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STUDY OF SOME CURVES ALONG CONFORMAL SUBMERSION

BUDDHADEV PAL *, MAHENDRA KUMAR , AND SANTOSH KUMAR

ABSTRACT. In this article, we study bi-f-harmonic curves, hyperelastic curves, helices and
circles along conformal Riemannian submersion. We investigate the behavior of an arbitrary
horizontal curve on the total manifold under the conformal submersion. Moreover, we show
that a totally geodesic Riemannian submersion takes a horizontal bi-f-harmonic curve, helix
and circle to a bi-f-harmonic curve, helix and circle on target manifold, respectively. In
addition, we also find the conditions for which Riemannian submersion takes a horizontal
bi-f-harmonic curve, helix and circle to a bi-f-harmonic curve, helix and circle on target
manifold, respectively.

Keywords: Bi-f-harmonic curve, bi-harmonic curve, helix, circle, hyperelastic curves, elas-
tic curve, totally geodesic conformal submersion and totally umbilical conformal submersion.
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1. INTRODUCTION

In 1964, J. Eells and J. H. Sampson [6], introduced the concept of bi-harmonic maps by
generalizing the harmonic maps. Harmonic maps have important applications in various
areas of mathematics and physics with nonlinear partial differential equations. A harmonic

map « : (N,gn) — (N,gy) between the Riemannian manifolds (N, gy) and (N,gy) is a
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critical point of the energy functional,

1
E(a):Q/F |da|?vgy
N

where I'y is some compact domain of N and 7(c) = Traceg, Vda is the tension field of

a. The harmonic map equation is an Euler-Lagrange equation of the functional 7(p) =

Tracegy, Vdp = 0, where 7(p) = Traceg, Vdy is the tension field of ¢ [6]. The bi-harmonic

map « between the Riemannian manifolds (N, gy) and (N,gy) is a critical point of the
1

bi-energy functional, Fa(a) = 3 fFN |7(a)|?vgy, where Ty is a compact domain of N. The

bi-harmonic map equation is an Euler-Lagrange equation of the functional,
(o) = Tracegy (VEV® = Vo )T(ar) — TmcegNRN(da, 7(ar))da = 0,

where RN = [V¥, Vg]Z - V&’Y]Z, is a Riemann curvature tensor of (N, gy) [16]. In 1991
[5], the author introduced the bi-harmonic submanifolds of Euclidean space and stated a

¢

conjecture “ any bi-harmonic submanifold of Euclidean space is harmonic, thus minimal”.
If the definition of bi-harmonic maps for Riemannian immersion in Euclidean space is used,
then the Chen’s definition of a bi-harmonic submanifold coincides with the definition given
by the bi-energy functional.
Bi-f-harmonic maps are the generalization of harmonic maps and f~-harmonic maps. There are
two methods to formalize the link between bi-harmonic maps and f-harmonic maps. In the
first method of formalization, the authors extended the bi-energy functional in [32] 39] to the
bi-f-energy functional and got bi-f-harmonic maps. Further, for the second formalization, the
f-energy functional is extended to the f-bi-energy functional. In [22], the author introduced
the f-bi-harmonic maps by generalizing the bi-harmonic maps. The bi-f-harmonic equation
for curves in Euclidean space, hyperbolic space, sphere and hypersurfaces of manifolds were
studied in [30].
In [34], authors studied the charcterization of submanifold by taking the hyperelastic curves
along an immersion. The following properties of Riemannian submersions were studied in
[10, 25, 19]. In 1974, the authors proved that if a circle is mapped by immersion from a
submanifold to the ambient manifold, then the submanifold is said to be totally umbilical
with a parallel mean curvature vector field [26].

In the sixties O’ Neill and Gray introduced the concept of Riemannian submersions between
Riemannian manifolds [I1], 25]. A differential map G between two Riemannian manifolds

(N,gn) and (N, gy) is known as a submersion if the rank of G, is equal to the dimension
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of the targeted manifold. Also, if the submersion is isometry between (N, gn) and (N, gy),
then G is called a Riemannian submersion. Conformal submersion and the fundamental
equations of conformal submersion were studied in [28, 12]. In [37, [38], authors study the
totally umbilical, geodesic and minimal fibers by using conformal submersions. Horizontally
conformal submersion is a generalization of the Riemannian submersion [9, [14]. Horizontally
conformal map is useful for the characterization of harmonic morphisms [4] and has many
applications in medical imaging (brain imaging) and computer graphics.

Hyperelastic curves in a Riemannian manifold are solutions to a constrained variable prob-
lem and are characterized by Euler-Lagrange equations. A parametrized curve by its ar-
clength is said to be a hyperelastic curve if it is a critical point of the following curvature

energy action defined on a suitable space of curves in a Riemannian manifold

Fr= /(Ff + )ds, (1.1)

where k denotes the curvature of ~ [3, 36, B1]. If x = 0, then these curves are called
free hyperelastic curves. In 2021, B. Sahin, G. O. Tukel and T. Turhan, studied the effect of
hyperelastic curves on the geometry of isometric immersions in [33]. The functional F7 is the
classical Euler-Bernoulli’s bending (or elastic) energy functional for » = 2. Immersed curves
which are critical for the bending energy functional satisfying some boundary conditions are
said to be elastic curves (or elastica) [20]. The existence, classification or stability problems
of elastic curves or their generalizations in Riemannian manifolds attracted the attention of
many researchers. There are the following examples in the literature worked by D. Singer et
al. [15] 211 20 B35]. In 1984, J. Langer and D. Singer proved that there exist closed elastic
curves of a fixed length in a compact Riemannian manifold [20].

A smooth curve parametrized by its arc-length on a Riemannian manifold IV is said to be
circle if it satisfies Véﬁ — — k2, where k is a non-negative constant curvature of 5 and V 3
is the covariant differentiation along 8 with respect to the Riemannian connection V on N.

In [26], Nomizu-Yano proved that S is a circle iff the following is satisfies
V3B +9(V 8,V 358)8 =0,

where ¢ is the Riemannian metric on N and V;B = VBV BB Many authors studied circles
on Riemannian manifolds and they showed that it is possible to obtain certain properties of
a submanifolds by observing the extrinsic structure of circles on this submanifold, [34} 2, [7]

13, 17, 23, 24], 27, 29]. In 1963, S. Kobayashi and K. Nomizu showed that an ordinary helix
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¢ = c(s) satisfies the following equation, V%B—i—K?Vﬁ-B =0, where K? = k%2472 is a positive
constant. Conversely, if a curve ¢ = ¢(s) satisfies the above condition, then it is an ordinary
helix or a geodesic, [1§].

The structure of the article is as follows: In Section 2, we recall some basic concepts about
conformal Riemannian submersion, totally geodesic fibers and the second fundamental form
of Riemannian submersion. In Section 3, some conditions are derived for the case where
the curve either in the base manifold or in the target manifold is a bi-f-harmonic curve. In
section 3, we show that a totally geodesic conformal submersion between two Riemannian
manifolds takes a bi-harmonic curve to a bi-harmonic curve. In section 4, we prove that the
conformal submersion takes a curve to a helix iff the curve is of constant curvature. In the
same section, we also find the conditions for a curve to become a circle in a targeted manifold
by conformal submersion. In the final section, we study the hyperelastic curves along the

conformal submersions.

2. PRELIMINARIES

Let G : (N,gn) — (N,gy) be a differentiable map between the Riemannian manifolds
(N,gn) and (N, gy) of dimensions ny and na, respectively such that ny > ny. Then G is
said to be a Riemannian submersion if rank of G is maximal and differential G, preserves
the lengths of horizontal vectors. A Riemannian submersion G : (N, gn) — (N, gy) is said

to be a conformal submersion if the restriction of Gy to the horizontal distribution of G is a

conformal map, i.e. there exist a smooth function X : N — R™ such that

for all X,Y € I'(kerG,)* and p € N.
A curve 5 : I — N on (N,g) is said to be a bi-f-harmonic curve if and only if § satisfies

the condition [30],

(FF"+ 1B+ BEf" +2f*)V 38+ 4F VA6 + f2V45
LR85 =0, (2.9
where f : I — (0,00) is a smooth function, V is a Levi-Civita connection and R is a
Riemannian curvature tensor on N. Let G : (N,g) — (N, g) be a Riemannian submersion

between (N,g) and (N,g). Then j is said to be a horizontal curve if 5(t) € (kerG,)';

Vte I If VY is the Levi-Civita connection on (N, g), then the second fundamental form of
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G is given by

(VG,)(X,Y) = VN%;G*(Y) —G.(VYY), VXY e (TN), (2.3)

N .
where V& is the pullback connection of V. Now, if X,Y € T'((kerG,)*), then the second

fundamental form of Riemannian submersion is

(VG,)(X,Y) =0. (2.4)
Also, if X,Y € T((kerG,)*) and V € T'((rangeG,)"), then
VY )V = —SvGu(X) +V§ V. (2.5)

where Sy G4 (X) is the tangential component of Vg*(X)V. Since (VG,) is symmetric and Sy

is a symmetric linear transformation of rangeG,, therefore
IN(SVvG(X),G(Y)) = gn (V. (VG (X, Y)). (2.6)

From equations (2.3)) and (2.4), we get

RN(Gu(X), Gu(Y))Gul(Z) = =556 (v,2)G«(X) + Sva.)x,2)G+(Y)
+GL(RY(X,Y)2) + (Vx(VGI))(Y, Z) = (Vy(VG.))(X, 2), (2.7)
where V is the covariant derivative of the second fundamental form. The O’ Neill tensors
[34] A and T are given by
ApP' = hVpvP' + vVyphP’, (2.8)
TpP' = hV,pvP" + vV,phP’, (2.9)
for all P,P’ € T(T'N), where V is the Levi-civita connection on N. For P € T'(T'N), T

is vertical such that Tp = T,p and A is horizontal such that Ap = A;p. Also, if U W €
I'(kerGy), then we have TyW = Ty U.

From equations (2.8)) and (2.9)), we get
VW =TyV +oVy W, (2.10)
VxV =AxV +0VxV, (2.11)

VyZ =AyZ + HVy Z, (2.12)



INT. J. MAPS MATH. (2024) 7(2):236-257 / STUDY OF SOME CURVES ALONG CONFORMAL 241

for all V,W € I'(kerG,) and Y, Z € I'(kerG.)*. The covariant derivative of VG, and S are
(VX(VG)(Y, Z) = V§ (VG)(Y, Z) = (VG)(VYY, Z) = (VG.)(Y, VX Z),  (2.13)
and
N

(VxS)yGa(Y) = G (VY *G.(Sy G (Y))) — Sgety Ge(Y) = SyQVSG.(Y),  (2.14)

respectively. Here @) is a projection morphism on rangeG, and *G, is an adjoint map of G,.

From equations (2.13]) and (2.14)), we obtain

In(Vx(VG))(Y, 2),V) = gy (VxS)vGu(Y ), G(2)). (2.15)

Let G : (N,gn) — (N,gy) be a conformal submersion between Riemannian manifolds
(N,gn) and (N, gy). Then G is called a conformal submersion with totally geodesic fibers

if and only if T" vanishes identically.

3. CHARACTERIZATION OF BI-F-HARMONIC CURVES

Let 8 : I — N be a curve in an nj-dimensional Riemannian manifold N with an orthonor-
mal frame {Wy, Wy,...W,,, 1} in TN, where Wy =T, W7 = N and Wy = U are the unit
tangent vector, the unit normal vector and the unit binormal vector of «, respectively. Then

the Frenet equations are given by
VTWj = —Hjo_l + Hj+1Wj+1, 0<73<m—1, (3.16)

where kg = kp, =0, k1 = k = ||VT] is curvature and 7 = kg = —(V W7, W3) is torsion of

B on N, respectively. Next, we introduce the concept horizontal bi-f-harmonic curve.

Definition 3.1. Let G : (N, g) — (N, g) be a conformal submersion between the Riemannian
manifolds (N, g) and (N,g). Then a horizontal curve on (N,g) with is said to be a

horizontal bi-f-harmonic curve on (N, g).

Lemma 3.1. Let G : (N, g) — (N,g) be a conformal submersion between (N, g) and (N, ).

Now, if =G o is a curve on (N, g) and B is a horizontal curve on (N,g), then

A3

() V% (5G(8) =Gu(VsP), (3.17)
() R(GL(V36).GUP)G.() = C.(R(T36,0)5) — 209G, Ay )
B
(VG AV 38, B) + (VG)(V b, Az, (3.18)

A _ _
where V and V are the Levi-Civita connections of N and N, respectively.
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Proof. Let B be a horizontal curve with curvature x on Riemannian manifold (NV,g) and
B = Gopis a curve with curvature & on (N, g). Then a vector field G, () along 3 is defined
by

where 3(s) = 3 is a vector field along (s) = 8.
(i) From equations (12.3), and , we have

/\2

Vi C(B8) = Gu(Vh). (3.19)

Taking the covariant derivative of (3.22)) and using (2.3, (2.4) and (2.5)), we get the required

condition.

(i) From equations ([2.3)), (2.4) and ({2.5)), we get the required equation. O

Definition 3.2. A Riemannian submersion G : (N,g) — (N,g) between Riemannian man-
ifolds (N, g) and (N, g) is said to be totally geodesic conformal submersion if second funda-

mental form of G is identically zero. i.e.
(VG,)(X,Y)=0,VX,Y e '(TN). (3.20)

Lemma 3.2. Let G : (N,g) — (N,g) be a totally geodesic conformal submersion between
Riemannian manifolds (N,g) and (N,g). If B is a horizontal curve with curvature k on

(N,g) and B = G o B is a bi-f-harmonic curve on (N, g), then the curvature of B is given by
12 2 " I en 1
mszé(g P37+ 1 f7)ds + )z, (3.21)
3
where C' is some constant.

Proof. Let G : (N,g) — (N,g) be a conformal submersion between Riemannian manifolds
(N, g) and (N, g). Then for any horizontal curve 8 on (N, ¢) and bi-f-harmonic curve 3 = Gop3
on (N, g), we have

(FF"+ ' G(B) + BF "+ 2f*)V g (3G (B) + 4L VT, 5 Gu(B)
+FAVE, 5, Ge(B) + FPR(GA(V3), G+ (8))G+(8) = 0. (3.22)
From Lemma and equation , we have
. . 2 .
(FF" + P ")G(B) + BFS" +202)Ca(V ) + AF /G (V35)

A3, _ A ) .
+ PG (VgB) + FPR(GL(V48), G4 (B))Gx(B) = 0. (3.23)
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Now using second part of Lemma (3.1]) in equation (3.23)), we get

2

(P17 + FFIGAB) + BIF" + 20 )Ga(V ) + Af ' G(V 3)

3 . . . . . .
HGUT48) + FPGLR(V36.0)8) — 22(VG.) (3, Ay )
B

AL A .
+AVG)(AV 8, 8) + [F(VGL)(V 38, AyB) = 0. (3.24)
Taking inner-product of equation 1} with G, (5) both sides, we obtain

3 . . . . . . . . .
X g (Vih B) + X Pan (BT 36.5)5.8) — 295 (VG5 Ay 8).G.(5)
B
2 . .
NEFF™ + F1F7) 4 N2BE 7+ 20)gn (9 56, 8) + N24F Fgn (V58, 6)

P25 ((VG)(AY 38,8), Gu(B)) + [2ax (VG 46, ), Gu(B) = 0. (3.25)
2
Substituting the values of gN(%BB, 5) = —gN(ABB,B), gN(%BB,B) = —k2 _9N<UV5ABB;B)
. . 3 . . . . . .
— gn(A5V58.8) and gn(V38,8) = —3kK — gn (0¥ 0V 5448, ) — g (vV 345V 48, ) —
2

A2
gN(ABVBﬁ,ﬁ) in equation ([3.25)), we obtain

(LS4 f )~ N3 £+ 2f)gn (A8, B) — N2Af f'gn (07 5448, )

AL — N gn (A59 38, B) — N3l £2 — N2 f2gn vV 50V 5 Ag, B)
. . 2 . . . . .
NP0V A9 56.5) ~ Pax (A3V36.8) - 295(VG (B, Ay 6).G.(9)
B

P25 (VG AV, B), GulB)) + FPax(VG(V 48, A35),Gu(B) = 0. (3.26)
Using the orthogonal condition in equation , we have
(FF" 4+ ") = 4F 6% = 3k 2 = 2295 (VG)(B, Ay 5), G (8))
]

P25 (VG AV a8, 8), GulB)) + Frax(VG(V 46, A38),Gu(B) = 0. (3.27)

Since G is totally geodesic, then equation (3.27)) reduces to (by using mapple),

h= flé / PR+ 7 ") ds + C)3. (3.28)

O

Theorem 3.1. Let G : (N,gn) — (N,gy) be a totally geodesic conformal submersion be-
tween Riemannian manifolds (N, gn) and (N, gy). Then G maps horizontal bi-f-harmonic

curve on (N, gn) to bi-f-harmonic curve on (N, gy).
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_ ) AL . A2,
Proof. Substituting the values of VG*(B)G*W) = G*(Vﬂﬂ), Vé (B)G*(B) = G*(VBB) and
) A3
. B N .
VG*(B)G*(B) = G4(Vgp) in equation (3.22), we get

(FF" + FIG(B) + BFF" + 2f)V g, (5 G=(B) + AL FVE, (5 Ge(B) + F2VE, 5 G (B)
FF2R(GV 38), Ca(B)Cu(B) = (FF" + FF1)GL(B) + (BF " + 2£2)C.(V 4)
FAFFG.00) 1 PG50 + FRIG(V 3), GG (5. (329)
Then using second part of Lemma [3.1]in the equation ([3.29), we obtain
(FF7"+ S I)G(B) + BIS" +2)V g (4 G(B) + AL I'VE, 5 Ga(B) + [PV, 5 Gu(B)
FF2R(GV 38), C(B)Gu(B) = (FF" + FF1)GL(B) + (BFF" + 2f2)G(V 4)
PGV 38) + PCV3H) + PCARE 45.5)5) — 2/2(VG)( 4 )
2AVEBHY, B+ FAVG)(A5958,8) + VGV 35, Az8).  (3.30)
Now from equations and (3.30)), we get
(FI" + P FG(B) + BFS" + 2V 5, G(B) + AL 'V, (5 G(8) + F2V, 5 G(B)
FPRGUV38), Cu(B)Gu(B) = GA(FF" + F ") (B) + BF "+ 2£7)(V 48)
HTE0) + P83 + PREH89) - 2056, )
FFVE) AV 5, B) + FAVG)(V 4, Agh). (3.31)
Using the fact that 3 is a horizontal bi-f-harmonic curve on (N, gy ), equation reduces
to
(£F" + F1F)G(B) + BFF" +2f)V g, 3G (B) + 4F IV, 5 G+(B) +
12V, 5G+(B) + FPR(GA(V35), Go(8))Ga(B) = G4(0) = 3f*(VG.)(B, 4y )
FFAVG.) (V8 A,0). (3.32)

Since G is a totally geodesic conformal submersion, therefore

(F17 4+ £'F)GLB) + BF1" +20™)V 6, Go(B) + 41 £V, 5, G(5)

+2VE, 5, G+(8) + FPR(GA(V35), Gu(3)G(B) = 0. (3.33)



INT. J. MAPS MATH. (2024) 7(2):236-257 / STUDY OF SOME CURVES ALONG CONFORMAL 245

Theorem 3.2. Let G : (N,gn) — (N, gx) be a conformal submersion between Riemannian
manifolds (N, gn) and (N, gy). Now, if 3 is a bi-f-harmonic curve on (N, gy) and 3 = Goj3

is a bi-f-harmonic curve on (N, gy), then either
A .
FI"+ 1" = AL 'R = 3rK' <0 0r gy (VG )(V 38, H'), Gu(8)) > 0. (3.34)

Proof. Let 3 be a bi-f-harmonic curve on (N, gy), then

(I + £ 1Go(B) + BL " + 2 )V g, (5, Go(B) + A1V, 15, G-(B)

FIEV 4 GuB) + PRV 56), G (A CL() = 0. (3.35)
o _ : A ) A2,
Substituting the valuis of Vi (5G+(B) = Go(VP), VG*(B)G*(B) = G«(V3p) and
) A3,
_3 _ . . .
VG*(B)G*(/B) = G«(V3p) in equation (3.35), we get

2

(P74 179G B) + B+ 28G9 35) 1 4F £ Cu(9 35)

A3, _ A . .
+f2G*(vﬁB) + fQR(G* (v56)7 G (B))G* (ﬁ) =0. (3'36)

Then substituting R(G. (V35), G.(5)G.(3) = Gu(R(V4H. 5)8) — 2VG)(E, Ay )
B

AL A A
+ (VG )(AzV B, B) + (VGA)(V B, Agp) in equation (3.36), we have

. 2 . 3 @
(774 )G () + (3117 + 21 GV 36) + AF'Go(V ) + P*Gu(3)

+PGUR(T38.5)5) ~ 20HVG(B, Ay B)+ PHVG)(A935,6)
B

/AN .
+AVG)(V B, AgB) = 0. (3.37)
Taking the inner-product of equation (3.37) with G*(ﬁ) both sides, we obtain

(F" + ' g5 (G (B), G (B)) + (Bff" + 2f’2)gN(G*(%BB), G.(B))
N2 . A3 . AL :
FAFF05(CulV35), GolB) + 2an(Cu(V38), GulB) + Fox(Go(R(V 36, 6)B), Gul)

“2g5((VG)(B Ay B).Ga() + Pox((VG)(A3V55,8), G (9)
B8

Pax((VG)(V 38, A,8),G.(8)) = 0. (3.39)
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Using the definition of conformal submersion in equation (3.38), we obtain
AL AZ .
(F1" + F 102 + BFS" +2f)X20n (Y 38, 8) + AF F 02w (V 55, B)
AS L AL . . .
+2Ngn (V3B, B) + PN (R(V 38, 8)8, 8) — 2295 (VG (B, Az .55)’ G«(B))
B

P2 (VG AV, B), GulB) + FPax(VG(V 48, A35), Gu(B) = 0. (3.39)

AL A2 A3
Substituting gN(VBB,ﬁ, gn(VB,8) and gn(Vp, 8) in equation (3.39), we obtain

(L7 + FL N2 = Af f1R2N2 = 36K/ f20% = 2295 (VG (B, Ay BB)’ G.(8))

B
P25 (VG (A 35, 3), Gu(B)) + a5 (VG)(V 38, A38), GulB) = 0. (3.40)

) AL
Then using the definition of totally umbilical i.e. Ae Bﬁ = gN(VBﬂ, B)H',

B
A

DA i .
ABVBB = gN(B,VBﬂ)H’ and Aﬁﬁ = gn(B8,8)H’ in equation (3.40]), we have

(" + )N = 4F RN = 3rk! D2 + F2gx((VG)(V g, H), Gul(B) = 0. (3.41)

Since equation (3.41)) is a quadratic equation in A, therefore

0+ \/—4(ff’” + fIf—AffIR2 — 3mn’f2)fng((VG*)($B,5’, H'),G.(B))

= 42
A 2(ff’”+f/f,,—4ff,:‘€2 —3I€/€’f2) (3 )
Since A is a positive real valued function, therefore
A .
ALI"+ L 1" = ALF'R? = 36K f2) Pan (VG)(V 8, H'), G.(B)) < 0. (3.43)

Thus from equations (3.42)) and (3.43)), we can conclude that either (ff"” + f'f" —4ff'k? —
A .
3! £2) < 0 and g((VG.)(V 46, H'), Go(3) > 0 or (Ff" + f'f" — AFf'i? — 3rn'f2) > 0
A A
and gy ((VGL)(VB8,H'), Gi(B)) < 0, to make A always positive. O

3.1. Characterization of bi-harmonic curves. A bi-harmonic curve (bi-1-harmonic curve)
is a special case of bi-f-harmonic curve for f = 1. Let G : (N,gn) — (N,gy) be a con-
formal submersion between Riemannian manifolds (N, gy) and (N, gy) such that 3 is the

bi-harmonic curve on (N, gy), then

V2, 5, Ge(B) + R(GL(V38), G.(8)G.(8) = 0.

Theorem 3.3. Let G : (N,gn) — (N, gy) be a conformal submersion between Riemannian
manifolds (N, gn) and (N,gx). If B is a horizontal curve with curvature  on (N,g) and

B = Gopis a bi-harmonic curve on (N, g), then k is constant.
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Proof. Let 3 is a bi-harmonic curve on (N, gy), then taking f = 1 in equation (3.23)), we
have

A3, )

G (V) + R(GL(V ), Gu(B))Gul(B) = 0. (3.44)

Using second part of Lemma [3.1] in equation (3.44), we get

6.(96) + Gu(R(Y56.5)0) - 2A9C.) (5. 46 )
+(VG*)(AB$BB, B) + (VG*)(QBB, A;8) =0. (3.45)
Taking inner-product of equation with G,(3), we obtain
05(GF ), Gul) + ax(Go(RIY 36, 7)B). () — 205((VG) Ag 9.G-(3)
a5 (VG (A5938.8), GulB)) + gx(VG)(Va AgB). Gu(B) = 0. (3.46)

A
Using the definition of conformal submersion and gy (R(V 4B, B)B, ) = 0 in equation (3.46)),

we get

A3 L . ) )
Ngn(VB,8) — 29N((VG*)(5,A6‘35), G.(B))
3

For((VG)(A5938,8), Cu(B)) + gx(VG)(V 38, Agh), Gu(B) = 0. (3.47)

A3 . .
Substituting gn(V83, 8) = —3kk’ — gN(vV%B,ﬂ) and gN(vV%ﬁ,B) = 0 in equation (3.47)),

we obtain

—N3nr = 295 (VG (B, Ay B),G(8)) + a5 (VG (A 45.5), CL(B))
B

o (VG)(V 48, Ayh), Gu(B) = 0. (3.48)

Since G be a totally geodesic conformal submersion i.e. second fundamental form is identi-

cally zero, therefore equation (3.48]) reduces to
—M3kK' =0, = Kk = constant. (3.49)
Il

Theorem 3.4. Let G : (N,gn) — (N,gy) be a totally geodesic conformal submersion be-
tween Riemannian manifolds (N,gn) and (N,gy). Then G maps horizontal bi-harmonic

curve on (N, gn) to bi-harmonic curve on (N, gy)-
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3
Proof. Taking f = 1 and substituting ?é*(ﬁ)G* (B) = G*(%ﬁﬁ) in equation (3.33)), we get
_ . _ . . A3 .
+R(GA(V ), Gu(8))Gu(B). (3.50)

Using the second part of Lemma in equation (3.50)), we get

_ A3

2 5, CelB) + RG.(V ), CU)CL(D) = Gl
AL . ) A .
RV 46.8)8) = 3(VG)(B. Ay ) +(VG)(V 46, 446). (3.51)
B
Using the fact that g is a horizontal bi-harmonic curve on (N, gn), equation (3.51)) reduces

to

VGV 48, A0, (3.52)

Since G is a totally geodesic conformal submersion map, therefore

Ve G+(8) + R(Gu(V5), Gu(8)Gu(B) = 0 (3.53)

Hence 3 is a bi-harmonic curve on (N, gx).

4. HELICES AND CIRCLES ALONG THE CONFORMAL SUBMERSION

Let 8: 1 — N be a curve, then f is said to be a general helix if it satisfies the condition
34 2.3 —
v 55 + K*°V Bﬁ =0,

where K? = k2 + 72 is a positive constant. Conversely, if the curve 8 = ((s) satisfies the

above condition, then it is an ordinary helix or a geodesic [18].

Theorem 4.1. Let G : (N,gn) — (N, gx) be a conformal submersion between Riemannian
manifolds (N, gn) and (N,gy). Then, B = G o f3 is a heliz on (N, gy) iff B is a horizontal

curve of constant curvature on (N, gn).
Proof. Let B be a helix on (NN, gy ), then

Ve, 5 Gr(8) + (7 + 7V (4G (B) = 0. (4.54)
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_ . A3
Using V2, . G.(8) = G«(Vp) in equation (4.54)), we get
G (B)
A3, 5 g A
Gi(VpB) + (k7 4+ 77)G(VgP) = 0. (4.55)

Taking inner-product of equation 1} with G, (B), we obtain
A3, ) 9 ) A .
In(G(V3P), G(B)) + (k" + 77)gn (G(VgB), G(B)) = 0. (4.56)
Using the definition of conformal submersion in equation (4.56)), we have

) AS L. 9 or o AL
AN (VB,B) + (k7 + 77)A%gn (V38, 8) = 0. (4.57)

AS L . AL A2
Substituting gn (V 38, 8) = =3k —gn (vVV 50V s A58, B)—gn (VV 3 AV 58, B)—gn (A5 V 38, B)

AL ..
and gN(VBB,ﬁ) = —gN(ABB,B) in equation (4.57)), we get

.. AL
—\23kK — )\ng(UVBUVBABB, B) — Ang(vVBABVBﬁ, B)
A2, ..
—Ngn(AzV g8, B) — (* + 7)Ngn (A8, B) = 0. (4.58)
Using the condition of orthogonality in equation (4.58]), we have

M3kK' =0 = k = C(constant).

Conversely, assume that 3 be a curve of constant curvature on (N,gy) and 3 = G o 3 is

a curve on (N,gy), where G : (N,gn) — (N,gy) be a conformal submersion and using

equation (3.17). Then, we have

V3 G. (6 2 2\ G-_G/\%- 9 2G/\.
Ve nG+B) + (" + 79V g, (5G(8) = Gu(V3B) + (57 + 77)G(V3).

(4.59)

Taking inner-product of equation (4.59) with G.(8) both sides, we have

. _ . . A3 A
05(V3, 5 Cu(B) + (475 5 Ga(B). Cul) = ay(Gal(V38) + (5 + 7)CulV 45, Cu())

— g5 (G (V). Gul(B)) + (52 + 7)g5(Gu(V38), G (8)
A3 L AL
= Ngn(V3B,8) + (K> + 7'2))\29N(V55, B)
= —\23kK — )\QgN(vVBvVﬂ-ABB,B) - /\2gN(UV5A3655‘76)

/\2

= —Ngn(A3V 38, 8) — (5° + )Ny (A48, 5) = 0.



250 B. PAL, M. KUMAR, AND S. KUMAR

Therefore

Hence 3 is a helix. O

Theorem 4.2. Let G : (N,gn) — (N,gy) be a totally geodesic conformal submersion be-
tween Riemannian manifolds (N, gn) and (N, gy). Then G maps horizontal heliz on (N, gn)

to a heliz on (N, gy).

_ . A3,
Proof. From equation (4.54]) and using relation V?(’; (B)G*(B) = G (Vyp), we get
s . 5 g ) A3, o oD
VG*(B)G*(B) + (K7 + 7))V, (5 G+(8) = G (VB + (7 +77)Vy ). (4.60)

Since 3 is a horizontal helix on (N, gn ), therefore equation (4.60) reduces to

vg*(B)G*(B) + (’@'2 + TQ)vG*(B)G*(B) = 0.

Hence, 3 is a helix on (N, gx). O

Corollary 4.1. Let G : (N,gn) — (N,gy) be a conformal submersion map between two
Riemannian manifolds (N, gn) and (N, gy) such that B is a heliz on (N,gn). If 3= G o3

is a helir on (N, gy), then 8 is a heliz of constant curvature on (N, gy).

Ve (5G(B) + (5* + TV, 5G=(8) = 0. (4.61)

A3, . A

. A

. . — 3 _ . . _ . . .
Substituting the values of VG*(,B)G* (B) = G«(Vyp) and VG*(B)G*(ﬁ) = G+(V ;) in equation
(4.61), we have

G*(%Zﬁ) + (k% + TQ)G*(%BB) =0. (4.62)

Taking the inner-product of equation li with G*(B) both sides, we get
A3, . ) ) A .
In(G«(V5B), G(B)) + (k" + 77)gn (G+(VB), G+(B)) = 0. (4.63)
Using the definition of conformal submersion in equation (4.63), we obtain

A3

2 A G 2 2\2 . oA Ay
A+ gn (VB B) + (k7 + 79)Agn (VgB, 8) = 0. (4.64)

A3 AL
Substituting the values of gn (V48, ) and QN(V/357 B) in equation (|4.64)), we get the required

result. O
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Theorem 4.3. Let G : (N,gn) — (N,gx) be a conformal submersion map between two
Riemannian manifolds (N, gy) and (N, gy) such that B is a circle on (N,gy). If B = Go

is a circle on (N, gy), then curvature k = +1, where K is curvature of 3.

Proof. Let B is a circle on (N, gy), then

V2, 5, GulB) + 05 (Vs 3G (), ¥ 3 G D) (B) = 0. (4.65)
o _, . A2, _ . AL ]
Substituting the values of VG*(B)G* (B) = G+«(Vyp) and VG*(B)G*(B) = G+(VB) in equation
, we get,
A2 A A .
G 58) + a5(Gu(S ). GV 48 Cul) = 0. (4.66)

Using the definition of conformal submersion in equation (4.66f), we get

A2 AN
G.(Vgh) + N (p)gn (V8 V8)G.(8) = 0. (4.67)

AN
Substituting gN(VBB, Vﬁﬂ) =1 in equation (4.67]), we obtain

G (¥ 48) + NG (B) — 0. (4.68)

Taking inner-product of equation (4.68) with G, (6), gives us
A2 .

95 (Gu(V35), G(8)) + g5 (G (8), Gu(8)) = 0. (4.69)

Again using the definition of conformal submersion in equation (4.69), we have

2
Ngn (Vb B) + Ny (B.7) = 0. (4.70)

A2, .. AL
Substituting the values of gn(V 03, 8) = e gN(UVBABﬁ,B) - gN(ABVBﬁ,B) and

gN(B,B) =1 in equation () we get

.o /AN
—\2k2 — )\QQN(UVBABB,ﬁ) — )\QQN(ABVBB,ﬁ) +A2=0. (4.71)

. AL
Since gN(vVBABﬁ,B) = 0 and gN(ABVBﬁ,B) = 0. Thus from equation (4.71), we get the

required result.

O

Theorem 4.4. Let G : (N,g) — (N,gy) be a conformal submersion map between two
Riemannian manifolds (N, g) and (N, gx). If B is a circle on (N, g) and 3 = Gof is a circle

on (N,g]\-,), then either A = £k or A = 0, where k is curvature of  on N.
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Proof. Considering the definition of conformal submersion in equation (4.66)), we get

A2, A LA, )
G.(V3B) + N (V 38,V 36)G.(8) = 0. (4.72)

Taking inner-product of equation (4.72|) with G, (), gives us

/\2

05 (Go(V 3), Gu(B)) + A2 (V 48,V 38)95 (G(B), Gu(A)) = 0. (4.73)

AN, .
Since, gN(VBﬂ, VBB) =1 and gn(f, 8) = 1, therefore equation (4.73) reduces to

) A2 59
N gn(VgB, B) + A°A° = 0. (4.74)

AZ L .. AL
Taking gn(V38,8) = N — gN(vVBAB,B,ﬁ) — gN(ABVBB,B) in equation (4.74]), then we

have

—N (K% + gn (vV A48, B) + gN(Agegﬁ, B)) +A2\? = 0. (4.75)

.. AL
Substituting gN(vVBABﬁ, B) =0 and gN(ABVBﬂ, B) = 0 in equation (4.75)), we get

—k2AZ 4+ N2\ = 0. (4.76)

As equation (4.76)) is quadratic in A2, therefore

2 + /4l
=D EVE (4.77)
2
Thus, from equation (4.77)), we can say that either A = £k or A = 0.
Il

5. HYPERELASTIC CURVE ALONG THE CONFORMAL SUBMERSION

In this section, we study the hyperelastic curve along the conformal submersion.

Theorem 5.1. Let G : (N,gn) — (N, gx) be a conformal submersion between Riemannian
manifolds (N,gn) and (N,gx). If B is a hyperelastic curve on (N,gn) and B = G o B is a

hyperelastic curve on (N, gy), then

(—2(r — 2)r" 71K — 3" I)AZ + A2 (B(ZLRT + 1))

R 29 (VG (-2 (B5h), B), G+ (8)) = 0, (5.78)

where r > 2 is a natural number.
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Proof. Let B is a hyperelastic curve on (N, gy ), then from [33], we have

Ve ) Ve, 5 G(8)) + Ve, (5 (1G-(5))

+i2R(V g, 3G (B), G (8)) G (B) = 0. (5.79)

_ . AL _ : A3,
Substituting VG*(,B)G*(/B) = G.(V;B), VQG*(B)(M_QVG*(B)G*(/})) = ,@T—QG*(Vﬁ-Qﬂ) +
A A AN
(r—2)(r— 3)HT*4(H’)2G*(V6~B) + (r — 2)/<;T*3/<5”G*(Vﬁﬂ) + (r = 2)r" PR G (V3B) +
A2, _ . .
(r —2)s" 3K G.(Vp) and V. (HG«(B)) = G«(Vgup) in equation (5.79), we have

2
(r = 2)(r = B R2CL(V48) + (r — D3RG (Y ) + 2(r — 273G (V 38)

A3, ) .
772G, (§48) + 2 R(G.(V 4), GG (D) + Cul(V ) = 0. (550

Taking inner-product of equation (5.80) with G, (6) both sides, we get

((r=2)(r = 3)" "> + (r = 2)w" k") gy (G4 (V Bﬁ) «(9))
A2, A3

+2(r = 2)8" W g (Gu(V35), Gu(B)) + 17295 (Gi(V 35), G4 (5))
172 (R(GL (V). G (B)Ga(B), Go(B)) + 95 (G=(V ), Go(B) = 0. (5.81)

Substituting gy (R(G+(V ﬁﬁ) (5))G*(5),G*(5)) = _QQN((VG*)(A%‘B@B%G*(B)) +
8

. ) DA .
gN((VG*)(ABVB,B, B), G« (8))+9n ((VG:) (A8, V8), Gx(B)) and using the definition of con-
formal submersion in equation , we get

3
205 (9 3, (1 = 2)(r — )82 + =2 X2 (V3, B) + (r — 2)s7 ")
2 . . . . .
+2(r — 2)%’“‘3/4}\29]\/(%5@ B) — 2/€T_29N((VG*)(A% -Bﬁ’ B),G«(B))
B
TR 200 (VG)(A5V 38, B), Gu(B) + Nan (Y g, B)
1205 (VL) (A8, ¥ 58), G (B) = 0. (5.82)
Substituting the values of

2
on(V 50 8) = ~an(438.9), gn (V38,8) = —2 — gn (09 34483, 8) — gn(AV 38, B) and
2
gN(Vﬁﬁ B) = =3k —gn(vV oV Agﬁ,B)—QN(’UVBABQBB,B)—QN(ABGBB,B) in equation
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(5.82), we obtain

—2(r — 2)k" T R/AZ — 3T TIRINZ — 2/€T_29N((VG*)(A% -BB)’ G.(B))
B

1205 (VG A5V 58, 8), Cu(B)) + K295 (VG (Ag81, V 5), Gu(B))
XN (V g0, ) = 0. (5:83)

A i ) A
Since VBuﬁ = (ﬂ(@n’“ +b))8 + (27%1/17" + b)Vﬁﬂ, where pu = ?KT + b, therefore from
equation ([5.83]),

~2(r = DTN — 30T - 22 (VG (A, 85.6),G.(9)
B
2 (VG (A8, 9 38), Gu(B) + A2gn (22w +b))A
(2L 4 B)Y 46, 8) = O, (5.84)

X AL AL
Using the totally umbilical conditions Ae ﬁﬂ = gN(Vﬁﬂ,B)H’, \ VBB, B € T(kerG,)™*,

B
2

A LA
where H' = —%(Vﬁ-%) and AV 8 = gN(ﬁ,VBB)H’ in equation (5.84)), we get

(=2(r — 21 = 372 — 7 2gn (48, A (VG B), G(B)
17 2gn (8, )95 (VG) (H', ¥ 58), Gu(B)) + X(B(Z=Ln + ))gn (8, 6)

2021 A o
FA(F=R" 4 b)gn (V, 8) = 0. (5.85)

Substituting H' = —’\2—2(5$) and gN(ABB,B) = 0 in equation ([5.85)), we obtain

—A2(2(r — 2)k" 7 K 4+ 35" R + AQ(B(@H’" +b))
+h 295 (VGO (=4 (B5h), B), GL(B)) = 0. (5.86)

Hence the proof. O

Corollary 5.1. Let G : (N,gn) — (N, gx) be a conformal submersion between Riemannian
manifolds (N, gn) and (N,gy) such that B is a elastic curve on (N,gn). If B=Go B is a
elastic curve on (N, gy), then

A1

95((VG)(=5 (3p), BIG-(8) = 0. (587)

Proof. Substituting » = 2 in equation ([5.78)), we have

A o.1 . . . 3

5 (B53):8), Gu(B) + N (B(GR> + b)) = 0. (5.89)

—3rK' N+ gr (VG (— 5

Substituting the value of 3 (%/4;2 +b) = 3kk’ in equation 1’ we get the required result. [
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