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CONFORMAL SLANT RIEMANNIAN MAPS

ŞENER YANAN ID ∗ AND BAYRAM ŞAHİN ID

Abstract. Conformal slant Riemannian maps from almost Hermitian manifolds to Rie-

mannian manifolds are introduced. We give a non-trivial example of proper conformal

slant Riemannian maps, obtain conditions for certain distributions to be integrable and find

totally geodesicity conditions for leaves of distributions. We adjust the notion of plurihar-

monicity by considering distributions on the total manifold of a conformal slant Riemannian

map, and get conditions for such maps to be horizontally homothetic maps.
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1. Introduction

The concept of Riemannian submersion was introduced by Gray [13] and O’Neill [19].

Then, this notion was widely studied [10] and new kinds of Riemannian submersions such as

invariant, anti-invariant and slant submersion were introduced [26]. Let F be a Riemannian

submersion (respectively, horizontally conformal submersion, m > n) from (Mm, gM , J) an

almost Hermitian manifold to (Nn, gN ) a Riemannian manifold. If the angle θ(U) between

the space (kerF∗p) and JU is a constant for any non-zero vector field U ∈ Γ(kerF∗p); p ∈ M ,

i.e., it is independent from the choice of the tangent vector field U in (kerF∗p) and choice

of the point p ∈ M , then we say that F is a slant submersion (respectively, conformal slant

submersion) [5, 14, 22].
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The notions of isometric immersions and Riemannian submersions are generalized by Rie-

mannian maps between Riemannian manifolds [10, 11, 13, 19]. Let F : (M1, g1) −→ (M2, g2)

be a smooth map between Riemannian manifolds such that 0 < rankF < min{dim(M1), dim

(M2)}. So, the tangent bundle TM1 of M1 has the sequent decomposition:

TM1 = kerF∗ ⊕ (kerF∗)
⊥.

Because of rankF < min{dim(M1), dim(M2)}, we always have (rangeF∗)
⊥. Consequently,

the tangent bundle TM2 of M2 has the sequent decomposition:

TM2 = (rangeF∗)⊕ (rangeF∗)
⊥.

Hence, a smooth map F : (Mm
1 , g1) −→ (Mm

2 , g2) is called Riemannian map at p1 ∈ M1 if

the horizontal restriction F h
∗p1 : (kerF∗p1)

⊥ −→ (rangeF∗) is a linear isometry. Therefore a

Riemannian map provides the equation

g1(E,G) = g2(F∗(E), F∗(G)) (1.1)

for E,G ∈ Γ((kerF∗)
⊥). Isometric immersions and Riemannian submersions are particular

Riemannian maps with kerF∗ = {0} and (rangeF∗)
⊥ = {0}, respectively, [11]. As an another

generalization of Riemannian submersions defined and studied independently horizontally

conformal submersions [12, 15]. By following these studies and B. S. ahin’s papers including

anti-invariant Riemannian, semi-invariant, slant submersions (see also [20]) and conformal

anti-invariant [3], conformal slant [7], conformal semi-invariant [4] and conformal semi-slant

submersions [2] have appeared in the literature. At the same time, the notion of slant

submanifolds was introduced by Chen [9]. Inspiring from this notion, as a general map of

Hermitian, anti-invariant and slant submersions, slant Riemannian maps were given in [24, 25]

as follows; let F be a Riemannian map from an almost Hermitian manifold (M, gM , J) to a

Riemannian manifold (N, gN ). If the angle θ(U) is a constant between JU and the space

kerF∗ for any non-zero vector field U ∈ Γ(kerF∗); i.e., it is independent from the choice of the

tangent U in kerF∗ and choice of the point p ∈ M , then we say that F is a slant Riemannian

map [24, 25]. On the other hand, we say that F : (Mm, gM ) −→ (Nn, gN ) is a conformal

Riemannian map at p ∈ M if 0 < rankF∗p ≤ min{m,n} and F∗p maps the horizontal space

(kerF∗p)
⊥) conformally onto range(F∗p), i.e., there exist a number λ2(p) ̸= 0 such that

gN (F∗p(E), F∗p(G)) = λ2(p)gM (E,G)
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for E,G ∈ Γ((kerF∗p)
⊥). Also F is said to be conformal Riemannian if F is conformal

Riemannian at each p ∈ M [21]. Conformal Riemannian maps have many application areas,

some of them are computer vision [16], geometric modelling [29] and medical imaging [30].

In a previous paper, the second author and Akyol have studied conformal slant Riemannian

maps from a Riemannian manifold to a Kaehler manifold and they have studied the geometry

determined by the existence of these maps [5].

In this paper, we present conformal slant Riemannian maps from almost Hermitian man-

ifolds to Riemannian manifolds, investigate geometric properties of the base manifold and

the total manifold by the existence of such maps and give examples. We also obtain certain

geodesicity conditions for conformal slant Riemannian maps. Moreover, we obtain several

conditions for conformal slant Riemannian maps to be horizontally homothetic maps by using

the adapted version of the notion of pluri-harmonic maps.

2. Preliminaries

In this section, some definitions and useful results which will be used at this paper for con-

formal slant Riemannian maps are given. Let (M, gM ) and (N, gN ) be Riemannian manifolds

and suppose that F : M −→ N is a smooth map between them. The second fundamental

form of F is given by

(∇F∗)(X,Y ) =
N

∇F
XF∗(Y )− F∗(

M
∇XY ) (2.2)

for X,Y ∈ Γ(TM). We know that (∇F∗) is symmetric [17]. Here,
N

∇F is pull-back connection

of
N
∇ on N along F .

Let F be a Riemannian map from a Riemannian manifold (Mm, gM ) to a Riemannian

manifold (Nn, gN ). We characterize T and A as

AXY = h
M
∇hXvY + v

M
∇hXhY, (2.3)

TXY = h
M
∇vXvY + v

M
∇vXhY, (2.4)

for X,Y ∈ Γ(TM), where
M
∇ is the Levi-Civita connection of gM . Actually, we could see

that these are O’Neill’s tensor fields for Riemannian submersions [19]. TX and AX are skew-

symmetric operators and reversing the vertical and the horizontal distributions on (Γ(TM), g)

for any X ∈ Γ(TM). Also, it can be seen easily that T is vertical, TX = TvX , and A is

horizontal, AX = AhX . We should know that T is symmetric on the vertical distribution
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[10, 19]. Following these, from (2.3) and (2.4) we have

M
∇UV = TUV + ∇̂UV, (2.5)

M
∇UE = h

M
∇UE + TUE, (2.6)

M
∇EV = AEV + v

M
∇EV, (2.7)

M
∇EG = h

M
∇EG+AEG (2.8)

for E,G ∈ Γ((ker F∗)
⊥) and U, V ∈ Γ(kerF∗), where ∇̂UV = v

M
∇UV [10].

A vector field on M is called a projectable vector field if it is related to a vector field on

N . Thus, we say a vector field is basic on M if it is both a horizontal and a projectable

vector field. From now on, when we mention a horizontal vector field, we always consider a

basic vector field [8].

On the other hand, let F be a conformal Riemannian map between Riemannian manifolds

(Mm, gM ) and (Nn, gN ). Then, we have

(∇F∗)(E,G) |rangeF∗ = E(lnλ)F∗(G) +G(lnλ)F∗(E)

− gM (E,G)F∗(grad(lnλ)), (2.9)

where E,G ∈ Γ((kerF∗)
⊥) [6, 21]. Therefore from (2.9), we obtain

N

∇F
EF∗(G) as

N

∇F
EF∗(G) = F∗(h

M
∇EG) + E(lnλ)F∗(G) +G(lnλ)F∗(E)

− gM (E,G)F∗(grad(lnλ)) + (∇F∗)
⊥(E,G) (2.10)

where (∇F∗)
⊥(E,G) is the component of (∇F∗)(E,G) on (rangeF∗)

⊥ for E,G ∈ Γ((kerF∗)
⊥)

[27, 28].

Finally, we recall the following notion. A map F from a complex manifold (M, gM , J) to

a Riemannian manifold (N, gN ) is a pluriharmonic map if F provides the following equation

(∇F∗)(X,Y ) + (∇F∗)(JX, JY ) = 0 (2.11)

for X,Y ∈ Γ(TM) [18].

3. Conformal Slant Riemannian maps

In this section we are going to introduce conformal slant Riemannian maps as a gen-

eralization of slant Riemannian maps and conformal slant submersions, present examples

and examine the geometry of source manifolds, target manifolds and maps themselves. We

present the sequent definition.
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Definition 3.1. Let F : (M, gM , JM ) −→ (N, gN ) be a conformal Riemannian map from

an almost Hermitian manifold (M, gM , JM ) to a Riemannian manifold (N, gN ) . If for any

non-zero vector X ∈ Γ(kerF∗) at a point p ∈ M ; the angle θ(X) between the space kerF∗ and

JMX is a constant, i.e. it is independent of the choice of the tangent vector X ∈ Γ(kerF∗)

and choice of the point p ∈ M , then we say that F is a conformal slant Riemannian map. In

this situation, the angle θ is called the slant angle of the conformal slant Riemannian map.

We say that a conformal slant Riemannian map is proper if F is not a conformal invari-

ant and a conformal anti-invariant Riemannian map. The sequent example is for a proper

conformal slant Riemannian map.

Example 3.1. Let F : (R4, g4, J) −→ (R4, g4) be a map from a Kaehlerian manifold

(R4, g4, J) to a Riemannian manifold (R4, g4) defined by

(ex2 sinx4, e
x2 cosx4,−ex2 sinx4,−ex2 cosx4).

Then, F is a conformal Riemannian map with λ = ex2
√
2 and rankF = 2. One can easily

see that F is a proper conformal slant Riemannian map with the slant angle θ = α via

Jα = cosα(−c,−d, a, b) + sinα(−b, a, d,−c), 0 < α ≤ π
2 .

Let F be a conformal slant Riemannian map from a Kaehler manifold (M, gM , J) to a

Riemannian manifold (N, gN ). Then for V ∈ Γ(kerF∗), we write

JV = ϕV + ωV, (3.12)

where ϕV ∈ Γ(kerF∗) and ωV ∈ Γ((kerF∗)
⊥). Also for X ∈ Γ((kerF∗)

⊥), we write

JX = BX + CX, (3.13)

where BX ∈ Γ(kerF∗) and CX ∈ Γ((kerF∗)
⊥). We have covariant derivatives of ϕ and ω:

(
M
∇Uω)V = h

M
∇UωV − ω∇̂UV, (3.14)

(
M
∇Uϕ)V = ∇̂UϕV − ϕ∇̂UV (3.15)

for any U, V ∈ Γ(kerF∗).

We give the following result by using equations (2.5), (2.6), (3.12), (3.13) and covariant

derivatives of ϕ and ω.



INT. J. MAPS MATH. (2022) 5(1):78–100 / CONFORMAL SLANT RIEMANNIAN MAPS 83

Lemma 3.1. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then F is a conformal

slant Riemannian map, we get

h
M
∇UωV − ω∇̂UV = CTUV − TUϕV,

∇̂UϕV − ϕ∇̂UV = BTUV − TUωV

for any U, V ∈ Γ(kerF∗).

Now, we present the following characterization for conformal slant Riemannian maps.

Theorem 3.1. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then F is a conformal

slant Riemannian map if and only if there exists a constant λ ∈ [−1, 0] such that

ϕ2U = λU

for U ∈ Γ(kerF∗). If F is a conformal slant Riemannian map, then λ = − cos2 θ.

Proof. For U ∈ Γ(kerF∗) we have cos θ = ∥ϕU∥
∥JU∥ . Since M is a Kaehler manifold, we

get

gM (ϕ2U,U) = −gM (ϕU, ϕU) = − cos2 θgM (U,U).

Hence, we have ϕ2U = λU . Conversely, suppose that ϕ2U = λU for ∀U ∈ Γ(kerF∗) with

λ ∈ [−1, 0]. Hence, we obtain

cos θ =
gM (JU, ϕU)

∥JU∥∥ϕU∥
= −λ

∥JU∥
∥ϕU∥

. (3.16)

Using cos θ = ∥ϕU∥
∥JU∥ in (3.16) we get λ = − cos2 θ.

From (3.12) and Theorem 3.1. we have the next result.

Theorem 3.2. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ) with the slant angle θ.

Then, we have

gM (ϕU, ϕV ) = cos2 θgM (U, V ) (3.17)

gM (ωU, ωV ) = sin2 θgM (U, V ) (3.18)

for any U, V ∈ Γ(kerF∗).
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Let F be a conformal slant Riemannian map from an almost Hermitian manifold (M, gM , J)

onto a Riemannian manifold (N, gN ) with the slant angle θ; then we say that ω is parallel

with respect to
M
∇ on kerF∗ if its covariant derivative according to

M
∇ vanishes, i.e.

(
M
∇Uω)V = 0 (3.19)

for U, V ∈ Γ(kerF∗).

Theorem 3.3. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If ω is parallel according

to
M
∇ on kerF∗, then we have

TϕUϕU = −cos2θTUU (3.20)

for U ∈ Γ(kerF∗).

Proof. If ω is parallel according to
M
∇ on kerF∗, we obtain using (3.14) and Lemma

3.1. for U, V ∈ Γ(kerF∗)

CTUV = TUϕV. (3.21)

Now, changing roles of U and V in (3.21) we get

CTV U = TV ϕU. (3.22)

Because vertical vector field T is symmetric, from (3.21) and (3.22) we get

TUϕV = TV ϕU. (3.23)

Since ϕ2V = λV and for V = ϕU in (3.23) we obtain

− cos2 θTUU = TϕUϕU,

which gives the assertion.

Theorem 3.4. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, two of the below

assertions imply the third assertion,

i- The horizontal distribution (kerF∗)
⊥ is integrable,

ii- X(lnλ)gM (Y, ωϕU) = Y (lnλ)gM (X,ωϕU),

iii- gN (F∗(Ch
M
∇XωU + ωAXωU), F∗(Y )) + gN (

N

∇F
XF∗(ωϕU), F∗(Y ))

= gN (F∗(Ch
M
∇Y ωU + ωAY ωU), F∗(X)) + gN (

N

∇F
Y F∗(ωϕU), F∗(X))
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for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Proof. Now, for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗), using (2.8) and (3.12), we

obtain

gM ([X,Y ], U) = gM (
M
∇XJϕU, Y ) + gM (JAXωU + Jh

M
∇XωU, Y )

− gM (
M
∇Y JϕU,X)− gM (JAY ωU + Jh

M
∇Y ωU,X).

Since F is a conformal map, from Theorem 3.1., (2.8) and (3.13) we get

gM ([X,Y ], U) = cos2θgM ([X,Y ], U) +
1

λ2
{gN (F∗(h

M
∇XωϕU), F∗(Y ))

+ gN (F∗(ωAXωU), F∗(Y )) + gN (F∗(Ch
M
∇XωU), F∗(Y ))

− gN (F∗(h
M
∇Y ωϕU), F∗(X))− gN (F∗(ωAY ωU), F∗(X))

− gN (F∗(Ch
M
∇Y ωU), F∗(X))}.

Now, from (2.2) and (2.9) we have

sin2θgM ([X,Y ], U) =
1

λ2
{gN (F∗(Ch

M
∇XωU + ωAXωU), F∗(Y ))

− gN (F∗(Ch
M
∇Y ωU + ωAY ωU), F∗(X))

+ gN (F∗(
N

∇F
XF∗(ωϕU), F∗(Y ))

− gN (F∗(
N

∇F
Y F∗(ωϕU), F∗(X))

− X(lnλ)gN (F∗(ωϕU), F∗(Y ))

− ωϕU(lnλ)gN (F∗(X), F∗(Y ))

+ gM (X,ωϕU)gN (F∗(grad(lnλ)), F∗(Y ))

− gN ((∇F∗)
⊥(X,ωϕU), F∗(Y ))

+ Y (lnλ)gN (F∗(ωϕU), F∗(X))

+ ωϕU(lnλ)gN (F∗(Y ), F∗(X))

− gM (Y, ωϕU)gN (F∗(grad(lnλ)), F∗(X))

+ gN ((∇F∗)
⊥(Y, ωϕU), F∗(X))}.
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Using conformality of F we obtain

sin2θgM ([X,Y ], U) =
1

λ2
{gN (F∗(Ch

M
∇XωU + ωAXωU), F∗(Y ))

− gN (F∗(Ch
M
∇Y ωU + ωAY ωU), F∗(X))

+ gN (F∗(
N

∇F
XF∗(ωϕU), F∗(Y ))

− gN (F∗(
N

∇F
Y F∗(ωϕU), F∗(X))}

+ 2Y (lnλ)gM (X,ωϕU)− 2X(lnλ)gM (Y, ωϕU).

The proof is completed from the above equation.

Now we will examine the geometry of leaves of the vertical distribution.

Theorem 3.5. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, the vertical distri-

bution kerF∗ defines a totally geodesic foliation on M if and only if

gN ((∇F∗)(U, JX), F∗(ωV )) = gN ((∇F∗)(U,X), F∗(ωϕV ))

for X ∈ Γ((kerF∗)
⊥) and U, V ∈ Γ(kerF∗).

Proof. Because of M is a Kaehler manifold and from Theorem 3.1., (3.12) and (3.13),

we have

gM (
M
∇UV,X) = −cos2θgM (

M
∇UX,V )− gM (

M
∇UX,ωϕV )

− gM (
M
∇UBX,ωV )− gM (

M
∇UCX,ωV ).

Hence we have

sin2θgM (
M
∇UV,X) = −gM (h

M
∇UX,ωϕV )− gM (TUBX,ωV )

− gM (h
M
∇UCX,ωV ).

Now, from (2.2) we get

sin2θgM (
M
∇UV,X) =

1

λ2
{−gN (F∗(h

M
∇UX), F∗(ωϕV ))

− gN (F∗(TUBX), F∗(ωV ))

− gN (F∗(h
M
∇UCX), F∗(ωV ))}

=
1

λ2
{gN ((∇F∗)(U, JX), F∗(ωV ))

− gN ((∇F∗)(U,X), F∗(ωϕV ))}.
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This completes the proof.

Now, we examine the geometry of the horizontal distribution.

Theorem 3.6. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, two of the below

assertions imply the third assertion,

i- the horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation on M ,

ii- F is a horizontally homothetic map,

iii- gM (AXY,U) = 1
λ2 gN (

N

∇F
XF∗(Y ), F∗(ωϕU + CωU))

for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Proof. Now, from (2.8), (3.17) and (3.18) we have

gM (
M
∇XY,U) = gM (JAXY + Jh

M
∇XY, ϕU)

+ gM (JAXY + Jh
M
∇XY, ωU)

= cos2θgM (AXY,U)− gM (h
M
∇XY, JϕU)

+ sin2θgM (AXY,U)− gM (h
M
∇XY, JωU)

= gM (AXY, U)− gM (h
M
∇XY, ωϕU)− gM (h

M
∇XY,CϕU)

for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). From (2.2) and (2.9), we obtain

gM (
M
∇XY,U) = gM (AXY,U)− 1

λ2
gN (

N

∇F
XF∗(Y ), F∗(ωϕU + CωU))

+ X(lnλ)gM (Y, ωϕU) + Y (lnλ)gM (X,ωϕU)

− ωϕU(lnλ)gM (X,Y ) +X(lnλ)gM (Y,CωU)

+ Y (lnλ)gM (X,CωU)− CωU(lnλ)gM (X,Y ). (3.24)

If the horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation on M for X,Y ∈

Γ((kerF∗)
⊥), U ∈ Γ(kerF∗) and gM (AXY, U) = 1

λ2 gN (
N

∇F
XF∗(Y ), F∗(ωϕU +CωU)), we show

that the map F is a horizontally homothetic map. If (i) and (iii) are satisfied, then we have

0 = X(lnλ)gM (Y, ωϕU) + Y (lnλ)gM (X,ωϕU)

− ωϕU(lnλ)gM (X,Y ) +X(lnλ)gM (Y,CωU)

+ Y (lnλ)gM (X,CωU)− CωU(lnλ)gM (X,Y ) (3.25)
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for X,Y ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). Suppose that X = ωϕU , Y = CωU in equation

(3.25), we have

CωU(lnλ)gM (ωϕU, ωϕU) + ωϕU(lnλ)gM (CωU,CωU) = 0. (3.26)

If CωU(lnλ) = 0 from (3.26) we get ωϕU(lnλ)gM (CωU,CωU) = 0 for CωU ∈ Γ(C(kerF∗)
⊥).

Therefore λ is a constant on Γ(ω(kerF∗)). At the same time, if ωϕU(lnλ) = 0 we derive

CωU(lnλ)gM (ωϕU, ωϕU) = 0 from (3.26) for ωϕU ∈ Γ(ω(kerF∗)). Thus λ is a constant on

Γ(C(kerF∗)
⊥). So, F is a horizontally homothetic map. The rest of the proof is clear.

Now we are going to slightly modify the notion of pluriharmonic map and use this new

notion to obtain certain conditions for conformal slant Riemannian maps to be horizontally

homothetic map. We say that a conformal slant Riemannian map F from a complex manifold

(M, gM , J) to a Riemannian manifold (N, gN ) is kerF∗− (respectively, (kerF∗)
⊥, ω(kerF∗),

µ) pluriharmonic map if F satisfies the following equation

(∇F∗)(U, V ) + (∇F∗)(JU, JV ) = 0

for U, V ∈ Γ(kerF∗) (respectively, (kerF∗)
⊥, ω(kerF∗), µ) [27, 28].

Theorem 3.7. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from a

Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a kerF∗−plurihar-

monic map, then one of the below assertions imply the second assertion,

i- F is a horizontally homothetic map,

ii- F∗(AωUϕV +AωV ϕU) = F∗(h
M
∇UωϕV + ωTUωV + Ch

M
∇UωV )

and (∇F∗)
⊥(ωU, ωV ) = 0

for U, V ∈ Γ(kerF∗).

Proof. From the definition of kerF∗−pluriharmonic map, (2.2) and (2.10), we have

0 = F∗(
M
∇UJϕV + J

M
∇UωV )− F∗(

M
∇ϕUϕV )− F∗(

M
∇ωV ϕU)

− F∗(
M
∇ωUϕV ) + (∇F∗)

⊥(ωU, ωV ) + ωU(lnλ)F∗(ωV )

+ ωV (lnλ)F∗(ωU)− gM (ωU, ωV )F∗(grad(lnλ)).



INT. J. MAPS MATH. (2022) 5(1):78–100 / CONFORMAL SLANT RIEMANNIAN MAPS 89

Now, using (2.6), (3.20) and Theorem 3.1., we get

0 = F∗(h
M
∇UωϕV + ωTUωV + Ch

M
∇UωV −AωUϕV −AωV ϕU)

+ (∇F∗)
⊥(ωU, ωV ) + ωU(lnλ)F∗(ωV ) + ωV (lnλ)F∗(ωU)

− gM (ωU, ωV )F∗(grad(lnλ)). (3.27)

If (i) is provided we have from (3.27)

ωU(lnλ)F∗(ωV ) + ωV (lnλ)F∗(ωU)− gM (ωU, ωV )F∗(grad(lnλ)) = 0

for U, V ∈ Γ(kerF∗). So one can see second assertion clearly. Now if (ii) is satisfied in (3.27)

we have F∗(AωUϕV +AωV ϕU) = F∗(h
M
∇UωϕV +ωTUωV +Ch

M
∇UωV ) and (∇F∗)

⊥(ωU, ωV ) =

0 for U, V ∈ Γ(kerF∗), respectively. Thus, by (3.27) we get

0 = ωU(lnλ)F∗(ωV ) + ωV (lnλ)F∗(ωU)

− gM (ωU, ωV )F∗(grad(lnλ)). (3.28)

For ωU ∈ Γ(ω(kerF∗)) from (3.28) we get 0 = λ2ωV (lnλ)gM (ωU, ωU), which implies that

ω(kerF∗)(grad(lnλ)) = 0. At the same time, from (3.28) if we take ωU = ωV and for

X ∈ Γ(C(kerF∗)
⊥) we get

0 = 2λ2ωU(lnλ)gM (X,ωU)− λ2X(lnλ)gM (ωU, ωU). (3.29)

Because of λ is a constant on ω(kerF∗) we have 2λ
2ωU(lnλ)gM (X,ωU) = 0. Thus, by (3.29)

we get λ2X(lnλ)gM (ωU, ωU) = 0, which implies that (C(kerF∗)
⊥) (grad(lnλ)) = 0. Thus,

H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.

Theorem 3.8. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a (kerF∗)
⊥−

pluriharmonic map, then F is a horizontally homothetic map if and only if the following

conditions

(∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(CX,CY ) = 0

and

F∗(TBXBY +ACY BX +ACXBY ) = 0,

are satisfied for X,Y ∈ Γ((kerF∗)
⊥).
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Proof. From the definition of a (kerF∗)
⊥-pluriharmonic map, (2.2) and (2.9), we

have

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + (∇F∗)
⊥(CX,CY ) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ))

− F∗(
M
∇BXBY )− F∗(

M
∇CY BX)− F∗(

M
∇CXBY )

or

0 = (∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(CX,CY ) +X(lnλ)F∗(Y )

+ Y (lnλ)F∗(X)− gM (X,Y )F∗(grad(lnλ)) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ))

− F∗(TBXBY +ACY BX +ACXBY ) (3.30)

for X,Y ∈ Γ((kerF∗)
⊥). If F is a horizontally homothetic map we have from equation (3.30)

0 = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ))

for X,Y ∈ Γ((kerF∗)
⊥). Since F is a horizontally homothetic map from (3.30) we obtain

(∇F∗)
⊥(X,Y )+(∇F∗)

⊥(CX,CY ) = 0 and F∗(TBXBY +ACY BX+ACXBY ) = 0 for X,Y ∈

Γ((kerF∗)
⊥). Now suppose that (∇F∗)

⊥(X,Y ) + (∇F∗)
⊥(CX,CY ) = 0 and F∗(TBXBY +

ACY BX +ACXBY ) = 0 in (3.30) for X,Y ∈ Γ((kerF∗)
⊥), respectively. Thus, by (3.30) we

get

0 = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + CX(lnλ)F∗(CY )

+ CY (lnλ)F∗(CX)− gM (CX,CY )F∗(grad(lnλ)). (3.31)

For X = CX, Y = CY and CY ∈ Γ(C(kerF∗)
⊥) in (3.31), we get 0 = 2λ2CX(lnλ)

gM (CY,CY ), which implies that (C(kerF∗)
⊥)(grad(lnλ)) = 0. At the same time, from

(3.31) if we take X = Y = CX and ωU ∈ Γ(ω(kerF∗)), we get

0 = 4λ2CX(lnλ)gM (CX,ωU)− 2λ2ωU(lnλ)gM (CX,CX). (3.32)
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Since λ is a constant on C(kerF∗)
⊥ we have 4λ2CX(lnλ)gM (CX,ωU) = 0. Thus, by (3.32)

we get −2λ2ωU(lnλ)gM (CX,CX) = 0, which implies that (ω(kerF∗))(grad(lnλ)) = 0.

Thus, H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.

We say that a conformal slant Riemannian map F from a complex manifold (M, gM , J) to

a Riemannian manifold (N, gN ) is {(kerF∗)
⊥ − (kerF∗)}− pluriharmonic map if F satisfies

the following equation

(∇F∗)(X,V ) + (∇F∗)(JX, JV ) = 0

for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) [27, 28].

Theorem 3.9. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a {(kerF∗)
⊥ −

(kerF∗)}−pluriharmonic map, then two of the below assertions imply the third assertion,

i- F is a horizontally homothetic map,

ii- F∗(TBXωU +AωUBX +ACXϕU + h
M
∇XωϕU) = F∗(ωAXωU + Ch

M
∇XωU)

and (∇F∗)
⊥(CX,ωU) = 0,

iii- The vertical distribution kerF∗ is parallel along the horizontal distribution (kerF∗)
⊥

on M ,

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗).

Proof. From the definition of {(kerF∗)
⊥ − (kerF∗)}−pluriharmonic map we get

0 = (∇F∗)(X,U) + (∇F∗)(JX, JU)

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). Using symmetry property of second fundamental

form of a map by (2.2), (3.12) and (3.13) we get

0 = −F∗(
M
∇XU) + (∇F∗)(BX,ϕU) + (∇F∗)(ωU,BX)

+ (∇F∗)(CX,ϕU) + (∇F∗)(CX,ωU).

From (2.7), (2.8) and (2.10) we get

0 = F∗(
M
∇XJϕU) + F∗(JAXωU + Jh

M
∇XωU)− F∗(TBXϕU)

− F∗(AωUBX)− F∗(ACXϕU) + (∇F∗)
⊥(CX,ωU)

+ CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)

− gM (CX,ωU)F∗(grad(lnλ)).
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Now, from Theorem 3.1. , we have

cos2θF∗(
M
∇XU) = F∗(h

M
∇XωϕU + ωAXωU + Ch

M
∇XωU)

− F∗(TBXϕU +AωUBX +ACXϕU)

+ (∇F∗)
⊥(CX,ωU)

+ CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)

− gM (CX,ωU)F∗(grad(lnλ)) (3.33)

for X ∈ Γ((kerF∗)
⊥) and U ∈ Γ(kerF∗). If (i) and (ii) are satisfied in (3.33) we have

0 = CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)− gM (CX,ωU)F∗(grad(lnλ)),

(∇F∗)
⊥(CX,ωU) = 0

and

F∗(TBXωU +AωUBX +ACXϕU + h
M
∇XωϕU) = F∗(ωAXωU + Ch

M
∇XωU),

respectively. Then we get F∗(
M
∇XU) = 0. Therefore the vertical distribution kerF∗ is parallel

along the horizontal distribution (kerF∗)
⊥ on M for X ∈ Γ((kerF∗)

⊥) and U ∈ Γ(kerF∗).

Suppose that (i) and (iii) are satisfied in (3.33), one can see clearly that (ii) is satisfies.

Assume that (ii) and (iii) are satisfied in (3.33) we get

0 = CX(lnλ)F∗(ωU) + ωU(lnλ)F∗(CX)

− gM (CX,ωU)F∗(grad(lnλ)). (3.34)

For CX ∈ Γ(C(kerF∗)
⊥) in (3.34) we get 0 = λ2ωU(lnλ)gM (CX,CX), which implies that

(ω(kerF∗))(grad(lnλ)) = 0. At the same time, from (3.34) for ωU ∈ Γ(ω(kerF∗)) we

get 0 = λ2CX(lnλ)gM (ωU, ωU), which implies that (C(kerF∗)
⊥) (grad(lnλ)) = 0. Thus,

H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.

Theorem 3.10. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a ω(kerF∗)−

pluriharmonic map, then F is a horizontally homothetic map if and only if the following

conditions

(∇F∗)
⊥(Z, Y ) + (∇F∗)

⊥(CZ,CY ) = 0

and

F∗(TBZBY +ACZBY +ACY BZ) = 0
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are satisfied for Z, Y ∈ Γ(ω(kerF∗)).

Proof. From the definition of ω(kerF∗)− pluriharmonic map we have

0 = (∇F∗)(Z, Y ) + (∇F∗)(JZ, JY )

for Z, Y ∈ Γ(ω(kerF∗)). From (2.2), (2.9) and (3.13) we get

0 = (∇F∗)
⊥(Z, Y ) + Z(lnλ)F∗(Y ) + Y (lnλ)F∗(Z)

− gM (Z, Y )F∗(grad(lnλ))− F∗(
M
∇BZBY )− F∗(

M
∇CZBY )

− F∗(
M
∇CY BZ) + (∇F∗)

⊥(CY,CZ) + CZ(lnλ)F∗(CY )

+ CY (lnλ)F∗(CZ)− gM (CZ,CY )F∗(grad(lnλ)).

Using (2.5) and (2.7) we get

0 = (∇F∗)
⊥(Z, Y ) + (∇F∗)

⊥(CY,CZ) + Z(lnλ)F∗(Y )

+ Y (lnλ)F∗(Z)− gM (Z, Y )F∗(grad(lnλ)) + CZ(lnλ)F∗(CY )

+ CY (lnλ)F∗(CZ)− gM (CZ,CY )F∗(grad(lnλ))

− F∗(TBZBY )− F∗(ACZBY )− F∗(ACY BZ). (3.35)

If F is a horizontally homothetic map we have from (3.35)

0 = Z(lnλ)F∗(Y ) + Y (lnλ)F∗(Z)− gM (Z, Y )F∗(grad(lnλ))

+ CZ(lnλ)F∗(CY ) + CY (lnλ)F∗(CZ)− gM (CZ,CY )F∗(grad(lnλ))

for Z, Y ∈ Γ(ω(kerF∗)). Since F is a horizontally homothetic map from (3.35) we obtain

(∇F∗)
⊥(Z, Y )+ (∇F∗)

⊥(CZ,CY ) = 0 and F∗(TBZBY +ACZBY +ACY BZ) = 0 for Z, Y ∈

Γ(ω(kerF∗)). Suppose that

(∇F∗)
⊥(Z, Y ) + (∇F∗)

⊥(CZ,CY ) = 0

and F∗(TBZBY +ACZBY +ACY BZ) = 0 in (3.35) for Z, Y ∈ Γ(ω(kerF∗)). Thus, by (3.35)

we get

0 = Z(lnλ)F∗(Y ) + Y (lnλ)F∗(Z)− gM (Z, Y )F∗(grad(lnλ))

+ CZ(lnλ)F∗(CY ) + CY (lnλ)F∗(CZ)

− gM (CZ,CY )F∗(grad(lnλ)). (3.36)
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We know gM (Y,CY ) = gM (Y, JY − BY ) = gM (Y, JY ) = 0. For Z = Y and CY ∈

Γ(C(kerF∗)
⊥) in (3.36) we get 0 = −λ2CY (lnλ){gM (Y, Y ) − gM (CY,CY )} which im-

plies that (C(kerF∗)
⊥)(grad(lnλ)) = 0. At the same time, from (3.36) if we take Z = Y

and Y ∈ Γ(ω(kerF∗)) we get 0 = λ2Y (lnλ){gM (Y, Y ) − gM (CY,CY )} which implies that

(ω(kerF∗))(grad(lnλ)) = 0. Thus H(grad(lnλ)) = 0. It can be seen from here that F is a

horizontally homothetic map.

We say that a conformal slant Riemannian map F from a complex manifold (M, gM , J)

to a Riemannian manifold (N, gN ) is (µ − ω(kerF∗))−pluriharmonic map if F satisfies the

following equation

(∇F∗)(X,Y ) + (∇F∗)(JX, JY ) = 0

for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)).

Theorem 3.11. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map

from a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). If F is a (µ −

ω(kerF∗))−pluriharmonic map, then F is a horizontally homothetic map if and only if the

following conditions

(∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX,CY ) = 0

and

F∗(AJXBY ) = 0

are satisfied for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)).

Proof. From the definition of (µ− ω(kerF∗))− pluriharmonic map, (2.2), (2.10) and

(3.13) we have

0 = (∇F∗)(X,Y ) + (∇F∗)(JX, JY )

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + (∇F∗)(JX,BY ) + (∇F∗)(JX,CY ).

Since the distributions µ and ω(kerF∗) are orthogonal to each other, we have gM (X,Y ) = 0.

So, we obtain

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− F∗(AJXBY ) + (∇F∗)
⊥(JX,CY ) + JX(lnλ)F∗(CY )

+ CY (lnλ)F∗(JX)− gM (JX,CY )F∗(grad(lnλ)) (3.37)
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for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)). Suppose that F is a horizontally homothetic map. From

(3.37) we have

0 = X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

+ JX(lnλ)F∗(CY ) + CY (lnλ)F∗(JX)

− gM (JX,CY )F∗(grad(lnλ)). (3.38)

Since F is a horizontally homothetic map from (3.37) we obtain F∗(AJXBY ) = 0 and

(∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX,CY ) = 0 for X ∈ Γ(µ) and Y ∈ Γ(ω(kerF∗)). Suppose

that F∗(AJXBY ) = 0 and (∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX,CY ) = 0 for X ∈ Γ(µ) and

Y ∈ Γ(ω(kerF∗)) in (3.37). Using conformality of F for X ∈ Γ(µ) in (3.38) we get

0 = λ2{X(lnλ)gM (Y,X) + Y (lnλ)gM (X,X)

+ JX(lnλ)gM (CY,X) + CY (lnλ)gM (JX,X)

− X(lnλ)gM (JX,CY )}. (3.39)

We know gM (CY,X) = gM (JY,X) = −gM (Y, JX) = 0, gM (JX,CY ) = 0 for X ∈ Γ(µ) and

Y ∈ Γ(ω(kerF∗)) from (3.13). Then we obtain from (3.39) λ2Y (lnλ)gM (X,X) = 0, which

implies that ω(kerF∗)(grad(lnλ)) = 0. For X ∈ Γ(µ) and JX = X in (3.38) we get

0 = λ2{X(lnλ)gM (Y,X) + Y (lnλ)gM (X,X)

+ X(lnλ)gM (CY,X) + CY (lnλ)gM (X,X)

− X(lnλ)gM (X,CY )}. (3.40)

Since λ is a constant on ω(kerF∗) we have Y (lnλ) = 0. We get from (3.40) 0 = λ2CY (lnλ)

gM (X,X) that implies (C(kerF∗)
⊥)(grad(lnλ)) = 0. It means λ is a constant on C(kerF∗)

⊥.

Lastly for Y ∈ Γ(ω(kerF∗)) and JX = X in (3.38) we get

0 = λ2{X(lnλ)gM (Y, Y ) + Y (lnλ)gM (X,Y )

+ X(lnλ)gM (CY, Y ) + CY (lnλ)gM (X,Y )

− Y (lnλ)gM (X,CY )}. (3.41)

We know gM (CY, Y ) = gM (JY, Y ) = 0 from (3.13) for Y ∈ Γ(ω(kerF∗)). Then we ob-

tain from (3.41) 0 = λ2X(lnλ)gM (Y, Y ), which implies that µ(grad(lnλ)) = 0. Thus,

H(grad(lnλ)) = 0. It can be seen from here that F is a horizontally homothetic map.
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Theorem 3.12. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). F is a µ−pluriharmonic

map if and only if λ is a constant on ω(kerF∗).

Proof. From the definition of µ− pluriharmonic map and (2.10), we have

0 = (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) + (∇F∗)
⊥(JX, JY ) + JX(lnλ)F∗(JY )

+ JY (lnλ)F∗(JX)− gM (JX, JY )F∗(grad(lnλ))

for X,Y ∈ Γ(µ). Since gM (X,Y ) = gM (JX, JY ) we obtain

0 = (∇F∗)
⊥(X,Y ) + (∇F∗)

⊥(JX, JY ) +X(lnλ)F∗(Y )

+ Y (lnλ)F∗(X) + JX(lnλ)F∗(JY ) + JY (lnλ)F∗(JX)

− 2gM (X,Y )F∗(grad(lnλ)). (3.42)

Now taking X = Y in (3.42) we get

0 = (∇F∗)
⊥(X,X) + (∇F∗)

⊥(JX, JX)

+ 2X(lnλ)F∗(X) + 2JX(lnλ)F∗(JX)

− 2gM (X,X)F∗(grad(lnλ)). (3.43)

For Z ∈ Γ(ω(kerF∗)) in (3.43) we get

0 = gN ((∇F∗)
⊥(X,X), F∗(Z)) + gN ((∇F∗)

⊥(JX, JX), F∗(Z))

+ 2X(lnλ)gN (F∗(X), F∗(Z)) + 2JX(lnλ)gN (F∗(JX), F∗(Z))

− 2gM (X,X)gN (F∗(grad(lnλ)), F∗(Z)).

Because of F is a conformal map and µ is a invariant distribution we obtain

0 = 2λ2{X(lnλ)gM (X,Z) + JX(lnλ)gM (JX,Z)}

− 2λ2gM (X,X)gM (grad(lnλ), Z)

0 = −2λ2Z(lnλ)gM (X,X). (3.44)

From equation (3.44) we obtain Z(lnλ) = 0, which implies that λ is a constant on ω(kerF∗)

for Z ∈ Γ(ω(kerF∗)). The converse is clear.
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We now give necessary and sufficient conditions for a conformal slant Riemannian map to

be totally geodesic map.

Theorem 3.13. Let F : (M, gM , J) −→ (N, gN ) be a conformal slant Riemannian map from

a Kaehler manifold (M, gM , J) to a Riemannian manifold (N, gN ). Then, F is a totally

geodesic map if and only if the following conditions are satisfied for X,Y, Z ∈ Γ((kerF∗)
⊥)

and U, V ∈ Γ(kerF∗);

i- gN (F∗(Ch
M
∇UωV ) + F∗(ω∇̂UϕV + ωTUωV ), F∗(X)) = 0,

ii- F is a horizontally homothetic map and (∇F∗)
⊥(X,Y ) = 0.

Proof. Now, from (2.2), (2.5), (3.12) and (3.13) we have

(∇F∗)(U, V ) = F∗(JTUϕV + J∇̂UϕV )

+ F∗(ωTUωV + Ch
M
∇UωV ).

Because T is symmetric, we get

(∇F∗)(U, V ) = cos2 θF∗(TV U) + F∗(ω∇̂UϕV )

+ F∗(ωTUωV + Ch
M
∇UωV )

which implies that

sin2 θ(∇F∗)(U, V ) = F∗(ω∇̂UϕV ) + F∗(ωTUωV + Ch
M
∇UωV ) (3.45)

for U, V ∈ Γ(kerF∗). Thus, we obtain from (3.45)

sin2 θgN ((∇F∗)(U, V ), F∗(X)) = gN (F∗(ω∇̂UϕV + ωTUωV ), F∗(X))

+ gN (F∗(Ch
M
∇UωV ), F∗(X)) (3.46)

for X ∈ Γ((kerF∗)
⊥). (i) is satisfied in (3.46). Now, from (2.9) we get

(∇F∗)(X,Y ) = (∇F∗)
⊥(X,Y ) + (∇F∗)

⊤(X,Y )

= (∇F∗)
⊥(X,Y ) +X(lnλ)F∗(Y ) + Y (lnλ)F∗(X)

− gM (X,Y )F∗(grad(lnλ)) (3.47)
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for X,Y ∈ Γ((kerF∗)
⊥). From (3.47) we have

gN ((∇F∗)(X,Y ), F∗(X)) = gN ((∇F∗)
⊥(X,Y ), F∗(X))

+ X(lnλ)gN (F∗(Y ), F∗(X))

+ Y (lnλ)gN (F∗(X), F∗(X))

− gM (X,Y )gN (F∗(grad(lnλ)), F∗(X))

= Y (lnλ)gN (F∗(X), F∗(X))

= λ2Y (lnλ)gM (X,X)

for X ∈ Γ((kerF∗)
⊥). We have 0 = λ2Y (lnλ)gM (X,X) which implies Y (lnλ) = 0. So,

λ is a constant on (kerF∗)
⊥. F is a horizontally homothetic map and from (3.47) we get

(∇F∗)
⊥(X,Y ) = 0. Therefore, (ii) is satisfied. We complete the proof.
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