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RICCI-YAMABE SOLITONS ON THE LIE GROUP H2 × R
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Abstract. In this paper, we study Ricci-Yamabe and gradient Yamabe solitons on the Lie

group H2 × R with a left-invariant metric. We prove that the kind of the Ricci-Yamabe

soliton is only related with one variable existing in the definition.
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1. Introduction

Homogenous geometries play crucial role in the theory of manifolds. Their importance

come from the well-known Thurston conjecture. This conjecture says that every com-

pact orientable 3-dimensional manifold has a canonical decomposition into parts, each of

which involves a canonical geometric structure from among the eight maximal simple con-

nected homogenous Riemannian three-dimensional geometries [8]. These model spaces are

E3, H3, S3, S2 × R, Nil, S̃L2R, Sol and H2 × R. In this paper, we deal with the latter

one.

The geometry of different types of solitons on manifolds has been the focus of attention

of many mathematicians during the last years (see for examples [1],[2],[3]). Yamabe flow

was introduced by Hamilton and Yamabe solitons are special solutions of the Yamabe flow,

[5]. Given an n(n ≥ 2), dimensional Riemannian manifold (M, g) such that {g(t)} is the

1-parameter family of metrics and r(t) is its scalar curvature. In this case, the equation of
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Yamabe flow is defined by

∂g(t)

∂t
= −r(t)g(t).

Similarly, the equation of Ricci flow is given by

∂g(t)

∂t
= −2Ric(t)g(t),

where Ric(t) is the Ricci tensor [6]. In 2019, scalar combination of the Yamabe and Ricci

flow was introduced by Güler and Crasmareanu as follows:

∂g(t)

∂t
= β2r(t)g(t)− 2β1Ric(t)g(t).

This equation is known as Ricci-Yamabe flow and special solutions of the Ricci-Yamabe

flow are famous as Ricci-Yamabe solitons [7]. Due to the sign of the scalars β1 and β2 the

Ricci-Yamabe flow becomes a Riemannian, a semi-Riemannian or a singular Riemannian

flow.

In this paper, we show that the Lie group H2×R involves a vector field satisfying a Ricci-

Yamabe soliton. We also prove that there does not exist a gradient Ricci-Yamabe soliton.

Throughout the paper, all geometric objects (curves, manifolds, vector fields, functions etc.)

are assumed to be smooth.

2. Preliminaries

2.1. Ricci-Yamabe and Gradient Ricci-Yamabe Solitons. A connected Riemannian

manifold (M, g, β1, β2, β3) of dimension n (n ≥ 2) is said to be a Ricci-Yamabe soliton if it

satisfies

LXg + 2β1Ric = −(2β3 − β2r)g, (2.1)

where LXg is the Lie derivative of the metric g in the direction of the vector fieldX, β1, β2, β3 ∈

R, Ric and r denote the Ricci tensor and the scalar curvature of M , respectively. A Ricci-

Yamabe soliton (M, g, β1, β2, β3) is said to be steady, expanding or shrinking and Ricci-

Yamabe soliton if β3 = 0 , β3 > 0 and β3 < 0 respectively. If a function f :M → R satisfies

X = gradf , then we say that the Ricci-Yamabe soliton is a gradient Ricci-Yamabe soliton.

2.2. The Lie group H2×R. We recall fundamental information about the Lie groupH2×R

from [4]. Let H2 = {(u, v) ∈ R2 | v > 0} denotes the upper half model of the hyperbolic

plane equipped with the metric gH2 = 1
v2
(du2 + dv2). The hyperbolic space H2 with the
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group structure occured by the composition of proper affine maps is a Lie group with the

left invariant metric

g =
1

v2
(du2 + dv2) + dw2. (2.2)

A left-invariant orthonormal frame field (e1, e2, e3) is given by

e1 = v
∂

∂u
, e2 = v

∂

∂v
, e3 =

∂

∂w
.

The Levi-Civita connection ∇ with respect to the this orthonormal frame is given by

∇e1e1 = e2, ∇e1e2 = −e1, ∇e1e3 = 0,

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = 0,

∇e3e1 = 0,∇e3e2 = 0,∇e3e3 = 0.

(2.3)

The Lie brackets are obtained as

[e2, e3] = 0, [e1, e3] = 0, [e1, e2] = −e1.

The non-zero components of the curvature tensor field R and the Ricci tensor Ric are

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1,

Ric(e1, e1) = Ric(e2, e2) = −1.

The scalar curvature r of H2 × R is

r = −2.

3. Main results

We start this section by considering

X = t1e1 + t2e2 + t3e3 (3.4)

is a potential vector field on M, where t1, t2 and t3 are differentiable functions of u, v and

w. We label the coordinate basis by {∂u, ∂v, ∂w}.

Theorem 3.1. Let us consider the Lie group H2 × R with the metric (2.2). Then the

space H2 × R admits an expanding, steady or shrinking Ricci Yamabe soliton if and only if

β1 > 0, β1 < 0 or β1 = 0.
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Proof. From (2.2), (2.3) and (3.4) the Lie derivative of the metric tensor g is computed as

LXg(e1, e1) = −2(t2 − ∂ut1),

LXg(e1, e2) = t1 + ∂vt1 + ∂ut2,

LXg(e1, e3) = ∂wt1 + ∂ut3,

LXg(e2, e2) = 2∂vt2,

LXg(e2, e3) = ∂wt2 + ∂vt3,

LXg(e3, e3) = 2∂wt3.

Putting (2.2), (2.3) and (3.4) in (2.1), we have

−(t2 − ∂ut1) = β1 − (β3 + β2), (3.5)

t1 + ∂vt1 + ∂ut2 = 2β2, (3.6)

∂wt1 + ∂ut3 = 2β2, (3.7)

∂vt2 = β1 − (β3 + β2), (3.8)

∂wt2 + ∂vt3 = 2β2, (3.9)

∂wt3 = −(β3 + β2). (3.10)

Equation (3.10) gives ∂u∂wt3 = 0. Using this equation and deriving (3.7) with respect to w,

we get

∂2wt1 = 0. (3.11)

From (3.11), we occur

t1 = φ(u, v)w + ψ(u, v),

where φ and ψ are functions. Equation (3.5) gives −∂vt2 + ∂u∂vt1 = 0. Having in mind this

relation and taking derivative in (3.5) with respect to v and using (3.8), we obtain

∂u∂vt1 = β1 − (β3 + β2). (3.12)

Taking derivative in (3.6) with respect to v, we find ∂vt1 + ∂2v t1 + ∂v∂ut2 = 0. Using this

relation in (3.12), we find

∂vt1 + ∂2v t1 = 0. (3.13)
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Substituting t1 in equations (3.12) and (3.13), we get ∂u∂vφw + ∂u∂vψ = β1 − (β3 + β2),

(∂vφ+ ∂2vφ)w + ∂vψ + ∂2vψ = 0.
(3.14)

Taking derivative in (3.14) with respect to w, we get

∂vφ+ ∂2vφ = 0,

∂vψ + ∂2vψ = 0,

∂u∂vφ = 0,

∂u∂vψ = β1 − (β3 + β2).

(3.15)

Now, if we take derivative in (3.15)2 with respect to u and use in (3.15)4, we find

β1 = β3 + β2. (3.16)

Integrating (3.15)1 and (3.15)2 give us φ(u, v) = γ1e
−v + φ1(u),

ψ(u, v) = γ2e
−v + ψ1(u),

(3.17)

where γi ∈ R and φ1, ψ1 are functions. Therefore,

t1 = (γ1e
−v + φ1(u))w + γ2e

−v + ψ1(u). (3.18)

Substituting t1 in (3.6), we deduce

(φ1(u) + φ′′
1(u))w + ψ1(u) + ψ′′

1(u) = 2β2. (3.19)

Deriving equation (3.19) with respect to w, we find φ1(u) + φ′′
1(u) = 0,

ψ1(u) + ψ′′
1(u) = 0.

(3.20)

Integrating (3.20) with respect to u, we find φ1(u) = γ3 cosu+ γ4 sinu,

ψ1(u) = γ5 cosu+ γ6 sinu,
(3.21)

where γi ∈ R. Hence,

t1 = (γ1e
−v + γ3 cosu+ γ4 sinu)w + γ2e

−v + γ5 cosu+ γ6 sinu. (3.22)

From (3.5), we have

t2 = (−γ3 sinu+ γ4 cosu)w − γ5 sinu+ γ6 cosu. (3.23)
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Equation (3.10) yields

t3 = −(β3 + β2)w + ξ(u, v),

where ξ is a function. Substituting t1, t2, t3 in (3.7) and (3.9) lead to ∂uξ = 2β2 − (γ1e
−v + γ3 cosu+ γ4 sinu)

∂vξ = 2β2 − (γ3 sinu+ γ4 cosu).
(3.24)

Integrating (3.24)1with respect to u, we obtain

ξ(u, v) = 2β2u− γ1ue
−v − γ3 sinu+ γ4 cosu+ γ7,

and putting ξ in (3.24)2, we see that

γ1ue
−v = 2β2 − γ3 sinu− γ4 cosu.

This gives us

γ1 = γ3 = γ4 = β2 = 0.

Finally, we find 
t1 = γ2e

−v + γ5 cosu+ γ6 sinu,

t2 = −γ5 sinu+ γ6 cosu,

t3 = −β3w + γ7,

(3.25)

where γi ∈ R.

This shows that X = t1e1 + t2e2 + t3e3 given by (3.25) satisfies (2.1). We also found that

β1 = β3 + β2 and β2 = 0. Therefore we proved the theorem. □

Theorem 3.2. Let us consider the Lie group H2 ×R with the metric (2.2). Then the space

H2 × R does not admit a gradient Ricci-Yamabe soliton.

Proof. Suppose that X = grady is a gradient vector field on M with potential function y.

Then X is given by

grady = v2∂uy∂u + v2∂vy∂v + ∂wy∂w.

From (3.25), we see that the Lie group H2 × R is a gradient Yamabe soliton if and only if

the function y fulfills the following equations:
∂uy = γ2

v e
−v + γ5

v cosu+ γ6
v sinu,

∂vy = −γ5
v sinu+ γ6

v cosu,

∂wy = −β3w + γ7.

(3.26)
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Integrating above system we find

y(u, v, w) = ln v[γ5 sinu− γ6 cosu]−
β23
2
γ7w

2 + γ8, γi ∈ R.

But the function y does not fulfill (3.26)1. This ends the proof. □

4. Conclusion

Ricci and Yamabe solitons have many applications for several sciences such as differential

geometry and theoretical physics. Similar to these solitons, their scalar combinations, which

are called Ricci-Yamabe solitons, have been studied increasingly since the work of Güler

and Crasmareanu [7]. In this paper, we investigate Ricci-Yamabe solitons in the Lie group

H2 × R. Our calculations in this paper may provide an insight for further studies about

Ricci-Yamabe solitons on other Thurston geometries.
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