α, β functions on N such that

(∇X φ)Y = α (g(φX, Y ) ξ − η(Y )φX) + β (g(X,Y )ξ − η(Y )X) , (2.9)

iii- there exist α, β functions on N such that

∇X ξ = α (X − η(X)ξ) + βφX. (2.10)

Moreover, the functions α, β realizing (2.9) as well as (2.10) are given by

2α = trace{X → ∇X ξ}, 2β = trace{X → φ∇X ξ}.

For a three dimensional normal almost paracontact metric manifold where α, β = constant,

the curvature tensor field equation becomes

R(X,Y )Z =
(r
2
+ 2

(
α2 + β2

))
(g(Y, Z)X − g(X,Z)Y )

+ g(X,Z)
(r
2
+ 3

(
α2 + β2

))
η(Y )ξ

−
(r
2
+ 3(α2 + β2)

)
η(Y )η(Z)X

− g(Y,Z)
(r
2
+ 3(α2 + β2)

)
η(X)ξ

+
(r
2
+ 3(α2 + β2)

)
η(X)η(Z)Y, (2.11)

where X,Y, Z ∈ TN and r is the scalar curvature, [24].

Definition 2.9. A three dimensional normal almost paracontact metric manifold is called;

. β-para-Sasakian if α = 0, β ̸= 0 and β is constant,

. para-Sasakian if α = 0, β = −1,

. quasi-para-Sasakian if α = 0 and β ̸= 0,

. α-para-Kenmotsu if α ̸= 0, β = 0 and α is constant,
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. paracosymplectic if α = β = 0, [29].

Definition 2.10. Let (N,φ, ξ, η, g) be a three dimensional normal almost paracontact metric

manifold where α, β = constant. The structural function of the immersed curve γ : I ⊂ R →

(N, g) is the map cγ : I → R given by

cγ(s) = g(T (s), ξ) = η(T (s)),

where T = γ
′
. Then the curve γ called as Legendre curve if cγ = η(T (s)) = 0, [5].

With the help of these definitions, we get f -tension field, f -bitension field, bi-f -tension

field, the biminimality and f -biminimality conditions of a Frenet Legendre curve in a three

dimensional normal almost paracontact metric manifold as in following sections.

3. FRENET LEGENDRE CURVES

Let γ : I −→ N be a curve in a three dimensional pseudo-Riemannian manifold N such

that g(γ
′
, γ

′
) = ε1 where ε1 = ±1 and ∇γ′γ

′
denotes the covariant differentiation along γ.

Then γ is a Frenet curve with {T,N,B} Frenet Frame if one of the following three cases

hold:

(1) γ is of osculating order 1, ∇γ′γ
′
= 0 (geodesics),

(2) γ is of osculating order 2, there exist two ortonormal vector fields T,N and a positive

function κ along γ such that

∇γ′T = κε2N, ∇γ′N = −κε1T,

(3) γ is of osculating order 3, there exist three ortonormal vector fields T,N,B and two

positive function κ and τ along γ such that

∇γ′T = κε2N, ∇γ′N = −κε1T + τε3B, ∇γ′B = −τε2N,

where T = γ
′
, g(N,N) = ε2 = ±1, g(B,B) = ε3 = ±1, κ is the curvature and τ is

the torsion function, [27].

Note that in this paper, we study with γ : I ⊂ R −→ N non-null curve parametrized by

arc length on a pseudo-Riemannian manifold N which is a three dimensional normal almost

paracontact metric manifold where α, β = constant. In this case, from Definition 2.1 and

Definition 2.2, tension and bitension fields reduces to

τ(γ) = ∇TT (3.12)
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and

τ2(γ) = ∇3
TT −R(T,∇TT )T = 0 (3.13)

[20].

Now, let γ : I −→ N be a Frenet Legendre curve in N and {T, φT, ξ} are ortonormal vector

fields along γ where γ
′
= T . By differentiating g(T, ξ) = 0 along γ, it is obvious that

g(∇TT, ξ) = −ε1α. Then ∇TT obtained as below

∇TT = −ε1αξ − ε1δφT, (3.14)

where δ is a function defined by δ = g(∇TT, φT ), [27].

Let investigate the necessary and sufficient conditions of a Frenet Legendre curve to be f -

harmonic, f -biharmonic, bi-f -harmonic, biminimal and f -biminimal in a three dimensional

normal almost paracontact metric manifold in terms of different cases of α, β and δ.

It should be noted that; throughout our paper, for the sake of shortness, only N will be

called instead of a three dimensional normal almost paracontact metric manifold N where

α, β = constant.

4. f-Harmonic Frenet Legendre Curves

In this subsection, we investigated the f -harmonicity condition of a Frenet Legendre curve

in N .

Let γ : I −→ N be a Frenet Legendre curve in N . Then with the help of Definition 2.3 and

equation (3.12), f -harmonicity condition obtained as below;

τf (γ) = fτ(γ) + dγ(gradf) = f∇TT + f
′
T = 0. (4.15)

Based on this result, we can express the following theorem:

Theorem 4.1. There is no f -harmonic Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold where α, β = constant.

Proof. The f -harmonicity condition for this kind of curves obtained by substituting

equation (3.14), in equation (4.15) as below;

τf (γ) = f∇TT + f
′
T

= f(−ε1αξ − ε1δφT ) + f
′
T

= f
′
T − (ε1αf)ξ − (ε1δf)φT = 0. (4.16)
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From equation (4.16); it is easy to see that f
′
= 0 namely, f is a constant function. This is

a contradiction with the definition of f -harmonic curves.

5. f-Biharmonic Frenet Legendre Curves

In this section, we obtain the f -biharmonicity condition of a Frenet Legendre curve in

N . In addition, we make detailed examinations for α-para-Kenmotsu, β-para-Sasakian and

paracosymplectic manifolds.

First, let determine the f -biharmonicity condition for this kind of curves. By using tension

and bitension field equations, f -bitension field τ2,f (γ) obtained as below, [21];

τ2,f (γ) = fτ2(γ) + (∆f)τ(γ) + 2∇γ
gradfτ(γ)

= f(∇3
TT −R(T,∇TT )T ) + f

′′∇TT + 2f
′∇2

TT = 0. (5.17)

Then by differentiating ∇TT = −ε1αξ− ε1δφT with respect to T , we obtain ∇2
TT and ∇3

TT

as below;

∇2
TT = (δ2 − ε1α

2)T − ε1(αβ + δ
′
)φT − δβξ (5.18)

and

∇3
TT = 3δδ

′
T + (α2δ − δβ2 − ε1δ

3 − ε1δ
′′
)φT + (α3 − αβ2 − ε1αδ

2 − 2βδ
′
)ξ. (5.19)

After that by substutiting ∇TT into the curvature tensor field formula (2.11) we find,

R(T,∇TT )T = −α(α2 + β2)ξ + δ(
r

2
+ 2(α2 + β2))φT. (5.20)

Finally, we determined the f -biharmonicity condition as below:

τ2,f (γ) = f(∇3
TT −R(T,∇TT )T ) + f

′′∇TT + 2f
′∇2

TT

= (3δδ
′
f + 2(δ2 − ε1α

2)f
′
)T

+ ((−α2δ − 3β2δ − ε1δ
3 − ε1δ

′′ − r

2
δ)f − 2ε1(αβ + δ

′
)f

′ − ε1δf
′′
)φT

+ ((2α3 − ε1αδ
2 − 2βδ

′
)f − 2δβf

′ − ε1αf
′′
)ξ

= 0. (5.21)

With the help of this result, we can state the following theorems:

Theorem 5.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional normal almost paracontact metric manifold N where α, β are constants.
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Then γ is an f -biharmonic Frenet Legendre curve iff the following equations hold:

3δδ
′
f + 2(δ2 − ε1α

2)f
′
= 0,

(α2δ + 3β2δ + ε1δ
3 + ε1δ

′′
+

r

2
δ)f + 2ε1(αβ + δ

′
)f

′
+ ε1δf

′′
= 0,

(2α3 − ε1αδ
2 − 2βδ

′
)f − 2δβf

′ − ε1αf
′′
= 0.

(5.22)

Theorem 5.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional normal almost paracontact metric manifold N where α, β are constants.

Then γ is an f -biharmonic Frenet Legendre curve if and only if the function f and the scalar

curvature r are given by;

f = (ε1α
2 − δ2)−

3
4 + c

and

r = −2
[
α2+3β2+ε1δ

2+ε1
δ
′′

δ
+3

ε1δ
′
(αβ + δ

′
)

ε1α2 − δ2
+
6(δ

′
)2α2 + 6δδ

′′
α2 − 6ε1δ

3δ
′′
+ 15ε1(δδ

′
)2

4(ε1α2 − δ2)2
]
,

where 2α3 − ε1αδ
2 − 2βδ

′ − 2δβA− ε1α(A
′
+A2) = 0 for A = 3δδ

′

2(ε1α2−δ2)
and ε1α

2 − δ2 ̸= 0.

Now, we give the interpretations of Theorem 5.1.

Case I : Assume that δ is not equal to a constant.

Case I-1: If N is a three dimensional β-para-Sasakian manifold and δ ̸= constant then

we have following equations from (5.22);
3δδ

′
f + 2δ2f

′
= 0,

(3β2δ + ε1δ
3 + ε1δ

′′
+ r

2δ)f + 2ε1δ
′
f

′
+ ε1δf

′′
= 0,

βδ
′
f + δβf

′
= 0.

(5.23)

Hence we obtain the following theorem;

Theorem 5.3. There is no f -biharmonic Frenet Legendre curve in a three dimensional β-

para-Sasakian manifold where δ ̸= constant.

Proof. By solving the first and third equations of (5.23) together, it is easy to see

that there is a contradiction between them.
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Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

we have following equations from (5.22);
3δδ

′
f + 2(δ2 − ε1α

2)f
′
= 0,

(α2δ + ε1δ
3 + ε1δ

′′
+

r

2
δ)f + 2ε1δ

′
f

′
+ ε1δf

′′
= 0,

(2α3 − ε1αδ
2)f − ε1αf

′′
= 0.

So we have the following corollary;

Corollary 5.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in a

three dimensional α-para-Kenmotsu manifold N with δ is not equal to a constant. Then γ is

an f -biharmonic Frenet Legendre curve if and only if the function f and the scalar curvature

r are given by;

f = (ε1α
2 − δ2)−

3
4 + c

and

r = −2
[
α2 + ε1δ

2 + ε1
δ
′′

δ
+ 3

ε1δ
′
δ
′

ε1α2 − δ2
+

6(δ
′
)2α2 + 6δδ

′′
α2 − 6ε1δ

3δ
′′
+ 15ε1(δδ

′
)2

4(ε1α2 − δ2)2
]
,

where 2α3 − ε1αδ
2 − ε1α(A

′
+A2) = 0 for A = 3δδ

′

2(ε1α2−δ2)
and ε1α

2 − δ2 ̸= 0.

Case I-3: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

we have following equations from (5.22);
3δδ

′
f + 2δ2f

′
= 0,

(ε1δ
3 + ε1δ

′′
+

r

2
δ)f + 2ε1δ

′
f

′
+ ε1δf

′′
= 0.

Therefore, we obtain the following corollary.

Corollary 5.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in a three dimensional paracosymplectic manifold N . Then for δ ̸= constant; γ is an f -

biharmonic Frenet Legendre curve if and only if the function f and the scalar curvature r

equal to:

f = δ−
3
2 + c

and

r = −2ε1
[
δ2 + δ−1δ

′′ − 3δ−2(δ
′
)2 +

15

4
δ−2δ

′ − 3

2
δ
′′
δ−1

]
.
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Case II : Assume that δ = constant ̸= 0. Then we investigate the following subcases:

Case II-1: If N is a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0

then we have following equations from (5.22);
δ2f

′
= 0,

(3β2 + ε1δ
2 + r

2)f + ε1f
′′
= 0,

βf
′
= 0.

(5.24)

Hence we obtain the following theorem;

Theorem 5.4. There is no proper f -biharmonic Frenet Legendre curve in a three dimen-

sional β-para-Sasakian manifold with δ = constant ̸= 0.

Proof. For δ = constant ̸= 0, from the first equation of (5.24) we obtain that f
′
= 0,

this situation contradicts the definition of the f -biharmonic curve.

Case II-2: If N be a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then we have following equations from (5.22);
(δ2 − ε1α

2)f
′
= 0,

(α2 + ε1δ
2 +

r

2
)f + ε1f

′′
= 0,

(2α2 − ε1δ
2)f − ε1f

′′
= 0.

So, we have;

Corollary 5.3. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in a

three dimensional α-para-Kenmotsu manifold N . Then γ is an f -biharmonic Frenet Legendre

curve if and only if the function f and the constant scalar curvature r are given by

f = c1e
αs + c2e

−αs

and

r = −6α2,

where f ∈ C∞(N,R) is a positive smooth function dependent on s arc length parameter,

δ = |α| and ε1 = 1.
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Case II-3: LetN be a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then we have followings from (5.22);


δ2f

′
= 0,

(ε1δ
2 +

r

2
)f + ε1f

′′
= 0.

(5.25)

Hence we have the following nonexistence theorem;

Theorem 5.5. There is no proper f -biharmonic Frenet Legendre curve in a three dimen-

sional paracosymplectic manifold where δ = constant ̸= 0.

6. Bi-f-Harmonic Frenet Legendre Curves

In this subsection, we handle bi-f -harmonic Frenet Legendre curves in N . Also we ob-

tained bi-f -harmonicity conditions for α-para-Kenmotsu, β-para-Sasakian and paracosym-

plectic manifolds.

First let determine the bi-f -harmonicity condition in a three dimensional normal almost

paracontact metric manifold. By substutiting equations (3.14), (5.18), (5.19) and (5.20) into

the bi-f -tension field formula, τf,2(γ) obtained as below, [25];

τf,2(γ) = trace(∇γf(∇γτf (γ))− f∇γ
∇N τf (γ) + fR(τf (γ), dγ)dγ)

= (ff
′′
)
′
T + (3ff

′′
+ 2(f

′
)2)∇TT + 4ff

′∇2
TT + f2∇3

TT + f2R(∇TT, T )T

= [(ff
′′
)
′
+ 4ff

′
(δ2 − ε1α

2) + 3f2δδ
′
]T

+ [−3ε1αff
′′ − 2ε1α(f

′
)2 − 4ff

′
δβ + f2(2α3 − ε1αδ

2 − 2βδ
′
)]φT

+ [−3ε1δff
′′ − 2ε1δ(f

′
)2 − 4ε1ff

′
(αβ + δ

′
)

+f2(−r

2
δ − α2δ − 3β2δ − ε1δ

3 − ε1δ
′′
)]ξ

= 0, (6.26)

which implies the following.

Theorem 6.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional normal almost paracontact metric manifold N where α, β = constant.
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Then γ is a bi-f -harmonic curve iff the following equations hold:

(ff
′′
)
′
+ 4(δ2 − ε1α

2)ff
′
+ 3δδ

′
f2 = 0,

3ε1αff
′′
+ 2ε1α(f

′
)2 + 4δβff

′ − (2α3 − ε1αδ
2 − 2βδ

′
)f2 = 0,

3δff
′′
+ 2δ(f

′
)2 + 4(αβ + δ

′
)ff

′
+ (

r

2
ε1δ + α2δε1 + 3β2δε1 + δ3 + δ

′′
)f2 = 0.

(6.27)

Now, we give the interpretations of Theorem 6.1.

Case I : Assume that δ is not equal to constant. Then we investigate the following

subcases:

Case I-1: If N a three dimensional β-para-Sasakian manifold and δ ̸= constant then we

have following equations from (6.27);

(ff
′′
)
′
+ 4δ2ff

′
+ 3δδ

′
f2 = 0,

2δf
′
+ δ

′
f = 0,

3δff
′′
+ 2δ(f

′
)2 + 4δ

′
ff

′
+ (

r

2
ε1δ + 3β2ε1δ + δ3 + δ

′′
)f2 = 0.

Then we obtain the following corollary.

Corollary 6.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional β-para-

Sasakian manifold N . Then γ is a bi-f -harmonic curve where the function f and the constant

scalar curvature r are given by;

f = δ−
1
2 + c

and

r = 3ε1δ
−2(δ

′
)2 + ε1δ

−1δ
′′ − 9

2
ε1δ

−2δ
′ − 2ε1δ

2 − 6β2,

for where δ ̸= constant is the solution of −9(δ
′
)3 + 10δδ

′
δ
′′ − 2δ2δ

′′′
+ 4δ4δ

′
= 0 differential

equation.

Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

from (6.27), we obtain following equations;

(ff
′′
)
′
+ 4(δ2 − ε1α

2)ff
′
+ 3δδ

′
f2 = 0,

3ff
′′
+ 2(f

′
)2 + f2(δ2 − 2α2ε1) = 0,

3δff
′′
+ 2δ(f

′
)2 + 4δ

′
ff

′
+ (

r

2
ε1δ + α2δε1 + δ3 + δ

′′
)f2 = 0.

(6.28)
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So, we have the following corollary.

Corollary 6.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional α-para-Kenmotsu manifold N where δ ̸= constant. Then γ is a bi-f -

harmonic curve iff f is a solution of the non-linear differential equations given in (6.28).

Case I-3: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

from (6.27), we obtain the following equations;
(ff

′′
)
′
+ 4ff

′
δ2 + 3δδ

′
f2 = 0,

3δff
′′
+ 2δ(f

′
)2 + 4δ

′
ff

′
+ (

r

2
ε1δ + δ3 + δ

′′
)f2 = 0.

(6.29)

Hence we obtain following corollary.

Corollary 6.3. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional paracosymplectic manifold N where δ ̸= constant. Then γ is a bi-f -

harmonic curve iff f is a solution of the non-linear differential equations given in (6.29).

Case I-4: If N ff
′′
= 0 and δ ̸= constant then via equation (6.27), we obtain following

equations;

4f
′
(δ2 − ε1α

2) + 3fδδ
′
= 0,

2ε1α(f
′
)2 + 4ff

′
δβ − f2(2α3 − ε1αδ

2 − 2βδ
′
) = 0,

2δ(f
′
)2 + 4ff

′
(αβ + δ

′
) + f2(

r

2
δε1 + α2δε1 + 3β2δε1 + δ3 + δ

′′
) = 0.

(6.30)

We have the following corollary.

Corollary 6.4. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in a three dimensional normal almost paracontact metric manifold N where ff
′′
= 0 and

δ ̸= constant. Then γ is a bi-f -harmonic Frenet Legendre curve where the function f and

the scalar curvature r are given by;

f = (ε1α
2 − δ2)−

3
8 + c

and

r = −2
[
α2 + 3β2 + ε1δ

2 + ε1
δ
′′

δ
+ 3

(αβ + δ
′
)δ

′

ε1α2 − δ2
+

9δ2(δ
′
)2

8(ε1α2 − δ2)2
]
,

where 2ε1αA
2 + 4Aδβ − (2α3 − ε1αδ

2 − 2βδ
′
) = 0 for A = 3δδ

′

4(ε1α2−δ2)
and ε1α

2 − δ2 ̸= 0.
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Case I-5: If N a three dimensional β-para-Sasakian manifold, ff
′′
= 0 and δ ̸= constant

then from equation (6.30), we obtain following equations;

4f
′
δ + 3δ

′
f = 0,

2f
′
δ + δ

′
f = 0,

2ε1δ(f
′
)2 + 4ε1δ

′
ff

′
+ f2(

r

2
δ + 3β2δ + ε1δ

3 + ε1δ
′′
) = 0.

(6.31)

We have the following nonexistence theorem.

Theorem 6.2. There is no bi-f -harmonic Frenet Legendre curve in a three dimensional

β-para-Sasakian manifold where ff
′′
= 0 and δ ̸= constant.

Proof. When first and the second equations of (6.31) solved together, we obtain

δ
′
f = 0. For δ ̸= constant and δ

′
f = 0; we get that f = 0 which is a contradiction to the

definition of bi-f -harmonic curve.

Case I-6: If N a α-para-Kenmotsu manifold, ff
′′
= 0 and δ ̸= constant then from

equation (6.30) we have following equations;

4f
′
(δ2 − ε1α

2) + 3δδ
′
f = 0,

2ε1(f
′
)2 − f2(2α2 − ε1δ

2) = 0,

2ε1δ(f
′
)2 + 4ε1ff

′
δ
′
+ f2(

r

2
δ + α2δ + ε1δ

3 + ε1δ
′′
) = 0.

Then, we have the following corollary.

Corollary 6.5. Let N be a α-para-Kenmotsu manifold where ff
′′
= 0, δ ̸= constant and

γ : I −→ N be a Frenet Legendre curve. Then γ is a bi-f -harmonic curve where the function

f and the scalar curvature r are given by;

f = (ε1α
2 − δ2)−

3
8 + c

and

r = −2
[
α2 + ε1δ

2 + ε1
δ
′′

δ
+ 3

(δ
′
)2

ε1α2 − δ2
+

9δ2(δ
′
)2

8(ε1α2 − δ2)2
]
,

where δ is the solution of 3ε1δ
2(δ

′
)2−2(2α2− ε1δ

2)(ε1α
2− δ2)2 = 0 differential equation and

and ε1α
2 − δ2 ̸= 0.
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Case I-7: If N is a paracosymplectic manifold, ff
′′
= 0 and δ ̸= constant then from

(6.30), we obtain following equations;


4ff

′
δ2 + 3f2δδ

′
= 0,

2ε1δ(f
′
)2 + 4ε1ff

′
δ
′
+ f2(

r

2
δ + ε1δ

3 + ε1δ
′′
) = 0.

We have the following corollary.

Corollary 6.6. Let N be a paracosymplectic manifold where ff
′′
= 0, δ ̸= constant and

γ : I −→ N be a Frenet Legendre curve. Then γ is a bi-f -harmonic curve where the function

f and the scalar curvature r are given by;

f = δ−
3
4 + c

and

r = −2ε1δ
2 − 2ε1

δ
′′

δ
+

6ε1δ
′

δ2
− 9ε1

4δ2
.

Case II : Assume that δ = constant is not equal to 0. Then we shall investigate the

following subcases:

Case II-1: If N a three dimensional β-para-Sasakian manifold then we have following

equations from (6.27);



(ff
′′
)
′
+ 4ff

′
δ2 = 0,

ff
′
β = 0,

3ff
′′
+ 2(f

′
)2 + f2(

r

2
ε1 + 3β2ε1 + δ2) = 0.

(6.32)

Hence, we give the following theorem;

Theorem 6.3. There is no proper bi-f -harmonic Frenet Legendre curve in a three dimen-

sional β-para-Sasakian manifold where δ = constant ̸= 0.

Proof. From (6.32), the proof is obvious.
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Case II-2: If N a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then we have following equations from (6.27);

(ff
′′
)
′
+ 4ff

′
(δ2 − ε1α

2) = 0,

3ff
′′
+ 2(f

′
)2 − f2(2α2ε1 − δ2) = 0,

3ff
′′
+ 2(f

′
)2 + f2(

r

2
ε1 + α2ε1 + δ2) = 0.

So, we have the following corollary;

Corollary 6.7. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional α-

para-Kenmotsu manifold N . Then γ is a bi-f -harmonic curve where δ = constant ̸= 0,

the constant scalar curvature equals to r = −6α2 and the function f is a solution of the

non-linear differential equations given as;
(ff

′′
)
′
+ 4ff

′
(δ2 − ε1α

2) = 0,

3αff
′′
+ 2α(f

′
)2 − f2(2α3ε1 − αδ2) = 0.

Case II-3: If N a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then we obtain the following equations from (6.27);
(ff

′′
)
′
+ 4ff

′
δ2 = 0,

3ff
′′
+ 2(f

′
)2 + f2(

r

2
ε1 + δ2) = 0.

(6.33)

Then we have,

Corollary 6.8. Let γ : I −→ N be a Frenet Legendre curve in a pracosymplectic manifold

N . Then γ is a bi-f -harmonic curve where δ = constant ̸= 0, the scalar curvature r is given

by;

r = −6ε1
f

′′

f
− 4ε1(

f
′

f
)2 − 2ε1δ

2

and the function f is a solution of the non-linear differential equations given in equation

(6.33).

Case II-4: If N a three dimensional normal almost paracontact metric manifold, ff
′′
= 0

and δ = constant ̸= 0 then from (6.27), we obtain that γ is a bi-f -harmonic Frenet Legendre
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curve if and only if

4ff
′
(δ2 − ε1α

2) = 0,

2ε1α(f
′
)2 + 4ff

′
δβ − f2(2α3 − ε1αδ

2) = 0,

2ε1δ(f
′
)2 + 4ε1ff

′
αβ + f2(

r

2
δ + α2δ + 3β2δ + ε1δ

3) = 0.

(6.34)

Hence we give,

Corollary 6.9. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in N

where α, β = constant, ff
′′
= 0 and δ = constant ̸= 0. Then γ is a bi-f -harmonic curve iff

f is a solution of non-linear differential equations given in equation (6.34).

Case II-5: If N a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0

then we have following equations from (6.27);

4ff
′
δ2 = 0,

ff
′
δβ = 0,

ε1δ(f
′
)2 + f2

2 ( r2δ + 3β2δ + ε1δ
3) = 0.

(6.35)

So, we have the following nonexistence theorem.

Theorem 6.4. There is no proper bi-f -harmonic Frenet Legendre curve in a three dimen-

sional β-para-Sasakian manifold where δ = constant ̸= 0.

Case II-6: If N a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then we have following equations from (6.27);

ff
′
(δ2 − ε1α

2) = 0,

2ε1(f
′
)2 − f2(2α2 − ε1δ

2) = 0,

2ε1(f
′
)2 + f2(

r

2
+ α2 + ε1δ

2) = 0.

(6.36)

Corollary 6.10. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional α-para-Kenmotsu manifold N where δ = constant ̸= 0. Then γ is a proper

bi-f -harmonic curve iff the scalar curvature equals to r = −6α2 and the function f is the

solution of 2(f
′
)2 + ff

′
(ε1δ

2 − α2)− f2(2ε1α
2 − δ2) = 0.
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Case II-7: If N a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then we have following equations from (6.27);
4ff

′
δ2 = 0,

ε1δ(f
′
)2 + f2

2 ( r2δ + ε1δ
3) = 0.

(6.37)

Then we give

Theorem 6.5. There is no bi-f -harmonic Frenet Legendre curve in a three dimensional

paracosymplectic manifold where δ = constant ̸= 0.

7. Biminimal Frenet Legendre Curves

In this section, the conditions for a Frenet curve to be biminimal are obtained in N . Be-

sides, detailed calculations have been made for various manifolds as in the previous sections.

By using normal components of tension and bitension fields, the condition of being biminimal

curve is obtained by using the formula given as below, [11, 17];

[τ2,λ(γ)]
⊥ = [τ2(γ)]

⊥ − λ[τ(γ)]⊥ = 0. (7.38)

Let determine the biminimality condition for a Frenet Legendre curve in N . First, let give

the tension and bitension fields respectively;

τ(γ) = −ε1αξ − ε1δφT,

τ2(γ) = 3δδ
′
T + (−3β2δ − α2δ − r

2
δ − ε1δ

3 − ε1δ
′′
)φT + (−2βδ

′
+ 2α3 − αε1δ

2)ξ.

Hence by using normal components of tension and bitension fields the biminimality condition

is obtained as below;

[τ2,λ(γ)]
⊥ = (−3β2δ − α2δ − r

2
δ − ε1δ

3 − ε1δ
′′
+ λε1δ)φT

+ (−2βδ
′
+ 2α3 − αε1δ

2 + λε1α)ξ

= 0. (7.39)

By using this condition, we can give the following theorems;

Theorem 7.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold N where α, β = constant. Then γ is a biminimal curve
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iff the following equations hold:
3β2δ + α2δ + r

2δ + ε1δ
3 + ε1δ

′′ − λε1δ = 0,

−2βδ
′
+ 2α3 − αε1δ

2 + λε1α = 0.

(7.40)

Theorem 7.2. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold N where α, β = constant. Then γ is a biminimal curve

where the scalar curvature r is given by;

r = −2ε1
δ
′′

δ
− 4

β

α
δ
′ − 6α2 − 6β2,

where δ is the solution of the second differential equation of (7.40).

Now, we give the interpretations of Theorem 7.1.

Case I: Assume that δ is not constant. Then we shall investigate the following subcases.

Case I-1: If N is a three dimensional β-para-Sasakian manifold and δ ̸= constant then

from (7.40), we obtain following equations;
3β2δ + r

2δ + ε1δ
3 + ε1δ

′′ − λε1δ = 0,

2βδ
′
= 0.

(7.41)

Then we obtain the following nonexistence theorem.

Theorem 7.3. There is no biminimal Frenet Legendre curve in a β-para-Sasakian manifold

where δ ̸= constant.

Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

from (7.40), we obtain following equations;
−α2δ − r

2δ − ε1δ
3 − ε1δ

′′
+ λε1δ = 0,

2α3 − αε1δ
2 + λε1α = 0.

(7.42)

So we give,

Theorem 7.4. There is no biminimal Frenet Legendre curve in a three dimensional α-para-

Kenmotsu manifold N where δ ̸= constant.
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Proof. From (7.42), we find that δ =
√
2ε1α2 + λ but we accept δ ̸= constant where

α = constant.

Case I-3: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

from (7.40), we obtain following equation;

r

2
δ + ε1δ

3 + ε1δ
′′ − λε1δ = 0.

Hence we have,

Corollary 7.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional para-

cosymplectic manifold N and δ ̸= constant. Then γ is a biminimal curve iff the scalar

curvature r is given by;

r = −2ε1
δ
′′

δ
− 2ε1δ

2 − 2λε1.

Case II: Assume that δ=constant is not equal to 0. Then we shall investigate the following

subcases:

Case II-1: If N is a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0

then from (7.40), we obtain following equation;

3β2 +
r

2
+ ε1δ

2 − λε1 = 0.

Hence, we give the following theorem.

Corollary 7.2. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional β-para-

Sasakian manifold N and δ = constant ̸= 0. Then γ is a biminimal curve where the constant

scalar curvature r is given by;

r = 2ε1δ
2 − 6β2 + 2λε1.

Case II-2: If N is a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then from (7.40), we obtain we obtain following equations;
−α2 − r

2 − ε1δ
2 + λε1 = 0,

2α2 − ε1δ
2 + λε1 = 0.

Then we obtain the following corollary.
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Corollary 7.3. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional α-

para-Kenmotsu manifold N and δ = constant ̸= 0. Then γ is a biminimal curve where the

constant scalar curvature r is given by;

r = −6α2.

Case II-3: If N is a three dimensional paracosymplectic manifold and δ = constant ̸= 0

then from (7.40), we obtain following equation;

r

2
+ ε1δ

2 − λε1 = 0.

So we have,

Corollary 7.4. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional para-

cosymplectic manifold N . Then γ is a biminimal curve where the constant scalar curvature

r is given by;

r = −2ε1δ
2 + 2λε1.

8. f-Biminimal Frenet Legendre Curves

Finally in this section, we give f -biminimality conditions for a Frenet curve in N and also

particular cases such as: β-para-Sasakian, α-para-Kenmotsu and paracosymplectic manifolds.

From the Definition 2.7, we know that the condition of being f -biminimal curve given as

below, [11];

[τ2,λ,f (γ)]
⊥ = [τ2,f (γ)]

⊥ − λ[τf (γ)]
⊥ = 0.

Then using the normal components of tension and bitension fields, given by (4.16) and

(5.21), f -biminimality condition is obtained as below;

[τ2,λ,f (γ)]
⊥ =

[
(−α2δ − 3β2δ − ε1δ

3 − ε1δ
′′ − r

2
δ + λε1δ)f

− 2ε1(αβ + δ
′
)f

′ − ε1δf
′′]
φT

+ ((2α3 − ε1αδ
2 − 2βδ

′
+ λε1α)f − 2δβf

′ − ε1αf
′′
)ξ

= 0. (8.43)

Theorem 8.1. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional normal

almost paracontact metric manifold where α, β = constant. Then γ is an f -biminimal curve
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iff the following equations hold:
(α2δε1 + 3β2δε1 + δ3 + δ

′′
+

r

2
ε1δ − λδ)f + 2(αβ + δ

′
)f

′
+ δf

′′
= 0,

(2α3 − ε1αδ
2 − 2βδ

′
+ λε1α)f − 2δβf

′ − ε1αf
′′
= 0.

(8.44)

Now, we give the interpretations of Theorem 8.1.

Case I: Assume that δ is not constant. Then we shall investigate the following subcases:

Case I-1: If N is a three dimensional β-para-Sasakian manifold and δ ̸= constant then

from (8.44), we obtain following equations;
(3β2δε1 + δ3 + δ

′′
+

r

2
ε1δ − λδ)f + 2δ

′
f

′
+ δf

′′
= 0,

β(δf)
′
= 0.

(8.45)

Corollary 8.1. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length

in three dimensional β-para-Sasakian manifold N where δ ̸= constant. Then γ is an f -

biminimal curve iff the function f and the scalar curvature r equals:

f =
1

δ
+ c

and

r = 2ε1(λ− δ2 − δ
′′

δ
− 3β2ε1)− 4ε1(

δ
′

δ
)2 − 2ε1δ(2(δ)

′
δ
′′ − δ

′′
δ−2).

Case I-2: If N is a three dimensional α-para-Kenmotsu manifold and δ ̸= constant then

from (8.44), we obtain following equations;
(α2δε1 + δ3 + δ

′′
+

r

2
ε1δ − λδ)f + 2δ

′
f

′
+ δf

′′
= 0,

(2α3 − ε1αδ
2 + λε1α)f − ε1αf

′′
= 0.

(8.46)

Corollary 8.2. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional α-para-Kenmotsu manifold N and δ ̸= constant. Then γ is an f -biminimal

curve iff f is a solution of non-linear differential equations given in (8.46).

Case I-2: If N is a three dimensional paracosymplectic manifold and δ ̸= constant then

from (8.44), we obtain following equation;

(ε1δ
3 + ε1δ

′′
+

r

2
δ − λε1δ)f + 2ε1δ

′
f

′
+ ε1δf

′′
= 0. (8.47)
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Corollary 8.3. Let γ : I −→ N be a Frenet Legendre curve parametrized by arc length in

three dimensional paracosymplectic manifold N and δ ̸= constant. Then γ is an f -biminimal

curve iff f is a solution of non-linear differential equation given in (8.47).

Case II: Assume that δ = constant is not equal to 0. Then we shall investigate the

following subcases:


(α2δε1 + 3β2δε1 + δ3 +

r

2
ε1δ − λδ)f + 2(αβ)f

′
+ δf

′′
= 0,

(2α3 − ε1αδ
2 + λε1α)f − 2δβf

′ − ε1αf
′′
= 0.

(8.48)

Case II-1: If N is a three dimensional β-para-Sasakian manifold and δ = constant ̸= 0 then

from (8.44), we obtain following equations;
(3β2δε1 + δ3 +

r

2
ε1δ − λδ)f + δf

′′
= 0,

2δβf
′
= 0.

(8.49)

Then we obtain the following nonexistence theorem;

Theorem 8.2. There is no proper f -biminimal Frenet Legendre curve in a three dimensional

β-para-Sasakian manifold where δ = constant ̸= 0.

Proof. From the second equation of (8.49), the proof is obvious.

Case II-2: If N is a three dimensional α-para-Kenmotsu manifold and δ = constant ̸= 0

then from (8.44), we obtain following equations;
(α2ε1 + δ2 +

r

2
ε1 − λ)f + f

′′
= 0,

(2α2ε1 − δ2 + λ)f − f
′′
= 0.

(8.50)

Corollary 8.4. Let γ : I −→ N be a Frenet Legendre curve in a three dimensional α-

para-Kenmotsu manifold N and δ = constant ̸= 0. Then γ is an f -biminimal curve where

the constant scalar curvature equals to r = −6α2 and the function f is a solution of the

non-linear differential equations given in (8.50).
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1. Introduction

As a generalization of an Einstein metric [6], Ricci soliton first defined in 1982 by Hamilton

[19]. A pseudo-Riemannian manifold (M, g∗) defines a Ricci soliton with a smooth vector

field V on M such that

£V g∗ + 2S − 2τ1g∗ = 0, (1.1)

where £V is the Lie derivative along the vector field V and S is the Ricci tensor on M and

τ1 is a real scalar. Ricci soliton is said to be shrinking τ1 < 0, steady τ1 = 0 or expanding

τ1 > 0, [8]. A Ricci soliton is changed into Einstein equation with V zero or killing vector

field.
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The study of almost Ricci soliton was presented by Pigola et al. [23], in this manner they

gave new version of the definition of Ricci soliton by adding new condition on the parameter

τ1 to be a variable function, we say that a Riemannian manifold (M, g∗) admits an almost

Ricci soliton, if there exists a complete vector field V , called potential vector field and a

smooth soliton function τ1 : M → R satisfying

S +
1

2
£V g∗ = τ1g∗, (1.2)

where S and £ represent Ricci tensor and Lie derivative along the direction of soliton vector

field V . We shall now refer to this equation as the fundamental equation of an almost Ricci

soliton (M, g∗, V, τ1). Ricci soliton will be called shrinking, steady or expanding, respectively,

if τ1 < 0, τ1 = 0 or τ1 > 0. For remaining it will be called indefinite. When the vector field V

is gradient of a smooth function f : M → R the metric will be called gradient almost Ricci

soliton. So, we obtain

S + ∇̄2f = τ1g∗, (1.3)

where ∇̄2f means for the Hessian of f .

Additionally, if the vector field X1 is trivial, or the potential f is constant, the almost

Ricci soliton is said to be trivial, otherwise it is said to be non-trivial almost Ricci soliton.

We observe that when n ≥ 3 and X1 is a killing vector field almost Ricci solitons will be Ricci

solitons. So in this situtation we have an Einstein manifold. The soliton function τ1 is not

necessarily constant, certainly comparison with soliton theory will be modified. In particular

the rigidity result contained in Theorem 1.3 of [23] inform that almost Ricci solitons should

reveal a reasonably broad generalization of the important concept of classical soliton.

The presence of Ricci almost soliton has been affirmed by Pigola et al. [23] on some

specific class of warped product manifolds. Some characterization of Ricci almost soliton on

Riemannian manifolds can be found in [1, 4, 5, 7, 18, 26]. It is important to note that if the

potential vector field V of the Ricci almost soliton (M, g∗, V, τ1) is Killing then the soliton

becomes trivial, provided the dimension of M > 2. Additionally, if V is conformal then M

is isometric to Euclidean sphere Sn. Thus the Ricci almost soliton is a generalization of

Einstein metric as well as Ricci soliton.

In [15], authors studied Ricci solitons and gradient Ricci solitons geometric properties on

3-dimensional normal almost contact metric manifolds. In [16] authors studied compact Ricci

soliton. In [17] author studied K-contact and Sasakian manifolds whose metric is gradient

almost Ricci solitons. Conditions of K-contact and Sasakian manifolds are more stronger
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than almost normal contact metric manifolds in the sense of the 1-form of almost normal

contact metric manifolds are not contact form. Ricci soliton as well as gradient Ricci soliton

have been studied by many authors such as [2, 13, 14].

Sharma [24] obtained results on Ricci almost solitons in K-contact geometry, also in

author [17] studied Ricci almost solitons and gradient Ricci almost solitons in (k, µ)-contact

geometry and Majhi [22] on 3-dimensional f -Kenmotsu manifolds also De and Mandal [12]

studied for structure (k, µ)-Paracontact geometry. Motivated by above studies in this paper,

we are interested to study almost Ricci solitons and gradient Ricci almost solitons with

Lorentzian para α-Sasakian manifolds.

We are studying the following sections: Section 2 contains important definitions and some

preliminary results of Lorentzian para α-Sasakian (α- LPS) manifolds needed for the study.

In section 3, we deal second order parallel symmetric tensors α- LPS manifolds. In section

4, we obtain result for almost Ricci (AR) soliton in 3-dimensional α-LPS manifolds. In the

Section 5, we deduce theorem for such manifolds with gradient almost Ricci (GAR) solitons.

Finally, we give an example of 3-dimensional (α- LPS)manifolds with almost Ricci soliton.

2. α- LPS manifolds

A differentiable manifold M of (2n + 1) dimensional is said to be an α- LPS manifolds,

if it cosist a tensor field J of type (1, 1), a characteristic vector field ζ1, a 1-form η∗ and g∗

as Lorentzian metric satisfy (see [10, 21]) :

J2X1 = X1 + η∗(X1)ζ1, (2.4)

η∗(ζ1) = −1, η∗(X1) = g∗(X1, ζ1), (2.5)

Jζ1 = 0, η∗ ◦ J = 0, (2.6)

g∗(JX1, JY1) = g∗(X1, Y1) + η∗(X1)η∗(Y1). (2.7)

Definition 2.1. A differentiable manifold M with an almost contact Lorentzian metric struc-

ture (J, ζ1, η∗, g∗) is said to be an α-LS manifold if

(∇̄X1J)Y1 = α{g∗(X1, Y1)ζ1 + η∗(Y1)X1}, (2.8)

where α is a constant function on M .
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An almost contact metric structure is called a LPS manifold (or simply Lorentzian para-

Sasakian manifold) if, (for details see [27, 11, 9])

(∇̄X1J)Y1 = g∗(X1, Y1)ζ1 + η∗(Y1)X1 + 2η∗(X1)η∗(Y1)ζ1, (2.9)

where ∇̄ is the Levi-Civita connection with respect to g∗. Using above equation, one can

obtain

∇̄X1ζ1 = JX1, (∇̄X1η∗)Y1 = g∗(X1, JY1). (2.10)

Definition 2.2. A differentiable manifold M with an almost contact Lorentzian metric struc-

ture (J, ζ1, η∗, g∗) is called an α-LPS manifold if

(∇̄X1J)Y1 = α{g∗(X1, Y1)ζ1 + η∗(Y1)X1 + 2η∗(X1)η∗(Y1)ζ1}, (2.11)

where α is a smooth function on M .

Remark- Note that if α = 1, then LPS manifold is the special case of α-LPS manifold.

For an α-LPS manifold following relations are holds [3]:

∇̄X1ζ1 = αJX1, (2.12)

(∇̄X1η∗)Y1 = αg∗(JX1, Y1), (2.13)

R(X1, Y1)ζ1 = α2{η∗(Y1)X1 − η∗(X1)Y1} (2.14)

+{(X1α)JY1 − (Y1α)JX1},

R(ζ1, Y1)ζ1 = α2{Y1 + η∗(Y1)ζ1} (2.15)

+(ζ1α)JY1,

R(ζ1, ζ1)ζ1 = 0, (2.16)

R(ζ1, Y1)X1 = α2{g∗(X1, Y1)ζ1 − η∗(X1)Y1} (2.17)

−(X1α)JY1 + g∗(JX1, Y1)(gradα),
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S(Y1, ζ1) = 2nα2η∗(Y1)− {(Y1α)w + (JY1)α}, (2.18)

for any vector field Y1 on M , w = g∗(J(ei), ei) and S defines the Ricci curvature on M .

S(ζ1, ζ1) = −2nα2 − (ζ1α)w, (2.19)

and

η∗(R(X1, Y1)Z1) = α2{g∗(Y1, Z1)η∗(X1)− g∗(X1, Z1)η∗(Y1)} (2.20)

−{(X1α)g∗(JY1, Z1)− (Y1α)g∗(X1J, Z1)}.

In a 3-dimensional Riemannian manifold, we always have

R(X1, Y1)Z1 = g∗(Y1, Z1)QX1 − g∗(X1, Z1)QY1 (2.21)

+S(Y1, Z1)X1 − S(X1, Z1)Y1

−r

2
[g∗(Y1, Z1)X1 − g∗(X1, Z1)Y1].

In a 3-dimensional α-LPS manifold, we have

R(X1, Y1)Z1 = [
r

2
− α2][g∗(Y1, Z1)X1 − g∗(X1, Z1)Y1] (2.22)

+[
r

2
− 3α2][g∗(Y1, Z1)η∗(X1)ζ1

−g∗(X1, Z1)η∗(Y1)ζ1 + η∗(Y1)η∗(Z1)X1

−η∗(X1)η∗(Z1)Y1],

and

S(X1, Z1) = [
r

2
− α2]g∗(X1, Z1) (2.23)

+[
r

2
− 3α2]η∗(X1)η∗(Y1).

Putting Z1 = ζ1 in (2.17), we have
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R(X1, Y1)ζ1 = η∗(Y1)QX1 − η∗(X1)QY1 (2.24)

+S(Y1, ζ1)X1 − S(X1, ζ1)Y1

−r

2
[η∗(Y1)X1 − η∗(X1)Y1],

and

S(X1, ζ1) = 2α2η∗(X1). (2.25)

where Q is the Ricci operator define by S(X1, Y1) = g∗(QX1, Y1).

Definition 2.3. An α-LPS manifold M is called an Einstein like if its Ricci tensor S satisfies

S(X1, Y1) = ag∗(X1, Y1) + bg∗(JX1, Y1) (2.26)

+cη∗(X1)η∗(Y1),

X1, Y1 ∈ (M) for some real constants a, b and c.

3. Second order parallel symmetric tensors in an α-LPS manifold

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect

to ∇̄ that is ∇̄h = 0. Applying the Ricci identity [25]

∇̄2h(X1, Y1;Z1,W1)− ∇̄2h(X1, Y1;W1, Z1) = 0, (3.27)

we obtain the relation

h(R(X1, Y1)Z1,W1) + h(Z1, R(X1, Y1)W1) = 0. (3.28)

Replacing Z1 = W1 = ζ1 in (3.2) and by using (2.11) and by the symmetry of h, we have

α2[η∗(Y1)h(X1, ζ1)− η∗(X1)h(Y1, ζ1)] (3.29)

+(X1α)h(JY1, ζ1)− (Y1α)h(JX1, ζ1) = 0.

Putting X1 = ζ1 in (3.3) and by virtue of (2.2) and (2.3), we obtain

α2[η∗(Y1)h(ζ1, ζ1) + h(Y1, ζ1)] + (ζ1α)h(JY1, ζ1) = 0. (3.30)

Replacing Y1 = JY1 in (3.4), we have
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(ζ1α)[η∗(Y1)h(ζ1, ζ1) + h(Y1, ζ1)] + α2h(JY1, ζ1) = 0. (3.31)

Solving (3.4) and (3.5), we have

(α4 − (ζ1α)
2)[η∗(Y1)h(ζ1, ζ1) + h(Y1, ζ1)] = 0. (3.32)

Since α4 − (ζ1α)
2 ̸= 0, it results

h(Y1, ζ1) = −η∗(Y1)h(ζ1, ζ1), (3.33)

from (3.7), we obtain

h(Y1, ζ1) + g∗(Y1, ζ1)h(ζ1, ζ1) = 0. (3.34)

Putting Y1 = ∇̄X1Y1 in (3.7), we have

h(∇̄X1Y1, ζ1) + g∗(∇̄X1Y1, ζ1)h(ζ1, ζ1) = 0. (3.35)

Covariantly differentiating (3.7) with respect to X1, we obtain

(∇̄X1h)(Y1, ζ1) + h(∇̄X1Y1, ζ1) + h(Y1, ∇̄X1ζ1) (3.36)

= −[g∗(∇̄X1Y1, ζ1) + g∗(Y1, ∇̄X1ζ1)]h(ζ1, ζ1)

−η∗(Y1)[(∇̄X1h)(ζ1, ζ1) + 2h(∇̄X1ζ1, ζ1)]

= 0.

Applying the parallel condition ∇̄h = 0, η∗(∇̄X1ζ1) = 0 and using (2.9) and (3.6) in (3.9),

we infer

α[h(Y1, JX1) + g∗(Y1, JX1)h(ζ1, ζ1)] = 0. (3.37)

Replacing X1 = JX1 in (3.11) and on simplification, we get

α[h(X1, Y1) + g∗(X1, Y1)h(ζ1, ζ1)] = 0, (3.38)

since α is non-zero smooth function in an α-LPS manifold and this implies that

h(X1, Y1) = −g∗(X1, Y1)h(ζ1, ζ1), (3.39)
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which is together with the standard fact that the parallelism of h implies that h(ζ1, ζ1) is a

constant, via (3.6). Now using the above conditions, we can write the following:

Theorem 3.1. A second order covariant symmetric parallel tensor in an α-LPS manifold is

a constant multiple of the metric tensor.

4. AR solitons on 3-dimensional α-LPS manifolds

This section deal with the characterization of AR solitons on 3-dimensional α-LPS man-

ifolds. Consider the potential vector field V be pointwise collinear, V = bζ1, where b is a

function on M . Then from (1.1) we have

g∗(∇̄X1bζ1, Y1) + g∗(∇̄Y1bζ1, X1) + 2S(X1, Y1) = 2τ1g∗(X1, Y1). (4.40)

By virtue of (2.9) and (4.1), we have

2bαg∗(JX1, Y1) + (X1b)η∗(Y1) (4.41)

+(Y1b)η∗(X1) + 2S(X1, Y1)

= 2τ1g∗(X1, Y1).

Substituting Y1 = ζ1 in (4.2) and using (2.21), we get

−(X1b) + (ζ1b)η∗(X1) + 4α2η∗(X1) = 2τ1η∗(X1). (4.42)

Taking X1 = ζ1 in (4.3), we infer

ζ1b = τ1 − 2α2. (4.43)

Substituting the value of ζ1b in (4.3), we have

db = (2α2 − τ1)η∗. (4.44)

Operating d on (4.5) and using d2 = 0, we obtain

0 = d2b = (2α2 − τ1)dη∗. (4.45)

It follows from the above equation

τ1 = 2α2,
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which implies db = 0, i.e., b = constant, by virtue of db = (2α2−τ1)η∗. Thus, using constancy

of b in (4.2), we infer

S(X1, Y1) = τ1g∗(X1, Y1)− αbg∗(JX1, Y1) (4.46)

−2(2α2 − τ1)η∗(X1)η∗(Y1),

which is of the form S(X1, Y1) = ag∗(X1, Y1) + bg∗(JX1, Y1) + cη∗(X1)η∗(Y1). Hence, we can

state the following result:

Theorem 4.1. A 3-dimensional α-LPS manifold (M, ζ1, η∗, g∗) with constant α admitting

an AR soliton with pointwise collinear vector field V with the structure vector field ζ1, is an

Einstein like manifold provided τ1 = 2α2 > 0 i.e., expanding.

Now let V = ζ1. Then (4.1) reduces to

(£ζ1g∗)(X1, Y1) + 2S(X1, Y1) = 2τ1g∗(X1, Y1). (4.47)

Now, by using (2.9) we have

(£ζ1g∗)(X1, Y1) = g∗(∇̄X1ζ1, Y1) + g∗(∇̄Y1ζ1, X1)

= 2αg∗(JX1, Y1). (4.48)

Using (2.19), we get

(£ζ1g∗)(X1, Y1) = −2[
(r
2
− α2

)
g∗(X1, Y1) (4.49)

+
(r
2
− 3α2

)
η∗(X1)η∗(Y1)]

+2τ1g∗(X1, Y1).

In view of (4.9) and (4.10), we obtain

αg∗(JX1, Y1) = −[
(r
2
− α2

)
g∗(X1, Y1) (4.50)

+
(r
2
− 3α2

)
η∗(X1)η∗(Y1)]

+τ1g∗(X1, Y1).
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Taking X1 = Y1 = ζ1 in (4.11), we obtain

τ1 = 2α2. (4.51)

Since α is constant. This implies τ1 = 2α2 =constant. Hence, we can establish the following

result.

Theorem 4.2. A 3-dimensional α-LPS manifold (M, ζ1, η∗, g∗) admits AR soliton then it

reduces to a Ricci soliton for α =constant.

5. Gradient Almost Ricci (GAR) Solitons

In this part, we study 3-dimensional α-LPS manifolds admitting GAR soliton. For a GAR

soliton, we have

∇̄Y1Df = τ1Y1 −QY1, (5.52)

where D symbolize the gradient operator of g∗.

Now taking covariant differentiation of (5.1) along arbitrary vector field X1, we have

∇̄X1∇̄Y1Df = dτ1(X1)Y1 + τ1∇̄X1Y1 − (∇̄X1Q)Y1. (5.53)

In above equation d is exterior derivative, using this similarly we obtain

∇̄Y1∇̄X1Df = dτ1(Y1)X1 + τ1∇̄Y1X1 − (∇̄Y1Q)X1, (5.54)

and

∇̄[X1,Y1]Df = τ1[X1, Y1]−Q[X1, Y1]. (5.55)

In view of (5.2), (5.3) and (5.4), we get

R(X1, Y1)Df = ∇̄X1∇̄Y1Df − ∇̄Y1∇̄X1Df − ∇̄[X1,Y1]Df (5.56)

= (∇̄Y1Q)X1 − (∇̄X1Q)Y1 − (Y1τ1)X1 + (X1τ1)Y1.

From (2.19), we have

QX1 = [
r

2
− α2]X1 + [

r

2
− 3α2]η∗(X1)ζ1. (5.57)
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Taking covariant differentiation of (5.6) along arbitrary vector field X1 and using (2.9), we

have

(∇̄X1Q)Y1 =

(
X1r

2

)
[Y1 + η∗(Y1)ζ1]

+α
(r
2
− 3α2

)
[g∗(JX1, Y1) + η∗(Y1)JX1]. (5.58)

Similarly, we have

(∇̄Y1Q)X1 =

(
Y1r

2

)
[X1 + η∗(X1)ζ1]

+α
(r
2
− 3α2

)
[g∗(JY1, X1) + η∗(X1)JY1]. (5.59)

Using (5.7) and (5.8) in (5.5), we have

R(X1, Y1)Df =

(
Y1r

2

)
[X1 + η∗(X1)ζ1] + α

(r
2
− 3α2

)
η∗(X1)JY1

−
(
X1r

2

)
[Y1 + η∗(Y1)ζ1]− α

(r
2
− 3α2

)
η∗(Y1)JX1

−(Y1τ1)X1 + (X1τ1)Y1. (5.60)

Taking an inner product with ζ1 in above equation, then we obtain

g∗(R(X1, Y1)Df, ζ1) = −(Y1τ1)η∗(X1) + (X1τ1)η∗(Y1). (5.61)

Taking Y1 = ζ1, then we infer

g∗(R(X1, ζ1)Df, ζ1) = −(ζ1τ1)η∗(X1)− (X1τ1). (5.62)

Also from (2.18), it follows that

g∗(R(X1, ζ1)Df, ζ1) = α2[(ζ1f)η∗(X1)− (X1f)]. (5.63)

Using (5.9) in (5.10), we get

α2[(ζ1f)η∗(X1)− (X1f)] = −(ζ1τ1)η∗(X1)− (X1τ1). (5.64)

Assuming that f is constant. Then it follows from (5.11) that
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dτ1 + (ζ1τ1)η∗ = 0. (5.65)

Applying d both sides of (5.14), we obtain

ζ1τ1 = 0. (5.66)

By virtue of (5.14) and (5.15), we get

dτ1 = 0. (5.67)

This implies τ1 is constant. Hence, we can establish the following result:

Theorem 5.1. A 3-dimensional α-LPS manifold (M, ζ1, η∗, g∗) admits a GAR soliton then

it reduces to a Ricci soliton provided f is constant.

6. Example

We consider the 3-dimensional manifold M = {(x, y, t) ∈ R3 : t ̸= 0}, where (x, y, t) are

the standard coordinates in R3. We choose the vector fields

Ẽ1 = et∗
∂

∂y
, Ẽ2 = et∗(

∂

∂x
+

∂

∂y
) and Ẽ3 = et∗

∂

∂t
,

which are linearly independent at each point of M . Let g∗ be the Lorentzian metric defined

by

g∗(Ẽ1, Ẽ2) = g∗(Ẽ2, Ẽ3) = g∗(Ẽ3, Ẽ1) = 0,

g∗(Ẽ1, Ẽ1) = g∗(Ẽ2, Ẽ2) = 1, g∗(Ẽ3, Ẽ3) = −1.

Let η∗ be the 1- form defined by η∗(Z1) = g∗(Z1, Ẽ3) for any vector field Z1 on M . We

define the (1, 1) tensor field J as J(Ẽ1) = −Ẽ1, J(Ẽ2) = −Ẽ2 and J(Ẽ3) = 0. Then using

the linearity of J and g∗, we have

η∗(Ẽ3) = −1, J2Z1 = Z1 + η∗(Z1)Ẽ3,

g∗(JZ1, JW1) = g∗(Z1,W1) + η∗(Z1)η∗(W1),
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for any vector fields Z1,W1 on M . Thus for Ẽ3 = ζ1, the structure (J, ζ1, η∗, g∗) defines an

almost contact metric structure on M .

Let ∇̄ be the Levi-Civita connection with respect to the Lorentzian metric g∗. Then, we

have

[Ẽ1, Ẽ2] = 0, [Ẽ1, Ẽ3] = −et∗Ẽ1 and [Ẽ2, Ẽ3] = −et∗Ẽ2.

Koszul’s formula is defined by

2g∗(∇̄X1Y1, Z1) = X1g∗(Y1, Z1) + Y1g∗(Z1, X1)− Z1g∗(X1, Y1)

−g∗(X1, [Y1, Z1])− g∗(Y1, [X1, Z1]) + g∗(Z1, [X1, Y1]).

Using Koszul’s formula, we can easily calculate

∇̄Ẽ1
Ẽ3 = −et∗Ẽ1, ∇̄Ẽ1

Ẽ2 = 0, ∇̄Ẽ1
Ẽ1 = −et∗Ẽ3,

∇̄Ẽ2
Ẽ3 = −et∗Ẽ2, ∇̄Ẽ2

Ẽ2 = −et∗Ẽ3, ∇̄Ẽ2
Ẽ1 = 0,

∇̄Ẽ3
Ẽ3 = 0, ∇̄Ẽ3

Ẽ2 = 0, ∇̄Ẽ3Ẽ1=0.

From the above, it follows that the manifold satisfies

(∇̄X1J)Y1 = α{g∗(X1, Y1)ζ1 + η∗(Y1)X1 + 2η∗(X1)η∗(Y1)ζ1},

for Ẽ3 = ζ1. and α = et∗, (J, ζ1, η∗, g∗) is a 3-dimensional α-LPS structure on M . Conse-

quently M3(J, ζ1, η∗, g∗) is a 3-dimensional α-LPS manifold. Also, the Riemannian curvature

tensor R is given by

R(X1, Y1)Z1 = ∇̄X1∇̄Y1Z1 − ∇̄Y1∇̄X1Z1 − ∇̄[X1,Y1]Z1.

With the help of above results, we obtain

R(Ẽ1, Ẽ2)Ẽ1 = −e2t∗ Ẽ2, R(Ẽ1, Ẽ2)Ẽ3 = 0, R(Ẽ1, Ẽ2)Ẽ2 = −e2t∗ Ẽ1,

R(Ẽ1, Ẽ3)Ẽ1 = −e2t∗ Ẽ3,R(Ẽ1, Ẽ3)Ẽ2 = 0,R(Ẽ1, Ẽ3)Ẽ3 = −e2t∗ Ẽ3.

R(Ẽ2, Ẽ3)Ẽ1 = 0,R(Ẽ2, Ẽ3)Ẽ2 = −e2t∗ Ẽ3,R(Ẽ2, Ẽ3)Ẽ3 = −e2t∗ Ẽ2.
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Then, the Ricci tensor S is given by

S(Ẽ1, Ẽ1) = 0, S(Ẽ2, Ẽ2) = 0 and S(Ẽ3, Ẽ3) = −2e2t∗ .

from equation (1.2) and above calculation, we find τ1 = 2et∗(1− et∗).

Thus 3-dimensional α-LPS manifold admitting an AR soliton.
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1. Introduction

Let (Mi, gi) be Riemannian manifolds for i ∈ {0, 1, 2} and let f1,2 : M0 → (0,∞) be

smooth functions. Then the biwarped product or twice warped product manifold [5, 14]

M0 ×f1 M1 ×f2 M2 is the product manifold M̄ = M0 ×M1 ×M2 endowed with the metric

g = π∗
0(g0)⊕ (f1 ◦ π0)2π∗

1(g1)⊕ (f2 ◦ π0)2π∗
2(g2).
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More precisely, for any vector fields X̄ and Ȳ of M̄ , we have

g(X̄, Ȳ ) = g0(π0∗X̄, π0∗ Ȳ ) +
2∑

i=1

(fi ◦ π0)2gi(πi∗X̄, πi∗ Ȳ ),

where πi : M̄ → Mi is the canonical projection of M̄ onto Mi, π
∗
i (gi) is the pullback of gi

by πi and the subscript πi∗ denotes the derivative map of πi for each i. The functions f1

and f2 are called warping functions and each manifold (Mj , gj), j ∈ {1, 2} is called a fiber

of the biwarped product M̄ . The factor (M0, g0) is called a base manifold of M̄ . As well

known, the base manifold of M̄ is totally geodesic and the fibers of M̄ are totally umbilic in

M̄ . We say that a biwarped product manifold is trivial, if the warping functions f1 and f2

are constants. Of course, biwarped product manifolds are natural generalizations of warped

product manifolds [7] and special case of multiply warped product manifolds [14].

Let M0 ×f1 M1 ×f2 M2 be a biwarped product manifold with the Levi-Civita connection

∇̄ and ∇i denote the Levi-Civita connection of Mi for i ∈ {0, 1, 2}. By usual convenience,

we denote the set of lifts of vector fields on Mi by L(Mi) and use the same notation for a

vector field and for its lifts. On the other hand, since the map π0 is an isometry and π1 and

π2 are (positive) homotheties, they preserve the Levi-Civita connections. Thus there is no

confusion using the same notation for a connection on Mi and for its pullback via πi. Then,

the covariant derivative formulas [23] for a biwarped product manifold are given by

∇̄UV =∇0
UV (1.1)

∇̄V X =∇̄XV = V (ln fi)X (1.2)

∇̄XZ =

{
0 if i ̸= j,

∇i
XZ − g(X,Z)∇0(ln fi) if i = j,

(1.3)

where U, V ∈ L(M0), X ∈ L(Mi) and Z ∈ L(Mj).

The theory of warped product submanifolds has been become a popular research area

since Chen [8] studied the warped product CR-submanifolds in Kaehler manifolds. Actually,

several classes of warped product submanifolds appeared in the last eighteen years. Also,

warped product submanifolds have been studied for different kinds of structures. Most of

the studies related to the theory of warped product submanifolds can be found in Chen’s

book [10]. Recently, Taştan studied biwarped product submanifolds of a Kaehler manifold

(M̄, J, g) of the form MT ×f M⊥ ×σ M θ, where MT is a holomorphic, M⊥ is a totally real
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and M θ is a pointwise slant submanifold of M̄ [20]. Afterwards, biwarped product submani-

folds have been studying by many geometers for different kinds of structures (see, [2, 21, 22]).

In this paper, we study biwarped product submanifolds with a slant base factor in locally

product Riemannian manifolds. More precisely, we consider biwarped product submanifolds

of the form M θ ×f MT ×σ M⊥, where M θ is a slant, M⊥ is an anti-invariant and MT is an

invariant submanifold of the locally product Riemannian manifold. After giving a non-trivial

example and some auxiliary results, we prove an existence theorem for such submanifolds.

Then, we investigate the behavior of the second fundamental form of such a submanifold and

as a result, we get a condition for this kind of submanifold to be a warped product. Finally,

we obtain an inequality for the squared norm of the second fundamental form in terms of

the warping functions for such submanifolds. The equality case is also considered. Moreover,

we give an application of this inequality for certain types of locally product Riemannian

manifolds.

Remark 1.1. Biwarped product submanifolds of the form M θ×fM
T×σM

⊥ in locally product

Riemannian manifolds were also studied in [22]. However, expect the first four equations of

Lemma 5.1, our results are completely different from the results of [22]. Besides, biwarped

product submanifolds of the form M⊥×f M
T ×σM

θ in locally product Riemannian manifolds

were studied in [2], where M θ is a proper pointwise slant submanifold of the locally product

Riemannian manifold. But, the geometry of M θ ×f M
T ×σ M

⊥ and the geometry of M⊥ ×f

MT ×σ M θ are quite different.

2. Preliminaries

We first recall the fundamental definitions and notions needed for further study. In fact,

we will give the notions for submanifolds of Riemannian manifolds in subsection 2.1. In

subsection 2.2, we recall the definition of a locally product Riemannian manifold.

2.1. Riemannian submanifolds. LetM be a Riemannian manifold isometrically immersed

in a Riemannian manifold (M̄, g) and ∇̄ be the Levi-Civita connection of M̄ with respect to

the metric g. Also, let ∇ and ∇⊥ be the Levi-Civita connection and normal connection of

M , respectively. Then the Gauss and Weingarten formulas [24] are given respectively by

∇̄V W = ∇V W + h(V,W ) and ∇̄V Z = −AZV +∇⊥
V Z. (2.4)
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Here V,W are the tangent vector fields to M and Z is normal to M . In addition, h is the

second fundamental form and AZ is the Weingarten operator of M associated with Z. Then,

we have

g(h(V,W ), Z) = g(AZV,W ). (2.5)

For a submanifold M of a Riemannian manifold M̄ , the equation of Gauss is given by

R̄(U, V, Z,W ) = R(U, V, Z,W ) + g(h(U,Z), h(V,W ))− g(h(U,W ), h(V,Z)) (2.6)

for any U, V, Z,W ∈ Γ(TM), where R̄ and R are the curvature tensors on M̄ and M respec-

tively. The mean curvature vector H for an orthonormal frame {e1, . . . , em} of tangent space

TpM , p ∈ M on M is defined by

H =
1

m
trace(h) =

1

m

m∑
i=1

h(ei, ei), (2.7)

where m = dimM . Also, we set

hrij = g(h(ei, ej), er) and ∥ h ∥2=
m∑

i,j=1

g(h(ei, ej), h(ei, ej)). (2.8)

Moreover, the sectional curvature [24] of a plane section spanned by ei and ej , denoted by

Kij , is

Kij = R(ei, ej , ej , ei). (2.9)

The scalar curvature [9] of M of is given by

τ(TM) =
∑

1≤i ̸=j≤m

Kij . (2.10)

Let Gr be a r-plane section on TM and {e1, . . . , er} any orthonormal basis of Gr. Then the

scalar curvature τ(Gr) of Gr is given by

τ(Gr) =
∑

1≤i ̸=j≤r

Kij . (2.11)

For a smooth function f on M , the Laplacian of f is defined by

∆f =

m∑
i=1

{(∇eiei)f − ei(ei(f))} = −
m∑
i=1

g(∇ei∇f, ei), (2.12)

where ∇f is the gradient of f [9].
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2.2. Locally product Riemannian manifolds. Let M̄ be a Riemannian manifold. Sup-

pose M̄ is endowed with a tensor field

F2 = I, (F ̸= ∓I), (2.13)

of type (1, 1). Here, I is the identity endomorphism on TM̄ . Then, (M̄, g,F) called an

almost product manifold and F is called an almost product structure. Also, we assume that

g and F satisfy

g(FX̄,F Ȳ ) = g(X̄, Ȳ ), (2.14)

for all vector fields X̄, Ȳ tangent to M . Then, it is known that (M̄, g,F) is an almost product

Riemannian manifold. Let ∇̄ be the Levi-Civita connection of (M̄, g,F). If we have

∇̄F ≡ 0, (2.15)

then (M̄, g,F) is a locally product Riemannian manifold, (briefly, l.p.R. manifold).

Let M1(c1) (resp. M2(c2)) be a real space form and have sectional curvature c1 (resp. c2).

Then, the Riemannian curvature tensor R̄ of l.p.R. manifold M̄ = M1 ×M2 has the form

R̄(U, V )Z =
1

4
(c1 + c2)

{
g(V,Z)U − g(U,Z)V + g(FV,Z)FU − g(FU,Z)FV

}
=

1

4
(c1 − c2)

{
g(V,Z)FU − g(U,Z)FV + g(FV,Z)U − g(FU,Z)V

}
,

(2.16)

for all U, V, Z ∈ Γ(TM̄) [24].

3. Skew semi-invariant submanifolds of order 1 in locally product

Riemannian manifolds

We first recall the definition of the skew semi-invariant submanifolds of order 1 of a locally

product Riemannian manifold and get some useful results for the further study.

Let (M̄, g,F) be a l.p.R. manifold and let M be a submanifold of M̄ . If for X ∈ Dp, the

angle θ between FX and Dp is constant, i.e., it is independent of p ∈ M and X ∈ Dp, then

D is called a slant distribution on M . θ is said the slant angle of the slant distribution D.

Thus, the invariant and anti-invariant distributions with respect to F are slant distributions

with slant angle θ = 0 and θ = π/2, respectively. If the tangent bundle TM of M is slant

[12, 15] then the submanifold M of M̄ is called a slant submanifold. A slant submanifold

that is neither invariant nor anti-invariant is called a proper slant submanifold.
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Let M be a slant submanifold with slant angle θ of a locally product Riemannian manifold

(M̄, g,F), for any V ∈ Γ(TM), we write

FV = PV +NV. (3.17)

Here PV is the tangential part of FV and NV is the normal part of FV . Then, for any

U, V ∈ Γ(TM) we have [15]

P 2V = cos2θV, (3.18)

g(PU,PV ) = cos2θg(U, V ) and g(NU,NV ) = sin2θg(U, V ). (3.19)

A submanifold M of a locally product Riemannian manifold (M̄, g,F) is said a skew semi-

invariant submanifold of order 1 (briefly, s.s-i.) [18] if the tangent bundle TM of M has the

form

TM = D⊥ ⊕DT ⊕Dθ,

where Dθ is slant distribution with slant angle θ, DT is an invariant distribution, i.e., FDT ⊆

DT , D⊥ is an anti-invariant distribution, i.e. FD⊥ ⊆ T⊥M . In that case, the normal bundle

T⊥M of M can be decomposed as

T⊥M = N(Dθ)⊕F(D⊥)⊕ D̄T , (3.20)

where D̄T is the orthogonal complementary distribution of N(Dθ)⊕ F(D⊥) in T⊥M and it

is an invariant subbundle of T⊥M with respect to F .

Remark 3.1. The class of s.s-i. submanifolds of order 1 of locally product Riemannian

manifolds is a special subclass of skew semi-invariant submanifolds [12] and a natural gen-

eralization of invariant, anti-invariant [1], semi-invariant [6], slant [15], semi-slant [13] and

hemi-slant submanifolds [19] of locally product Riemannian manifolds.
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Lemma 3.1. [18] Let M be a proper s.s-i. submanifold of order 1 of a l.p.R. manifold

(M̄, g,F). Then,

g(∇ZW,U) = − csc2θ

{
g(ANPWZ,U) + g(ANWZ,FU)

}
, (3.21)

g(∇ZW,X) = sec2θ

{
g(AFXZ,PW ) + g(ANPWZ,X)

}
, (3.22)

g(∇UV,Z) = csc2θ

{
g(ANPZU, V ) + g(ANZU,FV )

}
, (3.23)

g(∇UV,X) = g(AFXU,FV ), (3.24)

g(∇XY, Z) = − sec2θ

{
g(AFY X,PZ) + g(ANPZX,Y )

}
, (3.25)

g(∇XY, V ) = −g(AFY X,FV ), (3.26)

g(∇XZ, V ) = − csc2θ

{
g(ANPZX,V ) + g(ANZX,FV )

}
, (3.27)

g(∇ZX,V ) = −g(AFXZ,FV ), (3.28)

g(∇UX,Z) = − sec2θ

{
g(AFXU,PZ) + g(ANPZU,X)

}
(3.29)

for Z,W ∈ Γ(Dθ), U, V ∈ Γ(DT ) and X,Y ∈ Γ(D⊥).

Theorem 3.1. Let M be a proper s.s-i. submanifold of order 1 of a locally product Riemann-

ian manifold (M̄, g,F). Then the slant distribution Dθ is totally geodesic iff the following

equations hold

g(ANPWZ, V ) = −g(ANWZ,FV ), (3.30)

g(AFXZ,PW ) = −g(ANPWZ,X), (3.31)

for Z,W ∈ Γ(Dθ), V ∈ Γ(DT ) and X ∈ Γ(D⊥).

Proof. The distribution Dθ is totally geodesic iff g(∇ZW,X) = 0 and g(∇ZW,V ) = 0 for

all Z,W ∈ Γ(Dθ), X ∈ Γ(D⊥) and V ∈ Γ(DT ). Thus, the assertions (3.30) and (3.31) follow

from (3.21) and (3.22), respectively.

Theorem 3.2. Let M be a proper s.s-i. submanifold of order 1 of a locally product Riemann-

ian manifold (M̄, g,F). Then the invariant distribution DT is integrable iff the following

equations hold

g(AFXU,FV ) = g(AFXV,FU), (3.32)

g(ANPZU, V ) + g(ANZU,FV ) = g(ANPZV,U) + g(ANZV,FU), (3.33)

for U, V ∈ Γ(DT ), X ∈ Γ(D⊥) and Z ∈ Γ(Dθ).
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Proof. The distribution DT is integrable iff g([U, V ], X) = 0 and g([U, V ], Z) = 0 for all

Z ∈ Γ(Dθ), X ∈ Γ(D⊥) and U, V ∈ Γ(DT ). Thus, the assertions (3.32) and (3.33) follow

from (3.23) and (3.24), respectively.

Theorem 3.3. Let M be a proper s.s-i. submanifold of order 1 of a locally product Rie-

mannian manifold (M̄, g,F). Then the anti-invariant distribution D⊥ is integrable iff the

following equations hold

g(AFXY,FV ) = g(AFY X,FV ), (3.34)

g(AFY X,PZ) = g(AFXY, PZ), (3.35)

for X,Y ∈ Γ(D⊥), V ∈ Γ(DT ) and Z ∈ Γ(Dθ).

Proof. The distribution D⊥ is integrable iff g([X,Y ], Z) = 0 and g([X,Y ], V ) = 0 for all

Z ∈ Γ(Dθ), X,Y ∈ Γ(D⊥) and V ∈ Γ(DT ). Thus, the assertions (3.34) and (3.35) follow

from (3.25) and (3.26), respectively.

4. Biwarped Product Submanifolds in Locally Product Riemannian Manifolds

We first check that the existence of biwarped product submanifolds of the form, MT ×f

M⊥ ×σ M
θ, M⊥ ×f M

θ ×σ M
T and Mθ ×f M

T ×σ M
⊥, where M⊥ is an anti-invariant, M θ

ia a proper slant and MT is an invariant submanifold of a l.p.R. manifold (M̄, g,F).

M. Atçeken and B. S. ahin independently proved that there do not exist (non-trivial)

warped product semi-invariant submanifolds of the form MT ×f M⊥ in a l.p.R. manifold

(M̄, g,F), such that MT is an invariant submanifold and M⊥ is an anti-invariant submani-

fold of (M̄, g,F) in [4, Theorem 3.1] and [16, Theorem 3.1], respectively. Again, M. Atçeken

and B. S. ahin independently proved that there do not exist (non-trivial) warped product

semi-slant submanifolds of the form MT ×f M
θ in a l.p.R. manifold M̄ , such that MT is an

invariant submanifold and M θ is a proper slant submanifold of M̄ in [3, Theorem 3.3] and

[17, Theorem 3.1], respectively. Thus, we obtain the following result.

Corollary 4.1. There do not exist (non-trivial) biwarped product submanifolds of the form

MT ×f M⊥ ×σ M θ of a l.p.R. manifold (M̄, g,F) such that MT is an invariant, M⊥ is an

anti-invariant and M θ is a proper slant submanifold of M̄ .

On the other hand, it was proved that there do not exist (non-trivial) warped product

submanifolds of the form M⊥×fM
θ in a l.p.R. manifold M̄ such that M⊥ is an anti-invariant
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submanifold andM θ is a proper slant submanifold of M̄ in [3, Theorem 3.4]. Thus, we deduce

the following result.

Corollary 4.2. There do not exist (non-trivial) biwarped product submanifolds of the form

M⊥ ×f M
θ ×σ MT of a l.p.R. manifold (M̄, g,F) such that M⊥ is an anti-invariant, M θ is

a proper slant submanifold and MT is an invariant submanifold of M̄ .

Now, we consider (non-trivial) biwarped product submanifolds in the form M θ×f M
T ×σ

M⊥ in a l.p.R. manifold (M̄, g,F) such that MT is an invariant, M⊥ is an anti-invariant and

M θ is a proper slant submanifold of M̄ . Firstly, we present an example of such a submanifold.

Example 4.1. Consider the 8-dimensional Euclidean space R8 with standard metric g and

almost product structure F given by

F∂1 = ∂1, F∂2 = ∂2, F∂3 = −∂3, F∂4 = −∂4,

F∂5 = ∂6, F∂6 = ∂5, F∂7 = ∂8, F∂8 = ∂7,

where ∂k = ∂
∂xk

, k ∈ {1, . . . , 8} and (x1, x2, . . . , x8) are natural coordinates of R8. Upon a

straightforward calculation, we see that (R8,F , g) is a l.p.R. manifold. Let M be a submani-

fold of (R8,F , g) given by

x1 = t sinu, x2 = t cosu, x3 =
t√
2
cos v, x4 =

t√
2
sin v

x5 = 2t sinx, x6 = 0, x7 = 2t cosx, x8 = 0,

where u, v ∈ (0, π2 ) and t > 0. Then, the local frame of TM is given by

Z =sinu∂1 + cosu∂2 +
1√
2
cos v∂3 +

1√
2
sin v∂4 + 2 sinx∂5 + 2 cosx∂7,

U =t cosu∂1 − t sinu∂2,

V =− t√
2
sin v∂3 +

t√
2
cos v∂4,

X =2t cosx∂5 − 2t sinx∂7.

After some calculation, we see that Dθ = span{Z} is a proper slant distribution with slant

angle θ = cos−1( 1
11) and DT = span{U, V } is an invariant distribution and D⊥ = span{X}

is an anti-invariant distribution. Moreover, Dθ is totally geodesic and both DT and D⊥ are
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integrable distributions. If we denote the integral manifolds of Dθ, DT and D⊥ by M θ, MT

and M⊥, respectively, then the induced metric tensor of M is

ds2 =
11

2
dt2 + t2(du2 +

1

2
dv2) + 4t2dx2

= gMθ + t2gMT + (2t)2gM⊥ .

Thus, M = M θ ×f MT ×σ M⊥ is a (non-trivial) biwarped product proper s.s-i. submanifold

of order 1 of (R8,F , g) with warping functions f = t and σ = 2t.

5. Biwarped product proper skew semi-invariant submanifolds

of order 1 of the form M θ ×f MT ×σ M⊥

First, we give a characterization for biwarped product proper s.s-i. submanifolds of order 1

of the formM θ×fM
T×σM

⊥, whereM θ is a proper slant submanifold,MT is an invariant and

M⊥ is an anti invariant submanifold of a l.p.R. manifold (M̄, g,F). After that we investigate

the behavior of the second fundamental form of such submanifolds and as a result, we give a

condition for these submanifolds to be locally warped product. Firstly, we recall the following

fact given in [11] to prove our theorem.

Remark 5.1. ([11, Remark 2.1]) Suppose that the tangent bundle of a Riemannian manifold

M splits into an orthogonal sum TM = D0 ⊕D1 ⊕ . . .⊕Dk of non-trivial distributions such

that each Dj is spherical and its complement in TM is autoparallel for j ∈ {1, 2, . . . , k}. Then

the manifold M is locally isometric to a multiply warped product M0×f1 M2×f2 × . . .×fk Mk.

Now, we give one of the main theorems of this paper.

Theorem 5.1. Let M be a (Dθ,D⊥)-mixed geodesic proper s.s-i. submanifold of order 1

of a l.p.R. manifold (M̄, g,F). Then M is a locally biwarped product submanifold of type

M θ ×f MT ×σ M⊥ iff we have

ANPZX = cos2θZ(λ)X, (5.36)

ANZV +ANPZFV = − sin2θZ(µ)FV (5.37)

for smooth functions λ and µ satisfying X(λ) = V (λ) = 0 and X(µ) = V (µ) = 0 and

g(AFXZ,PW ) = −g(ANPWZ,X), (5.38)

g(AFXU,FV ) = 0, (5.39)

g(AFY X,FU) = 0, (5.40)
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g(AFXZ,FU) = 0, (5.41)

g(AFXU,PZ) = −g(ANPZU,X), (5.42)

for Z,W ∈ Γ(Dθ), U, V ∈ Γ(DT ), X,Y ∈ Γ(D⊥).

Proof. For any Z ∈ Γ(Dθ), U ∈ Γ(DT ) and X ∈ Γ(D⊥), using (2.4) and (3.17),

g(ANPZX,U) = −g(∇̄XNPZ,U) = −g(∇̄XFPZ,U) + g(∇̄XP 2Z,U).

By using (2.13) – (2.15) and (3.18), we find

g(ANPZX,U) = −g(∇̄XPZ,FU) + cos2θg(∇̄XZ,U).

Here, using (2.4), we arrive to

g(ANPZX,U) = −g(∇XPZ,FU) + cos2θg(∇XZ,U).

So, using (1.2), we conclude that

g(ANPZX,U) = −PZ(lnσ)g(X,FU) + cos2θZ(lnσ)g(X,U) = 0. (5.43)

Since M is (Dθ,D⊥)-mixed geodesic, for W ∈ Γ(Dθ) using (2.5), we find

g(ANPZX,W ) = g(h(X,W ), NPZ) = 0. (5.44)

Next, by a similar argument, for Y ∈ Γ(D⊥), using (2.4) and (3.17), we have

g(h(X,Y ), NZ) = g(∇̄XY,NZ) = g(∇̄XY,FZ)− g(∇̄XY, PZ).

Then using (2.14),(2.15) and (1.2), we find

g(h(X,Y ), NZ) = g(∇̄XFY,Z) + PZ(lnσ)g(X,Y ).

Hence using (2.4) and (2.5), we arrive to

g(h(X,Y ), NZ) = −g(AFY X,Z) + PZ(lnσ)g(X,Y )

= −g(h(X,Z),FY ) + PZ(lnσ)g(X,Y ).

In this equation, if we interchange Z with PZ, then we have

g(h(X,Y ), NPZ) = −g(h(X,PZ),FY ) + cos2θZ(lnσ)g(X,Y ).

Since M is (Dθ,D⊥)-mixed geodesic, we conclude that

g(ANPZX,Y ) = cos2θZ(lnσ)g(X,Y ). (5.45)
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Moreover, we have X(lnσ) = V (lnσ) = 0, since σ depends only on the points of M θ. So,

we conclude that λ = lnσ. Thus, from (5.43) – (5.45), it follows that (5.36). Now, we prove

(5.37). For Z ∈ Γ(Dθ), V ∈ Γ(DT ) and X ∈ Γ(D⊥), using (2.4) and (3.17), we have

g(ANZV +ANPZFV,X) = g(ANZV,X) + g(ANPZFV,X)

= g(ANZX,V ) + g(ANPZX,FV )

= −g(∇̄XNZ, V )− g(∇̄XNPZ,FV )

= −g(∇̄XNZ, V )− g(∇̄XFPZ,FV )

+g(∇̄XP 2Z,FV ).

Using (2.14), (2.15), (3.17) and(3.18) and, we arrive to

g(ANZV +ANPZFV,X) = −g(∇̄XFZ, V ) + g(∇̄XPZ, V )− g(∇̄XPZ, V )

+ cos2θg(∇̄XZ,FV ) +X(cos2θ)g(Z,FV )

= −g(∇̄XFZ, V ) + cos2θg(∇̄XZ,FV ).

Then, using (1.2), (2.4), (2.13) – (2.15), we find

g(ANZV +ANPZFV,X) = −g(∇̄XZ,FV ) + cos2θg(∇XZ,FV )

= −g(∇XZ,FV ) + cos2θg(∇XZ,FV )

= − sin2θg(∇XZ,FV )

= − sin2θZ(lnσ)g(X,FV ).

Since g(X,FV ) = 0, we conclude that

g(ANZV +ANPZFV,X) = − sin2θZ(lnσ)g(X,FV ) = 0. (5.46)

Similarly, for Z,W ∈ Γ(Dθ) and V ∈ Γ(DT ), using (2.4) and (3.17), we have

g(ANZV +ANPZFV,W ) = g(ANZV,W ) + g(ANPZFV,W )

= g(ANZW,V ) + g(ANPZW,FV )

= −g(∇̄WNZ, V )− g(∇̄WNPZ,FV )

= −g(∇̄WNZ, V )− g(∇̄WFPZ,FV )

+g(∇̄WP 2Z,FV ).

Using (2.14), (2.15), (3.17) and (3.18), we arrive to

g(ANZV +ANPZFV,W ) = −g(∇̄WFZ, V ) + g(∇̄WPZ, V )− g(∇̄WPZ, V )

+ cos2θg(∇̄WZ,FV ) +W (cos2θ)g(Z,FV )

= −g(∇̄WFZ, V ) + cos2θg(∇̄WZ,FV )

+W (cos2θ)g(Z,FV ).
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Then, using (1.2), (2.4), (2.13) – (2.15), we find

g(ANZV +ANPZFV,W ) = −g(∇̄WZ,FV ) + cos2θg(∇WZ,FV )

+W (cos2θ)g(Z,FV )

= −g(∇WZ,FV ) + cos2 θg(∇WZ,FV ) +W (cos2θ)g(Z,FV )

= − sin2θg(∇WZ,FV ) +W (cos2θ)g(Z,FV )

= − sin2 θg(∇θ
WZ,FV ) +W (cos2θ)g(Z,FV ).

Since g(∇θ
WZ,FV ) = 0 and g(Z,FV ) = 0, we conclude that

g(ANZV +ANPZFV,W ) = − sin2θg(∇θ
WZ,FV ) +W (cos2θ)g(Z,FV ) = 0. (5.47)

On the other hand, for Z ∈ Γ(Dθ) and U, V ∈ Γ(DT ), using (2.4) and (3.17), we get

g(ANZV +ANPZFV,U) = g(ANZV,U) + g(ANPZFV,U)

= g(ANZU, V ) + g(ANPZU,FV )

= −g(∇̄UNZ, V )− g(∇̄UNPZ,FV )

= −g(∇̄UNZ, V )− g(∇̄UFPZ,FV )

+g(∇̄UP
2Z,FV ).

Using (2.14), (2.15), (3.17) and (3.18), we arrive to

g(ANZV +ANPZFV,U) = −g(∇̄UFZ, V ) + g(∇̄UPZ, V )− g(∇̄UPZ, V )

+ cos2θg(∇̄UZ,FV ) + U(cos2θ)g(Z,FV )

= −g(∇̄UFZ, V ) + cos2 θg(∇̄UZ,FV )

+U(cos2θ)g(Z,FV ).

Since U [cos2θ] = 0, using (1.2), (2.4), (2.13) – (2.15), we find

g(ANZV +ANPZFV,U) = −g(∇̄UZ,FV ) + cos2θg(∇UZ,FV )

= −g(∇UZ,FV ) + cos2θg(∇UZ,FV )

= − sin2θg(∇UZ,FV )

= − sin2θZ(ln f)g(U,FV ).

So, we conclude that

g(ANZV +ANPZFV,U) = − sin2θZ(ln f)g(FV,U). (5.48)

Moreover, we have X(ln f) = V (ln f) = 0, since f depends only on the points of M θ. So, we

conclude that µ = ln f . Thus from (5.46) – (5.48), we get (5.37).

Next, we prove (5.38) – (5.42).We know M is a biwarped product proper s.s-i. submanifold

of order 1 of a locally product Riemannian manifold (M̄, g,F). Then, for Z,W ∈ Γ(Dθ),

using (1.1), we get ∇ZW = ∇θ
ZW and for X ∈ Γ(D⊥),we have

g(∇ZW,X) = sec2θ{g(AFXZ,PW ) + g(ANPWZ,X)} = g(∇θ
ZW,X) = 0
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from (3.22). Since M θ is a proper slant submanifold, it follows that

g(AFXZ,PW ) + g(ANPWZ,X) = 0,

which gives (5.38). For U, V ∈ Γ(DT ) and X,Y ∈ Γ(D⊥), using (1.3), we get g(∇UV,X) =

g(∇T
UV − g(U, V )∇(ln f), X) = 0. Then from (3.24) we find

g(∇UV,X) = g(AFXU,FV ) = 0.

Therefore, we get (5.39). For U ∈ Γ(DT ) andX,Y ∈ Γ(D⊥), using (1.3), we get g(∇XY, U) =

g(∇⊥
XY − g(X,Y )∇(lnσ), U) = 0. Then from (3.26) we find,

g(∇XY, U) = −g(AFY X,FU) = 0.

Hence, we conclude that (5.40). For X ∈ Γ(D⊥), Z ∈ Γ(Dθ) and U ∈ Γ(DT ), using (1.2),

we write g(∇ZX,FU) = g(Z(lnσ)X,FU) = Z(lnσ)g(Z,FU) = 0. On the other hand, from

(3.28) we find

g(∇ZX,FU) = −g(AFXZ,FU) = 0.

Thus, we get (5.41). For X ∈ Γ(D⊥), Z ∈ Γ(Dθ) and U ∈ Γ(DT ), using (1.3), we have

g(∇UX,Z) = 0. Then, from (3.29) we find,

g(∇UX,Z) = − sec2θ{g(AFXU,PZ) + g(ANPZU,X)} = 0.

It follows (5.42).

Conversely, assume that M is a proper (Dθ,D⊥)-mixed geodesic s.s-i. submanifold of

order 1 of a locally product Riemannian manifold (M̄, g,F) such that (5.36) – (5.42) hold.

From (5.38), we get (3.31). On the other hand if we write FV instead of V and W instead

of Z in (5.37), we find ANWFV + ANPWV = − sin2 θW (µ)V . If we take inner product of

this equation with Z ∈ Γ(Dθ), we get

g(ANWFV +ANPWV,Z) = g(ANWZ,FV ) + g(ANPWZ, V )

= − sin2θW (µ)g(V,Z) = 0.

So, (3.30) holds. Thus from Theorem (3.1), the slant distribution Dθ is totally geodesic

and as a result, it is integrable. On the other hand, from (5.39), for all U, V ∈ Γ(DT ) and

X ∈ Γ(D⊥), we write g(AFXV,FU) = 0. Thus, g(AFXV,FU) = g(AFXU,FV ), which is
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(3.32). On the other hand, in (5.37), if we write FV instead of V , we findANZFV+ANPZV =

− sin2θZ(µ)V . If we take inner product of this equation with U ∈ Γ(DT ), we arrive at

g(ANZFV +ANPZV,U) = g(ANZFV,U) + g(ANPZV,U)

= − sin2θZ(µ)g(V,U).
(5.49)

Here, if we interchange U and V in (5.49), we find

g(ANZFU +ANPZU, V ) = g(ANZFU, V ) + g(ANPZU, V )

= − sin2θZ(µ)g(U, V ).
(5.50)

From (5.49) and (5.50), we get g(ANZU,FV )+g(ANPZU, V ) = g(ANZV,FU)+g(ANPZV,U).

This is (3.33). Thus, by Teorem 3.2, the invariant distribution DT is integrable. On the other

hand, for all X,Y ∈ Γ(D⊥) and U ∈ Γ(DT ), we have g(AFY X,FU) = 0 from (5.40). It fol-

lows that g(AFY X,FU) = g(AFXY,FU) = 0. That is (3.34). Also, we get

g(∇XY,Z) = − sec2θ{g(h(Y, PZ),FX) + g(ANPZX,Y )} from (3.25). Since M is (Dθ,D⊥)-

mixed geodesic, it follows that g(h(Y, PZ),FX) = 0. Then, we find g(∇XY,Z) = g(∇Y X,Z).

Thus (3.35) follows. Then by Theorem 3.3, the totally real distributions D⊥ is integrable.

Let M θ,MT and M⊥ be the integral manifolds of Dθ,DT and D⊥, respectively. If we denote

the second fundamental form of MT in M by hT , for U, V ∈ Γ(DT ) and X ∈ Γ(D⊥), using

(2.4), (3.24) and (5.39), we have

g(hT (U, V ), X) = g(∇UV,X) = g(AFXU,FV ) = 0. (5.51)

For any, U, V ∈ Γ(DT ) and Z ∈ Γ(Dθ), using (2.4) and (3.23), we get

g(hT (U, V ), Z) = g(∇UV,Z) = csc2θg(ANPZU, V ) + g(ANZU,FV ).

At this equation, if we use (5.37), we have

g(hT (U, V ), Z) = csc2θg(ANPZV +ANZFV,U) = −Z(µ)g(V,U).

After some calculation, we obtain

g(hT (U, V ), Z) = g(−g(U, V )∇µ,Z), (5.52)

where ∇µ is the gradient of µ. Thus, from (5.51) and (5.52), we conclude that

hT (U, V ) = −g(U, V )∇µ.

This equation says thatMT is totally umbilic inM with the mean curvature vector field−∇µ.

Now, we show that −∇µ is parallel. We have to satisfy g(∇U∇µ,E) = 0 for U ∈ Γ(DT ) and
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E ∈ (DT )
⊥ = Dθ ⊕ D⊥. Here, we can put E = Z +X, where Z ∈ Γ(Dθ) and X ∈ Γ(D⊥).

By direct computations, we obtain

g(∇U∇µ,E) = {Ug(∇µ,E)− g(∇µ,∇UE)}

= U(E(µ))− [U,E](µ)− g(∇µ,∇EU)

= [U,E](µ) + E(U(µ))− [U,E](µ)− g(∇µ,∇EU)

= −g(∇µ,∇EU) = −g(∇µ,∇ZU)− g(∇µ,∇XU),

since U(µ) = 0. Here, for any W ∈ Γ(Dθ), we have g(∇ZU,W ) = −g(U,∇ZW ) = 0, since

M θ is totally geodesic in M . Thus, ∇ZU ∈ Γ(DT ) or ∇ZU ∈ Γ(D⊥). In either case, we have

g(∇µ,∇ZU) = 0. (5.53)

On the other hand, from (3.27), we have

g(∇XU,W ) = −g(U,∇XW ) = − csc2θ{g(ANPWX,U) + g(ANWX,FU)}.

Here, using (5.37), we obtain

g(∇XU,W ) = g(W (µ)U,X) = 0.

That is, ∇XU ∈ Γ(DT ) or ∇XU ∈ Γ(D⊥). In either case, we get

g(∇µ,∇XU) = 0. (5.54)

From (5.53) and (5.54), we find

g(∇U∇µ,E) = 0.

Thus, MT is spherical, since it is also totally umbilic. Consequently, DT is spherical.

Next, we show that D⊥ is spherical. Let h⊥ denote the second fundamental form of M⊥ in

M . Then for X,Y ∈ Γ(D⊥) and U ∈ Γ(DT ), using (2.4), (3.26) and (5.40), we have

g(h⊥(X,Y ), U) = g(∇XY, U) = −g(AFY X,FU) = 0. (5.55)

On the other hand, for any Z ∈ Γ(Dθ), using (3.25)

g(h⊥(X,Y ), Z) = − sec2θ{g(h(X,PZ),FY ) + g(ANPZX,Y )}.

Since M , (Dθ,D⊥)-mixed geodesic, g(h(X,PZ),FY ) = 0. So, we have

g(h⊥(X,Y ), Z) = −g(ANPZX,Y ).

Using (5.36), we obtain

g(h⊥(X,Y ), Z) = −Z(λ)g(X,Y ).
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By a direct calculation, we get

g(h⊥(X,Y ), Z) = −g(∇λg(X,Y ), Z), (5.56)

where ∇λ is the gradient of λ. From (5.55) and (5.56), we obtain

h⊥(X,Y ) = −g(X,Y )∇λ.

So M⊥ is totally umbilic in M and the mean curvature vector field is −∇λ. What’s left

is to show that −∇λ is parallel. We have to satisfy g(∇X∇λ,E) = 0 for X ∈ Γ(D⊥) and

E ∈ (D⊥)
⊥ = Dθ ⊕DT . The proof is similar to the parallelity of −∇µ. So we omit it. −∇λ

is parallel. So, M⊥ is spherical, since it is also totally umbilic. Consequently, D⊥ is spherical.

Lastly, we prove that (DT )
⊥ = Dθ ⊕D⊥ and (D⊥)

⊥ = Dθ ⊕DT are autoparallel. In fact,

Dθ ⊕D⊥ is autoparallel iff all for four types of covariant derivatives ∇ZW,∇ZX,∇XZ,∇XY

are again in Γ(Dθ ⊕ D⊥) for Z,W ∈ Γ(Dθ) and X,Y ∈ Γ(D⊥). This is equivalent to say

that all four inner products g(∇ZW,U), g(∇ZX,U), g(∇XZ,U), g(∇XY, U) vanish, where

U ∈ Γ(DT ). Using (3.21) and (5.37), we find

g(∇ZW,U) = − csc2θ{g(ANPWZ,U) + g(ANWZ,FU)}

= − csc2θg(ANPWU +ANWFU,Z)

= W (µ)g(U,Z) = 0.

Using (3.28) and (5.41), we find

g(∇ZX,U) = −g(AFXZ,FU) = 0.

By (3.27) and (5.37), we get

g(∇XZ,U) = − csc2θ{g(ANPZX,U) + g(ANZX,FU)} = 0.

By (3.26) and (5.40), we find

g(∇XY,U) = −g(AFY X,FU) = 0.

Thus, Dθ ⊕ D⊥ is autoparallel. On the other hand, Dθ ⊕ DT is autoparallel iff all four

inner products g(∇ZW,X), g(∇ZU,X), g(∇UZ,X), g(∇UV,X) vanish, where Z,W ∈ Γ(Dθ),

U, V ∈ Γ(DT ) and X ∈ Γ(D⊥). Firstly, we have already g(∇ZU,X) = 0 from above. Using

(3.22) and (5.38), we get

g(∇ZW,X) = sec2θ{g(AFXZ,PW ) + g(ANPWZ,X)} = 0.
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Using (3.24) and (5.39), we find

g(∇UV,X) = g(AFXU,FV ) = 0.

And for last one, by (3.29) and (5.42), we get

g(∇UZ,X) = −g(∇UX,Z) = sec2θ{g(AFXU,PZ) + g(ANPZU,X)} = 0.

So, Dθ⊕DT is autoparallel. Thus by Remark 5.1, M is locally biwarped product submanifold

of the form M θ ×f MT ×σ M⊥.

Next, we investigate the behavior of the second fundamental form h of a non-trivial

biwarped product s.s-i. submanifold of order 1 of a locally product Riemannian manifold

(M̄, g,F) of the form M θ ×f MT ×σ M⊥.

Lemma 5.1. Let M be a biwarped product proper s.s-i. submanifold of order 1 of the form

M θ ×f MT ×σ M⊥ of a l.p.R. manifold (M̄, g,F). Then for h of M in (M̄, g,F), we have

g(h(U, V ), NW ) = −W (ln f)g(U,FV ) + PW (ln f)g(U, V ), (5.57)

g(h(Z,U), NW ) = 0, (5.58)

g(h(X,U), NW ) = 0, (5.59)

g(h(Z,U),FX) = 0, (5.60)

g(h(X,U),FY ) = 0, (5.61)

g(h(U, V ),FX) = 0, (5.62)

where Z,W ∈ Γ(Dθ), X,Y ∈ Γ(D⊥) and U, V ∈ Γ(DT ).

Proof. For U, V ∈ Γ(DT ) and W ∈ Γ(Dθ), using (2.4), (2.13) – (2.15) and (3.17), we have

g(h(U, V ), NW ) = g(∇̄UV,NW ) = −g(V, ∇̄UNW )

= −g(V, ∇̄UFW ) + g(V, ∇̄UPW )

= −g(FV, ∇̄UW ) + g(V,∇UPW )

= −g(FV,∇UW ) + g(V,∇UPW )

= −W (ln f)g(FV,U) + PW (ln f)g(U, V ).
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Thus, we get (5.57). Now, using (2.4), (2.13) – (2.15) and (3.17), we get

g(h(Z,U), NW ) = g(∇̄ZU,NW ) = −g(U, ∇̄ZNW )

= −g(U, ∇̄ZFW ) + g(U, ∇̄ZPW )

= −g(FU, ∇̄ZW ) + g(U,∇ZPW )

= g(W, ∇̄Z(FU))− g(∇ZU,PW )

= g(W,∇ZFU)− g(∇ZU,PW ),

for Z,W ∈ Γ(Dθ) and U ∈ Γ(DT ). Here using (1.2), we get

g(h(Z,U), NW ) = Z(ln f)g(W,FU)− Z(ln f)g(U,PW ) = 0

since g(W,FU) = g(U,PW ) = 0. So (5.58) follows. The proof of (5.59) is similar.

For Z ∈ Γ(Dθ), X ∈ Γ(D⊥) and U ∈ Γ(DT ), using (2.4), (2.13) – (2.15) and (3.17), we get

g(h(Z,U),FX) = g(∇̄ZU,FX) = −g(U, ∇̄ZFX)

= −g(FU, ∇̄ZX) = −g(FU,∇ZX)

= −Z(lnσ)g(FU,X) = 0

since g(FU,X) = 0. So (5.60) follows. Next, using (2.4), (2.13) – (2.15), (3.17) and (1.3) we

get

g(h(X,U),FY ) = g(∇̄XU,FY ) = −g(U, ∇̄XFY )

= −g(FU, ∇̄XY ) = −g(FU,∇XY )

= g(∇XFU, Y ) = 0

for U ∈ Γ(DT ) and X,Y ∈ Γ(D⊥). Thus, (5.61) follows. Lastly, using (2.4), (2.13) – (2.15),

(3.17) and (1.3) we get

g(h(U, V ),FX) = g(∇̄UV,FX) = −g(V, ∇̄UFX)

= −g(FV, ∇̄UX) = −g(FV,∇UX) = 0

for U, V ∈ Γ(DT ) and X ∈ Γ(D⊥). So, we have (5.62). The other assertions can be obtained

by a similar way.

The previous lemma shows partially us the behavior of the second fundamental form h of

the biwarped product proper s.s-i. submanifolds of order 1 of the form M θ ×f MT ×σ M⊥

in the normal subbundle N(Dθ) and F(D⊥).

Remark 5.2. The equations (5.57), (5.58), (5.59) and (5.60) also were obtained as Lemma

3.1-(ii), Lemma 3.1-(i), Lemma 3.3-(ii) and Lemma 3.3-(i), respectively in [22].

By using (5.58) – (5.61), we immediately have the following result.
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Corollary 5.1. Let M be a biwarped-product proper s.s-i. submanifold of order 1 of the

form M θ ×f MT ×σ M⊥ of a locally product Riemannian manifold (M̄, g,F) such that the

invariant normal subbundle D̄T = {0}. Then M is (DT ,D⊥) and (DT ,Dθ)-mixed geodesic.

Lastly, we give another main result of this section.

Theorem 5.2. Let M be a biwarped-product proper s.s-i. submanifold of order 1 in the form

M θ ×f MT ×σ M⊥ of a l.p.R. manifold (M̄, g,F) such that its invariant normal subbundle

D̄T = {0}. Then M is a locally warped product in the form M θ × MT ×σ M⊥ iff M is

DT -geodesic.

Proof. If M is a locally warped product of the form M θ ×MT ×σ M⊥, then the warping

function f is constant. By (5.57), we have

g(h(U, V ), NW ) = −W (ln f)g(U,FV ) + PW (ln f)g(U, V ) = 0

for U, V ∈ Γ(DT ) and W ∈ Γ(Dθ), since W (ln f) = PW (ln f) = 0. Using this fact and

(5.62), it follows that h(U, V ) = 0. Which say us M is DT -geodesic.

Conversely, let M be DT -geodesic. Then for any U, V ∈ Γ(DT ) and W ∈ Γ(Dθ), we have

W (ln f)g(U,FV ) + PW (ln f)g(U, V ) = 0 (5.63)

from (5.57). If we put W = PW in (5.63) and using (3.18), we obtain

PW (ln f)g(U,FV ) + cos2θW (ln f)g(U, V ) = 0. (5.64)

If we replace V by FV in (5.64), then (5.64) becomes

PW (ln f)g(U, V ) + cos2θW (ln f)g(U,FV ) = 0. (5.65)

From (5.63) and (5.65), we get

sin2θW (ln f)g(U,FV ) = 0 (5.66)

for any U, V ∈ Γ(DT ) and W ∈ Γ(Dθ). Since (5.66) is true for any U, V ∈ Γ(DT ), it is also

true for FV ∈ Γ(DT ). So (5.66) becomes

sin2θW (ln f)g(U, V ) = 0. (5.67)

Since M is proper, sinθ ̸= 0, we can deduce that W (ln f) = 0 from (5.67). Namely, we find

f as a constant. Thus, M must be a locally warped product in the form M θ ×MT ×σ M⊥.
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6. An inequality for non-trivial biwarped product s.s-i. submanifolds of

order 1 of the form M θ ×f MT ×σ M⊥

In this section, we shall establish an inequality for the squared norm of the second fun-

damental form in terms of the warping functions for biwarped product skew semi-invariant

submanifolds of order 1 of the form M θ ×f MT ×σ M⊥, where M θ is a proper slant, MT is

a invariant and M⊥ is an anti-invariant submanifold in a l.p.R. manifold (M̄, g,F).

Let M0×f1 M1×f2 M2 be a biwarped product submanifold in a Riemannian manifold M̄ .

Then from [9], we write

K(X0, Xi) = K0i =
1

fi
((∇X0X0)(fi)−X0(X0(fi)))

K(Xi, Xj) = Kij = −g(∇fi,∇fj)

fifj
, i, j = 1, 2,

(6.68)

for each unit vectorXi tangent toMi. If we consider the local orthonormal frame {e1, e2, . . . , em}

of TM , in view of Gauss equation (2.6), we derive

τ(TM) = τ̄(TM) +

m̄∑
r=m+1

∑
1≤i ̸=j≤m

(
hriih

r
jj − (hrij)

2

)
, (6.69)

where m̄−m = dimT⊥M .

Now we are ready to prove the general inequality. Let M be a m = m0 + m1 + m2-

dimensional biwarped product s.s-i. submanifolds of order 1 of type M θ ×f M
T ×σ M

⊥ in a

locally product Riemannian manifold (M̄, g,F). A canonical orthonormal basis is given by

{e1, . . . , em0 , em0+1, . . . , em0+m1 , em0+m1+1, . . . , em0+m1+m2 , em+1, . . . , em̄} of TM̄ such that

{e1, . . . , em0} is an orthonormal basis of TM θ, {em0+1, . . . , em0+m1} is an orthonormal basis

of TMT , {em0+m1+1, . . . , em0+m1+m2} is an orthonormal basis of TM⊥, {em+1, . . . , em̄} is an

orthonormal basis of T⊥M .

Theorem 6.1. Let M = M θ×fM
T×σM

⊥ be an m-dimensional non-trivial biwarped product

s.s-i. submanifold M of order 1 of an m̄-dimensional locally product Riemannian manifold

(M̄, g,F). Then

(i) the second fundamental form of M satisfies

1
2 ∥ h ∥2≥ τ̄(TM)− τ̄(TM θ)− τ̄(TMT )− τ̄(TM⊥)

−m1
∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ
,

(6.70)
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where m1 = dimMT and m2 = dimM⊥.

(ii) The equality case of the inequality (6.70) holds identically iff M θ is also totally geo-

desic in M̄ , and both MT and M⊥ are totally umbilic in M̄ .

Proof. Putting U = W = ei and V = Z = ej in Gauss equation (2.6), we obtain

R̄(ei, ej , ej , ei) = R(ei, ej , ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).

Taking summation, over 1 ≤ i, j ≤ m(i ̸= j) in above equation, we obtain

2τ̄(TM) = 2τ(TM)−m2 ∥ H ∥2 + ∥ h ∥2 .

Then from (2.11), we derive

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−

∑
1≤i<j≤m0

Kij

−
∑

m0+1≤i<j≤m0+m1

Kij −
∑

m0+m1+1≤i<j≤m0+m1+m2

Kij −
m0∑
i=1

m0+m1∑
j=m0+1

Kij

−
m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij −
m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij .

Hence, we obtain

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)− τ(TM θ)− τ(TMT )− τ(TM⊥)

−
m0∑
i=1

m0+m1∑
j=m0+1

Kij −
m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij −
m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij .

Last three terms of first line of above equation can be obtained by using (6.69), then we get

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)

−τ̄(TM θ)−
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(
hriih

r
tt − (hrit)

2

)
−τ̄(TMT )−

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(
hrjjh

r
ll − (hrjl)

2

)
−τ̄(TM⊥)−

m̄∑
r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(
hraah

r
bb − (hrab)

2

)

−
m0∑
i=1

m0+m1∑
j=m0+1

Kij −
m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij −
m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij .

(6.71)

Now, using (6.68), for a biwarped product submanifold, we find

m0∑
i=1

m0+m1∑
j=m0+1

Kij = m1
∆f

f
,

m0∑
i=1

m0+m1+m2∑
j=m0+m1+1

Kij = m2
∆σ

σ
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and

m0+m1∑
i=m0+1

m0+m1+m2∑
j=m0+m1+1

Kij = −m1m2
g(∇f,∇σ)

fσ
.

If we use these equations in (6.71), we obtain

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)−
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(
hriih

r
tt − (hrit)

2

)
−τ̄(TMT )−

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(
hrjjh

r
ll − (hrjl)

2

)
−τ̄(TM⊥)−

m̄∑
r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(
hraah

r
bb − (hrab)

2

)
.

If we arrange this equation, we arrive to

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)− τ̄(TMT )− 2τ̄(TM⊥)
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(hrit)
2 +

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjl)
2

+

m̄∑
r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hrab)
2 −

m̄∑
r=m+1

∑
1≤i ̸=t≤m0

(hriih
r
tt)

−
m̄∑

r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjjh
r
ll)

−
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hraah
r
bb).
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Adding and substracting the term
1

2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)

in the above equation,

we find that

1

2
∥ h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)− τ̄(TMT )− τ̄(TM⊥)

+
m̄∑

r=m+1

∑
1≤i ̸=t≤m0

(hrit)
2 +

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjl)
2

+
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hrab)
2 −

m̄∑
r=m+1

∑
1≤i ̸=t≤m0

(hriih
r
tt)

−
m̄∑

r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjjh
r
ll)

−
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hraah
r
bb)

+
1

2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)

−1

2

m̄∑
r=m+1

(
(hr11)

2) + . . .+ (hrmm)2
)
.

(6.72)

Here, by (2.7), we have

∥ H ∥2= 1

m2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)
+ 2

m̄∑
r=m+1

∑
1≤i ̸=j≤m

(hriih
r
jj).

Using this equation in (6.72), we obtain

1

2
∥h ∥2 =

m2

2
∥ H ∥2 +τ̄(TM)−m1

∆f

f
−m2

∆σ

σ
+m1m2

g(∇f,∇σ)

fσ

−τ̄(TM θ)− τ̄(TMT )− τ̄(TM⊥)

+

m̄∑
r=m+1

∑
1≤i ̸=t≤m0

(hrit)
2 +

m̄∑
r=m+1

∑
m0+1≤j ̸=l≤m0+m1

(hrjl)
2

+
m̄∑

r=m+1

∑
m0+m1+1≤a̸=b≤m0+m1+m2

(hrab)
2 − m2

2
∥ H ∥2

+
1

2

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)
.

(6.73)

Now, the inequality (6.70) comes from (6.73). The equality sign in (6.70) holds iff

m̄∑
r=m+1

∑
1≤i ̸=t≤m

(hrit)
2 = 0 and

m̄∑
r=m+1

(
(hr11)

2 + . . .+ (hrmm)2
)

= 0.

(6.74)
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It follows that, hrij = g(h(ei, ej), er) = 0 for i, j ∈ 1, . . . ,m and r ∈ m+ 1, . . . , m̄. Which

says us h ≡ 0. For a biwarped product submanifold of the form M = M θ ×f M
T ×σ M

⊥, we

know already that M θ is totally geodesic in M and both MT and M⊥ are totally umbilic in

M . Since, the second fundamental form h of M vanishes, identically, it follows that M θ is

also totally geodesic in M̄ and both MT and M⊥ are also totally umbilic in M̄ .

Now we give an application of the inequality (6.70).

Theorem 6.2. Let M = M θ×fM
T×σM

⊥ be an m-dimensional non-trivial biwarped product

s.s-i. submanifold M of order 1 of an m̄-dimensional locally product Riemannian manifold

(M̄ = M1(c1) ×M2(c2),F , g). Then the squared norm of the second fundemental form h of

M satisfies

∥ h ∥2 ≥ 1

2
(c1 + c2)

(
m0m1 +m0m2 +m1m2

)
− 2m1

∆f

f
− 2m2

∆σ

σ

+2m1m2
g(∇f,∇σ)

fσ
,

(6.75)

where m0 = dimM θ, m1 = dimMT , m2 = dimM⊥ and m0 +m1 +m2 = m.

Proof. In (2.16), substituting X = ei, Y = Z = ej and take inner product with ei in the

above equation, we obtain

R̄(ei, ej , ej , ei) =
1

4
(c1 + c2)

{
g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)

+g(Fej , ej)g(Fei, ei)− g(Fei, ej)g(Fej , ei)

}
+
1

4
(c1 − c2)

{
g(ej , ej)g(Fei, ei)− g(ei, ej)g(Fej , ei)

+g(Fej , ej)g(ei, ei)− g(Fei, ej)g(ej , ei)

}
.

Taking summation over basis vectors of TM for 1 ≤ i ̸= j ≤ m, we get

2τ̄(TM) =
1

4
(c1 + c2)

{ ∑
1≤i ̸=j≤m

g(ej , ej)g(ei, ei)−
∑

1≤i ̸=j≤m

g(ei, ej)
2

+
∑

1≤i ̸=j≤m

g(Fej , ej)g(Fei, ei)−
∑

1≤i ̸=j≤m

g(Fei, ej)g(Fej , ei)

}
+
1

4
(c1 − c2)

{ ∑
1≤i ̸=j≤m

g(ej , ej)g(Fei, ei)−
∑

1≤i ̸=j≤m

g(ei, ej)g(Fej , ei)

+
∑

1≤i ̸=j≤m

g(Fej , ej)g(ei, ei)−
∑

1≤i ̸=j≤m

g(Fei, ej)g(ej , ei)}
}
.

Let M be an m-dimensional non-trivial biwarped product s.s-i. submanifold M of order 1

of an m̄-dimensional locally product Riemannian manifold M̄ = M1(c1) × M2(c2) in the

form M θ ×f MT ×σ M⊥. We choose the orthonormal frame fields of TM θ and TMT
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as {e1 = sec θPe1, . . . , em0 = sec θPem0} and {Fem0+1 = em0+1, . . . ,Fet = et,Fet+1 =

−et+1, . . . ,Fem0+m1 = −em0+m1}, respectively. Also, we choose the orthonormal frame fields

of TM⊥ as {em0+m1+1, . . . , em0+m1+m2}. Here, for 1 ≤ i ≤ m0, we have g(Fei, ei) = cosθ

and for 1 ≤ i ̸= j ≤ m0, we have g(Fei, ej) = 0, since M θ is a slant submanifold with slant

angle θ. Also, for m0 + 1 ≤ i ≤ t, we have g(Fei, ei) = 1 and for t + 1 ≤ i ≤ m0 + m1,

we have g(Fei, ei) = −1. Moreover, for m0 + m1 + 1 ≤ i ≤ m0 + m1 + m2 = m, we have

g(Fei, ei) = 0 and for m0 +m1 + 1 ≤ i ̸= j ≤ m0 +m1 +m2 = m, we have g(Fei, ej) = 0,

since M⊥ is an anti-invariant submanifold. Thus, using these facts, we obtain the following∑
m0+1≤i ̸=j≤m0+m1

g(Fej , ej)g(Fei, ei) = m1 − 3,

∑
1≤i ̸=j≤m0

g(Fej , ej)g(Fei, ei) = (m0 − 1) cos2θ,

∑
m0+1≤i ̸=j≤m0+m1

g(ej , ej)g(Fei, ei) = 2t−m1 − 1,

∑
1≤i ̸=j≤m0

g(ej , ej)g(Fei, ei) = (m0 − 1) cosθ,

∑
m0+m1+1≤i ̸=j≤m

g(Fej , ej)g(Fei, ei) =
∑

m0+m1+1≤i ̸=j≤m

g(ej , ej)g(Fei, ei) = 0,

and ∑
1≤i ̸=j≤m

g(Fei, ej)g(ej , ei) =
∑

1≤i ̸=j≤m

g(Fei, ej)g(Fej , ei) = 0.

Thus, we find

2τ̄(TM) =
1

4
(c1 + c2)

{
m(m− 1) +m1 − 3 + (m0 − 1) cos2θ

}
+
1

4
(c1 − c2)

{
2(2t−m1 − 1) + 2(m0 − 1) cosθ

}
.

(6.76)

Similarly for TM θ, TMT and TM⊥, we derive

2τ̄(TM θ) =
1

4
(c1 + c2)

{
m0(m0 − 1) + (m0 − 1) cos2θ

}
+
1

4
(c1 − c2)

{
2(m0 − 1) cos θ

} (6.77)

2τ̄(TMT ) =
1

4
(c1 + c2)

{
m1(m1 − 1) +m1 − 3

}
+
1

4
(c1 − c2)

{
2(2t−m1 − 1)

} (6.78)

2τ̄(TM⊥) =
1

4
(c1 + c2)

{
m2(m2 − 1)

}
. (6.79)

Thus, using (6.76) – (6.79) in (6.70), we get the inequality (6.75).
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Unit of İstanbul University with project numbered 25839.

References

[1] Adati, T. (1981). Submanifolds of an almost product manifold. Kodai Math. J., 4, 327–343.

[2] Al-Jedani, A., Uddin, S., Alghanemi, A., & Mihai, I. (2019). Bi-warped products and applications in

locally product Riemannian manifolds. J. Geom. Phys., 144, 358–369.
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ON THE MANNHEIM PARTNER OF A CUBIC BEZIER CURVE IN E3

ŞEYDA KILIÇOĞLU ID AND SÜLEYMAN ŞENYURT ID ∗

Abstract. In this study we have examined, Mannheim partner of a cubic Bezier curve

based on the control points with matrix form in E3. Frenet vector fields and also curvatures

of Mannheim partner of the cubic Bezier curve are examined based on the Frenet apparatus

of the first cubic Bezier curve in E3.
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1. Introduction and Preliminaries

French engineer Pierre Bézier, who used Bézier curves to design automobile bodies stud-

ied with them in 1962. But the study of these curves was first developed in 1959 by math-

ematician Paul de Casteljau using de Casteljau’s algorithm, a numerically stable method

to evaluate Bézier curves. A Bézier curve is frequently used in computer graphics and re-

lated fields, in vector graphics, used in animation as a tool to control motion. To guarantee

smoothness, the control point at which two curves meet must be on the line between the two

control points on either side. In animation applications, such as Adobe Flash and Synfig,

Bézier curves are used to outline, for example, movement. Users outline the wanted path in

Bézier curves, and the application creates the needed frames for the object to move along

the path. For 3D animation Bézier curves are often used to define 3D paths as well as 2D
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curves for key-frame interpolation. We have been motivated by the following studies. First

Bezier-curves with curvature and torsion continuity has been examined in [6]. Also in [2],

[3] and [7] Bezier curves and surfaces have been given. In [4] Bézier curves are designed for

Computer-Aided Geometric. Recently equivalence conditions of control points and applica-

tion to planar Bezier curves have been examined. In [8] Frenet apparatus of the cubic Bézier

curves has been examined in E3. Before, the 5th order Bézier curve and its, first, second, and

third based on the control points of the 5th order Bézier Curve in E3 are examined too in [12].

We have already examine in cubic Bézier curves and involutes in [8] and [9], respectively.

Also Bertrand mate of a cubic Bezier curve based on the control points with matrix form has

been examined with Frenet apparatus in [11]. Here we will examine the Mannheim partner

of a cubic Bezier curve, based on the control points with matrix representation.

The set, whose elements are Frenet vector fields and the curvatures of a curve α (t) ⊂ E3,

is called Frenet apparatus of the curves. Let α(t) be the curve, with η = ∥α′ (t)∥ ≠ 1 and

Frenet apparatus be {T (t) , N (t) , B (t) , κ (t) , τ (t)}. Frenet vector fields are given for a non

arc-length curve

T (t) =
α′ (t)

∥α′ (t)∥
, N (t) = B (t) ΛT (t) , B (t) =

α′ (t) Λα′′ (t)

∥α′ (t) Λα′′ (t)∥
,

κ (t) =

∥∥∥α′ (t) Λα
′′
(t)

∥∥∥
∥α′ (t)∥3

and τ (t) =

〈
α′ (t) Λα

′′
(t) , α′′′(t)

〉
∥α′ (t) Λα′′ (t)∥2

where κ (t) and τ (t) are curvature functions. Also Frenet formulas are well known as
T ′

N ′

B′

 =


0 ηκ 0

−ηκ 0 ητ

0 −ητ 0




T

N

B

 .

Generally, Béziers curve can be defined by n + 1 control points P0, P1, ..., Pn with the

parametrization

B (t) =
n∑

i=0

(
n

i

)
ti (1− t)n−i [Pi] ,

where

(
n

i

)
=

n!

i!(n− i)!
is known as the usual binomial coefficients. In this study we will

define and work on cubic Bézier curves in E3. For more detail see [1, 8].

Definition 1.1. A cubic Bézier curve is a special Bézier curve and it has only four points

P0, P1, P2 and P3, its parametrization is

α (t) = (1− t)3 P0 + 3t (1− t)2 P1 + 3t2 (1− t)P2 + t3P3
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and matrix form of the cubic Bezier curve with control points P0, P1, P2, P3, is

α (t) =


t3

t2

t

1



T 
−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0




P0

P1

P2

P3

 .

Also using the derivatives of a cubic Bézier curve Frenet apparatus {T,N,B, κ, τ} have

already been given as in the following theorems by using matrix representation. For more

detail see in [8].

The first derivative of a cubic Bézier curve by using matrix representation is

α′(t) =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




Q0

Q1

Q2



where Q0 = 3 (P1 − P0) = (x0, y0, z0), Q1 = 3 (P2 − P1) = (x1, y1, z1),

Q2 = 3 (P3 − P2) = (x2, y2, z2) are control points.

The second derivative of a cubic Bézier curve by using matrix representation is

α′′(t) =

 t

1

T  −1 1

1 0

 R0

R1



where R0 = 6 (P2 − 2P1 + P0) , R1 = 6 (P3 − 2P2 + P1) are control points.

The third derivative of a cubic Bézier curve is constant by using matrix representation is

α′′′(t) = [R0R1]

with the control point [R0R1] = R1 −R0 = 2 [Q1Q2]− 2 [Q0Q1] .

Frenet apparatus {T (t) , N (t) , B (t) , κ (t) , τ (t)} of a cubic Bézier curve have already been

given as in the following theorems by using the matrix representation. For more detail see

in [9].
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Tangent vector field of a cubic Bezier curve α with, ∥α′∥ = η has the following the matrix

representation

T (t) =
1

η


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




x0 y0 z0

x1 y1 z1

x2 y2 z2



=
1

η


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




Q0

Q1

Q2


=

1

η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
.

Binormal vector field of a cubic Bezier curve by using the matrix representation is

B (t) =
6

m


t2

t

1


T 

b11 b12 b13

b21 b22 b23

b31 b32 b33



=
6

m

[
t2 t 1

]
B1

B2

B3


=

6

m

(
B1t

2 +B2t+B3

)
where m = ∥α′Λα′′∥ and

b11 = (y0z1 − y1z0 − y0z2 + y2z0 + y1z2 − y2z1) ,

b12 = (x1z0 − x0z1 + x0z2 − x2z0 − x1z2 + x2z1) ,

b13 = (x0y1 − x1y0 − x0y2 + x2y0 + x1y2 − x2y1) ,

b21 = (2y1z0 + y0z2 − 2y0z1 − y2z0) ,

b22 = (2x0z1 − 2x1z0 − x0z2 + x2z0) ,

b23 = (2x1y0 − 2x0y1 + x0y2 − x2y0) ,

b31 = y0z1 − y1z0,

b32 = x1z0 − x0z1,

b33 = x0y1 − x1y0.
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Normal vector field of a cubic Bezier curve is a 4th order Bezier curve and it has the

matrix representation as in

N (t) =
6

ηm



t4

t3

t2

t

1



T 

n11 n12 n13

n21 n22 n23

n31 n32 n33

n41 n42 n43

n51 n52 n53



=
6

ηm



t4

t3

t2

t

1



T 

N0

N1

N2

N3

N4


=

6

ηm

(
N0t

4 +N1t
3 +N2t

2 +N3t+N4

)
where

n11 = b12d13 − b13d12,

n21 = b12d23 − b13d22 + b22d13 − b23d12,

n31 = b12d33 − b13d32 + b22d23 − b23d22 + b32d13 − b33d12,

n41 = b22d33 − b23d32 + b32d23 − b33d22,

n51 = b32d33 − b33d32,

n12 = b11d13 − b13d11,

n22 = −b11d23 − b21d13 + b13d21 + b23d11,

n32 = b23d21 + b33d11 − b11d33 − b21d23 + b13d31 − b31d13,

n42 = −b21d33 − b31d23 + b23d31 + b33d21,

n52 = −b31d33 + b33d31,

n13 = b11d12 − b12d11,

n23 = b11d22 − b12d21 + b21d12 − b22d11,

n33 = b11d32 − b12d31 + b21d22 − b22d21 + b31d12 − b32d11,



INT. J. MAPS IN MATH. (2022) 5(2):182–197 / ON THE MANNHEIM PARTNER OF A CUBIC ... 187

n43 = b21d32 − b22d31 + b31d22 − b32d21,

n53 = b31d32 − b32d31.

The first and second curvatures of a cubic Bezier curve by using the matrix representation

are

κ (t) =
6

η3



t4

t3

t2

t

1



T 

b211 + b212 + b213

2b11b21 + 2b12b22 + 2b13b23

2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223

2b21b31 + 2b22b32 + 2b23b33

b231 + b232 + b233



=
6

η3



t4

t3

t2

t

1



T 

C1

C2

C3

C4

C5


=

6

η3
(
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)
where

C1 = b211 + b212 + b213,

C2 = 2b11b21 + 2b12b22 + 2b13b23,

C3 = 2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223,

C4 = 2b21b31 + 2b22b32 + 2b23b33,

C5 = b231 + b232 + b233,

and

τ (t) =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2
.

2. Mannheim partner of a cubic Bezier curve

Mannheim curve was firstly defined by A. Mannheim in 1878. A curve is called a

Mannheim curve if and only if
κ

κ2 + τ2
is a nonzero constant, κ is the curvature and τ

is the torsion. Mannheim curve was redefined as; if the principal normal vector of first

curve and binormal vector of second curve are linearly dependent, then first curve is called

Mannheim curve, and the second curve is called Mannheim partner curve by Liu and Wang.

As a result they called these new curves as Mannheim partner curves. For more detail see
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[10]. α∗ (t) = α (t) + µ (t)B∗ (t) , N = B∗. Hence α∗ (t) = α (t) + µ (t)N (t). We know for a

Mannheim curve α, that µ is constant.

Since
dα∗

dt
= ηT+µ̇ (t)N (t)+ηµ (−κT + τB) ,

dα∗

dt
⊥ B∗ and

dα∗

dt
⊥ N, we get µ is constant.

Also dtds∗ =
1

cos θ
and |µ| is the distance between the curves α and α∗. Also we can write

dt

ds∗
=

1√
1 + µτ

.

Theorem 2.1. The Mannheim partner of a cubic Bezier curve has the following matrix

representation

α∗ =



t4

t3

t2

t

1



T 

6µ
ηmN0

6µ
ηmN1 + P3 + 3P1 − 3P2 − P0

6µ
ηmN2 + 3P2 − 6P1 + 3P0

6µ
ηmN3 + 3P1 − 3P0

6µ
ηmN4 + P0


.

Proof. Let α∗ = α (t) + µN be Mannheim partner of a cubic Bezier curve α (t) ,

hence

α∗ =


t3

t2

t

1



T 
−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0




P0

P1

P2

P3

+
6µ

ηm



t4

t3

t2

t

1



T 

N0

N1

N2

N3

N4



= P2

(
3t2 − 3t3

)
+ t3P3 + P0

(
−t3 + 3t2 − 3t+ 1

)
+ P1

(
3t3 − 6t2 + 3t

)
+

6

m

µ

η
N4 +

6

m
t
µ

η
N3 +

6

m
t2
µ

η
N2 +

6

m
t3
µ

η
N1 +

6

m
t4
µ

η
N0

= t4
6µ

mη
N0 + t3

(
6µ

mη
N1 + P3 + 3P1 − 3P2 − P0

)
+ t2

(
6µ

mη
N2 + 3P2 − 6P1 + 3P0

)
+ t

(
6µ

mη
N3 + 3P1 − 3P0

)
+

6µ

ηm
N4 + P0.
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So we can write this as in the following matrix form

α∗ =



t4

t3

t2

t

1



T 

6µ
ηmN0

6µ
ηmN1 + P3 + 3P1 − 3P2 − P0

6µ
ηmN2 + 3P2 − 6P1 + 3P0

6µ
ηmN3 + 3P1 − 3P0

6µ
ηmN4 + P0


.

Theorem 2.2. The Mannheim partner of a cubic Bezier curve is a 4th order Bezier curve

with constant speed. It has the control points P ∗
0 , P

∗
1 , P

∗
2 , P

∗
3 and P ∗

4 based on the control

points of the cubic Bezier curve, as in the following way, where η,m are constants,



P ∗
0

P ∗
1

P ∗
2

P ∗
3

P ∗
4


=



P0 +
6µ
mηN4

1
4P0 +

3
4P1 +

3µ
2mηN3 +

6µ
mηN4

1
2P1 +

1
2P2 +

µ
mηN2 +

3µ
mηN3 +

6µ
mηN4

3
4P2 +

1
4P3 +

3µ
2mηN1 +

3µ
mηN2 +

9µ
2mηN3 +

6µ
mηN4

P3 +
6µ
mηN0 +

6µ
mηN1 +

6µ
mηN2 +

6µ
mηN3 +

6µ
mηN4


.

Proof. Let P ∗
0 , P

∗
1 , P

∗
2 , P

∗
3 and P ∗

4 be the control points of 4th order Bezier curve

which is Mannheim partner of a cubic Bezier curve, so we can write



1 −4 6 −4 1

−4 12 −12 4 0

6 −12 6 0 0

−4 4 0 0 0

1 0 0 0 0





P ∗
0

P ∗
1

P ∗
2

P ∗
3

P ∗
4


=



6µ
mηN0

+ 6µ
mηN1 + P3 − 3P2 − P0 + 3P1

+ 6µ
mηN2 + 3P2 + 3P0 − 6P1

+ 6µ
mηN3 + 3P1 − 3P0

+ 6µ
mηN4 + P0


.

By using the following inverse matrix



0 0 0 0 1

0 0 0 1
4 1

0 0 1
6

1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1


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we obtain 

P ∗
0

P ∗
1

P ∗
2

P ∗
3

P ∗
4


=



0 0 0 0 1

0 0 0 1
4 1

0 0 1
6

1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1





6µ
mηN0

+ 6µ
mηN1 + P3 − 3P2 − P0 + 3P1

+ 6µ
mηN2 + 3P2 + 3P0 − 6P1

+ 6µ
mηN3 + 3P1 − 3P0

+ 6µ
mηN4 + P0


which completes the proof.

Furthermore, the equality
κ

κ2 + τ2
=constant is known as the offset property, for some

non-zero constant. For some function µ, since N and B∗ are linearly dependent, equation

can be rewritten as α∗ (t) = α (t) − µN (t) where µ =
−κ

κ2 + τ2
. Frenet-Serret apparatus of

Mannheim partner curve α∗, based on Frenet-Serret vectors of Mannheim curve α are

T ∗ = cos θ T − sin θ B,

N∗ = sin θ T + cos θB,

B∗ = N,

µ =
−κ

κ2 + τ2

where θ = ∢(T, T ∗).

Theorem 2.3. Tangent vector field of Mannheim partner of a cubic Bezier curve based on

the angle θ is

T ∗ =


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) cos θ − 6

mB1 sin θ

1
η (6P0 − 12P1 + 6P2) cos θ − 6

mB2 sin θ

1
η3 (P1 − P0) cos θ − 6

mB3 sin θ

 .

Proof. Since T ∗ = cos θ T − sin θ B, we have

T ∗ =
1

η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
cos θ −

(
6

m

(
B1t

2 +B2t+B3

))
sin θ

=
1

η

(
t2Q0 cos θ − 2t2Q1 cos θ + t2Q2 cos θ

)
− 6

m
t2B1 sin θ

+
1

η
(−2Q0t cos θ + 2Q1t cos θ)−

6

m
tB2 sin θ

+
1

η
Q0 cos θ −

6

m
B3 sin θ.
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Therefore, based on the control points Q0, Q1, Q2, the following matrix representation can

be written as

T ∗ =


t2

t

1


T 

1
η (Q0 − 2Q1 +Q2) cos θ − 6

mB1 sin θ

1
η (−2Q0 + 2Q1) cos θ − 6

mB2 sin θ

1
ηQ0 cos θ − 6

mB3 sin θ

 .

Also it can be written in the following matrix representation, based on the control points

P0, P1, P2, P3

T ∗ =


t2

t

1


T 

1
η (3 (P1 − P0)− 6 (P2 − P1) + 3 (P3 − P2)) cos θ − 6

mB1 sin θ

1
η (−6 (P1 − P0) + 6 (P2 − P1)) cos θ − 6

mB2 sin θ

1
η3 (P1 − P0) cos θ − 6

mB3 sin θ



=


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) cos θ − 6

mB1 sin θ

1
η (6P0 − 12P1 + 6P2) cos θ − 6

mB2 sin θ

1
η3 (P1 − P0) cos θ − 6

mB3 sin θ

 .

Corollary 2.1. Tangent vector field of Mannheim partner can be written as in the following

way where η,m are constants

T ∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




1
mη (mQ0 cos θ − 6ηB3 sin θ)

− 1
mη (3ηB2 sin θ −mQ1 cos θ + 6ηB3 sin θ)

− 1
mη (6ηB1 sin θ −mQ2 cos θ + 6ηB2 sin θ + 6ηB3 sin θ)

 .

Proof. As a quadratic Bezier curve, tangent vector field of Mannheim partner of a

cubic Bezier curve with the control points Q∗
0, Q

∗
1, Q

∗
2 is

T ∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




Q∗
0

Q∗
1

Q∗
2

 .

Hence, by using the inverse matrix the control points are
Q∗

0

Q∗
1

Q∗
2

 =


0 0 1

0 1
2 1

1 1 1




1
η (Q0 − 2Q1 +Q2) cos θ − 6

mB1 sin θ

1
η (−2Q0 + 2Q1) cos θ − 6

mB2 sin θ

1
ηQ0 cos θ − 6

mB3 sin θ



=


1
mη (mQ0 cos θ − 6ηB3 sin θ)

− 1
mη (3ηB2 sin θ −mQ1 cos θ + 6ηB3 sin θ)

− 1
mη (6ηB1 sin θ −mQ2 cos θ + 6ηB2 sin θ + 6ηB3 sin θ)

 .
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Theorem 2.4. Normal vector field of Mannheim partner of a cubic Bezier curve based on

the angle θ is

N∗ =


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) sin θ +

6
mB1 cos θ

+ 1
η (6P0 − 12P1 + 6P2) sin θ +

6
mB2 cos θ

+ 1
η3 (P1 − P0) sin θ +

6
mB3 cos θ

 .

Proof. Since N∗ = sin θ T + cos θ B, we have

N∗ =
1

η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
sin θ +

6

m

(
B1t

2 +B2t+B3

)
cos θ

=
1

η

(
t2Q0 sin θ − 2t2Q1 sin θ + t2Q2 sin θ

)
+

6

m
t2B1 cos θ

+
1

η
(−2tQ0 sin θ + 2tQ1 sin θ) +

6

m
tB2 cos θ

+
1

η
Q0 sin θ +

6

m
B3 cos θ.

It can be written in the following matrix representation, based on the control pointsQ0, Q1, Q2

N∗ =


t2

t

1


T 

1
η (Q0 − 2Q1 +Q2) sin θ +

6
mB1 cos θ

+ 1
η (−2Q0 + 2Q1) sin θ +

6
mB2 cos θ

+ 1
ηQ0 sin θ +

6
mB3 cos θ

 .

Also it can be written in the following matrix representation, based on the control points

P0, P1, P2, P3

N∗ =


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) sin θ +

6
mB1 cos θ

+ 1
η (6P0 − 12P1 + 6P2) sin θ +

6
mB2 cos θ

+ 1
η3 (P1 − P0) sin θ +

6
mB3 cos θ

 .

This completes the proof.

Corollary 2.2. Normal vector field of Mannheim partner of a cubic Bezier can be written

as in the following way, where η,m are constants

N∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




1
mη (mQ0 sin θ + 6ηB3 cos θ)

1
mη (mQ1 sin θ + 3ηB2 cos θ + 6ηB3 cos θ)

1
mη (mQ2 sin θ + 6ηB1 cos θ + 6ηB2 cos θ + 6ηB3 cos θ)

 .
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Proof. As a quadratic Bezier curve normal vector field of Mannheim partner of a

cubic Bezier curve with the control points N∗
0 , N

∗
1 , N

∗
2 is

N∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




N∗
0

N∗
1

N∗
2

 .

Hence, using the inverse matrix the control points are
N∗

0

N∗
1

N∗
2

 =


0 0 1

0 1
2 1

1 1 1




1
η (Q0 − 2Q1 +Q2) sin θ +

6
mB1 cos θ

+ 1
η (−2Q0 + 2Q1) sin θ +

6
mB2 cos θ

+ 1
ηQ0 sin θ +

6
mB3 cos θ



=


1
mη (mQ0 sin θ + 6ηB3 cos θ)

1
mη (mQ1 sin θ + 3ηB2 cos θ + 6ηB3 cos θ)

1
mη (mQ2 sin θ + 6ηB1 cos θ + 6ηB2 cos θ + 6ηB3 cos θ)

 .

This completes the proof.

Theorem 2.5. Binormal vector field of Mannheim partner of a cubic Bezier curve based on

the angle θ are

B∗ = N

=
6µ

ηm

(
N0t

4 +N1t
3 +N2t

2 +N3t+N4

)
.

Theorem 2.6. The curvature and the torsion of Mannheim partner of a cubic Bezier curve

based on the angle θ are have the following equalities,

Proof. Since

κ (t) =
6

η3
(
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)
where

C1 = b211 + b212 + b213,

C2 = 2b11b21 + 2b12b22 + 2b13b23,

C3 = 2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223,

C4 = 2b21b31 + 2b22b32 + 2b23b33,

C5 = b231 + b232 + b233

and

τ (t) =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2
.
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The curvature and the torsion have the following equalities of Mannheim partner of a cubic

Bezier curve;

κ∗ = − dθ

ds∗
=

θ̇

cos θ
,

τ∗ =
κ

µτ

=

6
η3

(
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)
µ

(
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2

)

=
6m2

µη3
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0
.

Theorem 2.7. Frenet vector fields {T ∗, N∗, B∗} of Mannheim partner of any cubic Bezier

curve in E3are

T ∗ =


t2

t

1


T 

(1−µκ)
η (9P1 − 3P0 − 9P2 + 3P3) +

6µτ
m B1

(1−µκ)
η (6P0 − 12P1 + 6P2) +

6µτ
m B2

(1−µκ)
η 3 (P1 − P0) +

6µτ
m B3


√

(1− µκ)2 + (µτ)2
,

N∗ =


t2

t

1


T 

µτ
η (9P1 − 3P0 − 9P2 + 3P3)− 6(1−µκ)

m B1

µτ
η (6P0 − 12P1 + 6P2)− 6(1−µκ)

m B2

µτ
η 3 (P1 − P0)− 6(1−µκ)

m B3


√

(1− µκ)2 + (µτ)2
,

B∗ =
6

ηm



t4

t3

t2

t

1



T 

N0

N1

N2

N3

N4


.
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Proof. Let a curve α∗ be a Mannheim partner of α with Frenet-Serret apparatus,

then

T ∗ =
(1− µκ)T + µτB√
(1− µκ)2 + (µτ)2

,

N∗ =
µτT − (1− µκ)B√
(1− µκ)2 + (µτ)2

,

B∗ = N,

dt

ds∗
=

1

η
√
(1− µκ)2 + (µτ)2

.

Tangent vector field of Mannheim partner of a cubic Bezier curve is

T ∗ =

(1−µκ)
η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
+ µτ 6

m

(
B1t

2 +B2t+B3

)√
(1− µκ)2 + (µτ)2

=

(1−µκ)
η

(
Q0 − 2tQ0 + 2tQ1 + t2Q0 − 2t2Q1 + t2Q2

)
+
(
6µτ
m B1t

2 + 6µτ
m B2t+

6µτ
m B3

)
√
(1− µκ)2 + (µτ)2

.

Hence its matrix representation, based on the control points Q0, Q1, Q2 is

T ∗ =


t2

t

1


T


(1− µκ)

η
(Q0 − 2Q1 +Q2) +

6µτ

m
B1

(1− µκ)

η
(−2Q0 + 2Q1) +

6µτ

m
B2

(1− µκ)

η
(Q0) +

6µτ

m
B3


√
(1− µκ)2 + (µτ)2

,

and based on the control points P0, P1, P2, P3 is

T ∗ =


t2

t

1


T


(1− µκ)

η
(9P1 − 3P0 − 9P2 + 3P3) +

6µτ

m
B1

(1− µκ)

η
(6P0 − 12P1 + 6P2) +

6µτ

m
B2

(1− µκ)

η
3 (P1 − P0) +

6µτ

m
B3


√
(1− µκ)2 + (µτ)2

.

So the normal vector field of Mannheim partner of a cubic Bezier curve is

N∗ =
µτT − (1− µκ)B√
(1− µκ)2 + (µτ)2

=

µτ
η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
− (1− µκ) 6

m

(
B1t

2 +B2t+B3

)√
(1− µκ)2 + (µτ)2

.
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Hence its matrix representation is

N∗ =


t2

t

1


T


µτ

η

(
Q0 − 2Q1 + t2Q2

)
− 6 (1− µκ)

m
B1

µτ

η
(−2Q0 + 2Q1)−

6 (1− µκ)

m
B2

µτ

η
Q0 −

6 (1− µκ)

m
B3


√
(1− µκ)2 + (µτ)2

,

N∗ =


t2

t

1


T


µτ

η
(9P1 − 3P0 − 9P2 + 3P3)−

6 (1− µκ)

m
B1

µτ

η
(6P0 − 12P1 + 6P2)−

6 (1− µκ)

m
B2

µτ

η
3 (P1 − P0)−

6 (1− µκ)

m
B3


√

(1− µκ)2 + (µτ)2
.

Also, since B∗ = N, its matrix representation is trivial.

Theorem 2.8. The second curvature τ∗ of Mannheim partner of any cubic Bezier curve is

τ∗ =

√√√√√√
(
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2

)2

−
(

6
η3
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)2

√
(1− µκ)2 + (µτ)2

.

Proof. Since
dB∗

ds∗
=

dB∗

dt

dt

ds∗
= −τ∗N∗ and ⟨−τ∗N∗,−τ∗N∗⟩ = τ∗2 we have

τ∗ =

√
τ2 − κ2√

(1− µκ)2 + (µτ)2
, τ > κ.

By using κ (t) and τ (t) of any cubic Bezier curve, we get the proof.

References
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