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STUDY OF SOME CURVES ALONG CONFORMAL SUBMERSION

BUDDHADEV PAL ID ∗, MAHENDRA KUMAR ID , AND SANTOSH KUMAR ID

Abstract. In this article, we study bi-f-harmonic curves, hyperelastic curves, helices and

circles along conformal Riemannian submersion. We investigate the behavior of an arbitrary

horizontal curve on the total manifold under the conformal submersion. Moreover, we show

that a totally geodesic Riemannian submersion takes a horizontal bi-f-harmonic curve, helix

and circle to a bi-f-harmonic curve, helix and circle on target manifold, respectively. In

addition, we also find the conditions for which Riemannian submersion takes a horizontal

bi-f-harmonic curve, helix and circle to a bi-f-harmonic curve, helix and circle on target

manifold, respectively.

Keywords: Bi-f-harmonic curve, bi-harmonic curve, helix, circle, hyperelastic curves, elas-

tic curve, totally geodesic conformal submersion and totally umbilical conformal submersion.
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1. Introduction

In 1964, J. Eells and J. H. Sampson [6], introduced the concept of bi-harmonic maps by

generalizing the harmonic maps. Harmonic maps have important applications in various

areas of mathematics and physics with nonlinear partial differential equations. A harmonic

map α : (N, gN ) → (N̄ , gN̄ ) between the Riemannian manifolds (N, gN ) and (N̄ , gN̄ ) is a
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critical point of the energy functional,

E(α) =
1

2

∫
ΓN

|dα|2vgN ,

where ΓN is some compact domain of N and τ(α) = TracegN∇dα is the tension field of

α. The harmonic map equation is an Euler-Lagrange equation of the functional τ(φ) ≡

TracegN∇dφ = 0, where τ(φ) = TracegN∇dφ is the tension field of φ [6]. The bi-harmonic

map α between the Riemannian manifolds (N, gN ) and (N̄ , gN̄ ) is a critical point of the

bi-energy functional, E2(α) =
1
2

∫
ΓN

|τ(α)|2vgN , where ΓN is a compact domain of N . The

bi-harmonic map equation is an Euler-Lagrange equation of the functional,

τ2(α) ≡ TracegN (∇
α∇α −∇α

∇N )τ(α)− TracegNR
N̄ (dα, τ(α))dα = 0,

where RN̄ = [∇N̄
X ,∇N̄

Y ]Z −∇N̄
[X,Y ]Z, is a Riemann curvature tensor of (N̄ , gN̄ ) [16]. In 1991

[5], the author introduced the bi-harmonic submanifolds of Euclidean space and stated a

conjecture “ any bi-harmonic submanifold of Euclidean space is harmonic, thus minimal”.

If the definition of bi-harmonic maps for Riemannian immersion in Euclidean space is used,

then the Chen’s definition of a bi-harmonic submanifold coincides with the definition given

by the bi-energy functional.

Bi-f-harmonic maps are the generalization of harmonic maps and f-harmonic maps. There are

two methods to formalize the link between bi-harmonic maps and f-harmonic maps. In the

first method of formalization, the authors extended the bi-energy functional in [32, 39] to the

bi-f-energy functional and got bi-f-harmonic maps. Further, for the second formalization, the

f-energy functional is extended to the f-bi-energy functional. In [22], the author introduced

the f-bi-harmonic maps by generalizing the bi-harmonic maps. The bi-f-harmonic equation

for curves in Euclidean space, hyperbolic space, sphere and hypersurfaces of manifolds were

studied in [30].

In [34], authors studied the charcterization of submanifold by taking the hyperelastic curves

along an immersion. The following properties of Riemannian submersions were studied in

[10, 25, 19]. In 1974, the authors proved that if a circle is mapped by immersion from a

submanifold to the ambient manifold, then the submanifold is said to be totally umbilical

with a parallel mean curvature vector field [26].

In the sixties O’ Neill and Gray introduced the concept of Riemannian submersions between

Riemannian manifolds [11, 25]. A differential map G between two Riemannian manifolds

(N, gN ) and (N̄ , gN̄ ) is known as a submersion if the rank of G∗ is equal to the dimension
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of the targeted manifold. Also, if the submersion is isometry between (N, gN ) and (N̄ , gN̄ ),

then G is called a Riemannian submersion. Conformal submersion and the fundamental

equations of conformal submersion were studied in [28, 12]. In [37, 38], authors study the

totally umbilical, geodesic and minimal fibers by using conformal submersions. Horizontally

conformal submersion is a generalization of the Riemannian submersion [9, 14]. Horizontally

conformal map is useful for the characterization of harmonic morphisms [4] and has many

applications in medical imaging (brain imaging) and computer graphics.

Hyperelastic curves in a Riemannian manifold are solutions to a constrained variable prob-

lem and are characterized by Euler-Lagrange equations. A parametrized curve by its ar-

clength is said to be a hyperelastic curve if it is a critical point of the following curvature

energy action defined on a suitable space of curves in a Riemannian manifold

Fr
γ =

∫
(κr + µ)ds, (1.1)

where κ denotes the curvature of γ [3, 36, 31]. If µ = 0, then these curves are called

free hyperelastic curves. In 2021, B. Sahin, G. O. Tukel and T. Turhan, studied the effect of

hyperelastic curves on the geometry of isometric immersions in [33]. The functional Fr
λ is the

classical Euler-Bernoulli’s bending (or elastic) energy functional for r = 2. Immersed curves

which are critical for the bending energy functional satisfying some boundary conditions are

said to be elastic curves (or elastica) [20]. The existence, classification or stability problems

of elastic curves or their generalizations in Riemannian manifolds attracted the attention of

many researchers. There are the following examples in the literature worked by D. Singer et

al. [15, 21, 20, 35]. In 1984, J. Langer and D. Singer proved that there exist closed elastic

curves of a fixed length in a compact Riemannian manifold [20].

A smooth curve parametrized by its arc-length on a Riemannian manifold N is said to be

circle if it satisfies ∇2
β̇
β̇ = −κ2β̇, where κ is a non-negative constant curvature of β and ∇β̇

is the covariant differentiation along β with respect to the Riemannian connection ∇ on N .

In [26], Nomizu-Yano proved that β is a circle iff the following is satisfies

∇2
β̇
β̇ + g(∇β̇β̇,∇β̇β̇)β̇ = 0,

where g is the Riemannian metric on N and ∇2
β̇
β̇ = ∇β̇∇β̇β̇. Many authors studied circles

on Riemannian manifolds and they showed that it is possible to obtain certain properties of

a submanifolds by observing the extrinsic structure of circles on this submanifold, [34, 2, 7,

13, 17, 23, 24, 27, 29]. In 1963, S. Kobayashi and K. Nomizu showed that an ordinary helix
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c = c(s) satisfies the following equation, ∇3
β̇
β̇+K2∇β̇β̇ = 0, where K2 = κ2+τ2 is a positive

constant. Conversely, if a curve c = c(s) satisfies the above condition, then it is an ordinary

helix or a geodesic, [18].

The structure of the article is as follows: In Section 2, we recall some basic concepts about

conformal Riemannian submersion, totally geodesic fibers and the second fundamental form

of Riemannian submersion. In Section 3, some conditions are derived for the case where

the curve either in the base manifold or in the target manifold is a bi-f-harmonic curve. In

section 3, we show that a totally geodesic conformal submersion between two Riemannian

manifolds takes a bi-harmonic curve to a bi-harmonic curve. In section 4, we prove that the

conformal submersion takes a curve to a helix iff the curve is of constant curvature. In the

same section, we also find the conditions for a curve to become a circle in a targeted manifold

by conformal submersion. In the final section, we study the hyperelastic curves along the

conformal submersions.

2. Preliminaries

Let G : (N, gN ) → (N̄ , gN̄ ) be a differentiable map between the Riemannian manifolds

(N, gN ) and (N̄ , gN̄ ) of dimensions n1 and n2, respectively such that n1 > n2. Then G is

said to be a Riemannian submersion if rank of G is maximal and differential G∗ preserves

the lengths of horizontal vectors. A Riemannian submersion G : (N, gN ) → (N̄ , gN̄ ) is said

to be a conformal submersion if the restriction of G∗ to the horizontal distribution of G is a

conformal map, i.e. there exist a smooth function λ : N → R+ such that

gN̄ (G∗(X), G∗(Y )) = λ2(p)gN (X,Y ),

for all X,Y ∈ Γ(kerG∗)
⊥ and p ∈ N .

A curve β : I → N on (N, g) is said to be a bi-f-harmonic curve if and only if β satisfies

the condition [30],

(ff ′′′ + f ′f ′′)β̇ + (3ff ′′ + 2f ′2)∇β̇β̇ + 4ff ′∇2
β̇
β̇ + f2∇3

β̇
β̇

+f2R(∇β̇β̇, β̇)β̇ = 0, (2.2)

where f : I → (0,∞) is a smooth function, ∇ is a Levi-Civita connection and R is a

Riemannian curvature tensor on N . Let G : (N, g) → (N̄ , ḡ) be a Riemannian submersion

between (N, g) and (N̄ , ḡ). Then β is said to be a horizontal curve if β̇(t) ∈ (kerG∗)
⊥;

∀ t ∈ I. If ∇N̄ is the Levi-Civita connection on (N̄ , ḡ), then the second fundamental form of



240 B. PAL, M. KUMAR, AND S. KUMAR

G is given by

(∇G∗)(X,Y ) =
N̄

∇G
XG∗(Y )−G∗(∇N

XY ), ∀ X,Y ∈ Γ(TN), (2.3)

where
N̄

∇G is the pullback connection of ∇N̄ . Now, if X,Y ∈ Γ((kerG∗)
⊥), then the second

fundamental form of Riemannian submersion is

(∇G∗)(X,Y ) = 0. (2.4)

Also, if X,Y ∈ Γ((kerG∗)
⊥) and V ∈ Γ((rangeG∗)

⊥), then

∇N̄
G∗(X)V = −SV G∗(X) +∇G⊥

X V, (2.5)

where SV G∗(X) is the tangential component of ∇N̄
G∗(X)V . Since (∇G∗) is symmetric and SV

is a symmetric linear transformation of rangeG∗, therefore

gN̄ (SV G∗(X), G∗(Y )) = gN̄ (V, (∇G∗)(X,Y )). (2.6)

From equations (2.3) and (2.4), we get

RN̄ (G∗(X), G∗(Y ))G∗(Z) = −S(∇G∗)(Y,Z)G∗(X) + S(∇G∗)(X,Z)G∗(Y )

+G∗(R
N (X,Y )Z) + (∇̃X(∇G∗))(Y,Z)− (∇̃Y (∇G∗))(X,Z), (2.7)

where ∇̃ is the covariant derivative of the second fundamental form. The O’ Neill tensors

[34] A and T are given by

APP
′ = h∇hP vP

′ + v∇hPhP
′, (2.8)

TPP
′ = h∇vP vP

′ + v∇vPhP
′, (2.9)

for all P, P ′ ∈ Γ(TN), where ∇ is the Levi-civita connection on N . For P ∈ Γ(TN), T

is vertical such that TP = TvP and A is horizontal such that AP = AhP . Also, if U,W ∈

Γ(kerG∗), then we have TUW = TWU .

From equations (2.8) and (2.9), we get

∇V W = TUV + v∇V W, (2.10)

∇XV = AXV + v∇XV, (2.11)

∇Y Z = AY Z +H∇Y Z, (2.12)
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for all V,W ∈ Γ(kerG∗) and Y, Z ∈ Γ(kerG∗)
⊥. The covariant derivative of ∇G∗ and S are

(∇̃X(∇G∗))(Y, Z) = ∇G⊥
X (∇G∗)(Y,Z)− (∇G∗)(∇N

XY, Z)− (∇G∗)(Y,∇N
XZ), (2.13)

and

(∇̃XS)V G∗(Y ) = G∗(∇N
X

∗G∗(SV G∗(Y )))− S∇G⊥
X V

G∗(Y )− SV Q
N̄

∇G
XG∗(Y ), (2.14)

respectively. Here Q is a projection morphism on rangeG∗ and ∗G∗ is an adjoint map of G∗.

From equations (2.13) and (2.14), we obtain

gN̄ ((∇̃X(∇G∗))(Y, Z), V ) = gN̄ ((∇̃XS)V G∗(Y ), G∗(Z)). (2.15)

Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion between Riemannian manifolds

(N, gN ) and (N̄ , gN̄ ). Then G is called a conformal submersion with totally geodesic fibers

if and only if T vanishes identically.

3. Characterization of bi-f-harmonic curves

Let β : I → N be a curve in an n1-dimensional Riemannian manifold N with an orthonor-

mal frame {W0,W1, ....Wn1−1} in ΓTN , where W0 = T , W1 = N and W2 = U are the unit

tangent vector, the unit normal vector and the unit binormal vector of α, respectively. Then

the Frenet equations are given by

∇TWj = −κjWj−1 + κj+1Wj+1, 0 ≤ j ≤ m− 1, (3.16)

where κ0 = κn1 = 0, κ1 = κ = ||∇TT || is curvature and τ = κ2 = −⟨∇TW1,W2⟩ is torsion of

β on N , respectively. Next, we introduce the concept horizontal bi-f-harmonic curve.

Definition 3.1. Let G : (N, g) → (N̄ , ḡ) be a conformal submersion between the Riemannian

manifolds (N, g) and (N̄ , ḡ). Then a horizontal curve on (N, g) with (2.2) is said to be a

horizontal bi-f-harmonic curve on (N, g).

Lemma 3.1. Let G : (N, g) → (N̄ , ḡ) be a conformal submersion between (N, g) and (N̄ , ḡ).

Now, if β̄ = G ◦ β is a curve on (N̄ , ḡ) and β is a horizontal curve on (N, g), then

(i) ∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇), (3.17)

(ii) R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇) = G∗(R(

∧
∇β̇β̇, β̇)β̇)− 2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇)

+(∇G∗)(Aβ̇

∧
∇β̇β̇, β̇) + (∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), (3.18)

where
∧
∇ and ∇̄ are the Levi-Civita connections of N and N̄ , respectively.
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Proof. Let β be a horizontal curve with curvature κ on Riemannian manifold (N, g) and

β̄ = G ◦β is a curve with curvature κ̄ on (N̄ , ḡ). Then a vector field G∗(β̇) along β̄ is defined

by

G∗(β̇) = G∗ββ̇,

where β̇(s) = β̇ is a vector field along β(s) = β.

(i) From equations (2.3), (2.4) and (2.5), we have

∇̄2
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

2

β̇β̇). (3.19)

Taking the covariant derivative of (3.22) and using (2.3), (2.4) and (2.5), we get the required

condition.

(ii) From equations (2.3), (2.4) and (2.5), we get the required equation. □

Definition 3.2. A Riemannian submersion G : (N, g) → (N̄ , ḡ) between Riemannian man-

ifolds (N, g) and (N̄ , ḡ) is said to be totally geodesic conformal submersion if second funda-

mental form of G is identically zero. i.e.

(∇G∗)(X,Y ) = 0, ∀ X,Y ∈ Γ(TN). (3.20)

Lemma 3.2. Let G : (N, g) → (N̄ , ḡ) be a totally geodesic conformal submersion between

Riemannian manifolds (N, g) and (N̄ , ḡ). If β is a horizontal curve with curvature κ on

(N, g) and β̄ = G ◦ β is a bi-f-harmonic curve on (N̄ , ḡ), then the curvature of β̄ is given by

κ =
1

f
4
3

(
2

3

∫
f

2
3 (ff ′′′ + f ′f ′′)ds+ C)

1
2 , (3.21)

where C is some constant.

Proof. Let G : (N, g) → (N̄ , ḡ) be a conformal submersion between Riemannian manifolds

(N, g) and (N̄ , ḡ). Then for any horizontal curve β on (N, g) and bi-f-harmonic curve β̄ = G◦β

on (N̄ , ḡ), we have

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇)

+f2∇̄3
G∗(β̇)

G∗(β̇) + f2R̄(G∗(∇β̇), G∗(β̇))G∗(β̇) = 0. (3.22)

From Lemma 3.1 and equation (3.22), we have

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)G∗(
∧
∇β̇β̇) + 4ff ′G∗(

∧
∇

2

β̇β̇)

+f2G∗(
∧
∇

3

β̇β̇) + f2R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇) = 0. (3.23)
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Now using second part of Lemma (3.1) in equation (3.23), we get

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)G∗(
∧
∇β̇β̇) + 4ff ′G∗(

∧
∇

2

β̇β̇)

+f2G∗(
∧
∇

3

β̇β̇) + f2G∗(R(
∧
∇β̇β̇, β̇)β̇)− 2f2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇)

+f2(∇G∗)(Aβ̇

∧
∇β̇β̇, β̇) + f2(∇G∗)(

∧
∇β̇β̇, Aβ̇β̇) = 0. (3.24)

Taking inner-product of equation (3.24) with G∗(β̇) both sides, we obtain

λ2f2gN (
∧
∇

3

β̇β̇, β̇) + λ2f2gN (R(
∧
∇β̇β̇, β̇)β̇, β̇)− 2f2gN̄ ((∇G∗)(β̇, A∧

∇β̇ β̇
β̇), G∗(β̇))

λ2(ff ′′′ + f ′f ′′) + λ2(3ff ′′ + 2f ′2)gN (
∧
∇β̇β̇, β̇) + λ24ff ′gN (

∧
∇

2

β̇β̇, β̇)

+f2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + f2gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.25)

Substituting the values of gN (
∧
∇β̇β̇, β̇) = −gN (Aβ̇β̇, β̇), gN (

∧
∇

2

β̇β̇, β̇) = −κ2− gN (v∇β̇Aβ̇β̇, β̇)

− gN (Aβ̇

∧
∇β̇β̇, β̇) and gN (

∧
∇

3

β̇β̇, β̇) = −3κκ′ − gN (v∇β̇v∇β̇Aβ̇β̇, β̇) − gN (v∇β̇Aβ̇

∧
∇β̇β̇, β̇) −

gN (Aβ̇

∧
∇

2

β̇β̇, β̇) in equation (3.25), we obtain

λ2(ff ′′′ + f ′f ′′)− λ2(3ff ′′ + 2f ′2)gN (Aβ̇β̇, β̇)− λ24ff ′gN (v∇β̇Aβ̇β̇, β̇)

−λ24ff ′κ2 − λ24ff ′gN (Aβ̇

∧
∇β̇β̇, β̇)− λ23κκ′f2 − λ2f2gN (v∇β̇v∇β̇Aβ̇β̇, β̇)

−λ2f2gN (v∇β̇Aβ̇

∧
∇β̇β̇, β̇)− f2gN (Aβ̇

∧
∇

2

β̇β̇, β̇)− 2f2gN̄ ((∇G∗)(β̇, A∧
∇β̇ β̇

β̇), G∗(β̇))

+f2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + f2gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.26)

Using the orthogonal condition in equation (3.26), we have

(ff ′′′ + f ′f ′′)− 4ff ′κ2 − 3κκ′f2 − 2f2gN̄ ((∇G∗)(β̇, A∧
∇β̇ β̇

β̇), G∗(β̇))

+f2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + f2gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.27)

Since G is totally geodesic, then equation (3.27) reduces to (by using mapple),

κ =
1

f
4
3

(
2

3

∫
f

2
3 (ff ′′′ + f ′f ′′)ds+ C)

1
2 . (3.28)

□

Theorem 3.1. Let G : (N, gN ) → (N̄ , gN̄ ) be a totally geodesic conformal submersion be-

tween Riemannian manifolds (N, gN ) and (N̄ , gN̄ ). Then G maps horizontal bi-f-harmonic

curve on (N, gN ) to bi-f-harmonic curve on (N̄ , gN̄ ).
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Proof. Substituting the values of ∇̄G∗(β̇)
G∗(β̇) = G∗(

∧
∇β̇β̇), ∇̄

2
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

2

β̇β̇) and

∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇) in equation (3.22), we get

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇) + f2∇̄3

G∗(β̇)
G∗(β̇)

+f2R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = (ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)G∗(
∧
∇β̇β̇)

+4ff ′G∗(
∧
∇

2

β̇β̇) + f2G∗(
∧
∇

3

β̇β̇) + f2R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇). (3.29)

Then using second part of Lemma 3.1 in the equation (3.29), we obtain

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇) + f2∇̄3

G∗(β̇)
G∗(β̇)

+f2R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = (ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)G∗(
∧
∇β̇β̇)

+4ff ′G∗(
∧
∇

2

β̇β̇) + f2G∗(
∧
∇

3

β̇β̇) + f2G∗(R(
∧
∇β̇β̇, β̇)β̇)− 2f2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇)

−2f2(∇G∗)(β̇,H∇∧
∇β̇ β̇

β̇) + f2(∇G∗)(Aβ̇

∧
∇β̇β̇, β̇) + f2(∇G∗)(

∧
∇β̇β̇, Aβ̇β̇). (3.30)

Now from equations (2.4) and (3.30), we get

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇) + f2∇̄3

G∗(β̇)
G∗(β̇)

+f2R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = G∗{(ff ′′′ + f ′f ′′)(β̇) + (3ff ′′ + 2f ′2)(
∧
∇β̇β̇)

+4ff ′(
∧
∇

2

β̇β̇) + f2(
∧
∇

3

β̇β̇) + f2(R(
∧
∇β̇β̇, β̇)β̇)} − 2f2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇)

+f2(∇G∗)(Aβ̇

∧
∇β̇β̇, β̇) + f2(∇G∗)(

∧
∇β̇β̇, Aβ̇β̇). (3.31)

Using the fact that β is a horizontal bi-f-harmonic curve on (N, gN ), equation (3.31) reduces

to

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇) +

f2∇̄3
G∗(β̇)

G∗(β̇) + f2R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = G∗(0)− 3f2(∇G∗)(β̇, A∧
∇β̇ β̇

β̇)

+f2(∇G∗)(
∧
∇β̇β̇, Aβ̇β̇). (3.32)

Since G is a totally geodesic conformal submersion, therefore

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇)

+f2∇̄3
G∗(β̇)

G∗(β̇) + f2R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = 0. (3.33)

□
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Theorem 3.2. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion between Riemannian

manifolds (N, gN ) and (N̄ , gN̄ ). Now, if β is a bi-f-harmonic curve on (N, gN ) and β̄ = G◦β

is a bi-f-harmonic curve on (N̄ , gN̄ ), then either

ff ′′′ + f ′f ′′ − 4ff ′κ2 − 3κκ′ < 0 or gN̄ ((∇G∗)(
∧
∇β̇β̇,H

′), G∗(β̇)) ≥ 0. (3.34)

Proof. Let β̄ be a bi-f-harmonic curve on (N̄ , gN̄ ), then

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)∇̄G∗(β̇)
G∗(β̇) + 4ff ′∇̄2

G∗(β̇)
G∗(β̇)

+f2∇̄3
G∗(β̇)

G∗(β̇) + f2R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = 0. (3.35)

Substituting the values of ∇̄G∗(β̇)
G∗(β̇) = G∗(

∧
∇β̇β̇), ∇̄

2
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

2

β̇β̇) and

∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇) in equation (3.35), we get

(ff ′′′ + f ′f ′′)G∗(β̇) + (3ff ′′ + 2f ′2)G∗(
∧
∇β̇β̇) + 4ff ′G∗(

∧
∇

2

β̇β̇)

+f2G∗(
∧
∇

3

β̇β̇) + f2R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇) = 0. (3.36)

Then substituting R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇) = G∗(R(

∧
∇β̇β̇, β̇)β̇)− 2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇)

+ (∇G∗)(Aβ̇

∧
∇β̇β̇, β̇) + (∇G∗)(

∧
∇β̇β̇, Aβ̇β̇) in equation (3.36), we have

(ff ′′′ + ff ′′)G∗(β̇) + (3ff ′′ + 2f ′2)G∗(
∧
∇β̇β̇) + 4ff ′G∗(

∧
∇

2

β̇β̇) + f2G∗(
∧
∇

3

β̇β̇)

+f2G∗(R(
∧
∇β̇β̇, β̇)β̇)− 2f2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇) + f2(∇G∗)(Aβ̇

∧
∇β̇β̇, β̇)

+f2(∇G∗)(
∧
∇β̇β̇, Aβ̇β̇) = 0. (3.37)

Taking the inner-product of equation (3.37) with G∗(β̇) both sides, we obtain

(ff ′′′ + f ′f ′′)gN̄ (G∗(β̇), G∗(β̇)) + (3ff ′′ + 2f ′2)gN̄ (G∗(
∧
∇β̇β̇), G∗(β̇))

+4ff ′gN̄ (G∗(
∧
∇

2

β̇β̇), G∗(β̇)) + f2gN̄ (G∗(
∧
∇

3

β̇β̇), G∗(β̇)) + f2gN̄ (G∗(R(
∧
∇β̇β̇, β̇)β̇), G∗(β̇))

−2f2gN̄ ((∇G∗)(β̇, A∧
∇β̇ β̇

β̇), G∗(β̇)) + f2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇))

+f2gN̄ ((∇G∗)(
∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.38)
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Using the definition of conformal submersion in equation (3.38), we obtain

(ff ′′′ + f ′f ′′)λ2 + (3ff ′′ + 2f ′2)λ2gN (
∧
∇β̇β̇, β̇) + 4ff ′λ2gN (

∧
∇

2

β̇β̇, β̇)

+f2λ2gN (
∧
∇

3

β̇β̇, β̇) + f2λ2gN (R(
∧
∇β̇β̇, β̇)β̇, β̇)− 2f2gN̄ ((∇G∗)(β̇, A∧

∇β̇ β̇
β̇), G∗(β̇))

+f2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + f2gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.39)

Substituting gN (
∧
∇β̇β̇, β̇, gN (

∧
∇

2

β̇β̇, β̇) and gN (
∧
∇

3

β̇β̇, β̇) in equation (3.39), we obtain

(ff ′′′ + f ′f ′′)λ2 − 4ff ′κ2λ2 − 3κκ′f2λ2 − 2f2gN̄ ((∇G∗)(β̇, A∧
∇β̇ β̇

β̇), G∗(β̇))

+f2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + f2gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.40)

Then using the definition of totally umbilical i.e. A∧
∇β̇ β̇

β̇ = gN (
∧
∇β̇β̇, β̇)H

′,

Aβ̇

∧
∇β̇β̇ = gN (β̇,

∧
∇β̇β̇)H

′ and Aβ̇β̇ = gN (β̇, β̇)H ′ in equation (3.40), we have

(ff ′′′ + f ′f ′′)λ2 − 4ff ′κ2λ2 − 3κκ′λ2 + f2gN̄ ((∇G∗)(
∧
∇β̇β̇,H

′), G∗(β̇)) = 0. (3.41)

Since equation (3.41) is a quadratic equation in λ, therefore

λ =
0±

√
−4(ff ′′′ + f ′f ′′ − 4ff ′κ2 − 3κκ′f2)f2gN̄ ((∇G∗)(

∧
∇β̇β̇,H

′), G∗(β̇))

2(ff ′′′ + f ′f ′′ − 4ff ′κ2 − 3κκ′f2)
. (3.42)

Since λ is a positive real valued function, therefore

4(ff ′′′ + f ′f ′′ − 4ff ′κ2 − 3κκ′f2)f2gN̄ ((∇G∗)(
∧
∇β̇β̇,H

′), G∗(β̇)) ≤ 0. (3.43)

Thus from equations (3.42) and (3.43), we can conclude that either (ff ′′′ + f ′f ′′ − 4ff ′κ2 −

3κκ′f2) < 0 and gN̄ ((∇G∗)(
∧
∇β̇β̇,H

′), G∗(β̇)) ≥ 0 or (ff ′′′ + f ′f ′′ − 4ff ′κ2 − 3κκ′f2) > 0

and gN̄ ((∇G∗)(
∧
∇β̇β̇,H

′), G∗(β̇)) ≤ 0, to make λ always positive. □

3.1. Characterization of bi-harmonic curves. A bi-harmonic curve (bi-1-harmonic curve)

is a special case of bi-f-harmonic curve for f = 1. Let G : (N, gN ) → (N̄ , gN̄ ) be a con-

formal submersion between Riemannian manifolds (N, gN ) and (N̄ , gN̄ ) such that β̄ is the

bi-harmonic curve on (N̄ , gN̄ ), then

∇̄3
G∗(β̇)

G∗(β̇) + R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇) = 0.

Theorem 3.3. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion between Riemannian

manifolds (N, gN ) and (N̄ , gN̄ ). If β is a horizontal curve with curvature κ on (N, g) and

β̄ = G ◦ β is a bi-harmonic curve on (N̄ , ḡ), then κ is constant.
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Proof. Let β̄ is a bi-harmonic curve on (N̄ , gN̄ ), then taking f = 1 in equation (3.23), we

have

G∗(
∧
∇

3

β̇β̇) + R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇) = 0. (3.44)

Using second part of Lemma 3.1 in equation (3.44), we get

G∗(
∧
∇

3

β̇β̇) +G∗(R(
∧
∇β̇β̇, β̇)β̇)− 2(∇G∗)(β̇, A∧

∇β̇ β̇
β̇)

+(∇G∗)(Aβ̇

∧
∇β̇β̇, β̇) + (∇G∗)(

∧
∇β̇β̇, Aβ̇β̇) = 0. (3.45)

Taking inner-product of equation (3.45) with G∗(β̇), we obtain

gN̄ (G∗(
∧
∇

3

β̇β̇), G∗(β̇)) + gN̄ (G∗(R(
∧
∇β̇β̇, β̇)β̇), G∗(β̇))− 2gN̄ ((∇G∗)(β̇, A∧

∇β̇ β̇
β̇), G∗(β̇))

+gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.46)

Using the definition of conformal submersion and gN (R(
∧
∇β̇β̇, β̇)β̇, β̇) = 0 in equation (3.46),

we get

λ2gN (
∧
∇

3

β̇β̇, β̇)− 2gN̄ ((∇G∗)(β̇, A∧
∇β̇ β̇

β̇), G∗(β̇))

+gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + gN̄ ((∇G∗)(

∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.47)

Substituting gN (
∧
∇

3

β̇β̇, β̇) = −3κκ′ − gN (v∇3
β̇
β̇, β̇) and gN (v∇3

β̇
β̇, β̇) = 0 in equation (3.47),

we obtain

−λ23κκ′ − 2gN̄ ((∇G∗)(β̇, A∧
∇β̇ β̇

β̇), G∗(β̇)) + gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇))

+gN̄ ((∇G∗)(
∧
∇β̇β̇, Aβ̇β̇), G∗(β̇)) = 0. (3.48)

Since G be a totally geodesic conformal submersion i.e. second fundamental form is identi-

cally zero, therefore equation (3.48) reduces to

−λ23κκ′ = 0, =⇒ κ = constant. (3.49)

□

Theorem 3.4. Let G : (N, gN ) → (N̄ , gN̄ ) be a totally geodesic conformal submersion be-

tween Riemannian manifolds (N, gN ) and (N̄ , gN̄ ). Then G maps horizontal bi-harmonic

curve on (N, gN ) to bi-harmonic curve on (N̄ , gN̄ ).
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Proof. Taking f = 1 and substituting ∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇) in equation (3.33), we get

∇̄3
G∗(β̇)

G∗(β̇) + R̄(G∗(∇β̇), G∗(β̇))G∗(β̇) =
∧
∇

3

G∗(β̇)G∗(β̇)

+R̄(G∗(∇β̇β̇), G∗(β̇))G∗(β̇). (3.50)

Using the second part of Lemma 3.1 in equation (3.50), we get

∇̄3
G∗(β̇)

G∗(β̇) + R̄(G∗(∇β̇), G∗(β̇))G∗(β̇) = G∗(
∧
∇

3

β̇β̇

+R(
∧
∇β̇β̇, β̇)β̇)− 3(∇G∗)(β̇, A∧

∇β̇ β̇
β̇) + (∇G∗)(

∧
∇β̇β̇, Aβ̇β̇). (3.51)

Using the fact that β is a horizontal bi-harmonic curve on (N, gN ), equation (3.51) reduces

to

∇̄3
G∗(β̇)

G∗(β̇) + R̄(G∗(∇β̇), G∗(β̇))G∗(β̇) = −3(∇G∗)(β̇, A∧
∇β̇ β̇

β̇

+(∇G∗)(
∧
∇β̇β̇, Aβ̇β̇). (3.52)

Since G is a totally geodesic conformal submersion map, therefore

∇̄3
G∗(β̇)

G∗(β̇) + R̄(G∗(∇β̇), G∗(β̇))G∗(β̇) = 0 (3.53)

Hence β̄ is a bi-harmonic curve on (N̄ , gN̄ ).

□

4. Helices and circles along the conformal submersion

Let β : I → N be a curve, then β is said to be a general helix if it satisfies the condition

∇3
β̇
β̇ +K2∇β̇β̇ = 0,

where K2 = κ2 + τ2 is a positive constant. Conversely, if the curve β = β(s) satisfies the

above condition, then it is an ordinary helix or a geodesic [18].

Theorem 4.1. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion between Riemannian

manifolds (N, gN ) and (N̄ , gN̄ ). Then, β̄ = G ◦ β is a helix on (N̄ , gN̄ ) iff β is a horizontal

curve of constant curvature on (N, gN ).

Proof. Let β̄ be a helix on (N̄ , gN̄ ), then

∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇) = 0. (4.54)
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Using ∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇) in equation (4.54), we get

G∗(
∧
∇

3

β̇β̇) + (κ2 + τ2)G∗(
∧
∇β̇β̇) = 0. (4.55)

Taking inner-product of equation (4.55) with G∗(β̇), we obtain

gN̄ (G∗(
∧
∇

3

β̇β̇), G∗(β̇)) + (κ2 + τ2)gN̄ (G∗(
∧
∇β̇β̇), G∗(β̇)) = 0. (4.56)

Using the definition of conformal submersion in equation (4.56), we have

λ2gN (
∧
∇

3

β̇β̇, β̇) + (κ2 + τ2)λ2gN (
∧
∇β̇β̇, β̇) = 0. (4.57)

Substituting gN (
∧
∇

3

β̇β̇, β̇) = −3κκ′−gN (v∇β̇v∇β̇Aβ̇β̇, β̇)−gN (v∇β̇Aβ̇

∧
∇β̇β̇, β̇)−gN (Aβ̇

∧
∇

2

β̇β̇, β̇)

and gN (
∧
∇β̇β̇, β̇) = −gN (Aβ̇β̇, β̇) in equation (4.57), we get

−λ23κκ′ − λ2gN (v∇β̇v∇β̇Aβ̇β̇, β̇)− λ2gN (v∇β̇Aβ̇

∧
∇β̇β̇, β̇)

−λ2gN (Aβ̇

∧
∇

2

β̇β̇, β̇)− (κ2 + τ2)λ2gN (Aβ̇β̇, β̇) = 0. (4.58)

Using the condition of orthogonality in equation (4.58), we have

λ23κκ′ = 0 =⇒ κ = C(constant).

Conversely, assume that β be a curve of constant curvature on (N, gN ) and β̄ = G ◦ β is

a curve on (N̄ , gN̄ ), where G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion and using

equation (3.17). Then, we have

∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇) = G∗(

∧
∇

3

β̇β̇) + (κ2 + τ2)G∗(
∧
∇β̇β̇).

(4.59)

Taking inner-product of equation (4.59) with G∗(β̇) both sides, we have

gN̄ (∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇), G∗(β̇)) = gN̄ (G∗(

∧
∇

3

β̇β̇) + (κ2 + τ2)G∗(
∧
∇β̇β̇), G∗(β̇))

= gN̄ (G∗(
∧
∇

3

β̇β̇), G∗(β̇)) + (κ2 + τ2)gN̄ (G∗(
∧
∇β̇β̇), G∗(β̇))

= λ2gN (
∧
∇

3

β̇β̇, β̇) + (κ2 + τ2)λ2gN (
∧
∇β̇β̇, β̇)

= −λ23κκ′ − λ2gN (v∇β̇v∇β̇Aβ̇β̇, β̇)− λ2gN (v∇β̇Aβ̇

∧
∇β̇β̇, β̇)

= −λ2gN (Aβ̇

∧
∇

2

β̇β̇, β̇)− (κ2 + τ2)λ2gN (Aβ̇β̇, β̇) = 0.
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Therefore

∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇) = 0.

Hence β̄ is a helix. □

Theorem 4.2. Let G : (N, gN ) → (N̄ , gN̄ ) be a totally geodesic conformal submersion be-

tween Riemannian manifolds (N, gN ) and (N̄ , gN̄ ). Then G maps horizontal helix on (N, gN )

to a helix on (N̄ , gN̄ ).

Proof. From equation (4.54) and using relation ∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇), we get

∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇) = G∗(

∧
∇

3

β̇β̇ + (κ2 + τ2)
∧
∇β̇β̇). (4.60)

Since β is a horizontal helix on (N, gN ), therefore equation (4.60) reduces to

∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇) = 0.

Hence, β̄ is a helix on (N̄ , gN̄ ). □

Corollary 4.1. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion map between two

Riemannian manifolds (N, gN ) and (N̄ , gN̄ ) such that β is a helix on (N, gN ). If β̄ = G ◦ β

is a helix on (N̄ , gN̄ ), then β is a helix of constant curvature on (N, gN ).

Proof. Since β̄ is a helix on (N̄ , gN̄ ), so

∇̄3
G∗(β̇)

G∗(β̇) + (κ2 + τ2)∇̄G∗(β̇)
G∗(β̇) = 0. (4.61)

Substituting the values of ∇̄3
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

3

β̇β̇) and
∧
∇G∗(β̇)

G∗(β̇) = G∗(
∧
∇β̇β̇) in equation

(4.61), we have

G∗(
∧
∇

3

β̇β̇) + (κ2 + τ2)G∗(
∧
∇β̇β̇) = 0. (4.62)

Taking the inner-product of equation (4.62) with G∗(β̇) both sides, we get

gN̄ (G∗(
∧
∇

3

β̇β̇), G∗(β̇)) + (κ2 + τ2)gN̄ (G∗(
∧
∇β̇β̇), G∗(β̇)) = 0. (4.63)

Using the definition of conformal submersion in equation (4.63), we obtain

λ2 + gN (
∧
∇

3

β̇β̇, β̇) + (κ2 + τ2)λ2gN (
∧
∇β̇β̇, β̇) = 0. (4.64)

Substituting the values of gN (
∧
∇

3

β̇β̇, β̇) and gN (
∧
∇β̇β̇, β̇) in equation (4.64), we get the required

result. □



INT. J. MAPS MATH. (2024) 7(2):236–257 / STUDY OF SOME CURVES ALONG CONFORMAL 251

Theorem 4.3. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion map between two

Riemannian manifolds (N, gN ) and (N̄ , gN̄ ) such that β is a circle on (N, gN ). If β̄ = G ◦ β

is a circle on (N̄ , gN̄ ), then curvature κ = ±1, where κ is curvature of β.

Proof. Let β̄ is a circle on (N̄ , gN̄ ), then

∇̄2
G∗(β̇)

G∗(β̇) + gN̄ (∇̄G∗(β̇)
G∗(β̇), ∇̄G∗(β̇)

G∗(β̇))G∗(β̇) = 0. (4.65)

Substituting the values of ∇̄2
G∗(β̇)

G∗(β̇) = G∗(
∧
∇

2

β̇β̇) and ∇̄G∗(β̇)
G∗(β̇) = G∗(

∧
∇β̇β̇) in equation

(4.65), we get

G∗(
∧
∇

2

β̇β̇) + gN̄ (G∗(
∧
∇β̇β̇), G∗(

∧
∇β̇β̇))G∗(β̇) = 0. (4.66)

Using the definition of conformal submersion in equation (4.66), we get

G∗(
∧
∇

2

β̇β̇) + λ2(p)gN (
∧
∇β̇β̇,

∧
∇β̇β̇)G∗(β̇) = 0. (4.67)

Substituting gN (
∧
∇β̇β̇,

∧
∇β̇β̇) = 1 in equation (4.67), we obtain

G∗(
∧
∇

2

β̇β̇) + λ2G∗(β̇) = 0. (4.68)

Taking inner-product of equation (4.68) with G∗(β̇), gives us

gN̄ (G∗(
∧
∇

2

β̇β̇), G∗(β̇)) + gN̄ (G∗(β̇), G∗(β̇)) = 0. (4.69)

Again using the definition of conformal submersion in equation (4.69), we have

λ2gN (
∧
∇

2

β̇β̇, β̇) + λ2gN (β̇, β̇) = 0. (4.70)

Substituting the values of gN (
∧
∇

2

β̇β̇, β̇) = −κ2 − gN (v∇β̇Aβ̇β̇, β̇)− gN (Aβ̇

∧
∇β̇β̇, β̇) and

gN (β̇, β̇) = 1 in equation (4.70), we get

−λ2κ2 − λ2gN (v∇β̇Aβ̇β̇, β̇)− λ2gN (Aβ̇

∧
∇β̇β̇, β̇) + λ2 = 0. (4.71)

Since gN (v∇β̇Aβ̇β̇, β̇) = 0 and gN (Aβ̇

∧
∇β̇β̇, β̇) = 0. Thus from equation (4.71), we get the

required result.

□

Theorem 4.4. Let G : (N, g) → (N̄ , gN̄ ) be a conformal submersion map between two

Riemannian manifolds (N, g) and (N̄ , gN̄ ). If β is a circle on (N, g) and β̄ = G◦β is a circle

on (N̄ , gN̄ ), then either λ = ±κ or λ = 0, where κ is curvature of β on N .



252 B. PAL, M. KUMAR, AND S. KUMAR

Proof. Considering the definition of conformal submersion in equation (4.66), we get

G∗(
∧
∇

2

β̇β̇) + λ2gN (
∧
∇β̇β̇,

∧
∇β̇β̇)G∗(β̇) = 0. (4.72)

Taking inner-product of equation (4.72) with G∗(β̇), gives us

gN̄ (G∗(
∧
∇

2

β̇β̇), G∗(β̇)) + λ2gN (
∧
∇β̇β̇,

∧
∇β̇β̇)gN̄ (G∗(β̇), G∗(β̇)) = 0. (4.73)

Since, gN (
∧
∇β̇β̇,

∧
∇β̇β̇) = 1 and gN (β̇, β̇) = 1, therefore equation (4.73) reduces to

λ2gN (
∧
∇

2

β̇β̇, β̇) + λ2λ2 = 0. (4.74)

Taking gN (
∧
∇

2

β̇β̇, β̇) = −κ2 − gN (v∇β̇Aβ̇β̇, β̇) − gN (Aβ̇

∧
∇β̇β̇, β̇) in equation (4.74), then we

have

−λ2(κ2 + gN (v∇β̇Aβ̇β̇, β̇) + gN (Aβ̇

∧
∇β̇β̇, β̇)) + λ2λ2 = 0. (4.75)

Substituting gN (v∇β̇Aβ̇β̇, β̇) = 0 and gN (Aβ̇

∧
∇β̇β̇, β̇) = 0 in equation (4.75), we get

−κ2λ2 + λ2λ2 = 0. (4.76)

As equation (4.76) is quadratic in λ2, therefore

λ2 =
κ2 ±

√
κ4

2
. (4.77)

Thus, from equation (4.77), we can say that either λ = ±κ or λ = 0.

□

5. Hyperelastic curve along the conformal submersion

In this section, we study the hyperelastic curve along the conformal submersion.

Theorem 5.1. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion between Riemannian

manifolds (N, gN ) and (N̄ , gN̄ ). If β is a hyperelastic curve on (N, gN ) and β̄ = G ◦ β is a

hyperelastic curve on (N̄ , gN̄ ), then

(−2(r − 2)κr−1κ′ − 3κr−1κ′)λ2 + λ2(β̇(2r−1
r κr + b))

+κr−2gN̄ ((∇G∗)(−λ2

2 (β̇ 1
λ2 ), β̇), G∗(β̇)) = 0, (5.78)

where r ≥ 2 is a natural number.
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Proof. Let β̄ is a hyperelastic curve on (N̄ , gN̄ ), then from [33], we have

∇̄2
G∗(β̇)

(κr−2∇̄G∗(β̇)
G∗(β̇)) + ∇̄G∗(β̇)

(µG∗(β̇))

+κr−2R̄(∇̄G∗(β̇)
G∗(β̇), G∗(β̇))G∗(β̇) = 0. (5.79)

Substituting ∇̄G∗(β̇)
G∗(β̇) = G∗(

∧
∇β̇β̇), ∇̄

2
G∗(β̇)

(κr−2∇̄G∗(β̇)
G∗(β̇)) = κr−2G∗(

∧
∇

3

β̇β̇) +

(r − 2)(r − 3)κr−4(κ′)2G∗(
∧
∇β̇β̇) + (r − 2)κr−3κ′′G∗(

∧
∇β̇β̇) + (r − 2)κr−3κ′G∗(

∧
∇

2

β̇β̇) +

(r − 2)κr−3κ′G∗(
∧
∇

2

β̇β̇) and ∇̄G∗(β̇)
(µG∗(β̇)) = G∗(∇β̇µβ̇) in equation (5.79), we have

(r − 2)(r − 3)κr−4κ′2G∗(
∧
∇β̇β̇) + (r − 2)κr−3κ′′G∗(

∧
∇β̇β̇) + 2(r − 2)κr−3κ′G∗(

∧
∇

2

β̇β̇)

+κr−2G∗(
∧
∇

3

β̇β̇) + κr−2R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇) +G∗(∇β̇µβ̇) = 0. (5.80)

Taking inner-product of equation (5.80) with G∗(β̇) both sides, we get

((r − 2)(r − 3)κr−4κ′2 + (r − 2)κr−3κ′′)gN̄ (G∗(
∧
∇β̇β̇), G∗(β̇))

+2(r − 2)κr−3κ′gN̄ (G∗(
∧
∇

2

β̇β̇), G∗(β̇)) + κr−2gN̄ (G∗(
∧
∇

3

β̇β̇), G∗(β̇))

+κr−2gN̄ (R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇), G∗(β̇)) + gN̄ (G∗(∇β̇µβ̇), G∗(β̇)) = 0. (5.81)

Substituting gN̄ (R̄(G∗(
∧
∇β̇β̇), G∗(β̇))G∗(β̇), G∗(β̇)) = −2gN̄ ((∇G∗)(A∧

∇β̇ β̇
β̇, β̇), G∗(β̇)) +

gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇))+gN̄ ((∇G∗)(Aβ̇β̇,

∧
∇β̇β̇), G∗(β̇)) and using the definition of con-

formal submersion in equation (5.81), we get

λ2gN (
∧
∇β̇β̇, β̇)((r − 2)(r − 3)κr−4κ′2 + κr−2λ2gN (

∧
∇

3

β̇β̇, β̇) + (r − 2)κr−3κ′′)

+2(r − 2)κr−3κ′λ2gN (
∧
∇

2

β̇β̇, β̇)− 2κr−2gN̄ ((∇G∗)(A∧
∇β̇ β̇

β̇, β̇), G∗(β̇))

+κr−2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + λ2gN (

∧
∇β̇µβ̇, β̇)

+κr−2gN̄ ((∇G∗)(Aβ̇β̇,
∧
∇β̇β̇), G∗(β̇)) = 0. (5.82)

Substituting the values of

gN (
∧
∇β̇β̇, β̇) = −gN (Aβ̇β̇, β̇), gN (

∧
∇

2

β̇β̇, β̇) = −κ2 − gN (v∇β̇Aβ̇β̇, β̇)− gN (Aβ̇

∧
∇β̇β̇, β̇) and

gN (
∧
∇

3

β̇β̇, β̇) = −3κκ′−gN (v∇β̇v∇β̇Aβ̇β̇, β̇)−gN (v∇β̇Aβ̇

∧
∇β̇β̇, β̇)−gN (Aβ̇

∧
∇

2

β̇β̇, β̇) in equation
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(5.82), we obtain

−2(r − 2)κr−1κ′λ2 − 3κr−1κ′λ2 − 2κr−2gN̄ ((∇G∗)(A∧
∇β̇ β̇

β̇), G∗(β̇))

+κr−2gN̄ ((∇G∗)(Aβ̇

∧
∇β̇β̇, β̇), G∗(β̇)) + κr−2gN̄ ((∇G∗)(Aβ̇β̇|,

∧
∇β̇β̇), G∗(β̇))

+λ2gN (
∧
∇β̇µβ̇, β̇) = 0. (5.83)

Since
∧
∇β̇µβ̇ = (β̇(2r−1

r κr + b))β̇ + (2r−1
r κr + b)

∧
∇β̇β̇, where µ = 2r−1

r κr + b, therefore from

equation (5.83),

−2(r − 2)κr−1κ′λ2 − 3κr−1κ′λ2 − 2κr−2gN̄ ((∇G∗)(A∧
∇β̇ β̇

β̇β̇, β̇), G∗(β̇))

+κr−2gN̄ ((∇G∗)(Aβ̇β̇,
∧
∇β̇β̇), G∗(β̇)) + λ2gN ((β̇(2r−1

r κr + b))β̇

+(2r−1
r κr + b)

∧
∇β̇β̇, β̇) = 0. (5.84)

Using the totally umbilical conditions A∧
∇β̇ β̇

β̇ = gN (
∧
∇β̇β̇, β̇)H

′, ∀
∧
∇β̇β̇, β̇ ∈ Γ(kerG∗)

⊥,

where H ′ = −λ2

2 (∇β̇
1
λ2 ) and Aβ̇

∧
∇β̇β̇ = gN (β̇,

∧
∇β̇β̇)H

′ in equation (5.84), we get

(−2(r − 2)κr−1κ′ − 3κr−1κ′)λ2 − κr−2gN (
∧
∇β̇β̇, β̇)gN̄ ((∇G∗)(H

′, β̇), G∗(β̇))

+κr−2gN (β̇, β̇)gN̄ ((∇G∗)(H
′,

∧
∇β̇β̇), G∗(β̇)) + λ2(β̇(2r−1

r κr + b))gN (β̇, β̇)

+λ2(2r−1
r κr + b)gN (

∧
∇β̇β̇, β̇) = 0. (5.85)

Substituting H ′ = −λ2

2 (β̇ 1
λ2 ) and gN (Aβ̇β̇, β̇) = 0 in equation (5.85), we obtain

−λ2(2(r − 2)κr−1κ′ + 3κr−1κ′) + λ2(β̇(2r−1
r κr + b))

+κr−2gN̄ ((∇G∗)(−λ2

2 (β̇ 1
λ2 ), β̇), G∗(β̇)) = 0. (5.86)

Hence the proof. □

Corollary 5.1. Let G : (N, gN ) → (N̄ , gN̄ ) be a conformal submersion between Riemannian

manifolds (N, gN ) and (N̄ , gN̄ ) such that β is a elastic curve on (N, gN ). If β̄ = G ◦ β is a

elastic curve on (N̄ , gN̄ ), then

gN̄ ((∇G∗)(−
λ2

2
(β̇

1

λ2
), β̇)G∗(β̇)) = 0. (5.87)

Proof. Substituting r = 2 in equation (5.78), we have

−3κκ′λ2 + gN̄ ((∇G∗)(−
λ2

2
(β̇

1

λ2
), β̇), G∗(β̇)) + λ2(β̇(

3

2
κ2 + b)) = 0. (5.88)

Substituting the value of β̇(32κ
2+b) = 3κκ′ in equation (5.88), we get the required result. □
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