Shape stability of a quadrature surface problem in infinite Riemannian manifolds
Keywords:
Stability, quadrature surface, shape optimization, Riemannian manifold, Gauss- Bonnet theoremAbstract
In this paper, we revisit a quadradure surface problem in shape optimization. With tools from infinite-dimensional Riemannian geometry, we give simple control over how an optimal shape can be characterized. The framework of the infinite-dimensional Riemannian manifold is essential in the control of optimal geometric shape. The covariant derivative plays a key role in calculating and analyzing the qualitative properties of the shape hessian. Control only depends on the mean curvature of the domain, which is a minimum or a critical point. In the two-dimensional case, Gauss-Bonnet's theorem gives a control within the framework of the algorithm for the minimum.
Downloads
Published
How to Cite
Issue
Section
License
The copyright to the article is transferred to body International Journal of Maps in Mathematics effective if and when the article is accepted for publication.
- The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
- An author may make his/her article published by body International Journal of Maps in Mathematics available on his/her home page provided the source of the published article is cited and body International Journal of Maps in Mathematics is mentioned as copyright owner.
- The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted by body International Journal of Maps in Mathematics.