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Abstract. In the present paper, the complete system of projective invariants of a point

shape and the complete system of invariants under simultaneous projective and permutation

transformations of a point shape are obtained.
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1. Introduction

Projective invariants and projective-permutation invariants have an important role in com-

puter vision for recognition of shapes (see books [6, 13, 14, 17, 18] and papers [2, 4, 5, 7, 8, 10,

11, 16] ). The projectively invariant descriptors of objects in the object recognition problems

can be computed from relations between points, lines and conics that are coplanar on object

surfaces in 3D. (see [4]). By [1, Corollary 6.1.4] and [6, Lemma 5.8.2], the cross-ratio is a

complete system of projective invariants of a regular point shape of size 4. The volume cross

ratios of points and theirs invariants in the projective space are introduced in [23, Section

27].

An extension of the cross-ratio (an harmonic ratio) to n-space is given in the paper [2]. In

the paper Burns, Weiss and Riseman [3], it is proved that there is no a non-trivial function

that is view-invariant for all possible (non-degenerate) 3D point sets of size n for any n. The
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non-existence of such a general-case view invariant is shown for the true perspective, weak

perspective and orthographic models. Moreover, complete classifications of joint invariants

of points for the groups in the Euclidean,affine and projective spaces are given in [15].

Let n,m be natural numbers such that n < m. In the present paper, we give a definition

of a regular nD point set of size m and obtain a complete system of projective invariants

for the system of all regular nD point sets of size m. We investigate fundamental relations

between elements of the complete system of projective invariants. Similar results have ob-

tained for the complete system of invariants under simultaneous projective and permutation

transformations (p2-invariants, for short) of a 2D and 3D point set of size m. The problem

on complete systems of p2-invariants of a nD point set of size m in computer vision is con-

sidered in papers ([5, 7, 12, 21, 22]). This problem investigated also in projective geometry,

algebraic geometry (theory of hyperelliptic curves) and the invariant theory of binary forms

(see [25]).

Our paper is organized as follows. In section 2, we give the definition of a regular nD

point of size m and obtain the complete system of projectively invariants for the system of

all regular nD points of size m (Theorem 1). We describe the system of fundamental relations

between elements of the complete system of projectively invariants (Theorem 2). We prove

that the complete system is a minimal complete system of projectively invariants. In section

3, we obtain the complete system of p2-invariants for the system of all regular nD points of

size m (Theorem 3).

2. Projectively invariants of a point shape and their complete and the

minimal complete systems

Let R be the field of real numbers, n and m are natural numbers, n ≥ 2,m > n+ 1. The

general linear group GL(n,R) is the set n × n invertible matrices with elements in R. The

special linear group SL(n,R) is the set n × n matrices with determinant 1. R∗ be a group

with respect to the multiplication in R. Let (R∗)
m be the m time direct product of the group

R∗. We denote the direct product of groups (R∗)
m and GL(n,R) by P (m,n). Let (Rn)m be

the m time direct sum of the n-dimensional real linear space Rn. We define an action Ψ of the

group P (m,n) on the space (Rn)m by the following: for q = ((r1, r2, . . . , rm), g) ∈ P (m,n),

ri ∈ R, g ∈ GL(n,R), and X = (x1, x2, . . . , xm) ∈ (Rn)m, we put

Ψ(q,X) = ((r1, r2, . . . , rm), g), X) = (r1gx1, r2gx2, . . . , rmgxm).
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The following definitions 1-5 and proposition 2 are known in the literature. (See some

papers ([9, 19], [20, p.11] ). Proposition 1 is given in [18].

Definition 2.1. Let Γ,Ω ∈ (Rn)m. If there exists q ∈ P (m,n) such that Ω = Ψ(q,Γ),

then the elements Γ and Ω are called P (m,n)-equivalent, a relationship which is written

symbolically in this paper as Γ
P (m,n)∼ Ω.

Definition 2.2. A real rational function f(x1, x2, . . . , xk) of elements X = (x1, x2, . . . , xm) ∈

(Rn)m is called projectively invariant if

f(Ψ(q,X)) = f(X).

for all q ∈ P (m,n).

Definition 2.3. A set M ⊆ (Rn)m is P (m,n)-invariant if Ψ(q,X) ∈ M for all X ∈ M and

for all q ∈ P (m,n).

Definition 2.4. Let M be a P (m,n)-invariant subset of (Rn)m. Let fi : M → R for

i = 1, 2, . . . , k be the projectively invariant rational functions.

A system {f1, f2, . . . , fk} of is called a complete system of P (m,n)-invariants on the set

M if fi(Γ) = fi(Ω) for all i ∈ {1, 2, . . . , k} and for Γ,Ω ∈ M imply Γ
P (m,n)∼ Ω.

Proposition 2.1. Let M be a P (m,n)-invariant set of (Rn)m. Then every projectively

invariant rational function on M if a function of the system {f1, f2, . . . , fk}.

Definition 2.5. A complete system of projectively invariant rational functions

W = {f1, f2, . . . , fk} is called a minimal complete system of projectively invariant rational

functions if W \ {fi} is not complete for any i ∈ {1, 2, . . . , k}.

Proposition 2.2. W = {f1, f2, . . . , fk} is a minimal complete system iff fi is not function

of the subsystem {f1, f2, . . . , fi−1, fi+1, . . . , fm} for all i = 1, 2, . . . , k.

Let [x1x2 · · ·xn] be the determinant of vectors x1, x2, · · · , xn ∈ Rn. Assume that x1, x2, · · · ,

xn, xn+1, xn+2 ∈ Rn vectors such that [x1x2 · · ·xn−1xk] ̸= 0 for all i = n, n + 1, n + 2 and

[x2x3 · · ·xnxj ] ̸= 0 for j = n + 1, n + 2. Consider the following cross-invariant of vectors

x1, x2, · · · , xn, xn+1, xn+2 ∈ Rn:

[x1x2 · · ·xn−1xn+1][x2x3 · · ·xnxn+2]

[x1x2 · · ·xn−1xn+2][x2x3 · · ·xnxn+1]
.

We denote it by ⟨x1x2x3 · · ·xnxn+1xn+2⟩. It is known that it is projectively invariant.
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Definition 2.6. X = (x1, x2, . . . , xm) ∈ (Rn)m is called regular if [xp1xp2 · · ·xpn−1xpn ] ̸= 0

for all natural numbers p1, p2, . . . , pn such that 1 ≤ p1 < p2 < · · · < pn ≤ m.

If X = (x1, x2, . . . , xm) is regular, from X
P (m,n)∼ Y , we have Y = (y1, y2, . . . , ym) ∈ (Rn)m

. Hence Y = (y1, y2, . . . , ym) is also regular. Hence the set of all regular elements is a

P (m,n)-invariant subset of (Rn)m.

The cross-ratio obtained from ⟨x1x2x3 · · ·xnxn+1xn+2⟩ by transposition of elements x1 and

xj , where 1 ≤ j ≤ n− 1, will be denoted by Tj ⟨x1x2x3 · · ·xnxn+1xn+2⟩. Thus

Tj ⟨x1x2x3 · · ·xj−1xjxj+1 . . . xnxn+1xn+2⟩ = ⟨xjx2x3 · · ·xj−1x1xj+1 . . . xnxn+1xn+2⟩

for all j = 1, 2, . . . , n− 1.

If X = (x1, x2, . . . , xm) is regular, then Tj ⟨x1x2x3 . . . xnxn+1xn+2⟩ ≠ 0 and

Tj ⟨x1x2x3 . . . xnxn+1xn+2⟩ ≠ ∞ for all j = 1, 2, . . . , n− 1.

Theorem 2.1. Regular elements X = (x1, x2, . . . , xm), Y = (y1, y2, . . . , ym) ∈ (R2)m are

P (m,n)-equivalent if and only if

Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩ = Tj ⟨y1y2x3 . . . yn−1ynyn+1yk⟩ (2.1)

for all j = 1, 2, . . . n− 1 and for all k = n+ 2, . . . ,m.

Proof. Since the function ⟨x1x2x3 · · ·xnxn+1xk⟩ is projectively invariant, P (m,n)-equivalence

of X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym) implies (2.1). Prove the converse assertion.

Assume that (2.1) holds. We consider vectors e1, e2, . . . , en, en+1 ∈ Rn, where

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . en = (0, 0, . . . , 1), en+1 = (1, 1, . . . , 1).

By the fundamental theorem of projective geometry ([1, p.97]), elements g ∈ GL(n,R) and

r1, r2, . . . , rn, rn+1 ∈ R∗ exist such that rigxi = ei, i = 1, 2, . . . n, n + 1. Similarly, elements

h ∈ GL(n,R) and q1, q2, . . . , qn, qn+1 ∈ R∗ exist such that qihyi = ei, i = 1, 2, . . . , n, n + 1.

Since the function ⟨x1x2x3 . . . xn−1xnxn+1xk⟩ is projectively invariant, we have

⟨(r1gx1)(r2gx2) · · · (rngxn)(rn+1gxn+1)(gxk)⟩ = ⟨e1e2 · · · enen+1(gxk)⟩ = ⟨x1x2 · · ·xnxn+1xk⟩ =

⟨y1y2 · · · ynyn+1yk⟩ = ⟨(q1hy1)(q2hy2) · · · (qnhyn)(qn+1hyn+1)(hyk)⟩ = ⟨e1e2 · · · enen+1(hyk)⟩

for all k = n + 2, . . .m. Hence ⟨e1e2 · · · enen+1(gxk)⟩ = ⟨e1e2 · · · enen+1(hyk)⟩. Similarly, we

obtain

Tj ⟨e1e2e3 · · · en−1enen+1(gxk)⟩ = Tj ⟨e1e2e3 · · · en−1enen+1(hyk)⟩ (2.2)
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for all j = 1, 2, . . . n− 1 and for all k = n+ 2, . . . ,m.

Let gxk = (a1k, a2k, . . . ank), hyk = (b1k, b2k, . . . bnk), k = n + 2 . . . ,m. Using regularity of

(r1gx1, . . . rn+1gxn+1, gxn+2, . . . , gxm) and (q1hy1, . . . qn+1hyn+1, hyn+2, . . . , hym), we obtain

[e1e2 . . . en−1gxk] = ank ̸= 0 and [e1e2 . . . en−1gyk] = bnk ̸= 0 for all k = n + 2, . . .m. It is

easy to see that

Tj ⟨e1e2e3 · · · en−1enen+1(gxk)⟩ =
ajk
ank

(2.3)

and

Tj ⟨e1e2e3 · · · en−1enen+1(gyk)⟩ =
bjk
bnk

, (2.4)

for all j = 1, 2, . . . n− 1 and for all k = n+ 2, . . . ,m.

Equations (2.2), (2.3) and (2.4) imply
ajk
ank

=
bjk
bnk

for all j = 1, 2, . . . n − 1; k = n +

2, . . .m. Put djk =
ajk
ank

=
bjk
bnk

for all j = 1, 2, . . . n − 1; k = n + 2, . . .m. Then gxk =

ank(d1k, d2k, . . . , dn−1k, 1) and hyk = bnk(d1k, d2k, . . . , dn−1k, 1) for all k = n+ 2, . . .m.

This means that

(e1, e2, . . . en, en+1, gxn+2, . . . , gxm)
P (m,n)∼ (e1, e2, . . . en, en+1, hyn+2, . . . , hym).

Using (x1, x2, . . . xn, xn+1, xn+2, . . . , xm)
P (m,n)∼ (e1, e2, . . . en, en+1, gxn+2, . . . , gxm),

(e1, e2, . . . en, en+1, gxn+2, . . . , gxm)
P (m,n)∼ (e1, e2, . . . en, en+1, hyn+2, . . . , hym) and

(e1, e2, . . . en, en+1, hyn+2, . . . , hym)
P (m,n)∼ (y1, y2, . . . yn, yn+1, yn+2, . . . , ym), we obtain

X
P (m,n)∼ Y . □

Remark 2.1. Theorem 2.1 means that the system of projectively invariants

Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩ , (2.5)

for all j = 1, 2, . . . n − 1 and for all k = n + 2, . . .m is a complete system of projectively

invariants on the set of all regular elements of (Rn)m.

Corollary 2.1. Every projectively invariant function f(x1, x2, . . . , xm) on the set of all reg-

ular elements X = (x1, x2, . . . , xm) ∈ (Rn)m is a function of elements of the system (2.5)

Proof. It follows from ([20, Theorem 1 and 1.1]). □

Now we find all fundamental relations between elements of the complete system (2.5) If

X = (x1, x2, . . . , xm) ∈ (Rn)m is regular, then

Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩ ≠ 0 (2.6)

for all j = 1, 2, . . . n− 1 and for all k = n+ 2, . . .m.
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Theorem 2.2. Let {cjk, j = 1, 2, . . . n− 1; k = n+ 2, . . . ,m} be a system of real numbers

such that cjk ̸= 0 for all j = 1, 2, . . . n − 1; k = n + 2, . . . ,m. Then a regular element

X = (x1, x2, . . . , xm) ∈ (Rn)m exists such that

Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩ = cjk (2.7)

for all j = 1, 2, . . . n− 1 and for all k = n+ 2, . . .m

Proof. Let e1, e2, . . . , en, en+1 ∈ Rn be vectors in Theorem (2.1). Consider the element X =

(x1, x2, . . . , xn, xn+1, . . . xm) ∈ (Rn)m, where

x1 = e1 = (1, 0, 0, . . . , 0), x2 = e2 = (0, 1, 0, . . . 0), . . . , xn = en = (0, 0, 0, . . . 1), xn+1 =

en+1 = (1, 1, 1, . . . , 1), xk = (c1k, c2k, . . . , cn−1k, 1) for all k = n + 2, . . .m. It is easy to see

that (2.7) hold for X. Since cjk ̸= 0 for all j = 1, 2, . . . n− 1; k = n+ 2, . . . ,m, (2.7) implies

that X is regular. □

Corollary 2.2. The system (2.5) is a system of functionally independent projectively invari-

ants on the set of of all regular elements X = (x1, x2, . . . , xm) ∈ (Rn)m.

Proof. It follows from Theorem 2.2 □

Corollary 2.3. The system (2.5) is a minimal complete system of projectively invariants on

the set of of all regular elements X = (x1, x2, . . . , xm) ∈ (Rn)m.

Proof. It follows from Proposition 2.1 and Corollary 2.2. □

3. Projective-Permutation invariants of a point shape

Let S(n,m) be the group of all permutations of the numbers n + 2, n + 3, . . . ,m and

P (m,n)×S(n,m) is a direct product of groups P (m,n) and S(n,m). We define an action β

of the group P (m,n)×S(n,m) on the space (Rn)m as follows: for q = ((r1, r2, . . . , rm), g, h) ∈

P (m,n)× S(n,m), X = (x1, x2, . . . , xm) ∈ (Rn)m, h ∈ S(n,m),

h =

 1 2 . . . n+ 1 n+ 2 . . . m

1 2 . . . n+ 1 h(n+ 2) . . . h(m)

 , (3.8)

we put β(q,X) = ((r1, . . . , rm), g, h), X) = (r1gxh(1), r2gxh(2), . . . , rmgxh(m)), where h(j) = j

for j = 1, 2, . . . , n+ 1.

Definition 3.1. Elements A,B ∈ (Rn)m is called P (m,n)×S(n,m)-equivalent if there exists

q ∈ P (m,n)× S(n,m) such that B = β(q, A). In this case, we write A
P (m,n)×S(n,m)∼ B.
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Definition 3.2. A rational function f(x1, . . . , xm) of X = (x1, . . . , xm) ∈ (Rn)m is called

P (m,n)× S(n,m)-invariant if f(α(q,X)) = f(X) for all q ∈ P (m,n)× S(n,m).

For j = 1, 2, . . . n−1; k = n+2, . . .m, we put Tjk(X) = Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩. We

denote the algebra of polynomials of all Tjk(X) by A(n,m). Let {zj : j = 1, 2, . . . n− 1} be

independent variables. We consider the following function

m−n−1∏
k=1

(
1 +

n−1∑
i=1

Tk(X)zi

)
and define the polynomials Ur1r2...rn−1(X) ∈ A(n,m) by the following equality

m−n−1∏
k=1

(
1 +

n−1∑
i=1

Tk(X)zi

)
= 1 +

∑
1≤

∑n−1
i=1 ri≤m−n−1

Ur1r2...rn−1(X)zr11 zr22 · · · zrn−1

n−1 . (3.9)

It is obvious that every function Ur1r2...rn−1(X) is P (m,n)× S(n,m)-invariant.

Theorem 3.1. Regular elements X = (x1, x2, . . . , xm), Y = (y1, y2, . . . , ym) ∈ (Rn)m are

P (m,n)× S(n,m)-equivalent if and only if

Ur1r2...rn−1(X) = Ur1r2...rn−1(Y ) (3.10)

for 1 ≤
∑n−1

i=1 ri ≤ m− n− 1.

Proof. Since Ur1r2...rn−1(X) is P (m,n)×S(n,m)-invariant, P (m,n)×S(n,m)-equivalence of

X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym) implies (3.10). Prove the converse assertion.

Assume that (3.10) holds. Then (3.9) and (3.10) imply the equation

m−n−1∏
k=1

(1 +
n−1∑
i=1

Tk(X)zi) =
m−n−1∏
k=1

(1 +
n−1∑
i=1

Tk(Y )zi). (3.11)

By the theorem on the unique factorization in the algebra A(n,m) (see [24, p.91-94]), a

permutation (3.8) exists such that

n−1∑
i=1

Tk(X)zi =
n−1∑
i=1

Tk(Y )zi

for all k = n+ 2, . . . ,m.

This equality implies Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩ = Tj

〈
y1y2y3 . . . yn−1ynyn+1yh(k)

〉
,

j = 1, 2, . . . n− 1; k = n+ 2, . . . ,m.

By Theorem 1, these equalities imply P (m,n)-equivalence of elementsX = (x1, x2, . . . , xm)and

hY = (yh(1), yh(2), . . . , yh(m)), where h(j) = j for j = 1, 2, . . . . . . , n + 1. This means

P (m,n)×S(n,m)-equivalence of elements X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym). □
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Let S(m) be the group of all permutations of the numbers 1, 2, . . . ,m and P (m,n)×S(m) is

a direct product of groups P (m,n) and S(m). We define an action β of the group P (m,n)×

S(m) on the space (Rn)m as follows: for q = ((r1, r2, . . . , rm), g, h) ∈ P (m,n) × S(m),

X = (x1, x2, . . . , xm) ∈ (Rn)m, where

h =

 1 2 . . . m

h(1) h(2) . . . h(m)

 , (3.12)

we put

β(q,X) = ((r1, r2, . . . , rm), g, h), X) = (r1gxh(1), r2gxh(2), . . . , rmgxh(m)).

Definition 3.3. Elements A,B ∈ (Rn)m is called P (m,n)× S(m)-equivalent if there exists

q ∈ P (m,n)× S(m) such that B = β(q, A). In this case, we write A
P (m,n)×S(m)∼ B.

Definition 3.4. A rational function f(x1, x2, . . . , xm) of elements X = (x1, x2, . . . , xm) ∈

(Rn)m is called P (m,n)× S(m)-invariant if f(α(q,X)) = f(X) for all q ∈ P (m,n)× S(m).

Definition 3.5. X = (x1, x2, . . . , xm) ∈ (Rn)m is called strongly regular if [xp1xp2 · · ·xpn ] ̸= 0

for all natural numbers p1, p2, . . . , pn such that 1 ≤ p1 < p2 < · · · < pn ≤ m.

If X = (x1, x2, . . . , xm) is strongly regular, Y = (y1, y2, . . . , ym) ∈ (Rn)m and X
P (m,n)∼ Y

then Y = (y1, y2, . . . , ym) is also strongly regular. Hence the set of all strongly regular

elements is a P (m,n)-invariant subset in (Rn)m.

For j = 1, 2, . . . n − 1; k = n + 2, . . .m, we put Tjk(X) = Tj ⟨x1x2x3 . . . xn−1xnxn+1xk⟩,

whereX = (x1, x2, . . . , xm). We denote by Anm the algebra of real polynomials of Tjk(X); j =

1, 2, . . . n−1; k = n+2, . . .m. Let t and {zjk|j = 1, 2, . . . n− 1; k = n+ 2, . . .m} be indepen-

dent variables. We consider the following function∏
h∈S(m)

[
t−

m∑
k=n+2

(

n−1∑
i=1

Tik(h(X))zik))

]
.

We define the polynomials Ur1r2...rm−n−1(X) ∈ Anm by the following equality

∏
h∈S(m)

[
t−

m∑
k=n+2

(
n−1∑
i=1

Tik(h(X))zik)

]
= (3.13)

tm! +
m!−1∑
l=1

(−1)ltm!−l
∑

∑m−n−1
j=1 (

∑n−1
i=1 rij=l)

Urij (X) ·
m∏

k=n+2

(zr1k1k zr2k2k · · · zrn−1k

n−1k ),

where m! = 1 · 2 · . . . ·m and i = 1, . . . , n− 1; j = 1, . . . ,m− n− 1. It is obvious that every

function Urij (X) is P (m,n)× S(m)-invariant.
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Theorem 3.2. Strongly regular elements X = (x1, x2, . . . , xm), Y = (y1, y2, . . . , ym) ∈ (Rn)m

are P (m,n)× S(m)-equivalent if and only if Urij (X) = Urij (Y ),

1 ≤ r1 + r2 · · ·+ rn−1 ≤ m− n− 1; i = 1, . . . , n− 1; j = 1, . . . ,m− n− 1.
(3.14)

Proof. A proof is similar to the proof of Theorem 3.1. □

Acknowledgments. The authors would like to thank the referee for some useful com-

ments and their helpful suggestions that have improved the quality of this paper.

References

[1] Berger, M. (1987). Geometry I, Springer-Verlag, Berlin.

[2] Brill, M. H., Barrett, E. A. (1983). Closed-form extension of the anharmonic ratio to n-space, Computer

Vision, Graphics, and Image Processing, 23, 92-98.

[3] Burns, J. B., Weiss, R. S., Riseman, E. M. (1992). The non-existence of general-case view-invariants, In

”Geometric Invariants in Computer vision”, eds: Mundy L. L., Zisserman, A., The MIT Press, Cambridge,

Massachusets, London,120-131.

[4] Carlson, S., (1996). Projectively invariant decomposition and recognition of planar shapes, International

Journal of Computer Vision, 17(2), 193-209.

[5] Csurka, G., Faugeras, O. (1999). Algebraic and geometric tools to compute projective and permutation

invariants, IEEE Trans. on Pattern Analysis and Machine Intelligence, 21, 58-65.

[6] Gallier, J. (2001). Geometric Methods and Applications, Springer-Verlag, New York.

[7] Gonza’lez, J., M., Sebastia’n, J. M., Garci’a, D., Sa’nchez, F., and Angel, L. (2004). Recognition of 3D

object from one image based on projective and permutation invariants, In:Image Analysis and Recognition,

International Conference, Proceedings, Part I, Campilho, A., Kamel, M., (Eds), ICIAR 2004, LNCS 3211,

705-712, Springer-Verlag, Berlin Heidelberg.

[8] Khadjiev, D. (2019). Projective invariants of m-tuples in the one-dimensional projective space, Uzbek

Mathematical Journal, 1, 62-73.

[9] Khadjiev, D. (2010). Complete systems of differential invariants of vector fields in a euclidean space, Turk.

J. Math. 34, 543-559.

[10] Lasenby, J., Bayro-Corrochano, E. (1997). Computing 3D projective invariants from points and lines.

In: Sommer, G., Daniilidis, K., Pauli, J. (eds) Computer Analysis of Images and Patterns. CAIP 1997.

Lecture Notes in Computer Science, vol 1296. Springer, Berlin, Heidelberg.

[11] Selig, J.M. (2002). Points in the plane, lines in space. J. Geom. 113, 46.

[12] Meer, P., Lenz, R., Ramakrishna, S. (1998). Efficient invariant representations, International Journal of

Computer Vision 26(2),137-152.

[13] Mundy, J. L., and Zisserman, A. (1992). Geometric Invariance in Machine Vision, MIT Press, Cambridge,

MA.



216 D. KHADJIEV AND İ. ÖREN
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