

International Journal of Maps in Mathematics

Volume 7, Issue 2, 2024, Pages:224-235 E-ISSN: 2636-7467 www.journalmim.com

ON THE OPERATOR EQUATION ABA = ACA AND ITS GENERALIZATION ON NON-ARCHIMEDEAN BANACH SPACES

JAWAD ETTAYB 🕩 *

ABSTRACT. Let X and Y be non-Archimedean Banach spaces over a non-Archimedean valued field K. In this paper, we study some properties of $A \in \mathcal{L}(X,Y)$ and $B, C \in \mathcal{L}(Y,X)$ such that ABA = ACA and many basic operator properties in common of $AC - I_Y$ and $BA - I_X$ are given. In particular, $N(I_Y - AC)$ is a complemented subspace of Y if and only if $N(I_X - BD)$ is a complemented subspace of X. Moreover, the approach is generalized for considering relationships between the properties of $I_Y - AC$ and $I_X - BD$. Finally, several illustrative examples are provided.

Keywords: Non-Archimedean Banach spaces, operator equation, operators theory.2010 Mathematics Subject Classification: Primary 47A05, 47A10, Secondary 47S10.

1. INTRODUCTION

In classical operators theory, the operator equations $ABA = A^2$ and $BAB = B^2$ were studied by sereval researchers, for more details see [10, 11, 12, 14]. Recently, Barnes established some consequences on common operator properties of continuous linear operators ABand BA on complex Banach spaces, for more details, we refer to [1]. Moreover, Corach et al. [2] established some common properties of $AC - I_Y$ and $BA - I_X$ when ABA = ACA. In [17], Zeng and Zhong proceeded to examine common properties of AC and BA from the attitude of classical spectral theory considering $A \in \mathcal{L}(X, Y), B, C \in \mathcal{L}(Y, X)$ such that ABA = ACA, where X and Y were assumed to be Banach spaces over C. In particular, they gave an affirmative answer to one question raised by the authors [2], by showing that $AC - I_Y$ is of

Jawad Ettayb & jawad.ettayb@gmail.com & https://orcid.org/0000-0002-4819-943X.

Received:2023.11.21 Revised:2024.04.06 Accepted:2024.04.25

^{*} Corresponding author

closed range if and only if $BA - I_X$ is of closed range. Yan and Fang [16] examined the joint properties of BD and AC in terms of regularity when $A, D \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that ACD = DBD and DBA = ACA. In non-Archimedean operators theory, Ettayb [4] studied specific properties of operator equations $ABA = A^2$ and $BAB = B^2$ on a non-Archimedean Banach space X and many basic operator properties in common of $I_X - AB$ and $I_X - BA$ were described. In particular, if X, Y are non-Archimedean Banach spaces over a spherically complete field $\mathbb{K}, A \in \mathcal{L}(X, Y)$ and $B \in \mathcal{L}(Y, X)$, then $N(I_Y - AB)$ is a complemented subspace of Y if and only if $N(I_X - BA)$ is a complemented subspace of X. Recently, Ettayb [6] examined the common properties of AC and BD whenever $A, D \in \mathcal{L}(X, Y)$ and $B, C \in \mathcal{L}(Y, X)$ such that ACD = DBD and DBA = ACA where X and Y were supposed to be non-Archimedean Banach spaces over a non-Archimedean Valued field \mathbb{K} .

Non-Archimedean spectral theory played a crucial role in non-Archimedean functional analysis which has had numerous applications in non-Archimedean applied mathematics and physics, including non-Archimedean differential, pseudo-differential equations and quantum physics. For additional details see [7, 8, 15]. This work is motivated by many studies on non-Archimedean operators theory and spectral theory of continuous linear operators, e.g. [4, 6, 5, 7, 8, 15]. Throughout this paper, \mathbb{K} is a complete non-Archimedean valued field with a non-trivial valuation $|\cdot|$, X and Y are non-Archimedean Banach spaces over \mathbb{K} and $\mathcal{L}(X,Y)$ will denote the collection of all continuous linear operators from X into Y. For X = Y, we put $\mathcal{L}(X, X) = \mathcal{L}(X)$. $(\mathbb{Q}_p, |.|_p)$ is the field of p-adic numbers. For more details, we refer to [3, 9, 13]. Let $A \in \mathcal{L}(X)$, R(A), N(A), A^* , $\sigma(A)$, $\sigma_p(A)$ and $\rho(A)$ denote the range, the kernel, the adjoint, the spectrum, the point spectrum and the resolvent set of A respectively.

The goal of this work is to develop the theory of some operator equations of continuous linear operators in non-Archimedean Banach spaces.

2. Preliminaries

We continue with the following preliminaries.

Definition 2.1. [3] A field \mathbb{K} is said to be non-Archimedean if it is endowed with an absolute value $|\cdot| : \mathbb{K} \to \mathbb{R}^+$ such that:

- (i) $|\alpha| = 0$ if, and only if, $\alpha = 0$;
- (ii) For all $\alpha, \mu \in \mathbb{K}$, $|\alpha \mu| = |\alpha| |\mu|$;
- (iii) For each $\alpha, \mu \in \mathbb{K}, |\alpha + \mu| \le \max\{|\alpha|, |\mu|\}.$

J. ETTAYB

Definition 2.2. [9] \mathbb{K} is said to be spherically complete if each sequence of balls $(B_n)_{n\geq 1}$ of \mathbb{K} such that $B_{n+1} \subset B_n$ for every $n \geq 1$, we have $\bigcap_{n\geq 1} B_n \neq \emptyset$.

Definition 2.3. [3] Let X be a vector space over \mathbb{K} . A function $\|\cdot\| : X \to \mathbb{R}_+$ is called a non-Archimedean norm if:

- (i) For each $u \in X$, ||u|| = 0 if and only if u = 0;
- (ii) For all $u \in X$ and $\lambda \in \mathbb{K}$, $\|\lambda u\| = |\lambda| \|u\|$;
- (iii) For each $u, y \in X$, $||u + y|| \le \max(||u||, ||y||)$.

Definition 2.4. [3] A non-Archimedean Banach space is a complete non-Archimedean normed space.

Example 2.1. [3] The space $c_0(\mathbb{K})$ is the space of all sequences $(x_i)_{i\in\mathbb{N}}$ in \mathbb{K} such that $\lim_{i\to\infty} x_i = 0$. Hence $(c_0(\mathbb{K}), \|\cdot\|)$ is a non-Archimedean Banach space where for any $(x_i)_{i\in\mathbb{N}} \in c_0(\mathbb{K}), \|(x_i)_{i\in\mathbb{N}}\| = \sup_{i\in\mathbb{N}} |x_i|$.

Definition 2.5. [13] Let $P \in \mathcal{L}(X)$. P is said to be a projection if $P^2 = P$.

Remark 2.1. [13] If P is a projection on X, then R(P) is the kernel of I - P so that R(P) is a closed linear subspace of X.

The following lemma holds.

Lemma 2.1. [13] Let $P \in \mathcal{L}(X)$ be a projection. Hence, we have the following:

- (i) $I_X P$ is a projection;
- (ii) If $P \neq 0$, then $||P|| \ge 1$;
- (iii) If $P \neq 0$ and $P \neq I_X$, then $||P|| = ||I_X P||$;
- (iv) If Q is projection such that PQ = QP, then PQ is projection.

We have the following definition.

Definition 2.6. [9] A subspace D of X is said to be complemented if there is a continuous projection $P \in \mathcal{L}(X)$ such that R(P) = D. In such case, D = R(P) and $D_1 = N(P)$ are closed subspaces and $X = D \oplus D_1$.

Remark 2.2. [9] If D, D_1 are closed subspaces of X such that $X = D \oplus D_1$, then D is complemented in X and D_1 is a complement of D.

For more details, see [9, 13].

Proposition 2.1. [6] Let $A \in \mathcal{L}(X, Y)$ and $B \in \mathcal{L}(Y, X)$, we have:

(i)
$$N(B) \cap N(I_Y - AB) = \{0\};$$

(ii) $B(N(I_Y - AB)) = N(I_X - BA).$

The following theorem is valid.

Theorem 2.1. [6] Let $A \in \mathcal{L}(X, Y)$ and $B \in \mathcal{L}(Y, X)$. Hence $R(I_Y - AB)$ is closed if and only if $R(I_X - BA)$ is closed.

Theorem 2.2. [4] Let X and Y be non-Archimedean Banach spaces over a spherically complete field K and let $A \in \mathcal{L}(X, Y)$ and $B \in \mathcal{L}(Y, X)$, hence $N(I_Y - AB)$ is a complemented subspace of Y if and only if $N(I_X - BA)$ is a complemented subspace of X.

3. Main Results

We have the following results.

Lemma 3.1. Let $A \in \mathcal{L}(X, Y)$, $B, C \in \mathcal{L}(Y, X)$ with ABA = ACA. Hence $R(AC - I_Y)$ is closed in Y if and only if $R(BA - I_X)$ is closed in X.

Proof. If $R(AC - I_Y)$ is closed in Y, hence let $(x_n)_{n \in \mathbb{N}} \subset R(BA - I_X)$ with $x_n \to x$ for some $x \in X$ as $n \to \infty$. Then there is a sequence $(z_n)_{n \in \mathbb{N}} \subset X$ with $x_n = (BA - I_X)z_n$ for any $n \in \mathbb{N}$. Thus

$$Ax = \lim_{n \to \infty} Ax_n$$

=
$$\lim_{n \to \infty} A((BA - I_X)z_n)$$

=
$$\lim_{n \to \infty} (ABA - A)z_n$$

=
$$\lim_{n \to \infty} (ACA - A)z_n$$

=
$$\lim_{n \to \infty} (AC - I_Y)Az_n.$$

From $R(AC - I_Y)$ is closed in Y, there is $y \in X$ with $(AC - I_Y)y = Ax$. Thus y = ACy - Ax.

$$x = BAx - (BA - I_X)x$$

= $B(AC - I_Y)y - (BA - I_X)x$
= $(BAC - B)(ACy - Ax) - (BA - I_X)x$
= $BACACy - BACAx - BACy + BAx - (BA - I_X)x$
= $BABACy - BABAx - BACy + BAx - (BA - I_X)x$
= $(BA - I_X)(BACy - BAx - x).$

Consequently, $x \in R(BA - I_X)$. Then $R(BA - I_X)$ is closed in X. Conversely, assume that $R(BA - I_X)$ is closed in X. Then, from Theorem 2.1, $R(BA - I_X)$ is closed in X if and only if $R(AB - I_Y)$ is closed in Y. Thus $R(CA - I_X)$ is closed in X. By Theorem 2.1, $R(AC - I_Y)$ is closed in Y. Consequently, $R(AC - I_Y)$ is closed in Y if and only if $R(BA - I_X)$ is closed in X. \Box

Lemma 3.2. If $A \in \mathcal{L}(X,Y)$, $B, C \in \mathcal{L}(Y,X)$ such that ABA = ACA. Hence for each $n \in \mathbb{N}$, $R((AC - I_Y)^n)$ is closed in Y if and only if $R((BA - I_X)^n)$ is closed in X.

Proof. Set

$$(\forall n \in \mathbb{N}) B_n = \sum_{k=1}^{n+1} (-1)^{k-1} \binom{n+1}{k} B(AB)^{k-1}$$

and

$$(\forall n \in \mathbb{N}) \ C_n = \sum_{k=1}^{n+1} (-1)^{k-1} \binom{n+1}{k} C(AC)^{k-1}.$$

Since ABA = ACA, for each $n \in \mathbb{N}$, $AB_nA = AC_nA$. Moreover, for each $n \in \mathbb{N}$,

$$I - AC_n = I - \sum_{k=1}^{n+1} (-1)^{k-1} {\binom{n+1}{k}} AC(AC)^{k-1}$$

= $I + \sum_{k=1}^{n+1} (-1)^k {\binom{n+1}{k}} (AC) (AC)^{k-1}$
= $I + \sum_{k=1}^{n+1} {\binom{n+1}{k}} (-AC)^k$
= $\sum_{k=0}^{n+1} {\binom{n+1}{k}} (-AC)^k$
= $(I - AC)^{n+1}$.

Similarly, we have for all $n \in \mathbb{N}$, $(I - BA)^{n+1} = I - B_n A$. By Lemma 3.1, for each $n \in \mathbb{N}$, $R((AC - I_Y)^n)$ is closed in Y if and only if $R((BA - I_X)^n)$ is closed in X. \Box

Lemma 3.3. If $A \in \mathcal{L}(X, Y)$, $B, C \in \mathcal{L}(Y, X)$ with ABA = ACA. Hence for each $n \in \mathbb{N}$,

- (i) $AR((BA I_X)^n) \subset R((AC I_Y)^n);$
- (ii) $AN((BA I_X)^n) \subset N((AC I_Y)^n);$
- (iii) $BACN((AC I_Y)^n) \subset N((BA I_X)^n);$
- (iv) $BACR((AC I_Y)^n) \subset R((BA I_X)^n).$

Proof. (i) If $x \in R((BA - I_X)^n)$, hence there is $u \in X$ with $x = (BA - I_X)^n u$. Then

$$Ax = A(BA - I_X)^n u = (AC - I_Y)^n Au \in R((AC - I_Y)^n).$$

Thus
$$AR((BA - I_X)^n) \subset R((AC - I_Y)^n).$$

(ii) Let $x \in N((BA - I_X)^n)$, then $(BA - I_X)^n x = 0$. Hence

$$(AC - I_Y)^n Ax = A(BA - I_X)^n x = 0$$

Consequently, $Ax \in N((AC - I_Y)^n)$. Thus $AN((BA - I_X)^n) \subset N((AC - I_Y)^n)$. (iii) Let $y \in N((AC - I_Y)^n)$, then $(AC - I_Y)^n y = 0$. Hence

$$(BA - I_X)^n BACy = BAC(AC - I_Y)^n y = 0.$$

Consequently, $BACy \in N((BA - I_X)^n)$. Then

$$BACN((AC - I_Y)^n) \subset N((BA - I_X)^n).$$

(iv) If $z \in R((AC - I_Y)^n)$. Hence there is $y \in Y$ with $z = (AC - I_Y)^n y$. Then

$$BACz = BAC(AC - I_Y)^n y = (BA - I_X)^n BACy \in R((BA - I_X)^n).$$

Consequently, $BACR((AC - I_Y)^n) \subset R((BA - I_X)^n)$.

Lemma 3.4. If $A \in \mathcal{L}(X,Y)$ and $B, C \in \mathcal{L}(Y,X)$ with ABA = ACA. Hence for each $n \in \mathbb{N}$, $R(AC-I_Y)+N((AC-I_Y)^n)$ is closed in Y if and only if $R(BA-I_X)+N((BA-I_X)^n)$ is closed in X.

Proof. Assume that $R(AC - I_Y) + N((AC - I_Y)^n)$ is closed in Y. Let $(x_n)_{n \in \mathbb{N}} \subset R(BA - I_X) + N((BA - I_X)^n)$ with $x_n \to x$ for some $x \in X$ as $n \to \infty$. Hence there are sequences

J. ETTAYB

 $(z_n)_{n\in\mathbb{N}}\subset R(BA-I_X)$ and $(w_n)_{n\in\mathbb{N}}\subset N((BA-I_X)^n)$ with $x_n=z_n+w_n$ for any $n\in\mathbb{N}$. Thus

$$Ax = \lim_{n \to \infty} Ax_n$$
$$= \lim_{n \to \infty} A(z_n + w_n).$$

From (i) and (ii) of Lemma 3.3, we get $Az_n \in R(AC - I_Y)$ and $Aw_n \in N((AC - I_Y)^n)$. From $R(AC - I_Y) + N((AC - I_Y)^n)$ is closed in Y, there are $z \in Y$ and $w \in N((AC - I_Y)^n)$ with $(AC - I_Y)z + w = Ax$. Thus z = ACz - Ax + w. Consequently,

$$\begin{aligned} x &= BAx - (BA - I_X)x \\ &= B((AC - I_Y)z + w) - (BA - I_X)x \\ &= (BAC - B)z + Bw - (BA - I_X)x \\ &= (BAC - B)(ACz - Ax + w) + Bw - (BA - I_X)x \\ &= BACACz - BACAx + BACw - BACz + BAx - Bw + Bw - (BA - I_X)x \\ &= BACACz - BACAx + BACw - BACz + BAx - (BA - I_X)x \\ &= BABACz - BABAx + BACw - BACz + BAx - (BA - I_X)x \\ &= (BA - I_X)(BACz - BAx - x) + BACw. \end{aligned}$$

Since $w \in N((AC - I_Y)^n)$ and from (iii) of Lemma 3.3, we have $x \in R(BA - I_X) + N((BA - I_X)^n)$. Then $R(BA - I_X) + N((BA - I_X)^n)$ is closed in X. Conversely, assume that $R(BA - I_X) + N((BA - I_X)^n)$ is closed in X. By Theorem 2.1, $R(AB - I_Y) + N((AB - I_Y)^n)$ is closed in Y. Then $R(CA - I_X) + N((CA - I_X)^n)$ is closed in X. From Theorem 2.1, $R(AC - I_Y) + N((AC - I_Y)^n)$ is closed in Y. \Box

The following theorem holds.

Theorem 3.1. Let X and Y be non-Archimedean Banach spaces over a spherically complete field K. If $A, D \in \mathcal{L}(X, Y), B, C \in \mathcal{L}(Y, X)$ with ACD = DBD and DBA = ACA. Hence $N(I_Y - AC)$ is complemented in Y if and only if $N(I_X - BD)$ is complemented in X.

Proof. Assume that $N(I_Y - AC)$ is a complemented subspace of Y, hence there is a bounded projection $Q \in \mathcal{L}(Y)$ with $R(Q) = N(I_Y - AC)$, thus $(I_Y - AC)Q = 0$, hence Q = ACQ. Set $P = BQACD \in \mathcal{L}(X)$. By DBQ = DBACQ = ACACQ = ACQ = Q, hence

$$P^{2} = (BQACD)(BQACD) = BQACQACD = BQACD = P.$$

Note that

$$(I_X - BD)P = (I_X - BD)(BQACD) = BQACD - BDBQACD = 0.$$

Then $R(P) \subseteq N(I_X - BD)$. If $x \in N(I_X - BD)$. Thus Dx = DBDx = ACDx, hence $Dx \in N(I_Y - AC) = R(Q)$. Thus QDx = Dx, then

$$Px = BQACDx = BQACQDx = BQDx = BDx = x,$$

hence $N(I_X - BD) \subseteq R(P)$. Then P is a projection with $R(P) = N(I_X - BD)$. Conversely, suppose that W is a projection with $R(W) = N(I_X - BD)$. Put Z = ACDWBACAC. By BDW = W, it follows that

$$Z^{2} = (ACDWBACAC)(ACDWBACAC)$$

= $ACDWB(ACA)CACDWBACAC$
= $ACDWB(DBA)C(ACD)WBACAC$ from $ACA = DBA$ and $ACD = DBD$
= $ACDWBDB(ACD)BDWBACAC$
= $ACDWBDB(DBD)BDWBACAC$
= $ACDWBDB(DBD)BDWBACAC$
= $ACDWBDBDBDBDBDWBACAC$
= $ACDWBACAC$

= Z.

From

$$(I_Y - AC)Z = (I_Y - AC)(ACDWBACAC)$$

= $ACDWBACAC - ACACDWBACAC$
= $ACDWBACAC - ACDBDWBACAC$
= $ACDWBACAC - ACDBDWBACAC$
= $ACDWBACAC - ACDWBACAC$

= 0,

 $R(Z) \subseteq N(I_Y - AC)$. Let $x \in N(I_Y - AC)$. Hence x = ACx. By BACx = BACACx = BDBACx and $BACx \in N(I_X - BD) = R(W)$, we get WBACx = BACx. Thus

$$Zx = ACDWBACACx$$
$$= ACDWBACx$$
$$= ACDBACx$$
$$= ACACACx$$
$$= x,$$

hence $N(I_Y - AC) \subseteq R(Z)$. Then Z is the projection onto $N(I_Y - AC)$.

Theorem 3.2. Let X and Y be non-Archimedean Banach spaces over a spherically complete field K. Let $A, D \in \mathcal{L}(X, Y), B, C \in \mathcal{L}(Y, X)$ such that ACD = DBD and DBA = ACA. Hence $R(I_Y - AC)$ is complemented in Y if and only if $R(I_X - BD)$ is complemented in X.

Proof. Suppose that Q is the projection with $R(Q) = R(I_Y - AC)$. Put $P = I_X - BAC(I_Y - Q)D$. From $(I_Y - Q)(I_Y - AC) = 0$ and $(I_Y - Q)AC = I_Y - Q$, we get

$$P^{2} = [I_{X} - BAC(I_{Y} - Q)D][I_{X} - BAC(I_{Y} - Q)D]$$

$$= I_{X} - BAC(I_{Y} - Q)D - BAC(I_{Y} - Q)D + BAC(I_{Y} - Q)DBAC(I_{Y} - Q)D$$

$$= I_{X} - BAC(I_{Y} - Q)D - BAC(I_{Y} - Q)D + BAC(I_{Y} - Q)ACAC(I_{Y} - Q)D$$

$$= I_{X} - BAC(I_{Y} - Q)D - BAC(I_{Y} - Q)D + BAC(I_{Y} - Q)D$$

$$= I_{X} - BAC(I_{Y} - Q)D$$

$$= P.$$

Thus $P^2 = P$. From $R(Q) = R(I_Y - AC)$, we get

$$R(BACQD) \subseteq R(BAC(I_Y - AC)) = R((I_X - BD)BAC) \subseteq R(I_X - BD).$$

Moreover,

$$P = I_X - BAC(I_Y - Q)D$$

= $I_X - BACD + BACQD$
= $I_X - BDBD + BACQD$
= $(I_X - BD)(I_X + BD) + BACQD$,

and thus $R(P) \subseteq R(I_X - BD)$. If $x \in R(I_X - BD)$, hence there is $u \in X$ with $x = (I_X - BD)u$. From $Dx = D(I_X - BD)u = (I_Y - AC)Du \in R(Q)$, we get

$$Px = [I_X - BAC(I_Y - Q)D]x = x,$$

hence $R(I_X - BD) \subseteq R(P)$. Then $R(I_X - BD)$ is complemented in X. Conversely, suppose that Q is a projection with $R(Q) = R(I_X - BD)$. Set $W = I_Y - ACD(I_X - Q)BAC$. We demonstrate that W is a projection such that $R(W) = R(I_Y - AC)$. From $(I_X - Q)(I_X - BD) = 0$ and $(I_X - Q)BD = I_X - Q$, hence

$$W^{2} = [I_{Y} - ACD(I_{X} - Q)BAC]^{2}$$

$$= I_{Y} - 2ACD(I_{X} - Q)BAC + ACD(I_{X} - Q)BACACD(I_{X} - Q)BAC$$

$$= I_{Y} - 2ACD(I_{X} - Q)BAC + ACD(I_{X} - Q)BDBACD(I_{X} - Q)BAC$$

$$= I_{Y} - 2ACD(I_{X} - Q)BAC + ACD(I_{X} - Q)BDBDBD(I_{X} - Q)BAC$$

$$= I_{Y} - ACD(I_{X} - Q)BAC$$

$$= W.$$

Thus $W^2 = W$. One can see that

$$W = I_Y - ACD(I_X - Q)BAC$$
$$= I_Y - ACDBAC + ACDQBAC$$
$$= I_Y - ACACAC + ACDQBAC,$$

and

$$R(W) \subseteq R(I_Y - ACACAC + ACDQBAC)$$

$$\subseteq R[(I_Y - AC)(I_Y + AC + ACAC)] + R[ACD(I_X - BD)]$$

$$\subseteq R(I_Y - AC) + R[(I_Y - AC)ACD]$$

$$\subseteq R(I_Y - AC).$$

For each $y \in R(I_Y - AC)$, there is $w \in Y$ with $y = (I_Y - AC)w$. Hence $BACy = BAC(I_Y - AC)w = (I_X - BD)BACw \in R(Q)$, then

$$Wy = [I_Y - ACD(I_X - Q)BAC]y = y.$$

Thus $R(I_Y - AC) \subseteq R(W)$. Hence $R(I_Y - AC)$ is complemented in Y.

We finish with the following examples.

Example 3.1. Let $A, B, C \in \mathcal{L}(c_0(\mathbb{K}))$ be given respectively by

$$A(x_1, x_2, x_3, x_4, \cdots) = (0, x_2, 0, x_4, \cdots),$$

$$B(x_1, x_2, x_3, x_4, \cdots) = (0, x_1, x_2, x_4, \cdots)$$

and

$$C(x_1, x_2, x_3, x_4, \cdots) = (0, 0, x_1, x_4, \cdots).$$

It is easy to see that ABA = ACA.

Example 3.2.

(i) Let

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \text{ and } C = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{Q}_p).$$

It is easy to see that $ABA = ACA = 0_{\mathcal{M}_2(\mathbb{Q}_p)}$.

(ii) Let

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \text{ and } C = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{Q}_p).$$

Then ABA = ACA.

(iii) Let
$$a, b, c \in \mathbb{Q}_p$$
. Let

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} and C = \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Q}_p).$$

One can see that if a = c = 0, b = 1, then B = C and ABA = ACA. Moreover in the case $B \neq C$, we have ABA = ACA.

References

- Barnes, B. A. (1998). Common operator properties of the linear operators RS and SR. Proc. Amer. Math. Soc., 162, 1055-1061.
- [2] Corach, G., Duggal, B., & Harte, R. (2013). Extensions of Jacobson's lemma. Comm. Algebra, 41(2), 520-531.
- [3] Diagana, T., & Ramaroson, F. (2016). Non-Archimedean operator theory. Springer Briefs in Mathematics, Springer, Cham.
- [4] Ettayb, J. (2023). On the operator equations $ABA = A^2$ and $BAB = B^2$ on non-Archimedean Banach spaces. Topological Algebra and its Applications, 11(1), 20230110.

- [5] Ettayb, J. (2023). λ -Commuting of bounded linear operators on ultrametric Banach spaces and determinant spectrum of ultrametric matrices. Topological Algebra and its Applications, 11(1), 20230103.
- [6] Ettayb, J. (2024). Common properties of the operator equations in ultrametric spectral theory. Gulf Journal of Mathematics, 16(1), 79-95.
- [7] Khrennikov, A. (1995). Statistical interpretation of p-adic quantum theories with p-adic valued wave functions. Journal of Mathematical Physics, 36(12), 6625-6632.
- [8] Kochubei, A. N. (1995). Gaussian integrals and spectral theory over a local field. Izvestiya: Mathematics, 45(3), 495-503.
- [9] Perez-Garcia, C., & Schikhof, W. H. (2010). Locally convex spaces over non-Arch
- [10] Rakočević, V. (2000). A note on a theorem of I. Vidav. Publ. Inst. Math., 68(82), 105-107. imedean valued fields. Cambridge Studies in Advanced Mathematics, vol. 119, Cambridge University Press, Cambridge.
- [11] Schmeoger, Ch. (2005). On the operator equations $ABA = A^2$ and $BAB = B^2$. Publ. Inst. Math., 78(92), 127-133.
- [12] Schmoeger, Ch. (2006). Common spectral properties of linear operator equations A and B such that $ABA = A^2$ and $BAB = B^2$. Publ. Inst. Math., 79(93), 109-114.
- [13] van Rooij, A. C. M. (1978). Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York.
- [14] Vidav, I. (1964). On idempotent operators in a Hilbert space. Publ. Inst. Math., 4(18), 157-163.
- [15] Vladimirov, V. S. (1993). On spectral properties of *p*-adic pseudo differential operators of Schrödinger type. Izvestiya: Mathematics, 41(1), 55-73.
- [16] Yan, K., & Fang, X. (2015). Common properties of the operator products in spectral theory. Ann. Funct. Anal., 6(4), 60-69.
- [17] Zeng, Q. P., & Zhong, H. J. (2013). Common properties of bounded linear operators AC and BA: Spectral theory. Math. Nachr., 267(5-6), 717-725.

REGIONAL ACADEMY OF EDUCATION AND TRAINING CASABLANCA-SETTAT, PROVINCIAL DIRECTORATE OF NATIONAL EDUCATION OF BERRECHID, HAMMAN AL-FATAWAKI COLLEGIATE HIGH SCHOOL, HAD SOUALEM, BERRECHID, MOROCCO