On Kannan-Geraghty maps as an extension of Kannan maps
Keywords:
Contractive, Weakly Kannan map, proximal contraction, Geraghty contraction, Fixed point.Abstract
Extending the concept of weakly Kannan maps on metric spaces, we study the maps as $f:X\rightarrow X$ on a metric space $(X, d)$ satisfying condition $d(f(x), f(y)) \leq (1/2)\beta(d(x, y))[d(x ,f(x)) + d(y, f(y))]$ for every $x, y\in X$ and a function $\beta: [0, \infty)\rightarrow [0,1)$ where for every sequence $t=\{t_n\}$ of non-negative real numbers satisfying $\beta(t_n)\rightarrow 1,$ while $t_n\rightarrow 0$. Such a map is named the Kannan-Geraghty map because of its relation to weakly Kannan map and Geraghty contraction. Firstly, we show that our new condition is different from weakly Kannan condition. Having proven the fixed point theorem, we present two useful results on Kannan-Geraghty maps. Also, we illustrate some examples of Kannan-Graghty map having interesting properties.
Downloads
Published
How to Cite
Issue
Section
License
The copyright to the article is transferred to body International Journal of Maps in Mathematics effective if and when the article is accepted for publication.
- The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
- An author may make his/her article published by body International Journal of Maps in Mathematics available on his/her home page provided the source of the published article is cited and body International Journal of Maps in Mathematics is mentioned as copyright owner.
- The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted by body International Journal of Maps in Mathematics.