

International Journal of Maps in Mathematics

Volume 4, Issue 2, 2021, Pages:121-135

ISSN: 2636-7467 (Online)

www.journalmim.com

ON PARA-KAHLER-NORDEN PROPERTIES OF THE φ -SASAKI METRIC ON TANGENT BUNDLE

ABDERRAHIM ZAGANE 🕛

ABSTRACT. In the present paper, we investigate para-Nordenian properties of the φ -Sasaki metric on the tangent bundle.

Keywords: Horizontal lift and vertical lift, tangent bundle, φ -Sasaki metric, almost paracomplex structure, pure metric.

2010 Mathematics Subject Classification: Primary, 53C15,53C55, Secondary, 53C20, 53B35.

1. Introduction

In this field, the notion of almost para-complex structure on a smooth manifold has been studied, in the first papers by Libermann, P. [9], Patterson, E. M. [12] until now, from several different points of view. Moreover, the papers related to it have appeared many times in a rather disperse way, and a survey of further results on para-complex geometry (including para-Kähler geometry) can be found for instance in [2, 3, 5]. Also, other further signifiant developments are due in some recent surveys [1, 8, 13], where some aspects concerning the geometry of para-complex manifolds are presented on the tangent and cotangent bundles. See also [7, 6, 11, 15, 16].

The main idea in this note consists in the modification of the Sasaki metric. First we introduce a new metric called φ -Sasaki metric on the tangent bundle TM over a para-Kahler-Norden manifold (M^{2m}, φ, g) . This new metric will lead us to interesting results. Afterward we construct almost para-complex Norden structures on tangent bundle equipped with the

Received:2020.09.27

Revised:2021.01.30

Accepted:2021.04.17

Abderrahim Zagane; zaganeabr2018@gmail.com; https://orcid.org/0000-0001-9339-3787

 φ -Sasaki metric and investigate necessary and sufficient conditions for these structures to become para-Kähler-Norden, quasi-para-Kähler-Norden. Finally we characterize some properties of almost para-complex Norden structures in context of almost product Riemannian manifolds.

2. Preliminaries

Let TM be the tangent bundle over an m-dimensional Riemannian manifold (M^m,g) and the natural projection $\pi:TM\to M$. A local chart $(U,x^i)_{i=\overline{1,m}}$ on M induces a local chart $(\pi^{-1}(U),x^i,y^i)_{i=\overline{1,m}}$ on TM. Let $C^\infty(M)$ (resp. $C^\infty(TM)$) be the ring of real-valued C^∞ functions on M (resp. TM) and $\Im_s^r(M)$ (resp. $\Im_s^r(TM)$) be the module over $C^\infty(M)$ (resp. $C^\infty(TM)$) of C^∞ tensor fields of type (r,s).

We have two complementary distributions on TM, the vertical distribution \mathcal{V} and the horizontal distribution \mathcal{H} , defined by :

$$\mathcal{V}_{(x,u)} = Ker(d\pi_{(x,u)}) = \{a^i \frac{\partial}{\partial y^i}|_{(x,u)}, \ a^i \in \mathbb{R}\},$$

$$\mathcal{H}_{(x,u)} = \{a^i \frac{\partial}{\partial x^i}|_{(x,u)} - a^i u^j \Gamma^k_{ij} \frac{\partial}{\partial u^k}|_{(x,u)}, \ a^i \in \mathbb{R}\},$$

where $(x, u) \in TM$, such that $T_{(x,u)}TM = \mathcal{H}_{(x,u)} \oplus \mathcal{V}_{(x,u)}$.

Let $X = X^i \frac{\partial}{\partial x^i}$ be a local vector field on M. The vertical and the horizontal lifts of X are defined by

$$X^{V} = X^{i} \frac{\partial}{\partial y^{i}}, (2.1)$$

$$X^{H} = X^{i} \frac{\delta}{\delta x^{i}} = X^{i} \{ \frac{\partial}{\partial x^{i}} - y^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \}.$$
 (2.2)

For consequences, we have $(\frac{\partial}{\partial x^i})^H = \frac{\delta}{\delta x^i}$ and $(\frac{\partial}{\partial x^i})^V = \frac{\partial}{\partial y^i}$, then $(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i})_{i=\overline{1,m}}$ is a local adapted frame on TTM.

Lemma 2.1. [18] Let (M,g) be a Riemannian manifold and R its tensor curvature, then for all vector fields $X, Y \in \mathfrak{F}^1_0(M)$ we have:

(1)
$$[X^H, Y^H]_p = [X, Y]_p^H - (R_x(X, Y)u)^V$$
,

(2)
$$[X^H, Y^V]_p = (\nabla_X Y)_p^V$$
,

(3)
$$[X^V, Y^V]_p = 0$$
,

where $p = (x, u) \in TM$.

An almost product structure φ on a manifold M is a (1,1) tensor field on M such that $\varphi^2 = id_M$, $\varphi \neq \pm id_M$ (id_M is the identity tensor field of type (1,1) on M). The pair (M,φ)

is called an almost product manifold.

A linear connection ∇ on (M, φ) such that $\nabla \varphi = 0$ is said to be an almost product connection. There exists an almost product connection on every almost product manifold[4].

An almost para-complex manifold is an almost product manifold (M, φ) , such that the two eigenbundles TM^+ and TM^- associated to the two eigenvalues +1 and -1 of φ , respectively, have the same rank. Note that the dimension of an almost paracomplex manifold is necessarily even [3].

An almost para-complex Norden manifold (M^{2m}, φ, g) is a real 2m-dimensional differentiable manifold M^{2m} with an almost para-complex structure φ and a Riemannian metric g such that

$$g(\varphi X, Y) = g(X, \varphi Y), \tag{2.3}$$

for all $X, Y \in \mathfrak{S}^1_0(M)$, in this case g is called a pure metric with respect to φ or para-Norden metric (B-metric)[13].

A para-Kähler-Norden manifold is an almost para-complex Norden manifold (M^{2m}, φ, g) such that φ is integrable i.e $\nabla \varphi = 0$ (B-manifold), where ∇ is the Levi-Civita connection of g [13, 16].

A Tachibana operator $\phi_{\varphi}: \Im^2_0(M) \to \Im^3_0(M)$ applied to the pure metric g is given by

$$(\phi_{\varphi}g)(X,Y,Z) = (\varphi X)(g(Y,Z)) + X(g(\varphi Y,Z)) + g((L_Y\varphi)X,Z)$$
$$+g((L_Z\varphi)X,Y), \tag{2.4}$$

for all $X, Y, Z \in \mathfrak{F}^1_0(M)$ [17], where L_Y denotes the Lie differentiation with respect to Y. In an almost para-complex Norden manifold, a para-Norden metric g is called para-holomorphic if

$$(\phi_{\varphi}g)(X,Y,Z) = 0, \tag{2.5}$$

for all $X, Y, Z \in \Im_0^1(M)[13]$.

A para-holomorphic Norden manifold is an almost para-complex Norden manifold (M^{2m}, φ, g) such that g is a para-holomorphic i.e $\phi_{\varphi}g = 0$.

In [13], Salimov and his collaborators showed that for an almost para-complex Norden manifold, the condition $\phi_{\varphi}g = 0$ is equivalent to $\nabla \varphi = 0$. By virtue of this point of view, para-holomorphic Norden manifolds are similar to para-Kähler-Norden manifolds (For complex version see [8]).

The purity conditions for a tensor field $\omega \in \mathfrak{F}_0^q(M)$ with respect to the para-complex structure φ given by

$$\omega(\varphi X_1, X_2, \cdots, X_q) = \omega(X_1, \varphi X_2, \cdots, X_q) = \cdots = \omega(X_1, X_2, \cdots, \varphi X_q),$$

for all $X_1, X_2, \dots, X_q \in \mathfrak{F}_0^1(M)$ [13].

In [17], an operator $\phi_{\varphi}: \mathfrak{F}_0^q(M) \to \mathfrak{F}_0^{q+1}(M)$ joined with φ and applied to the pure tensor field ω , given by

$$(\phi_{\varphi}\omega)(Y, X_1, \cdots, X_q) = (\varphi Y)(\omega(X_1, \cdots, X_q)) + Y(\omega(\varphi X_1, \cdots, X_q))$$
$$+\omega((L_{X_1}\varphi)Y, X_2, \cdots, X_q) + \cdots + \omega((X_1, \cdots, (L_{X_q}\varphi)Y),$$

for all $Y, X_1, X_2, \dots, X_q \in \mathfrak{F}_0^1(M)$. If $\phi_{\varphi}\omega$ vanishes, then ω is said to be almost paraholomorphic.

It is well known that if (M^{2m}, φ, g) is a para-Kähler-Norden manifold, the Riemannian curvature tensor is pure [13], and

$$\begin{cases}
\nabla_Y(\varphi Z) &= \varphi \nabla_Y Z, \\
R(\varphi Y, Z) &= R(Y, \varphi Z) = R(Y, Z)\varphi = \varphi R(Y, Z), \\
R(\varphi Y, \varphi Z) &= R(Y, Z),
\end{cases} \tag{2.6}$$

for all $Y, Z \in \mathfrak{F}_0^1(M)$.

Let (M^{2m}, φ, g) be a non-integrable almost para-complex Norden manifold, if

$$\underset{X,Y,Z}{\sigma}g((\nabla_X\varphi)Y,Z)=0.$$

for all $X,Y,Z\in \Im_0^1(M)$, where σ is the cyclic sum by three arguments, then the triple (M^{2m},φ,g) is a quasi-para-Kähler-Norden manifold [5, 10]. It is well known that

$$\underset{X,Y,Z}{\sigma}g((\nabla_X\varphi)Y,Z) = 0 \Leftrightarrow \underset{X,Y,Z}{\sigma}(\phi_\varphi g)(X,Y,Z) = 0, \tag{2.7}$$

which was proven in [14].

3. φ -Sasaki metric

Definition 3.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold. On the tangent bundle TM, we define a φ -Sasaki metric noted g_{φ} by

$$(1) g_{\varphi}(X^{H}, Y^{H})_{(x,u)} = g_{x}(X, Y),$$

$$(2) g_{\varphi}(X^{H}, Y^{V})_{(x,u)} = 0,$$

$$(3) g_{\varphi}(X^V, Y^V)_{(x,u)} = g_x(X, \varphi Y),$$

where $X, Y \in \mathfrak{F}_0^1(M)$ and $(x, u) \in TM$.

Lemma 3.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, we have the following

$$(1) X^H g_{\varphi}(Y^H, Z^H) = Xg(Y, Z),$$

$$(2) X^V g_{\varphi}(Y^H, Z^H) = 0,$$

(3)
$$X^{H}g_{\varphi}(Y^{V}, Z^{V}) = g_{\varphi}((\nabla_{X}Y)^{V}, Z^{V}) + g_{\varphi}(Y^{V}, (\nabla_{X}Z)^{V}),$$

$$(4) X^{V} g_{\omega}(Y^{H}, Z^{H}) = 0,$$

for any $X, Y, Z \in \mathfrak{I}_0^1(M)$, where ∇ denote the Levi-Civita connection of (M^{2m}, φ, g) .

Theorem 3.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold and (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric. If ∇ (resp $\widetilde{\nabla}$) denote the Levi-Civita connection of (M, g) (resp (TM, g_{φ})), then we have:

$$(1) (\widetilde{\nabla}_{X^H} Y^H)_{(x,u)} = (\nabla_X Y)_{(x,u)}^H - \frac{1}{2} (R_x(X,Y)u)^V,$$

(2)
$$(\widetilde{\nabla}_{X^H} Y^V)_{(x,u)} = (\nabla_X Y)_{(x,u)}^V + \frac{1}{2} (R_x(\varphi u, Y)X)^H,$$

$$(3) (\widetilde{\nabla}_{X^V} Y^H)_{(x,u)} = \frac{1}{2} (R_x(\varphi u, X)Y)^H,$$

$$(4) (\widetilde{\nabla}_{X^V} Y^V)_{(x,u)} = 0,$$

for all vector fields $X, Y \in \mathfrak{F}_0^1(M)$ and $(x, u) \in TM$, where R denote the curvature tensor of (M^{2m}, φ, g) .

The proof of Theorem 3.1 follows directly from Kozul formula, Lemma 2.1 and Lemma 3.1.

4. Some almost Para-complex Structures

4.1. We Consider the tensor field $J_{\varphi} \in \mathfrak{J}_{1}^{1}(TM)$ by

$$\begin{cases}
J_{\varphi}X^{H} = (\varphi X)^{H} \\
J_{\varphi}X^{V} = (\varphi X)^{V}
\end{cases} (4.8)$$

for all $X \in \mathfrak{F}_0^1(M)$.

Lemma 4.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold and (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric. The couple (TM, J_{φ}) is an almost para-complex manifold.

Proof. By virtue of (4.8), we have

$$\begin{cases} J_{\varphi}^2 X^H = J_{\varphi}(J_{\varphi}X^H) = J_{\varphi}((\varphi X)^H) = (\varphi(\varphi X))^H = (\varphi^2 X)^H = X^H, \\ J_{\varphi}^2 X^V = J_{\varphi}(J_{\varphi}X^V) = J_{\varphi}((\varphi X)^V) = (\varphi(\varphi X))^V = (\varphi^2 X)^V = X^V, \end{cases}$$

for any $X \in \Im_0^1(M)$, then $J_{\varphi}^2 = id_{TM}$.

Let $\{E_1, \dots, E_m, E_{m+1}, \dots, E_{2m}\}$ be local frame of eigenvectors on M such that

$$\varphi E_i = E_i$$
, $\varphi E_{m+i} = -E_{m+i}$, for all $i = \overline{1, m}$.

If $Z = Z_1^i E_i^H + Z_2^i E_i^V$, then

$$J_{\varphi}Z = Z_1^i(\varphi E_i)^H + Z_2^i(\varphi E_i)^V = Z_1^i E_i^H + Z_2^i E_i^V = Z,$$

i.e.
$$TTM^{+} = Span(E_{1}^{H}, \dots, E_{m}^{H}, E_{1}^{V}, \dots, E_{m}^{V}),$$

If
$$Z = Z_1^{m+i} E_{m+i}^H + Z_2^{m+i} E_{m+i}^V$$
, then

$$J_{\varphi}Z = Z_1^{m+i}(\varphi E_{m+i})^H + Z_2^{m+i}(\varphi E_{m+i})^V = -Z_{m+1}^i E_{m+i}^H - Z_2^{m+i} E_{m+i}^V = -Z,$$

i.e.
$$TTM^- = Span(E_{m+1}^H, \dots, E_{2m}^H, E_{m+1}^V, \dots, E_{2m}^V).$$

Theorem 4.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure J_{φ} defined by (4.8). The triple $(TM, J_{\varphi}, g_{\varphi})$ is an almost para-complex Norden manifold.

Proof. For all $X, Y \in \mathfrak{F}_0^1(M)$, from (4.8) we have

$$\begin{split} (i) \ g_{\varphi}(J_{\varphi}X^H,Y^H) &= g_{\varphi}((\varphi X)^H,Y^H) = g(\varphi X,Y) = g(X,\varphi Y) \\ &= g_{\varphi}(X^H,(\varphi Y)^H) = g_{\varphi}(X^H,J_{\varphi}Y^H), \\ (ii) \ g_{\varphi}(J_{\varphi}X^H,Y^V) &= g_{\varphi}((\varphi X)^H,Y^V) = 0 = g_{\varphi}(X^H,Y^V) = g_{\varphi}(X^H,J_{\varphi}Y^V), \\ (iii) \ g_{\varphi}(J_{\varphi}X^V,Y^V) &= g_{\varphi}((\varphi X)^V,Y^V) = g(\varphi X,\varphi Y) = g(X,Y) \\ &= g(X,\varphi^2Y) = g_{\varphi}(X^V,(\varphi Y)^V) = g_{\varphi}(X^V,J_{\varphi}Y^V). \end{split}$$

Since g is pure with respect to φ , then g_{φ} is pure with respect to J_{φ} .

Proposition 4.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure J_{φ} defined by (4.8), then we get

$$1. \ (\phi_{\textstyle J_\varphi} g_\varphi)(X^H,Y^H,Z^H) = 0,$$

2.
$$(\phi_{J_{i,o}}g_{\varphi})(X^V, Y^H, Z^H) = 0$$
,

3.
$$(\phi_{J_{\omega}}g_{\varphi})(X^{H}, Y^{V}, Z^{H}) = 0$$
,

$$4. \ (\phi_{\textstyle J_\varphi}g_\varphi)(X^H,Y^H,Z^V)=0,$$

5.
$$(\phi_{J_{*}}g_{\varphi})(X^{V},Y^{V},Z^{H})=0$$
,

6.
$$(\phi_{J_{c}}g_{\varphi})(X^{V}, Y^{H}, Z^{V}) = 0$$

7.
$$(\phi_{J_{i}}g_{\varphi})(X^{H}, Y^{V}, Z^{V}) = 0$$

8.
$$(\phi_{J_{i,2}}g_{\varphi})(X^V, Y^V, Z^V) = 0$$
,

for all $X, Y, Z \in \mathfrak{I}_0^1(M)$.

Proof. We calculate Tachibana operator $\phi_{J_{\varphi}}$ applied to the pure metric g_{φ} . This operator is characterized by (2.4), from Lemma 3.1 we have

$$\begin{split} 1. (\phi_{J_{\varphi}} g_{\varphi})(X^{H}, Y^{H}, Z^{H}) &= (J_{\varphi} X^{H}) g_{\varphi}(Y^{H}, Z^{H}) - X^{H} g_{\varphi}(J_{\varphi} Y^{H}, Z^{H}) \\ &+ g_{\varphi} \left((L_{Y^{H}} J_{\varphi}) X^{H}, Z^{H} \right) + g_{\varphi} \left(Y^{H}, (L_{Z^{H}} J_{\varphi}) X^{H} \right) \\ &= (\varphi X)^{H} g_{\varphi}(Y^{H}, Z^{H}) - X^{H} g_{\varphi}((\varphi Y)^{H}, Z^{H}) \\ &+ g_{\varphi} \left(L_{Y^{H}} J_{\varphi} X^{H} - J_{\varphi} (L_{Y^{H}} X^{H}), Z^{H} \right) \\ &+ g_{\varphi} \left(Y^{H}, L_{Z^{H}} J_{\varphi} X^{H} - J_{\varphi} (L_{Z^{H}} X^{H}) \right) \\ &= (\varphi X) g(Y, Z) - X g(\varphi Y, Z) \\ &+ g_{\varphi} \left([Y^{H}, (\varphi X)^{H}] - J_{\varphi} [Y^{H}, X^{H}], Z^{H} \right) \\ &+ g_{\varphi} \left(Y^{H}, [Z^{H}, (\varphi X)^{H}] - J_{\varphi} [Z^{H}, X^{H}] \right) \\ &= (\varphi X) g(Y, Z) - X g(\varphi Y, Z) + g \left([Y, \varphi X] - \varphi [Y, X], Z \right) \\ &+ g \left(Y, [Z, \varphi X] - \varphi [Z, X] \right) \\ &= (\varphi X) g(Y, Z) - X g(\varphi Y, Z) + g \left((L_{Y} \varphi) X, Z \right) \\ &+ g \left(Y, (L_{Z} \varphi) X \right) \\ &= (\phi \varphi g) (X, Y, Z). \end{split}$$

Since (M^{2m}, φ, g) is a para-Kähler-Norden manifold, then $(\phi_{\varphi}g)(X, Y, Z) = 0$.

$$\begin{split} 2. \, (\phi_{J_{\varphi}} g_{\varphi})(X^V, Y^H, Z^H) &= (J_{\varphi} X^V) g_{\varphi}(Y^H, Z^H) - X^V g_{\varphi}(J_{\varphi} Y^H, Z^H) \big) \\ &+ g_{\varphi} \big((L_{Y^H} J_{\varphi}) X^V, Z^H \big) + g_{\varphi} \big(Y^H, (L_{Z^H} J_{\varphi}) X^V \big) \\ &= (\varphi X)^V g_{\varphi}(Y^H, Z^H) - X^V g_{\varphi}((\varphi Y)^H, Z^H) \\ &+ g_{\varphi} \big([Y^H, (\varphi X)^V] - J_{\varphi} [Y^H, X^V], Z^H \big) \\ &+ g_{\varphi} \big(Y^H, [Z^H, (\varphi X)^V] - J_{\varphi} [Z^H, X^V] \big) \\ &= 0. \end{split}$$

$$\begin{split} 3. \left(\phi_{J_{\varphi}}g_{\varphi}\right)&(X^{H},Y^{V},Z^{H}) &= \left(J_{\varphi}X^{H}\right)g_{\varphi}(Y^{V},Z^{H}) - X^{H}g_{\varphi}(J_{\varphi}Y^{V},Z^{H}) \\ &+ g_{\varphi}\left((L_{Y^{V}}J_{\varphi})X^{H},Z^{H}\right) + g_{\varphi}\left(Y^{V},(L_{Z^{H}}J_{\varphi})X^{H}\right) \\ &= g_{\varphi}\left([Y^{V},(\varphi X)^{H}] - J_{\varphi}[Y^{V},X^{H}],Z^{H}\right) \\ &+ g_{\varphi}\left(Y^{V},[Z^{H},(\varphi X)^{H}] - J_{\varphi}[Z^{H},X^{H}]\right) \\ &= g_{\varphi}\left(Y^{V},(-R(Z,\varphi X)u)^{V} + (\varphi R(Z,X)u)^{V}\right) \\ &= -g\left(R(Z,\varphi X)u,\varphi Y\right) + g\left(\varphi R(Z,X)u,\varphi Y\right). \end{split}$$

Since the Riemann curvature R of a para-Kähler-Norden manifold is pure, then

$$\begin{split} (\phi_{\mbox{\boldmath J}_{\mbox{\boldmath φ}}} g_{\mbox{\boldmath φ}})(X^H,Y^V,Z^H) & = & -g \big(R(Z,X)u,Y) + g \big(R(Z,X)u,Y\big) \\ & = & 0. \end{split}$$

$$\begin{split} 4. \, (\phi_{J_{\varphi}} g_{\varphi})(X^H, Y^H, Z^V) &= (J_{\varphi} X^H) g_{\varphi}(Y^H, Z^V) - X^H g_{\varphi}(J_{\varphi} Y^H, Z^V) \\ &+ g_{\varphi} \big((L_{Y^H} J_{\varphi}) X^H, Z^V \big) + g_{\varphi} \big(Y^H, (L_{Z^V} J_{\varphi}) X^H \big) \\ &= g_{\varphi} \big([Y^H, (\varphi X)^H] - J_{\varphi} [Y^H, X^H], Z^V \big) \\ &+ g_{\varphi} \big(Y^H, [Z^V, (\varphi X)^H] - J_{\varphi} [Z^V, X^H] \big) \\ &= g_{\varphi} \big((-R(Y, \varphi X) u)^V + (\varphi R(Y, X) u)^V, Z^V \big) \\ &= -g(R(Y, \varphi X) u, \varphi Z) + g(\varphi R(Y, X) u, \varphi Z) \\ &= -g(R(Y, X) u, Z) + g(R(Y, X) u, Z) \\ &= 0. \end{split}$$

The other formulas are obtained by a similar calculation.

Therefore, we have the following result.

Theorem 4.2. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure J_{φ} defined by (4.8),then the triple $(TM, J_{\varphi}, g_{\varphi})$ is a para-Kähler-Norden manifold.

Corollary 4.1. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure J_{φ} defined by (4.8), then the triple $(TM, J_{\varphi}, g_{\varphi})$ is a quasi-para-Kähler-Norden manifold. **4.2.** We Consider the tensor field $P_{\varphi} \in \Im_1^1(TM)$ defined by:

$$\begin{cases}
P_{\varphi}X^{H} = -(\varphi X)^{H} \\
P_{\varphi}X^{V} = -(\varphi X)^{V}
\end{cases}$$
(4.9)

for all $X \in \Im_0^1(M)$, satisfies the following:

- 1. $P\varphi = -J\varphi$.
- 2. g_{φ} is pure with respect to P_{φ} .
- 3. $\phi_{P_{\mathcal{O}}}g_{\varphi} = \phi_{J_{\mathcal{O}}}g_{\varphi}$.

Therefore we have the following results.

Theorem 4.3. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure P_{φ} defined by (4.9), then the triple $(TM, P_{\varphi}, g_{\varphi})$ is a para-Kähler-Norden manifold.

4.3. We Consider the tensor field $Q_{\varphi} \in \mathfrak{F}_1^1(TM)$ defined by:

$$\begin{cases}
Q_{\varphi}X^{H} = (\varphi X)^{V} \\
Q_{\varphi}X^{V} = (\varphi X)^{H}
\end{cases}$$
(4.10)

for all $X \in \mathfrak{F}_0^1(M)$.

Lemma 4.2. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold and (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric. The couple (TM, Q_{φ}) is an almost para-complex manifold.

Proof. By virtue of (4.10), we have

$$\left\{ \begin{array}{l} Q_\varphi^2 X^H = Q_\varphi(Q_\varphi X^H) = Q_\varphi((\varphi X)^V) = (\varphi(\varphi X))^H = (\varphi^2 X)^H = X^H, \\ Q_\varphi^2 X^V = Q_\varphi(Q_\varphi X^V) = Q_\varphi((\varphi X)^H) = (\varphi(\varphi X))^V = (\varphi^2 X)^V = X^V, \end{array} \right.$$

for any $X \in \mathfrak{J}_0^1(M)$, then $Q_{\varphi}^2 = id_{TM}$.

Let $\{E_1, \dots, E_m, E_{m+1}, \dots, E_{2m}\}$ be local frame of eigenvectors on M such that $\varphi E_i = E_i$, $\varphi E_{m+i} = -E_{m+i}$, for all $i = \overline{1, m}$, then

$$TTM^{+} = Span(E_{1}^{H} + E_{1}^{V}, \cdots, E_{m}^{H} + E_{m}^{V}, E_{m+1}^{H} - E_{m+1}^{V}, \cdots, E_{2m}^{H} - E_{2m}^{V}),$$

$$TTM^{-} = Span(E_{1}^{H} - E_{1}^{V}, \cdots, E_{m}^{H} - E_{m}^{V}, E_{m+1}^{H} + E_{m+1}^{V}, \cdots, E_{2m}^{H} + E_{2m}^{V}).$$

Theorem 4.4. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure Q_{φ} defined by (4.10). The φ -Sasaki metric is never pure with respect to Q_{φ} i.e The triple $(TM, Q_{\varphi}, g_{\varphi})$ is never an almost para-complex Norden manifold.

4.4. We Consider the tensor field $F_{\varphi} \in \mathfrak{F}^1_1(TM)$ by

$$\begin{cases}
F_{\varphi}X^{H} = -(\varphi X)^{H} \\
F_{\varphi}X^{V} = (\varphi X)^{V}
\end{cases}$$
(4.11)

for all $X \in \mathfrak{F}_0^1(M)$.

Lemma 4.3. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold and (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric. The couple (TM, F_{φ}) is an almost para-complex manifold.

Theorem 4.5. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure F_{φ} defined by (4.11). The triple $(TM, F_{\varphi}, g_{\varphi})$ is an almost para-complex Norden manifold.

Proof. With the same steps in the proof of Theorem 4.1, we get the results.

Proposition 4.2. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure F_{φ} defined by (4.11), then we get

- $1. \ (\phi_{F_{\varphi}}g_{\varphi})(X^H,Y^H,Z^H)=0,$
- $2. \ (\phi_{F_{\boldsymbol{\omega}}}g_{\varphi})(X^V,Y^H,Z^H)=0,$
- $3. \ (\phi_{\textstyle F_{\varphi}}g_{\varphi})(X^H,Y^V,Z^H) = 2g\big(R(X,Z)Y,u),$
- $4. \ (\phi_{F_{\varphi}}g_{\varphi})(X^H,Y^H,Z^V) = 2g\big(R(X,Y)Z,u),$
- 5. $(\phi_{F_{\omega}}g_{\varphi})(X^V,Y^V,Z^H)=0,$
- 6. $(\phi_{F_{\omega}}g_{\varphi})(X^V, Y^H, Z^V) = 0$,
- 7. $(\phi_{F_{\varphi}}g_{\varphi})(X^H, Y^V, Z^V) = 0$,
- 8. $(\phi_{F_{\omega}}g_{\varphi})(X^V, Y^V, Z^V) = 0$,

for all $X, Y, Z \in \mathfrak{I}^1_0(M)$, where R denote the curvature tensor of (M, g).

Proof. We calculate Tachibana operator $\phi_{F_{\varphi}}$ applied to the pure metric g_{φ} . With the same steps in the proof of Proposition 4.1, we get the results.

Theorem 4.6. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure F_{φ} defined by (4.11). The triple $(TM, F_{\varphi}, g_{\varphi})$ is a para-Kähler-Norden manifold if and only if M is flat.

Proof. For all $X, Y, Z \in \mathfrak{F}_0^1(M)$ and $h, k, l \in \{H, V\}$

$$(\phi_{F_{\varphi}}g_{\varphi}))(X^h,Y^k,Z^l)=0 \quad \Leftrightarrow \quad \left\{ \begin{array}{ll} g(R(X,Z)Y,u) &=0 \\ \\ g(R(X,Y)Z,u) &=0 \end{array} \right.$$

$$\Leftrightarrow \quad R = 0.$$

Theorem 4.7. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure F_{φ} defined by (4.11). The triple $(TM, F_{\varphi}, g_{\varphi})$ is a quasi-para-Kähler-Norden manifold.

Proof. For all $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \Im_0^1(TM)$,

$$\underset{\widetilde{X},\widetilde{Y},\widetilde{Z}}{\sigma}(\phi_{J_{\varphi}}g_{\varphi})(\widetilde{X},\widetilde{Y},\widetilde{Z}) = (\phi_{J_{\varphi}}g_{\varphi})(\widetilde{X},\widetilde{Y},\widetilde{Z}) + (\phi_{J_{\varphi}}g_{\varphi})(\widetilde{Y},\widetilde{Z},\widetilde{X}) + (\phi_{J_{\varphi}}g_{\varphi})(\widetilde{Z},\widetilde{X},\widetilde{Y})$$

By virtue of Proposition 4.1 we have

$$\begin{array}{lcl} 1. & \sigma \\ {}_{X^H,Y^H,Z^H}(\phi J_{\varphi}g_{\varphi})(X^H,Y^H,Z^H) & = & 0, \\ \\ 2. & \sigma \\ {}_{X^V,Y^H,Z^H}(\phi J_{\varphi}g_{\varphi})(X^V,Y^H,Z^H) & = & 2g(R(Y,Z)X,u) + 2g(R(Z,Y)X,u) = 0, \\ \\ 3. & \sigma \\ {}_{X^V,Y^V,Z^H}(\phi J_{\varphi}g_{\varphi})(X^V,Y^V,Z^H) & = & 0, \\ \\ 4. & \sigma \\ {}_{X^V,Y^V,Z^V}(\phi J_{\varphi}g_{\varphi})(X^V,Y^V,Z^V) & = & 0, \end{array}$$

then, $(TM, J_{\varphi}, g_{\varphi})$ is a quasi-para-Kähler-Norden manifold.

4.5. We Consider the tensor field $K_{\varphi} \in \Im_1^1(TM)$ defined by:

$$\begin{cases}
K_{\varphi}X^{H} = (\varphi X)^{H} \\
K_{\varphi}X^{V} = -(\varphi X)^{V}
\end{cases} (4.12)$$

for all $X \in \Im_0^1(M)$, satisfies the following:

- 1. $K\varphi = -F\varphi$.
- 2. g_{φ} is pure with respect to K_{φ} .
- 3. $\phi_{K_{\varphi}}g_{\varphi} = -\phi_{F_{\varphi}}g_{\varphi}$.

Therefore we have the following results.

Theorem 4.8. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost para-complex structure K_{φ} defined by (4.12), then we have

- 1. The triple $(TM, K_{\varphi}, g_{\varphi})$ is is a quasi-para-Kähler-Norden manifold.
- 2. The triple $(TM, K_{\varphi}, g_{\varphi})$ is a para-Kähler-Norden manifold if and only if M is flat.
- **4.6.** Now consider the almost product structure F_{φ} defined by (4.11). We define a tensor field S of type (1,2) and linear connection $\widehat{\nabla}$ on TM by,

$$S(\widetilde{X}, \widetilde{Y}) = \frac{1}{2} \left[(\widetilde{\nabla}_{F_{\varphi}\widetilde{Y}} F_{\varphi}) \widetilde{X} + F_{\varphi} \left((\widetilde{\nabla}_{\widetilde{Y}} F_{\varphi}) \widetilde{X} \right) - F_{\varphi} \left((\widetilde{\nabla}_{\widetilde{X}} F_{\varphi}) \widetilde{Y} \right) \right]. \tag{4.13}$$

$$\widehat{\nabla}_{\widetilde{X}}\widetilde{Y} = \widetilde{\nabla}_{\widetilde{X}}\widetilde{Y} - S(\widetilde{X}, \widetilde{Y}). \tag{4.14}$$

for all \widetilde{X} , $\widetilde{Y} \in \mathfrak{F}_0^1(TM)$, where $\widetilde{\nabla}$ is the Levi-Civita connection of (TM, g_{φ}) given by Theorem 3.1. $\widehat{\nabla}$ is an almost product connection on TM (see [4, p.151] for more details).

Lemma 4.4. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost product structure F_{φ} defined by (4.11). Then tensor field S is as follows,

(1)
$$S(X^H, Y^H) = -\frac{1}{2}(R(X, Y)u)^V$$
,

(2)
$$S(X^H, Y^V) = \frac{1}{2} (R(\varphi u, Y)X)^H$$
,

(3)
$$S(X^V, Y^H) = -(R(\varphi u, X)Y)^H$$

(4)
$$S(X^V, Y^V) = 0$$
,

for all $X, Y \in \mathfrak{F}_0^1(M)$.

Proof. (1) Using (4.11) and (4.13), we have

$$S(X^{H}, Y^{H}) = \frac{1}{2} \left[(\widetilde{\nabla}_{F_{\varphi}Y^{H}} F_{\varphi}) X^{H} + F_{\varphi} \left((\widetilde{\nabla}_{Y^{H}} F_{\varphi}) X^{H} \right) - F_{\varphi} \left((\widetilde{\nabla}_{X^{H}} F_{\varphi}) Y^{H} \right) \right]$$

$$= \frac{1}{2} \left[\widetilde{\nabla}_{(\varphi Y)^{H}} (\varphi X)^{H} + F_{\varphi} (\widetilde{\nabla}_{(\varphi Y)^{H}} X^{H}) - F_{\varphi} (\widetilde{\nabla}_{Y^{H}} (\varphi X)^{H}) \right]$$

$$- \widetilde{\nabla}_{Y^{H}} X^{H} + F_{\varphi} (\widetilde{\nabla}_{X^{H}} (\varphi Y)^{H}) + \widetilde{\nabla}_{X^{H}} Y^{H} \right]$$

$$= \frac{1}{2} \left[(\nabla_{\varphi Y} \varphi X)^{H} - \frac{1}{2} (R(\varphi Y, \varphi X) u)^{V} - (\varphi \nabla_{\varphi Y} X)^{H} \right]$$

$$- \frac{1}{2} (\varphi R(\varphi Y, X) u)^{V} + (\varphi \nabla_{Y} \varphi X)^{H} + \frac{1}{2} (\varphi R(Y, \varphi X) u)^{V}$$

$$- (\nabla_{Y} X)^{H} + \frac{1}{2} (R(Y, X) u)^{V} - (\varphi \nabla_{X} \varphi Y)^{H}$$

$$- \frac{1}{2} (\varphi R(X, \varphi Y) u)^{V} + (\nabla_{X} Y)^{H} - \frac{1}{2} (R(X, Y) u)^{V} \right].$$

Using (2.6) we have

$$S(X^H, Y^H) = -\frac{1}{2} (R(X, Y)u)^V.$$

(2) By a similar calculation to (1), we have

$$\begin{split} S(X^H,Y^V) &= \frac{1}{2} \big[(\widetilde{\nabla}_{F_{\varphi}Y^V} F_{\varphi}) X^H + F_{\varphi} \big((\widetilde{\nabla}_{Y^V} F_{\varphi}) X^H \big) - F_{\varphi} \big((\widetilde{\nabla}_{X^H} F_{\varphi}) Y^V \big) \big] \\ &= \frac{1}{2} \big[- \widetilde{\nabla}_{(\varphi Y)^V} (\varphi X)^H - F_{\varphi} (\widetilde{\nabla}_{(\varphi Y)^V} X^H) - F_{\varphi} \big(\widetilde{\nabla}_{Y^V} (\varphi X)^H \big) \\ &- \widetilde{\nabla}_{Y^V} X^H - F_{\varphi} \big(\widetilde{\nabla}_{X^H} (\varphi Y)^V \big) + \widetilde{\nabla}_{X^H} Y^V \big] \\ &= \frac{1}{2} \big[- \frac{1}{2} (R(\varphi u, \varphi Y) \varphi X)^H + \frac{1}{2} (\varphi R(\varphi u, \varphi Y) X)^H \\ &+ \frac{1}{2} (\varphi R(\varphi u, Y) \varphi X)^H - \frac{1}{2} (R(\varphi u, Y) X)^H \\ &- (\varphi \nabla_X \varphi Y)^V + \frac{1}{2} (\varphi R(\varphi u, \varphi Y) X)^H \\ &+ (\nabla_X Y)^V + \frac{1}{2} (R(\varphi u, Y) X)^H \big]. \end{split}$$

Using (2.6) we get

$$S(X^H,Y^V) \ = \ \frac{1}{2}(R(\varphi u,Y)X)^H.$$

The other formulas are obtained by a similar calculation.

Theorem 4.9. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost product structure F_{φ} defined by (4.11). Then the almost product connection $\widehat{\nabla}$ defined by (4.14) is as follows,

$$(1) \widehat{\nabla}_{X^H} Y^H = (\nabla_X Y)^H,$$

$$(2) \widehat{\nabla}_{X^H} Y^V = (\nabla_X Y)^V,$$

$$(3) \ \widehat{\nabla}_{X^V}Y^H \ = \ \frac{3}{2}(R(\varphi u,X)Y)^H,$$

$$(4) \ \widehat{\nabla}_{X^V}Y^V \ = \ 0,$$

for all $X, Y \in \Im_0^1(M)$.

Proof. The proof of Theorem 4.9 follows directly from Theorem 3.1, Lemma 4.4 and formula (4.14).

Lemma 4.5. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost product structure F_{φ} defined by

(4.11) and \widehat{T} denote the torsion tensor of $\widehat{\nabla}$, then we have:

$$\begin{array}{rcl} (1) \ \widehat{T}(X^{H},Y^{H}) & = & (R(X,Y)u)^{V}, \\ \\ (2) \ \widehat{T}(X^{H},Y^{V}) & = & -\frac{3}{2}(R(\varphi u,Y)X)^{H}, \\ \\ (3) \ \widehat{T}(X^{V},Y^{H}) & = & \frac{3}{2}(R(\varphi u,X)Y)^{H}, \\ \\ (4) \ \widehat{T}(X^{V},Y^{V}) & = & 0, \end{array}$$

for all $X, Y \in \mathfrak{F}_0^1(M)$.

Proof. The proof of Lemma 4.5 follows directly from Lemma 4.4 and formula

$$\begin{split} \widehat{T}(\widetilde{X},\widetilde{Y}) &= \widehat{\nabla}_{\widetilde{X}}\widetilde{Y} - \widehat{\nabla}_{\widetilde{Y}}\widetilde{X} - [\widetilde{X},\widetilde{Y}] \\ &= S(\widetilde{Y},\widetilde{X}) - S(\widetilde{X},\widetilde{Y}) \end{split}$$

for all $\widetilde{X}, \widetilde{Y} \in \Im_0^1(TM)$.

From Lemma 4.5 we obtain

Theorem 4.10. Let (M^{2m}, φ, g) be a para-Kähler-Norden manifold, (TM, g_{φ}) be its tangent bundle equipped with the φ -Sasaki metric and the almost product structure F_{φ} defined by (4.11), then $\widehat{\nabla}$ is symmetric if and only if M is flat.

Acknowledgments. The author would like to thank the referees for useful comments and their helpful suggestions that have improved the quality of this paper.

References

- [1] Alekseevsky, D.V., Medori, C., & Tomassini, A. (2009). Para-Kähler Einstein metrics on homogeneous manifolds. C. R. Acad. Sci. Paris, Ser. I, 347, 69-72.
- [2] Cruceanu, V., Gadea, P.M., & Munoz Masque, J. (1995). Para-Hermitian and para-Kähler manifolds. Quaderni Inst. Mat. Univ. Messina, 1, 1-72.
- [3] Cruceanu, V., Fortuny, P. & Gadea, P. M. (1996). A survey on paracomplex geometry. Rocky Mountain J. Math., 26, 83–115.
- [4] De León, M., & Rodrigues, P. R. (1989). Methods of Differential Geometry in Analytical Mechanics. North-Holland Mathematics Studies.
- [5] Ganchev, G. T., & Borisov, A. V. (1986). Note on the almost complex manifolds with a Norden metric.C. R. Acad. Bulgare Sci., 39(5), 31-34.
- [6] Gezer, A., & Ozkan, M. (2014). Notes on the tangent bundle with deformed complete lift metric. Turkish J. Math., 38, 1038-1049.

- [7] Gezer, A.,& Altunbas, M. (2016). On the Rescaled Riemannian Metric of Cheeger Gromoll Type on the Cotangent Bundle. Hacet. J. Math. Stat., 45(2), 355-365.
- [8] Iscan, M., & Salimov, A.A. (2009). On Kähler-Norden manifolds. Proc. Indian Acad. Sci. Math. Sci., 119(1), 71-80.
- [9] Libermann, P. (1952). Sur les structures presque paracomplexes. C. R. Acad. Sci. Paris, 234, 2517-2519.
- [10] Manev, M., & Mekerov, D. (2008). On Lie groups as quasi-Kähler manifolds with Killing Norden metric. Adv. Geom., 8(3), 343-352.
- [11] Ocak, F., & Salimov, A.A. (2014). Geometry of the cotangent bundle with Sasakian metrics and its applications. Proc. Proc. Indian Acad. Sci. Math. Sci., 124(3), 427-436.
- [12] Patterson, E.M. (1954). Riemann extensions which have Kähler metrics. Proc. Roy. Soc. Edinburgh Sect. A, 64, 113-126.
- [13] Salimov, A.A., Iscan, M., & Etayo, F. (2007) Para-holomorphic B-manifold and its properties. Topology Appl., 154(4), 925-933.
- [14] Salimov, A.A., Iscan, M., & Akbulut, K. (2010). Notes on para-Norden-Walker 4-manifolds. Int. J. Geom. Methods Mod. Phys., 7(8), 1331–1347.
- [15] Salimov, A.A., & Agca, F. (2011). Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterr. J. Math., 8(2), 243-255.
- [16] Salimov, A.A., Gezer, A., & Iscan, M. (2012). On para-Kähler-Norden structures on the tangent bundles. Ann. Polon. Math., 103(3), 247–261.
- [17] Yano, K., & Ako, M. (1968). On certain operators associated with tensor field. Kodai Math. Sem. Rep., 20, 414-436.
- [18] Yano, K., & Ishihara, S. (1973). Tangent and Cotangent Bundles. Marcel Dekker. INC. New York.

University Center Ahmed Zabana-Relizane, Dept. of Mathematics, 48000, Relizane-Algeria