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GENERALIZED TANAKA-WEBSTER CONNECTION ON β-KENMOTSU

MANIFOLDS

SHIVANI SUNDRIYAL1 ID AND ABDUL HASEEB2 ID ∗

Abstract. This research paper aims to study the postulates of the generalized Tanaka-

Webster connection (briefly, gTWc) on β-Kenmotsu manifolds. We find the curvature prop-

erties of a β-Kenmotsu manifold concerning gTWc, and studied the conditions for the

ϕ-projectively flat, ϕ-conformally flat and ϕ-concirculary flat β-Kenmotsu manifolds along

with the same connection. Also, we have discussed the ξ-flat properties on same curvatures

for the β-Kenmotsu manifold admitting gTWc. At the end we provide an example to verify

some of our results.

Keywords: β-Kenmotsu manifold, generalized Tanaka-Webster connection, curvature ten-
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1. Introduction

The generalized Tanaka-Webster connection (gTWc) is a canonical affine connection de-

fined on a non-degenerated pseudo-Hermitian CR-manifold. The gTWc was introduced by

Tanno [23] as a generalization of the connections defined at the end of 1976 by Tanaka in [22]

and Webster in [25]. These connections coincide with the Tanaka-Webster connection (TWc)

if the associated CR-structure is integrable. Many geometers studied some characterizations

of the gTWc on various manifolds. Recently, S.Y. Perktas et al. [18], Ghosh and De [5, 7],
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Gautam et al. [6], Ayar and Cavusoglu [2], and many others have studied the properties of

this connection on distinct structures. Also, see [12, 16].

Kenmotsu [13], introduced a new class of almost contact Riemannian manifolds, known

as the Kenmotsu manifold. As it is well known, odd-dimensional spheres permit Sasakian

structures, but odd-dimensional hyperbolic spaces do not admit Sasakian structures but do

have Kenmotsu structures. Kenmotsu manifolds are normal almost contact Riemannian

manifolds. The basic fundamental properties of the local structure of such manifolds were

investigated by many geometers. In general, the Kenmotsu manifolds are locally isometric

to warped product spaces with one-dimensional bases. Oubina [17] introduced the notion of

trans-Sasakian manifolds of type (α, β), which is the generalization of Kenmotsu manifolds

and Sasakian manifolds, and are closely related to the locally conformal Kähler manifolds.

A trans-Sasakian manifold of type (0, 0), (α, 0) and (0, β) are, respectively called, the cosym-

pletic, α-Sasakian and β-Kenmotsu manifold, where α and β be some scalar functions. In

particular, if α = 0, β = 1; α = 0, β is non-zero constant and α = 1, β = 0 then a trans

Sasakian manifold will be a Kenmotsu; homothetic Kenmotsu manifold and Sasakian mani-

fold, respectively. β-Kenmotsu manifolds have been studied by several authors, like Bozdag

et al. [3], Hui and Chakraborty [11], Kumar [15], Shaikh and Hui [19] and Mobin et al.[1].

We recommend the papers [8, 9, 10, 20, 21, 24] for more related stidies and references therein.

2. Preliminaries

In this section, we review basic definitions and results that are needed to state and prove

our results.

A (2n+ 1)-dimensional smooth differentiable manifold M is said to be an almost contact

metric structure (ϕ, ξ, η, g) if the following conditions are satisfying

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (2.1)

g(X,Y ) = g(ϕX, ϕY ) + η(X)η(Y ), (2.2)

g(X,ϕY ) = −g(ϕX, Y ), (2.3)

g(X, ξ) = η(X) (2.4)

for all X,Y, Z on M, where ϕ is a (1, 1)-tensor field, ξ is a vector field and η is a 1-form. An

almost metric manifold M is said to be a β-Kenmotsu manifold if it satisfies

(∇Xϕ)Y = β[g(ϕX, Y )ξ − η(Y )ϕX], (2.5)
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(∇Xη)Y = β[g(X,Y )− η(X)η(Y )], (2.6)

∇Xξ = β[X − η(X)ξ], (2.7)

where ∇ is a Levi-Civita connection.

If β = 1, then M is called a Kenmotsu manifold, and if β is constant then M are named

homothetic Kenmotsu manifolds and provide a large variety of Kenmotsu manifolds. In a

β-Kenmotsu manifold M, the following relations hold:

R(X,Y )ξ = −β2[η(Y )X − η(X)Y ] + (Xβ){Y − η(Y )ξ} − (Y β){X − η(X)ξ},

R(ξ,X)Y = {β2 + ξβ}[η(Y )X − g(X,Y )ξ],

Ric(X, ξ) = −{2nβ2 + ξβ}η(X)− (2n− 1)(Xβ),

Ric(ϕX, ϕY ) = Ric(X,Y ) + {2nβ2 + ξβ}η(X)η(Y ) + (2n− 1)(Xβ)η(Y ), (2.8)

where X(β) = g(X,Dβ), D is the gradient operator of g.

An M is said to be η-Einstein if its Ricci tensor Ric( ̸= 0 ) satisfies

Ric(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for any vector fields X and Y on M, where a and b are smooth functions on M.

The gTWc ∇̂ for a contact metric manifold M is given by [23],

∇̂XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ + η(X)ϕY (2.9)

for all X, Y on M.

3. β-Kenmotsu Manifolds concerning ∇̂

In this section, we prove that the gTWc ∇̂ is a metric connection; and moreover, we obtain

an expression of the torsion tensor T̂ on the manifold.

Let M be a (2n+ 1)-dimensional β-Kenmotsu manifold. The gTWc ∇̂ on an M is given

by

∇̂XY = ∇XY − βη(Y )X + βg(X,Y )ξ + η(X)ϕY, (3.10)

where (2.6),(2.7) and (2.9) being used.

Now putting Y = ξ in (3.10) and using (2.1), (2.2) and (2.4), we get

∇̂Xξ = 0. (3.11)

From (2.9) and (2.3), we find

(∇̂Xη)Y = 0. (3.12)
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Also, from (2.9) and (2.5), we find

(∇̂Xg)(Y, Z) = 0. (3.13)

Thus, in the view of (3.11), (3.12) and (3.13), we can state the following:

Proposition 3.1. In an M, ξ and η are parallel with respect to ∇̂, which is a metric

connection.

Proposition 3.2. In an M, the integral curves of a vector field ξ are geodesic concerning

the gTWc ∇̂.

Now, since the connection ∇̂ is metric, so the torsion tensor T̂ of ∇̂ is given by

T̂ (X,Y ) = ∇̂XY − ∇̂Y X. (3.14)

From (3.10) and (3.14), we get

T̂ (X,Y ) = β{η(X)Y − η(Y )X}+ η(X)ϕY − η(Y )ϕX. (3.15)

Since, we know

g(∇̂XY, Z) = g(∇XY, Z) +
1

2
[g(T̂ (X,Y ), Z)− g(T̂ (X,Z), Y ) (3.16)

−g(T̂ (Y,Z), X)].

Using (3.15) in (3.16), we get (3.10). Hence, we can state:

Theorem 3.1. The gTWc ∇̂ associated with the connection ∇ is a unique affine connection,

which is metric and its torsion is of the form T̂ (X,Y ) = β{η(X)Y − η(Y )X} + η(X)ϕY −

η(Y )ϕX.

4. Curvature properties of β-Kenmotsu manifolds concerning ∇̂

In the currect section, we establish the relationships between R and R̂; Ric and R̂ic; and

s and ŝ with respect to ∇ and ∇̂.

The Riemannian curvature tensor with respect to ∇̂ on M is given by

R̂(X,Y )Z = ∇̂X∇̂Y Z − ∇̂Y ∇̂XZ − ∇̂[X,Y ]Z. (4.17)
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By using (3.10), (4.17) takes the form

R̂(X,Y )Z = R(X,Y )Z +X(β){g(Y,Z)ξ − η(Z)Y } (4.18)

−Y (β){g(X,Z)ξ − η(Z)X}+ β2{g(Y,Z)X − g(X,Z)Y },

where R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The inner product of (4.18) with W yields

R̂(X,Y, Z,W ) = R(X,Y, Z,W ) +X(β){g(Y,Z)η(W )− η(Z)g(Y,W )}

−Y (β){g(X,Z)η(W )− η(Z)g(X,W )} (4.19)

+β2{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )},

where R̂(X,Y, Z,W ) = g(R̂(X,Y )Z,W ).

Let {ei, ξ}2n+1
i=1 be the set of orthonormal basis of tangent space at each point of the manifold,

then contracting (4.19) over X and W , we get

R̂ic(Y, Z) = Ric(Y,Z) + 2nβ2g(Y,Z). (4.20)

From (4.20) it follows that

Q̂Z = QZ + 2nβ2Z, (4.21)

where R̂ic(Y,Z) = g(Q̂Y,Z).

Also, the scalar curvature ŝ is given by,

ŝ = s+ 2n(2n+ 1)β2. (4.22)

Hence, we can state:

Lemma 4.1. In an M admitting ∇̂ and β=constant, we have

• The curvature tensor R̂ is given by (4.18),

• The Ricci tensor R̂ic is given by (4.20) and it is symmetric,

• The Ricci operator Q̂ is given by (4.21),

• The scalar curvature ŝ is given by (4.22).

Lemma 4.2. In an M admitting ∇̂, we have

• R̂(X,Y )ξ = 0,

• R̂(X,Y )Z + R̂(Y,X)Z = 0,

• R̂(X,Y )Z + R̂(Y, Z)X + R̂(Z,X)Y = 0,
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• R̂ic(Y, ξ) = 0 if β is constant. Otherwise, R̂ic(Y, ξ) = −(ξβ)η(Y ) − (2n − 1)(Xβ),

for all X,Y, Z ∈ χ(M).

5. Projective curvature tensor in β-Kenmotsu manifolds concerning ∇̂

Let M be a (2n + 1)-dimensional Riemannain manifold. If there exists a one to one

correspondence between each coordinate neighbourhood of M and a domain in Euclidean

space such that any geodesic of the Riemannian manifold corresponds to a straight line

in the Euclidean space, then M is said to be locally projectively flat. For n ≥ 1, M is

locally projectively flat if and only if the projective curvature tensor vanishes. The projective

curvature tensor P1 with respect to the Levi-Civita connection ∇ is defined by [28]

P1(X,Y )Z = R(X,Y )Z − 1

2n
{Ric(Y, Z)X −Ric(X,Z)Y }, (5.23)

for all X, Y on M, where R are Ric are the Riemannian curvature tensor and the Ricci

tensor, respectively.

Definition 5.1. A β-Kenmotsu manifold M is said to be ξ-projectively flat with respect to

∇̂ if

P̂1(X,Y )ξ = 0,

where P̂1(X,Y )Z is the projective curvature tensor of dimension (2n+ 1) concerning ∇̂ and

is given by

P̂1(X,Y )Z = R̂(X,Y )Z − 1

2n
{R̂ic(Y,Z)X − R̂ic(X,Z)Y }, (5.24)

for all X,Y, Z ∈ χ(M).

Theorem 5.1. An M of dimension (2n + 1) is ξ-projectively flat with respect to ∇̂ if and

only if it is ξ-projectively flat with respect to ∇, provided β is constant.

Proof. From (4.18), (4.20) and (5.24), we have

P̂1(X,Y )Z = P1(X,Y )Z +X(β){g(Y, Z)ξ − η(Z)Y } (5.25)

−Y (β){g(X,Z)ξ − η(Z)X},

where P1(X,Y )Z is defined in (5.23). Now, putting Z = ξ in (5.25), and considering β as a

constant, we get

P̂1(X,Y )ξ = P1(X,Y )ξ.

□
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Definition 5.2. A β-Kenmotsu manifold M satisfying the condition

ϕ2(P̂1(ϕX, ϕY )ϕZ) = 0

is called ϕ-projectively flat with respect to ∇̂. As we know that

ϕ2(P̂1(ϕX, ϕY )ϕZ) = 0 ⇐⇒ g(P̂1(ϕX, ϕY )ϕZ, ϕW ) = 0 (5.26)

for all X,Y, Z,W ∈ χ(M).

Theorem 5.2. Let M be a (2n + 1)-dimensional ϕ-projectively flat β-Kenmotsu manifold

with respect to ∇̂ and β is constant. Then M is an η-Einstein manifold.

Proof. Let M be a ϕ-projectively flat β-Kenmotsu manifold with respect to ∇̂, then (5.26)

holds. Thus, from (5.24) and (5.26), we have

g(R̂(ϕX, ϕY )ϕZ, ϕW ) =
1

2n
{R̂ic(ϕY, ϕZ)g(ϕX, ϕW )− R̂ic(ϕX, ϕZ)g(ϕY, ϕW )},

which by using (4.18) and (4.20) turns to

g(R(ϕX, ϕY )ϕZ, ϕW ) = −β2{g(ϕY, ϕZ)g(ϕX, ϕW )− g(ϕX, ϕZ)g(ϕY, ϕW )} (5.27)

+
1

2n
{Ric(ϕY, ϕZ)g(ϕX, ϕW ) + 2nβ2g(ϕY, ϕZ)g(ϕX, ϕW )

−Ric(ϕX, ϕZ)g(ϕY, ϕW )− 2nβ2g(ϕX, ϕZ)g(ϕY, ϕW )}.

Now choosing a set {ei, ϕei, ξ}(1 ≤ i ≤ 2n) as an orthogonal basis of M, by contracting

(5.27) over X and W , we obtain

Ric(ϕY, ϕZ) = −(2nβ2 + ξβ)g(ϕY, ϕZ)

+
1

2n
{(2n− 1)Ric(ϕY, ϕZ) + 2n(2n− 1)β2g(ϕY, ϕZ)}.

This implies

Ric(ϕY, ϕZ) = −(β2 + ξβ)g(ϕY, ϕZ). (5.28)

By using (2.2) and (2.8) in (5.28), we have

Ric(Y,Z) = −(β2 + ξβ)g(Y,Z)− (2n− 1)β2η(Y )η(Z)− (2n− 1)Y (β)η(Z). (5.29)

Now, if β is constant, then (5.29) reduces to

Ric(Y, Z) = −β2g(Y,Z)− (2n− 1)β2η(Y )η(Z).

Thus M is an η-Einstein manifold. □
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6. Concircular curvature tensor in β-Kenmotsu manifolds concerning ∇̂

A transformation of a (2n + 1)-dimensional Riemannian manifold M, which transforms

every geodesic circle ofM into a geodesic circle, is called a concircular transformation [14, 27].

A concircular transformation is always a conformal transformation [14]. Here geodesic circle

means a curve in M whose first curvature is constant and second curvature is identically

zero. Thus the geometry of concircular transformations, i.e., the concircular geometry, is

generalization of inversive geometry in the sense that the change of metric is more general

than induced by a circle preserving diffeomorphism. An interesting invariant of a concircular

transformation is the concircular curvature tensor with respect to the Levi-Civita connection

and is defined by

P2(X,Y )Z = R(X,Y )Z − s

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }, (6.30)

for all X, Y and Z on M, where s is the the scalar curvature with respect to the Levi-Civita

connection.

Definition 6.1. A β-Kenmotsu manifold M satisfying the condition

ϕ2(P̂2(ϕX, ϕY )ϕZ) = 0

is called ϕ-concircularly flat with respect to ∇̂, where P̂2(X,Y )Z is the concircular curvature

tensor of dimension (2n+ 1) with respect to ∇̂ and is given by

P̂2(X,Y )Z = R̂(X,Y )Z − ŝ

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }. (6.31)

As we know that

ϕ2(P̂2(ϕX, ϕY )ϕZ) = 0 ⇐⇒ g(P̂2(ϕX, ϕY )ϕZ, ϕW ) = 0, (6.32)

for all X,Y, Z,W on M.

Theorem 6.1. Let M be a (2n+ 1)-dimensional ϕ-concircularly flat β-Kenmotsu manifold

with respect to ∇̂ and β is constant. Then M is an η-Einstein manifold.

Proof. If M is a ϕ-concircularly flat with respect to ∇̂, then (6.32) holds. Thus, from (6.31)

and (6.32), we have

g(R̂(ϕX, ϕY )ϕZ, ϕW ) =
ŝ

2n(2n− 1)
{g(ϕY, ϕZ)g(ϕX, ϕW ) (6.33)

−g(ϕX, ϕZ)g(ϕY, ϕW )}.
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By using (4.18) and (2.2) in (6.33), we have

g(R(ϕX, ϕY )ϕZ, ϕW ) = −β2{g(ϕY, ϕZ)g(ϕX, ϕW )− g(ϕX, ϕZ)g(ϕY, ϕW )}

=
s+ 2n(2n+ 1)β2

2n(2n− 1)
{g(ϕY, ϕZ)g(ϕX, ϕW ) (6.34)

−g(ϕX, ϕZ)g(ϕY, ϕW )}.

Now choosing {ei, ϕei, ξ}(1 ≤ i ≤ 2n) as a set of orthogonal basis of M and contracting

(6.34) over X and W , we obtain

Ric(ϕY, ϕZ) = (
s

2n
+ (β2 − ξβ))g(ϕY, ϕZ). (6.35)

By using (2.2) and (2.8) in (6.35), we have

Ric(Y, Z) = (
s

2n
+ (β2 − ξβ))g(Y, Z)− (

s

2n
+ (2n+ 1)β2)η(Y )η(Z) (6.36)

−(2n− 1)Y (β)η(Z).

Now, if β is constant, then (6.36) reduces to

Ric(Y,Z) = (
s

2n
+ β2)g(Y, Z)− (

s

2n
+ (2n+ 1)β2)β2η(Y )η(Z).

The above equation shows that M is an η-Einstein manifold. □

7. Conformal curvature tensor in β-Kenmotsu manifolds concerning ∇̂

If the Riemannian metric g on a manifold M is conformally related with a flat Euclidean

metric, then g is called conformally flat. A Riemannian manifold equipped with a confor-

mally flat Riemannian metric is named a conformally flat manifold. By using conformal

transformation, Weyl [26] introduced a generalized curvature tensor which vanishes when-

ever the metric is conformally flat. Due to this reason it is called confomal curvature tensor.

It is well-known that a Riemannian manifold M of dimension (2n+ 1) is conformally flat if

and only if the Weyl conformal curvature tensor field P3 vanishes for the dimension > 3. The

conformal curvature tensor P3 in a (2n+ 1)-dimensional Riemannian manifold is defined by

P3(X,Y )Z = R(X,Y )Z − 1

2n− 1
{Ric(Y, Z)X −Ric(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY }+ s

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }, (7.37)

for all vector fields X,Y, Z on M, where R, Ric, Q, and s be the Riemannian curvature

tensor, the Ricci tensor, the Ricci operator, and the scalar curvature, respectively.
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Definition 7.1. A β-Kenmotsu manifold M is ξ-conformally flat with respect to ∇̂ if

P̂3(X,Y )ξ = 0,

where P̂3(X,Y )Z is the conformal curvature tensor of dimension (2n+ 1) with respect to ∇̂

and is given by

P̂3(X,Y )Z = R̂(X,Y )Z − 1

(2n− 1)
{R̂ic(X,Z)X − R̂ic(X,Z)Y + g(Y,Z)Q̂X

−g(X,Z)Q̂Y }+ ŝ

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y } (7.38)

for all X,Y, Z on M.

Theorem 7.1. A (2n+1)-dimensional β-Kenmotsu manifold with respect to ∇̂ is ξ-conformally

flat iff it is ξ-conformally flat with respect to ∇, provided β is constant.

Proof. From (4.18), (4.20) and (7.38), we have

P̂3(X,Y )Z = P3(X,Y )Z +X(β){g(Y,Z)ξ − η(Z)Y } (7.39)

−Y (β){g(X,Z)ξ − η(Z)X},

where P3(X,Y )Z is defined by (7.37). By putting Z = ξ in (7.39), and considering β as a

constant, we get

P̂3(X,Y )ξ = P3(X,Y )ξ.

This completes the proof. □

Definition 7.2. A β-Kenmotsu manifold M is called ϕ-conformally flat with respect to ∇̂ if

ϕ2(P̂3(ϕX, ϕY )ϕZ) = 0 ⇐⇒ g(P̂3(ϕX, ϕY )ϕZ, ϕW ) = 0, (7.40)

for all X,Y, Z,W ∈ χ(M).

Theorem 7.2. Let M be a (2n + 1)-dimensional ϕ-conformally flat β-Kenmotsu manifold

with respect to ∇̂ and β is constant. Then M is an η-Einstein manifold.

Proof. If M is a ϕ-conformaly flat, then in the view of equation (7.38) and (7.40), we have

g(R̂(ϕX, ϕY )ϕZ, ϕW ) =
1

2n
{R̂ic(ϕY, ϕZ)g(ϕX, ϕW )− R̂ic(ϕX, ϕZ)g(ϕY, ϕW )

+g(ϕY, ϕZ)R̂ic(ϕX, ϕW )− g(ϕX, ϕZ)R̂ic(ϕY, ϕW )} (7.41)

− ŝ

2n(2n− 1)
{g(ϕY, ϕZ)g(ϕX, ϕW )− g(ϕX, ϕZ)g(ϕY, ϕW )}.
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By using (4.18) and (4.20), (7.41) takes the form

g(R(ϕX, ϕY )ϕZ, ϕW ) = −β2{g(ϕY, ϕZ)g(ϕX, ϕW )− g(ϕX, ϕZ)g(ϕY, ϕW )}

+
1

2n
{Ric(ϕY, ϕZ)g(ϕX, ϕW ) + 2nβ2g(ϕY, ϕZ)g(ϕX, ϕW )

−Ric(ϕX, ϕZ)g(ϕY, ϕW )− 2nβ2g(ϕX, ϕZ)g(ϕY, ϕW ) (7.42)

+g(ϕY, ϕZ)Ric(ϕX, ϕW ) + 2nβ2g(ϕY, ϕZ)g(ϕX, ϕW )

−g(ϕX, ϕZ)Ric(ϕY, ϕW )− 2nβ2g(ϕX, ϕZ)g(ϕY, ϕW )}

−s+ 2n(2n+ 1)β2

2n
g(ϕY, ϕZ).

Now choosing {ei, ϕei, ξ}(1 ≤ i ≤ 2n) as a set of orthogonal basis of M and contracting

(7.42) over X and W , we obtain

Ric(ϕY, ϕZ) = (
s

2n
− (2n− 1)(β2 + ξβ))g(ϕY, ϕZ). (7.43)

Now using (2.2) and (2.8) in (7.43), we have

Ric(Y, Z) = (
s

2n
− (2n− 1)(β2 + ξβ))g(Y,Z)

−(
s

2n
+ β2 − 2(n− 1)(ξβ))η(Y )η(Z)− (2n− 1)Y (β)η(Z). (7.44)

Now, if β is constant, then (7.44) reduces to

Ric(Y,Z) = (
s

2n
− (2n− 1)β2)g(Y,Z)− (

s

2n
+ β2)η(Y )η(Z).

The above equation shows that M is an η-Einstein manifold. □

8. Example

In this section, an example has been stated to verify some results of the paper.

We assume a 3-dimensional manifold M = {(u, v, w) ∈ R3}, where (u, v, w) are the usual

coordinates in R3. We choose the linearly independent vector fields at each point of M as

[20]

ϵ1 = w2 ∂

∂u
, ϵ2 = w2 ∂

∂v
, ϵ3 =

∂

∂w
.

Let the Riemannian metric g is defined by

g(ϵi, ϵj) =

 1 if i = j

0 if i ̸= j
; i, j = 1, 2, 3.

Let the 1-form η is defined by

η(X) = g(X, ϵ3),
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for any X on M. Let the (1, 1)-tensor field ϕ is defined by

ϕ(ϵ1) = −ϵ2, ϕ(ϵ2) = ϵ1, ϕ(ϵ3) = 0.

Using the linearity of ϕ and g, we have

ϕ2X = −X + η(X)ϵ3, η(ϵ3) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any X,Y on M. Thus for ϵ3 = ξ, the structure (ϕ, ξ, η, g) defines an almost contact

metric structure on M. For the connection ∇, we have

[ϵ1, ϵ2] = 0, [ϵ1, ϵ3] = − 2

w
ϵ1, [ϵ2, ϵ3] = − 2

w
ϵ2.

By using the Koszul’s formula, we find

∇ϵ1ϵ1 =
2
w ϵ3, ∇ϵ1ϵ2 = 0, ∇ϵ1ϵ3 = − 2

w ϵ1,

∇ϵ2ϵ1 = 0, ∇ϵ2ϵ2 =
2
w ϵ3, ∇ϵ2ϵ3 = − 2

w ϵ2,

∇ϵ3ϵ1 = 0, ∇ϵ3ϵ2 = 0, ∇ϵ3ϵ3 = 0.

(8.45)

From the above values, it is clear that (ϕ, ξ, η, g) is a β-Kenmotsu structure on M, hence

M(ϕ, ξ, η, g) is a 3-dimensional β-Kenmotsu manifold satisfying the conditions (2.5)-(2.7),

where β = − 2
w . Using the results from equation (8.45), we can obtain the non-vanishing

components of the Riemannian curvature tensor with respect to ∇ as follows:

R(ϵ1, ϵ2)ϵ1 =
4
w2 ϵ2, R(ϵ1, ϵ2)ϵ2 = − 4

w2 ϵ1, R(ϵ1, ϵ3)ϵ1 =
4
w2 ϵ3,

R(ϵ1, ϵ3)ϵ3 = − 4
w2 ϵ1, R(ϵ2, ϵ3)ϵ3 = − 4

w2 ϵ2, R(ϵ2, ϵ3)ϵ2 =
4
w2 ϵ3.

(8.46)

The Ricci tensor concerning to ∇ are

Ric(ϵi, ϵi) =


− 8

w2 , i = 1, 2, 3,

0, otherwise.

(8.47)

Thus, the scalar curvature s with respect to the ∇ given by

s = − 24

w2
. (8.48)

By using the values of (8.45) in (3.10), we obtain

∇̂ϵiϵj =


−ϵ2, i = 3, j = 1,

ϵ1, i = 3, j = 2,

0, otherwise.

(8.49)
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From the above results given in (8.49), we can easily calculate

R̂(ϵi, ϵj)ϵk = 0, R̂ic(ϵi, ϵj) = 0, Q̂ = 0, ŝ = 0, for 1 ≤ i, j, k ≤ 3. (8.50)

In view of (8.50), it can be easily seen from (5.24) and (7.38) that

P̂1(ϵ1, ϵ2)ϵ3 = P̂1(ϵ1, ϵ3)ϵ3 = P̂1(ϵ2, ϵ3)ϵ3 = 0,

P̂3(ϵ1, ϵ2)ϵ3 = P̂3(ϵ1, ϵ3)ϵ3 = P̂3(ϵ2, ϵ3)ϵ3 = 0,
(8.51)

respectively.

Also by using (8.46), (8.47) and (8.48) from (5.23) and (7.37), we find

P1(ϵ1, ϵ2)ϵ3 = P1(ϵ1, ϵ3)ϵ3 = P1(ϵ2, ϵ3)ϵ3 = 0,

P3(ϵ1, ϵ2)ϵ3 = P3(ϵ1, ϵ3)ϵ3 = P3(ϵ2, ϵ3)ϵ3 = 0,
(8.52)

respectively.

Thus, the first relations of the equations (8.51) and (8.52) and the second relations of the

equations (8.51) and (8.52) verifies Theorem 5.1 and Theorem 7.1, respectively.
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