Null hypersurfaces in indefinite nearly Kaehlerian Finsler spaces
Keywords:
Null hypersurfaces, Totally umbilic hypersurfaces, Indefinite Finsler spaces.Abstract
We study the geometry of null hypersurfaces, $M$, in indefinite nearly Kaehlerian Finsler space forms $\mathbb{F}^{2n}$. We prove new inequalities involving the point-wise vertical sectional curvatures of $\mathbb{F}^{2n}$, based on two special vector fields on an umbilic hypersurface. Such inequalities generalize some known results on null hypersurfaces of Kaehlerian space forms. Furthermore, under some geometric conditions, we show that the null hypersurface $(M, B)$, where $B$ is the local second fundamental form of $M$, is locally isometric to the null product $M_{D}\times M_{D'}$, where $M_{D}$ and $M_{D'}$ are the leaves of the distributions $D$ and $D'$ which constitutes the natural null-CR structure on $M$.
Downloads
Published
How to Cite
Issue
Section
License
The copyright to the article is transferred to body International Journal of Maps in Mathematics effective if and when the article is accepted for publication.
- The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
- An author may make his/her article published by body International Journal of Maps in Mathematics available on his/her home page provided the source of the published article is cited and body International Journal of Maps in Mathematics is mentioned as copyright owner.
- The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted by body International Journal of Maps in Mathematics.