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A NOTE ON POINTWISE SEMI-SLANT CONFORMAL SUBMERSIONS
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Abstract. As a generalization of pointwise slant submersions, we investigate pointwise

semi-slant conformal submersions from almost Hermitian manifolds onto Riemannian man-

ifolds in the present work. With the investigation of the distributions’ leaves geometry, we

explore integrability conditions for distributions. In this study, we additionally explore the

notion of pluriharminicty.
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1. Introduction

The theory of submersions and immersions had originally been developed and proposed

by B. O’Neill [27] and A. Gray [14]. They studied the geometrical properties of Riemann-

ian manifolds and discovered certain Riemannian equations for them. When discussing the

characteristics between differentiable structures in differential geometry, submersions theory

becomes an intriguing subject. Mathematics and physics identically study Riemannian sub-

mersions because of their many applications, most prominent among them being Yang-Mills

and Kaluza-Klein theories.(see [9], [42], [25], [21]). In 1976, B. Watson [41] glanced into

Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. Af-

terwards, B. Sahin [34] investigated the geometry of Riemannian submersions and geometric

properties. He defined anti-invariant Riemannian submersions onto Riemannian manifolds
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by using an almost Hermitian manifold. He establishes that their vertical distribution is

anti-invariant under the almost complex structure of the total manifold. Numerous writers

examined and developed this work by examining anti-invariant submersions [4], [34], semi-

invariant submersions [35], slant submersions [12], [36], and semi-slant submersions [18], [28],

among other topics. Tastan, Sahin, and Yanan [40] defined and examined hemi-slant sub-

mersions from almost Hermitian manifolds as a generalization case of semi-invariant and

semi-slant submersions.

In this contribution, T. W. Lee and B. Sahin [24] extended their concept of slant sub-

mersion a step further by expanding it to include pointwise slant submersions from almost

Hermitian manifolds onto Riemannian manifolds. In doing so, they discovered a technique

for illustrating examples for this kind of submersions. Additionally, they established charac-

terizations for pointwise slant submersions. B. Fuglede [15] and T. Ishihara [22] introduced

the concept of conformal submersion as a generalisation of Riemannian submersions and

talked about some of their geometric characteristics. It is clear that conformal submersion

with dilation λ = 1 is a Riemannian submersion. Gudmundsson and Wood [17] investigated

conformal holomorphic submersion as a generalisation of holomorphic submersion. The neces-

sary and sufficient conditions for harmonic morphisms of conformal holomorphic submersions

have been established. Later on, conformal anti-invariant submersions , [37], [31], conformal

semi-invariant submersions [5], conformal slant submersions [3], and conformal semi-slant

submersions [2] have been studied and defined by Akyol and Sahin. Conformal hemi-slant

submersions [38], [39], conformal bi-slant submersions [6], and quasi bi-slant conformal sub-

mersions [7] have all been studied geometrically recently, and several decomposition theorems

have been covered. They also extended the notion of pluriharmonicity to almost contact met-

ric manifolds, from almost Hermitian manifolds.

In this paper, we investigate pointwise semi-slant conformal submersions from Almost

Hermtian manifold onto a Riemannian manifold. The structure of the paper is as follows.

Section 2 introduces almost contact manifolds, precisely Kaehler manifold with the properties

required for this study. In the third section of our paper, we define pointwise semi-slant

conformal submersion and report a few intriguing findings. The prerequisites for distribution

integrability and the totally geodesicness of its leaves were covered in detail in Section 4.

Lastly, the notion of J-pluriharmonicity is discussed at the end of the study.
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Note: In this paper, we will use abbreviation as follows:

Pointwise semi-slant conformal submersion- PWSSCS

Almost Hermitian manifold- AHM

Kaehler manifold- KM

Riemannian manifold- RM

Horizontal conformal submersion -HCS

2. Preliminaries

We shall provide a few fundamental ideas and consequences that are highly productive for

our paper.

Definition 2.1. [8] Let Π be a Riemannian submersions between two Riemannian manifolds.

Then Π is called a horizontally conformal submersion (HCS), if there is a positive function

λ such that

g1(Û1, V̂1) =
1

λ2
g2(Π∗Û1,Π∗V̂1) (2.1)

for any Û1, V̂1 ∈ Γ(kerΠ∗)
⊥. If the dilation function λ = 1 then, HCS become RS.

Let Π : (Θ1, g1, J) → (Θ2, g2) be a Riemannian submersion. A vector field X̂ on Θ1 is

called a basic vector field if X̂ ∈ Γ(kerΠ∗)
⊥ and Π-related with a vector field X̂ on Θ2 i.e

Π∗(X̂(q)) = X̂Π(q) for q ∈ Θ1.

The formulae given by B . O’Neill of two (1, 2) tensor fields T and A are

AE1F1 = H∇HE1V F1 + V ∇HE1HF1, (2.2)

TE1F1 = H∇V E1V F1 + V ∇V E1HF1, (2.3)

for any E1, F1 ∈ Γ(TΘ1) and ∇ is Levi-Civita connection of g1. From equations (2.2) and

(2.3), we can deduce

∇Û1
V̂1 = TÛ1

V̂1 + V ∇Û1
V̂1 (2.4)

∇Û1
X̂1 = TÛ1

X̂1 + H∇Û1
X̂1 (2.5)

∇X̂1
Û1 = AX̂1

Û1 + V1∇X̂1
Û1 (2.6)

∇X̂1
Ŷ1 = H∇X̂1

Ŷ1 + AX̂1
Ŷ1 (2.7)

for any vector fields Û1, V̂1 ∈ Γ(kerΠ∗) and X̂1, Ŷ1 ∈ Γ(kerΠ∗)
⊥ [13].

It is obvious that T and A are skew-symmetric, that is

g(AX̂E1, F1) = −g(E1,AX̂F1), g(TV̂E1, F1) = −g(E1,TV̂ F1), (2.8)
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for any vector fields E1, F1 ∈ Γ(TpΘ1). Since TV̂ is skew-symmetric, we say that Π has

totally geodesic fibres if and only if T = 0. For the special case when Π is HCS, we have

Proposition 2.1. Let Π : (Θ1, gM ) → (Θ2, g2) be a HCS with dilation λ and X̂, Y be the

horizontal vectors, then

AX̂ Ŷ =
1

2
{V [X̂, Ŷ ]− λ2g(X̂, Ŷ )gradV (

1

λ2
)} (2.9)

measures the obstruction integrability of the horizontal distribution

The second fundamental form of smooth map Π is provided by the formula

(∇Π∗)(Û1, V̂1) = ∇Π
Û1
Π∗V̂1 −Π∗∇Û1

V̂1, (2.10)

if (∇Π∗)(Û1, V̂1) = 0 for all Û1, V̂1 ∈ Γ(TpΘ1), then Π is said to be a totally geodesic map

where ∇ and ∇Π∗ are Levi-Civita and pullback connections.

Lemma 2.1. Let Π : Θ1 → Θ2 be a HCS. Then, we have

(i) (∇Π∗)(X̂1, Ŷ1) = X̂1(lnλ)Π∗(Ŷ1) + Ŷ1(lnλ)Π∗(X̂1)− g1(X̂1, Ŷ1)Π∗(grad lnλ,

(ii) (∇Π∗)(Û1, V̂1) = −Π∗(TÛ1
V̂1)

(iii) (∇Π∗)(X̂1, Û1) = −Π∗(∇X̂1
Û1) = −Π∗(AX̂1

Û1)

for any horizontal vector fields X̂1, Ŷ1 and vertical vector fields Û1, V̂1 [8].

Let (Θ, g) be an AHM. This means that Θ admits a tensor field J of type (1, 1) on Θ such

that

J2 = −I, g(JX̂, JŶ ) = g(X̂, Ŷ ) for all X̂, Ŷ ∈ Γ(TΘ). (2.11)

An AHM Θ is called KM if

(∇X̂J)Ŷ = 0, for all X̂, Ŷ ∈ Γ(TΘ) (2.12)

where ∇ is the Levi-Civita connection on Θ. The covariant derivative of J is defined by

(∇X̂J)Ŷ = ∇X̂JŶ − J∇X̂ Ŷ (2.13)

for all vector fields X̂, Ŷ in Θ.

Here, we recall the definitions which will be helpful for our text.

Definition 2.2. Let Π be a Riemannian submersion from AHM (Θ̄1, g1, J) onto RM (Θ̄2, g2).

If for any non-zero vector X̂ ∈ Γ(kerΠ∗), the angle θ(X̂) between JX̂ and the space kerΠ∗

is constant,i.e., it is independent of the choice of point p ∈ Θ̄1, and choice of tangent vector
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X̂ in kerΠ∗, then we said Π is slant submersion. In this case, the angle θ is called the slant

angle of submersion.

Now, we recall the definition of pointwise slant submersion defined by T.W. Lee and B.

Sahin [24]

Definition 2.3. Let Π be a Riemannian submersion from AHM (Θ̄1, g1, J) onto RM (Θ̄2, g2).

If at each given point q ∈ Θ̄2, the wirtinger angle θ(X̂) between JX̂ and the space kerΠ∗ is

independent of choice of the non-zero vector X̂ ∈ Γ(kerΠ∗), then we say that Π is a pointwise

slant submersion. In this case, the angle θ can be regarded as a function on Θ̄1, which is

called slant function of the pointwise slant submersion.

3. Pointwise semi-slant conformal submersions (PWSSCS)

In this section, we will review the definition that will aid us in discussing and investigating

the concept of pointwise semi-slant conformal submersions PWSSCS from almost Hermitian

manifolds.

Definition 3.1. Let Π : (Θ̄1, g1, J) → (Θ̄2, g2) be a HCS where (Θ̄1, g1, J) is a AHM and

(Θ̄2, g2) is a RM. A HCS Π is called a PWSSCS if there exists a distribution D such

that kerΠ∗ = D ⊕ Dθ, J(D) = D and for any given point q ∈ Θ̄1 and X̂ ∈ (Dθ)q, the

angle θ = θ(X̂) between JX̂ and space (Dθ)q is independent of choice of non-zero vector

X̂ ∈ (Dθ)q, where Dθ is the orthogonal complement of D in kerΠ∗. In this case, the angle θ

can be regarded as a slant function and called pointwise semi-slant function of submersion.

If we suppose m1 and m2 are the dimensions of D and Dθ, then we have the following:

(i) If m1 = 0, m2 ̸= 0 and 0 < θ < π
2 , then Π is a pointwise slant submersion.

(i) If m1 ̸= 0 and m2 = 0, then Π is a invariant submersion

(ii) If m1 ̸= 0, m2 ̸= 0 and 0 < θ < π
2 , then Π is a pointwise semi-slant submersion.

We are providing the example of PWSSCS for support of our study.

Let Π be a PWSSCS from an AHM (Θ̄1, g1, J) onto a RM (Θ̄2, g2). Then, for any

Ŵ ∈ (kerΠ∗), we have

Ŵ = PŴ +QŴ (3.14)

where P and Q are the projections morphism onto D and Dθ. Now, for any Ŵ ∈ (kerΠ∗),

we have

JŴ = ψŴ + ζŴ (3.15)
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where ψŴ ∈ Γ(kerΠ∗) and ζŴ ∈ Γ(kerΠ∗)
⊥. From equations (3.14) and (3.15), we have

JÛ =J(PŴ ) + J(QŴ )

=ψ(PŴ ) + ζ(PŴ ) + ψ(QŴ ) + ζ(QŴ ).

Since JD = D and ζ(PŴ ) = 0, we have

JÛ = ψ(PŴ ) + ψ(QŴ ) + ζ(QŴ ).

Now, we have the following decomposition

(kerΠ∗)
⊥ = ζDθ ⊕ µ, (3.16)

where µ is the orthogonal complement to ζDθ in (kerΠ∗)
⊥ such that µ is invariant with

respect to J . Now, for any X̂ ∈ Γ(kerΠ∗)
⊥, we have

JX̂ = BX̂ + CX̂ (3.17)

where BX̂ ∈ Γ(kerΠ∗) and CX̂ ∈ Γ(kerΠ∗)
⊥.

Lemma 3.1. Let (Θ̄1, g1, J) be an KM and (Θ̄2, g2) be a RM. If Π : Θ̄1 → Θ̄2 is a PWSSCS,

then we have

−Ŵ = ψ2Ŵ + PζŴ , ζψŴ + CζŴ = 0, −Ŷ = ζBŶ + C2Ŷ , ψBŶ +BCŶ ,

for any vector field Ŵ ∈ Γ(kerΠ∗) and Ŷ ∈ Γ(kerΠ∗)
⊥.

Proof. On considering the equations (2.11), (3.15) and (3.17), the proof of Lemma exists. □

Since Π : Θ̄1 → Θ̄2 is a PWSSCS, let us present some helpful investigations that will be

applied in this paper.

Lemma 3.2. Let Π be a PWSSCS from an AHM (Θ̄1, g1, J) onto a RM (Θ̄2, g2), then we

have

ψ2Ŵ = (− cos2θ)Ŵ , (3.18)

for any vector fields Ŵ ∈ Γ(Dθ).

Lemma 3.3. Let Π be a PWSSCS from an AHM (Θ̄1, g1, J) onto a RM (Θ̄2, g2), then we

have

(i) g1(ψẐ, ψŴ ) = cos2 θ g1(Ẑ, Ŵ ),

(ii) g1(ζẐ, ζŴ ) = operatornamesin2θ g1(Ẑ, Ŵ ),

for any vector fields Ẑ, Ŵ ∈ Γ(Dθ).
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Proof. The proof of the preceding Lemmas is identical to the proof of Theorem (2.2) of [11].

As a result, we omit the proofs. □

Let us suppose that (Θ̄2, g2) be a RM and (Θ1, g1, J) be an AHM. We now analyse how the

Hermitian structure on Θ1 influences the tensor fields T and A of PWSSCS Π : (Θ1, g1, J) →

(Θ2, g2).

Lemma 3.4. Let Π : Θ̄1 → Θ̄2 be PWSSCS with semi-slant function θ where, (Θ̄1, g1, J)

KM and (Θ̄2, g2) be a RM, then we have

AX̂CŶ + V ∇X̂BŶ = BH∇X̂ Ŷ + ψAX̂ Ŷ (3.19)

H∇X̂CŶ + AX̂BŶ = CH∇X̂ Ŷ + ζAX̂ Ŷ (3.20)

V ∇X̂ψV̂ + AX̂ζV̂ = BAX̂ V̂ + ψV ∇X̂ V̂ (3.21)

AX̂ψV̂ + H∇X̂ζV̂ = CAX̂ V̂ + ζV ∇X̂ V̂ (3.22)

V ∇V̂BX̂ + TV̂ CX̂ = ψTV̂ X̂ +BH∇V̂ X̂ (3.23)

TV̂BX̂ + H∇V̂ CX̂ = ζTV̂ X̂ + CH∇V̂ X̂ (3.24)

V ∇ÛψV̂ + TÛζV̂ − ψV ∇Û V̂ = BTÛ V̂ (3.25)

TÛψV̂ + H∇ÛζV̂ = CTÛ V̂ + ζV ∇Û V̂ , (3.26)

for any vector fields Û , V̂ ∈ Γ(kerΠ∗) and X̂, Ŷ ∈ Γ(kerΠ∗)
⊥.

Proof. By using (2.12), (2.13) and (2.7) (3.17), we get first two relations (3.19) and (3.20).

Similarly, by considering equations (2.12), (2.13) (2.7), (2.4)-(2.7) and (3.15) (3.17), the

desired results holds good. □

We will now go through some key conclusions that can be utilised to examine the geometry

of PWSSCS Π : Θ1 → Θ2. From the direct calculations, we can conclude the following:

(∇Ûψ)V̂ = V ∇ÛψV̂ − ψV ∇Û V̂ (3.27)

(∇Ûζ)V̂ = H∇ÛζV̂ − ζV ∇Û V̂ (3.28)

(∇X̂B)Ŷ = V ∇X̂BŶ −BH∇X̂ Ŷ (3.29)

(∇X̂C)Ŷ = H∇X̂CŶ − H∇X̂ Ŷ , (3.30)

for any vector fields Û , V̂ ∈ Γ(kerΠ∗) and X̂, Ŷ ∈ Γ(kerΠ∗)
⊥.
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Lemma 3.5. Let (Θ1, g1, J) be a KM and (Θ2, g2) be a RM. If Π : Θ1 → Θ2 is a PWSSCS

with semi-slant function θ, then we have

(∇Ûψ)V̂ = BTÛ V̂ − TÛζV̂

(∇Ûζ)V̂ = CTÛ V̂ − TÛψV̂

(∇X̂B)Ŷ = ψAX̂ Ŷ − AX̂CŶ

(∇X̂C)Ŷ = ζAX̂ Ŷ − AX̂BŶ ,

for all vector fields Û , V̂ ∈ Γ(kerΠ∗) and X̂, Ŷ ∈ Γ(kerΠ∗)
⊥.

Proof. By using equations (2.13), (2.4)- (2.7) and equations (3.27)-(3.30), we can obtain the

results. □

The tensor fields ψ and ζ, if they are parallel with regard to the Levi- Civita connection

∇ of Θ1, then we obtain

BTÛ V̂ = TÛζV̂ , CTÛ V̂ = TÛψV̂

for any vector fields Û , V̂ ∈ Γ(TΘ1).

4. conditions for integrability and totally geodesicness

In this section, we discuss the geometry of PWSSCS Π : (Θ1, g1, J) → (Θ2, g2) from

KM onto RM in terms of integrability of invariant and slant distribution. Apart from this,

we also examine the necessary and sufficient conditions for the leaves of distribution to be

define totally geodesic foliation on Θ1. We start the condition for integrability for invariant

distribution as follows :

Theorem 4.1. Let Π : Θ̄1 → Θ̄2 be PWSSCS with semi-slant function θ where, (Θ̄1, g1, J)

is a KM and (Θ̄2, g2) be a RM. Then the invariant distribution D is integrable if and only if

V ∇ÛψẐ + TÛζẐ ∈ Γ(Dθ) and V ∇V̂ ψẐ + TV̂ ζẐ ∈ Γ(Dθ), (4.31)

for any vector fields Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ).

Proof. For all vector fields Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ) and by using equations (2.11), (2.12)

and (2.13), we have

g1([Û , V̂ ], Ẑ) = g1(∇ÛJV̂ , JẐ)− g1(∇V̂ JÛ , JẐ)

= −g1(∇ÛJẐ, JV̂ ) + g1(∇V̂ JẐ, JÛ).
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Taking account the fact from equations (2.4) and (2.5) in both part of the above equation in

right hand side, takes the form

g1(∇Û V̂ , Ẑ) = −g1(∇ÛψẐ, ψV̂ )− g1(∇ÛζẐ, ψV̂ ).

By using equation (3.15) in above relation, we have

g1(∇Û V̂ , Ẑ) = −g1(V ∇ÛψẐ, ψV̂ )− g1(TÛζẐ, ψV̂ ).

In above equation, change the role of Û and V̂ , we may yield

g1([Û , V̂ ], Ẑ) = −g1(V ∇ÛψẐ + TÛζẐ, ψV̂ )− g1(V ∇V̂ ψẐ + TV̂ ζẐ, ψÛ).

□

Theorem 4.2. Let Π be PWSSCS with semi-slant function θ from KM (Θ1, g1, J) onto a

RM (Θ2, g2). Then Dθ is integrable if and only if

ψ(TẐζŴ − TŴ ζẐ) = (TŴ ζψẐ − TẐζψŴ ), (4.32)

for any vector fields Ẑ, Ŵ ∈ Γ(Dθ) and Û ∈ Γ(D).

Proof. By using equation (2.11), (2.12) and (2.13), we may yield

g1([Ẑ, Ŵ ], Û) = g1(∇ẐJŴ , JÛ)− g1(∇ŴJẐ, JÛ),

for every vector fields Ẑ, Ŵ ∈ Γ(Dθ) and Û ∈ Γ(D). By using equation (3.15), we can write

g1([Ẑ, Ŵ ], Û) = −g1(∇ẐψŴ , JÛ)− g1(∇ŴψẐ, JÛ) + g1(∇ẐζŴ , JÛ)− g1(∇Ŵ ζẐ, JÛ).

Now, considering the equation (2.11) and equation (2.5) in third and fourth terms, above

equation takes the form

g1([Ẑ, Ŵ ], Û) = g1(∇ẐJψŴ , Û)+g1(∇ŴJψẐ, Û)+g1(TẐζŴ , JÛ)−g1(TŴ ζẐ, JÛ). (4.33)

Taking account the fact from (3.15) in first term, we get g1(∇ẐJψŴ , Û) = −g1(∇Ẑψ
2Ŵ , Û)−

g1(∇ẐζψŴ , Û). By using Lemma 3.2, g1(∇ẐJψŴ , Û) = cos2 θg1(∇ẐŴ , Û)−g1(∇ẐζψŴ , Û).

The same calculation in second term, we get −g1(∇ŴJψẐ, Û) = − cos2 θg1(∇Ŵ Ẑ, Û) +

g1(∇Ŵ ζψẐ, Û). On combining these calculations, finally equation (4.33) takes the form

g1([Ẑ, Ŵ ], Û) = cos2 θg1([Ẑ, Ŵ ], Û)− g1(∇ẐζψŴ , Û) + g1(∇Ŵ ζψẐ, Û)

+ g1(TẐζŴ , JÛ)− g1(TŴ ζẐ, JÛ).
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Finally, by using equation (2.5), we can write

sin2 θg1([Ẑ, Ŵ ], Û) = g1(TŴ ζψẐ, Û)− g1(TẐζψŴ , Û) + g1(TẐζŴ − TŴ ζẐ, JÛ).

From which, we can conclude the result. □

Since Π : (Θ1, g1, J) → (Θ2, g2) be a PWSSCS which ensure the availability of slant

distributions. After discussing the integrability conditions of distributions, we are going to

examine the necessary and sufficient condition for which the leaves of distributions defined

totally geodesic foliation on Θ1.

Theorem 4.3. Let Π be PWSSCS with semi-slant function θ from KM (Θ̄1, g1, J) onto a

RM (Θ̄2, g2). Then D is defines totally geodesic foliation on Θ̄1 if and only if

TÛζψẐ = −ψ(TÛζẐ) and g1(V ∇ÛψV̂ ,BX̂) + g1(TÛψV̂ ,CX̂) = 0, (4.34)

for any vector fields Û , V̂ ∈ Γ(D), Ẑ ∈ Γ(Dθ) and X̂ ∈ Γ(kerΠ∗)
⊥.

Proof. By considering g1(∇Û V̂ , Ẑ), for any vector fields Û , V̂ ∈ Γ(D) and Ẑ ∈ Γ(Dθ). Since,

V̂ and Ẑ are orthogonal to each other, this can be write as g1(∇Û V̂ , Ẑ) = −g1(∇Û Ẑ, V̂ ).

Operating almost complex structure J on both side and using equations (2.11), (2.12), (2.13)

and (3.15), we have

g1(∇Û V̂ , Ẑ) = −g1(∇ÛψẐ, JV )− g1(∇ÛζẐ, JV ).

Further, in the light of equations (3.15) and (2.5), we get

g1(∇Û V̂ , Ẑ) = −g1(∇Ûψ
2Ẑ, V̂ ) + g1(∇ÛζψẐ, V̂ )− g1(TÛζẐ, JV ).

Since, Π is a PWSSCS with semi-slant function θ, then by using Lemma 3.2 in first term of

above equation, finally this will takes the form

sin2 θg1(∇Û V̂ , Ẑ) = g1(∇ÛζψẐ, V̂ )− g1(TÛζẐ, JV ).

From this we can get the first part of theorem. For next one, we consider g1(∇Û V̂ , X̂) for

any vector fields Û , V̂ ∈ Γ(D) and X̂ ∈ Γ(kerΠ∗)
⊥. By using equation (2.11), (2.12), (2.13)

and (3.17), (3.15), this term will takes the form as g1(∇Û V̂ , X̂) = g1(∇ÛψV̂ ,BX̂ + CX̂).

Finally, considering equation (2.4), we can write

g1(∇Û V̂ , X̂) = g1(V ∇ÛψV̂ ,BX̂) + g1(TÛψV̂ ,CX̂).

From which the second part of theorem holds good. □
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Since, Π is PWSSCS with semi-slant function θ from (Θ1, g1, J) onto (Θ2, g2). The slant

distribution is mutually othogonal to invariant distribution. After discussion geometry of

leaves of invariant distribution, it is quite interesting to study the leaves of slant distribution

geometrical point of view in following manner.

Theorem 4.4. Let Π : Θ1 → Θ2 be PWSSCS with semi-slant function θ where, (Θ1, g1, J)

a KM and (Θ2, g2) a RM. Then Dθ is defines totally geodesic foliation on Θ1 if and only if

ψ(V ∇ẐψPŴ + TẐζPŴ + TẐζŴQ) ∈ Γ(Dθ) (4.35)

and

g1(V ∇X̂ψPẐ, ψŴ )− g1(TẐψPẐ, ζŴ ) + g1(∇X̂PψQẐ, Ŵ )

= g1(TX̂ζQẐ, ψŴ )− sin2 θg1([Ẑ, X̂], Ŵ )− 2 sin θ cos θX̂(θ)g1(QẐ, Ŵ )

+ g1(X̂, grad lnλ)g1(ζQẐ, ζŴ ) + g1(ζQẐ, grad lnλ)g1(X̂, ζŴ )

− g1(ζŴ , grad lnλ)g1(ζQẐ, ζŴ ),

(4.36)

for any vector fields Ẑ, Ŵ ∈ Γ(Dθ), Û ∈ Γ(D) and X̂ ∈ Γ(kerΠ∗)
⊥.

Proof. Let us consider for any vector fields Ẑ, Ŵ ∈ Γ(Dθ) and Û ∈ Γ(D). In light of equations

(2.11), (2.12) and (2.13) after operating almost complex structure J on both side, we have

g1(∇ẐŴ , Û) = g1(∇ẐJŴ , JÛ).

By using decomposition (3.14), g1(∇ẐŴ , Û) = g1(∇ẐJ(PŴ + QŴ ), JÛ). Taking account

the fact from equation (3.15), we have

g1(∇ẐŴ , Û) = g1(∇ẐψPŴ , JÛ) + g1(∇ẐζPŴ , JÛ)

+ g1(∇ẐψQŴ , JÛ) + g1(∇ẐζQŴ , JÛ).

Considering the equations (2.4) and (2.5) and since D is invariant under almost structure J ,

i.e., JD = D, we may yields

g1(∇ẐŴ , Û) =g1(V ∇ẐψPŴ , JÛ) + g1(TẐζPŴ , JÛ)

− g1(∇Ẑψ
2QŴ , Û) + g1(∇ẐζQŴ , JÛ).

(4.37)

By using Lemma 3.2 in third term of above equation, which can be write as−g1(∇Ẑψ
2QŴ , Û) =

g1(∇Ẑ(cos
2 θ)QŴ , Û). Then the equation (4.37), will takes the form as

g1(∇ẐŴ , Û) =g1(V ∇ẐψPŴ , JÛ) + g1(TẐζPŴ , JÛ)

+ g1(∇Ẑ(cos
2 θ)QŴ , Û) + g1(∇ẐζQŴ , JÛ).
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Since, Π is a PWSSCS with semi-slant function θ, then we can write the above equation as:

g1(∇ẐŴ , Û) =g1(V ∇ẐψPŴ , JÛ) + g1(TẐζPŴ , JÛ)

+ g1(∇Ẑ(cos
2 θ)QŴ , Û) + g1(∇ẐζQŴ , JÛ).

With simple steps of calculations, finally we get

g1(∇ẐŴ , Û) =g1(V ∇ẐψPŴ , JÛ) + g1(TẐζPŴ , JÛ) + g1(∇ẐζQŴ , JÛ)

+ 2 sin θ cos θẐ(θ)g1(QŴ , Û) + cos2 θg1(∇ẐQŴ , Û).

From which the first part of theorem holds good. For the other part of theorem, let us

suppose for any vector fields Ẑ, Ŵ ∈ Γ(Dθ) and X̂ ∈ Γ(kerΠ∗)
⊥. We start with considering

the term g1(∇ẐŴ , X̂), by using basic calcaltions, this term can be write as g1(∇ẐŴ , X̂) =

−g([Ẑ, X̂], Ŵ ) − g1(∇X̂ Ẑ, Ŵ ). By using equation (2.11), (2.12) and (2.13), this term takes

the form as

g1(∇ẐŴ , X̂) = −g([Ẑ, X̂], Ŵ )− g1(∇X̂JẐ, JŴ ).

In the light of equations (2.4) and since D is invariant under J , we get

g1(∇ẐŴ , X̂) = −g([Ẑ, X̂], Ŵ )− g1(∇X̂ψPẐ, JŴ )− g1(∇X̂ψQẐ, JŴ )− g1(∇X̂ζQẐ, JŴ ).

By using equations (2.11), (2.4) and (2.5), we have

g1(∇ẐŴ , X̂) =− g([Ẑ, X̂], Ŵ )− g1(AX̂ψPẐ, ζŴ )− g1(V ∇X̂ψPẐ, ψŴ ) + g1(∇X̂ψ
2QẐ, Ŵ )

+ g1(∇X̂ζψQẐ, Ŵ )− g1(AX̂ζQẐ, ψŴ )− g1(H∇X̂ζQẐ, ζŴ ).

(4.38)

Since, Π is a PWSSCS with semi-slant function θ, then with simple steps of calculations,

the fourth term of above equation take place as

g1(∇X̂ψ
2QẐ, Ŵ ) =− g1(∇X̂(− cos2 θ)QẐ, Ŵ )

= 2 sin θ cos θX̂(θ)g1(QẐ, Ŵ )− cos2 θg1(∇X̂QẐ, Ŵ ).

By using the above equation in (4.38), we may write as

g1(∇ẐŴ , X̂) =− g([Ẑ, X̂], Ŵ )− g1(AX̂ψPẐ, ζŴ )− g1(V ∇X̂ψPẐ, ψŴ )

+ g1(∇X̂ζψQẐ, Ŵ )− g1(AX̂ζQẐ, ψŴ )− g1(H∇X̂ζQẐ, ζŴ )

+ 2 sin θ cos θX̂(θ)g1(QẐ, Ŵ )− cos2 θg1(∇X̂QẐ, Ŵ ).

(4.39)

Now, the first and last term can be write as:

−g([Ẑ, X̂], Ŵ )− cos2 θg1(∇X̂QẐ, Ŵ ) = sin2 θg1([Ẑ, X̂], Ŵ )− cos2 θg1(∇ẐX̂, Ŵ ). (4.40)
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Since, Π is a PŴSSCS, then by using equation (4.40) in (4.39), we can write

g1(∇ẐŴ , X̂) =2 sin θ cos θX̂(θ)g1(QẐ, Ŵ ) + sin2 θg1([Ẑ, X̂], Ŵ )− cos2 θg1(∇ẐX̂, Ŵ )

− g1(AX̂ψPẐ, ζŴ )− g1(V ∇X̂ψPẐ, ψŴ ) + g1(∇X̂ζψQẐ, Ŵ )

− g1(AX̂ζQẐ, ψŴ )− g1(H∇X̂ζQẐ, ζŴ ).

(4.41)

Now, using the horizontal conformality of Π from Lemma 2.1 and equations (2.1), (2.10) in

the last term of above equation, can be written as

−g1(H∇X̂ζQẐ, ζŴ ) =
1

λ2
g1(∇Π

X̂
Π∗(ζQẐ),Π∗(ζŴ ))− 1

λ2
g1((∇Π∗)(X̂, ζQẐ),Π∗(ζŴ ))

+
1

λ2
g1(∇Π

X̂
Π∗(ζQẐ),Π∗(ζŴ ))− g1(X̂, grad lnλ)g1(ζQẐ, ζŴ )

− g1(ζQẐ, grad lnλ)g1(X̂, ζŴ ) + g1(ζŴ , grad lnλ)g1(X̂, ζQẐ).

Now, by using the above relation, equation (4.41) finally turns into

g1(∇ẐŴ , X̂) =2 sin θ cos θX̂(θ)g1(QẐ, Ŵ ) + sin2 θg1([Ẑ, X̂], Ŵ )− cos2 θg1(∇ẐX̂, Ŵ )

− g1(AX̂ψPẐ, ζŴ )− g1(V ∇X̂ψPẐ, ψŴ ) + g1(∇X̂ζψQẐ, Ŵ )

− g1(AX̂ζQẐ, ψŴ )− g1(X̂, grad lnλ)g1(ζQẐ, ζŴ )

− g1(ζQẐ, grad lnλ)g1(X̂, ζŴ ) + g1(ζŴ , grad lnλ)g1(X̂, ζQẐ)

+
1

λ2
g1(∇Π

X̂
Π∗(ζQẐ),Π∗(ζŴ )).

Hence, this proves the theorem completely. □

The study of geometry of leaves of horizontal and vertical distributions of PWSSCS is

very important. We start our discussion with necessary and sufficient conditions for vertical

distribution kerΠ∗ is totally geodesic.

Theorem 4.5. Let us suppose that Π be a PWSSCS with semi-slant function θ from KM

(Θ1, g1, J) onto a RM (Θ2, g2). Then kerΠ∗ is defines totally geodesic foliation if and only if

1

λ2
g2(∇Π

X̂
Π∗(ζQÛ),Π∗(ζV̂ )) + g1(AX̂ψPÛ , ζV̂ ) + g1(V ∇X̂ψPÛ , ψV̂ )

= cos2θ g1(∇X̂QÛ , V̂ )− 2 sin θ cos θX̂(θ)g1(QÛ , V̂ ) + g1([Û , X̂], V̂ )

+ g1(X̂, grad lnλ)g1(ζQÛ , ζV̂ ) + g1(ζQÛ , grad lnλ)g1(X̂, ζV̂ )

− g1(ζV̂ , grad lnλ)g1(X̂, ζQÛ)− g1(AX̂ζQÛ , ψV̂ ),

(4.42)

for any vector fields Û , V̂ ∈ Γ(kerΠ∗) and X̂ ∈ Γ(kerΠ∗)
⊥.
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Proof. We start the proof of theorem with considering the term g1(∇Û V̂ , X̂). From simple

steps of calculations with basic definition, this turns into g1(∇Û V̂ , X̂) = −g1([Û , X̂], V̂ ) −

g1(∇X̂ Û , V̂ ). Operating J , which is a almost complex structure with using equation (2.11),

(2.12) and (2.13) on second term, this will take place

g1(∇Û V̂ , X̂) = −g1([Û , X̂], V̂ )− g1(∇X̂JÛ , JV ),

for any vertical vector fields Û , V̂ and horizontal vector field X̂. In the light of decomposition

(3.14) and (3.15) the second term of above equation, we can write

g1(∇Û V̂ , X̂) = −g1([Û , X̂], V̂ )− g1(∇X̂ψPÛ , JV )− g1(∇X̂ψQÛ , JV )− g1(∇X̂ζQÛ , JV ).

(4.43)

In the light of equation (3.15) and (2.6), second term of above equation become

−g1(∇X̂ψPÛ , JV ) = g1(AX̂ψPÛ , ζV̂ )− g1(V ∇X̂ψPÛ , ψV̂ ). Similarly, from equation (2.11),

(2.12) and (2.6), third term turns as−g1(∇X̂ψQÛ , JV ) = g1(∇X̂ψ
2QÛ , V̂ )+g1(∇X̂ζψQÛ , V̂ ).

In last term, taking account the fact from decomposition (3.15) and equation (2.7), this will

take place as −g1(∇X̂ζQÛ , JV ) = −g1(H∇X̂ζQÛ , ζV̂ ) − g1(AX̂ζQÛ , V̂ ). Put the values of

all these terms in equation (4.43), we get

g1(∇Û V̂ , X̂) =− g1([Û , X̂], V̂ ) + g1(AX̂ψPÛ , ζV̂ )− g1(V ∇X̂ψPÛ , ψV̂ ) + g1(∇X̂ψ
2QÛ , V̂ )

+ g1(∇X̂ζψQÛ , V̂ )− g1(H∇X̂ζQÛ , ζV̂ )− g1(AX̂ζQÛ , ψV̂ ).

Since, Π is a PWSSCS with semi-slant function θ, using Lemma 3.2, above equation turns

into

g1(∇Û V̂ , X̂) =− g1([Û , X̂], V̂ ) + g1(AX̂ψPÛ , ζV̂ )− g1(V ∇X̂ψPÛ , ψV̂ )− g1(∇X̂(cos
2 θ)QÛ , V̂ )

+ g1(∇X̂ζψQÛ , V̂ )− g1(H∇X̂ζQÛ , ζV̂ )− g1(AX̂ζQÛ , ψV̂ )

= −g1([Û , X̂], V̂ ) + g1(AX̂ψPÛ , ζV̂ )− g1(V ∇X̂ψPÛ , ψV̂ ) + g1(∇X̂ζψQÛ , V̂ )

+ 2 sin θ cos θX̂(θ)g1(QÛ , V̂ )− cos2 θg1(∇X̂QÛ , V̂ )

− g1(H∇X̂ζQÛ , ζV̂ )− g1(AX̂ζQÛ , ψV̂ ).

(4.44)

Considering equations (2.1) and (2.10), second last term of the above equation will be

−g1(H∇X̂ζQÛ , ζV̂ ) =
1

λ2
g2(∇Π

X̂
Π∗(ζQÛ),Π∗(ζV̂ ))− 1

λ2
g2((∇Π∗)(X̂, ζQÛ),Π∗(ζV̂ )).
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By using the definition of horizontal conformality of Π from Lemma 3.2, we can write

−g1(H∇X̂ζQÛ , ζV̂ ) =
1

λ2
g2(∇Π

X̂
Π∗(ζQÛ),Π∗(ζV̂ ))− 1

λ2
g2((X̂(lnλ)Π∗(ζQÛ)

+ ζQÛ(lnλ))Π∗(X̂)− g1(X̂, ζQÛ)Π∗(grad lnλ),Π∗(ζV̂ )).

Now, by using above two equations in (4.44), finally we have

g1(∇Û V̂ , X̂) =− g1([Û , X̂], V̂ ) + g1(AX̂ψPÛ , ζV̂ )− g1(V ∇X̂ψPÛ , ψV̂ ) + g1(∇X̂ζψQÛ , V̂ )

+ 2 sin θ cos θX̂(θ)g1(QÛ , V̂ )− cos2 θg1(∇X̂QÛ , V̂ )− g1(AX̂ζQÛ , ψV̂ )

− g1(X̂, grad lnλ)g1(ζQÛ , ζV̂ )− g1(ζQÛ , grad lnλ)g1(X̂, ζV̂ )

+ g1(X̂, ζQÛ)g1(ζV̂ , grad lnλ).

□

This completes the proof.

Theorem 4.6. Let Π be PWSSCS from a KM (Θ1, g1, J) onto a RM (Θ2, g2). Then the

map Π is totally geodesic map if and only if

(i) 1
λ2
g2(Ẑ(lnλ)Π∗ζψŴ + ζψẐ(lnλ)Π∗Ẑ − g1(Ẑ, ζψŴ )Π∗(grad lnλ),Π∗(X̂))

= g1(TẐψ
2Ŵ , X̂) + 1

λ2
g2(∇Π

Ẑ
Π∗ζψŴ ,Π∗(X̂))

(ii) cos2 θg1(TX̂ Ŷ , Ẑ) +
1
λ2
{g2(∇Π

X̂
Π∗ζψŶ ,Π∗(Ẑ)− g2(∇Π

X̂
Π∗ζŶ ,Π∗(CẐ))} = 0

(iii) cosec2 θg1(AẐPÛ , Ŵ ) + cot2 θ cos2 θg1(H∇ẐQÛ , Ŵ )

= − 1
λ2
{g2(∇Π

Ẑ
Π∗ζψQÛ ,Π∗(Ŵ )) + g2(∇Π

Ẑ
Π∗ζQÛ ,Π∗(CŴ ))},

for any Û , V̂ ∈ Γ(D), X̂, Ŷ ∈ Γ(Dθ) and Ẑ ∈ Γ(kerΠ∗)
⊥, Û1 ∈ Γ(kerΠ∗).

Proof. Let us consider g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)), for any Ẑ, Ŵ ∈ Γ(D) and X̂ ∈ Γ(kerΠ∗)
⊥.

On using equations (2.10) with definition 2.1, we may obtain g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)) =

−λ2g1(∇ẐŴ , X̂). This relation can be turn into

1

λ2
g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)) = g1(∇ẐŴ , X̂).

Taking account the fact that JŴ = ψD if Ŵ ∈ Γ(D) and from equations (2.11), (3.15) in

the right hand side of above equation, we get

1

λ2
g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)) = −g1(∇ẐψŴ , JX̂).

By using equations (2.4), (2.5) with (3.15), we can get

1

λ2
g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)) = g1(TẐψ

2Ŵ , X̂)− g1(H∇ẐζψŴ , X̂). (4.45)
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Since Π is PWSSCS, by using definition 2.1, the second term in the right hand side

of above equation can be turn into −g1(H∇ẐζψŴ , X̂) = 1
λ2
g2((∇Π∗)(Ẑ, ζψŴ ),Π∗(X̂)) −

1
λ2
g2(∇Π

Ẑ
Π∗ζψŴ ,Π∗(X̂)). By using this in (4.45), we may have

1

λ2
g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)) =g1(TẐψ

2Ŵ , X̂) +
1

λ2
g2((∇Π∗)(Ẑ, ζψŴ ),Π∗(X̂))

− 1

λ2
g2(∇Π

Ẑ
Π∗ζψŴ ,Π∗(X̂)).

Finally with using Lemma 3.3, we get

1

λ2
g2((∇Π∗)(Ẑ, Ŵ ),Π∗(X̂)) =

1

λ2
g2(Ẑ(lnλ)Π∗ζψŴ + ζψŴ (lnλ)Π∗Ẑ

− g1(Ẑ, ζψŴ )Π∗(grad lnλ)) + g1(TẐψ
2Ŵ , X̂)

− 1

λ2
g2(∇Π

Ẑ
Π∗ζψŴ ,Π∗(X̂)),

which is part (i). For part (ii), take into consideration g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ)), for any

X̂, Ŷ ∈ Γ(Dθ) and Ẑ ∈ Γ(kerΠ∗)
⊥. From equations (2.10) with definition 2.1, we can write

g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ)) = −λ2g1(∇X̂ Ŷ , Ẑ). In the light of relation (2.11), (2.12) and (3.15),

we get

1

λ2
g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ)) = −g1(∇X̂ψŶ , JẐ)− g1(∇X̂ζŶ , JẐ).

By using equations (2.11), (2.12), (3.17), above equations turn into

1

λ2
g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ)) = g1(∇X̂JψŶ , Ẑ)− g1(∇X̂ζŶ ,BẐ + CẐ).

By using equation (2.5), we can write

1

λ2
g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ)) = g1(∇X̂ψ

2Ŷ , Ẑ) + g1(∇X̂ζψŶ , Ẑ)

− g1(H∇X̂ζŶ ,CẐ)− g1(TX̂ζŶ ,BẐ).

Taking account the fact from equation (2.5) with Lemma 3.3, we may have

1

λ2
g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ)) = g1(∇X̂(cos

2 θ)Ŷ , Ẑ) + g1(H∇X̂ζψŶ , Ẑ)

− g1(H∇X̂ζŶ ,CẐ)− g1(TX̂ζŶ ,BẐ).

(4.46)

Since Π is a PWSSCS from a KM Θ1, the the first term of equation (4.46) turn into

as g1(∇X̂(cos
2 θ)Ŷ , Ẑ) = 2 sin θ cos θX̂(θ)g1(Ŷ , Ẑ) + cos2 θg1(∇X̂ Ŷ , Ẑ), where the second

term as g1(H∇X̂ζψŶ , Ẑ) = 1
λ2
g2(∇Π

X̂
Π∗ζψŶ ,Π( ∗ Ẑ)) − 1

λ2
g2((∇Π∗)(X̂, ζψŶ ),Π∗(Ẑ)) and

third term as g1(H∇X̂ζψŶ , Ẑ) = − 1
λ2
g2(∇Π

X̂
Π∗ζŶ ,Π∗(CẐ)) +

1
λ2
g2((∇Π∗)(X̂, ζŶ ),Π∗(CẐ))

by using equation (2.10) and definition 2.1. □
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With all these facts using in equation (4.46), we can write

1

λ2
g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ))

= 2 sin θ cos θX̂(θ)g1(Ŷ , Ẑ) + cos2 θg1(∇X̂ Ŷ , Ẑ) +
1

λ2
g2(∇Π

X̂
Π∗ζψŶ , (Π∗Ẑ))

− 1

λ2
g2((∇Π∗)(X̂, ζψŶ ),Π∗(Ẑ))−

1

λ2
g2(∇Π

X̂
Π∗ζŶ ,Π( ∗ CẐ))

+
1

λ2
g2((∇Π∗)(X̂, ζŶ ),Π∗(CẐ))− g1(TX̂ζŶ ,BẐ).

Finally, by using the Lemma 3.3 in fourth and fifth terms, the above equations takes the

form

1

λ2
g2((∇Π∗)(X̂, Ŷ ),Π∗(Ẑ))

=
1

λ2
g2(X̂(lnλ)Π∗ζŶ + ζŶ (lnλ)Π∗X̂ − g1(X̂, ζŶ )Π∗(grad lnλ),Π∗(CẐ))

− 1

λ2
g2(X̂(lnλ)Π∗ζψŶ + ζψŶ (lnλ)Π∗X̂ − g1(X̂, ζψŶ )Π∗(grad lnλ),Π∗(Ẑ))

− 1

λ2
g2(∇Π

X̂
Π∗ζŶ ,Π( ∗ CẐ))− g1(TX̂ζŶ ,BẐ)

+ cos2 θg1(∇X̂ Ŷ , Ẑ) +
1

λ2
g2(∇Π

X̂
Π∗ζψŶ ,Π∗(Ẑ)).

This is the proof of part (ii). For (iii) part, we consider

1

λ2
g2((∇Π∗)(Ẑ, Û1),Π∗Ŵ ) = −g1(Π∗∇ẐÛ1,Π∗Ŵ ),

for any Û1 ∈ Γ(kerΠ∗) and Ẑ, Ŵ ∈ Γ(kerΠ∗)
⊥. By using equations (2.11), (2.12), (3.14) and

(3.15), we can write

1

λ2
g2((∇Π∗)(Ẑ, Û1),Π∗Ŵ ) =− g1(∇ẐPÛ , Ŵ ) + g1(∇Ẑψ

2QÛ, Ŵ )− g1(∇ẐζψQÛ , Ŵ )

− g1(H∇ẐζQÛ ,CŴ )− g1(AẐζQÛ ,BŴ ).

Since PWSSCS, then by using Lemma 3.3 and definition of horizontal conformality 2.1, the

above equation turn into

1

λ2
g2((∇Π∗)(Ẑ, Û1),Π∗Ŵ ) =− g1(AẐPÛ , Ŵ )− sin 2θẐ(θ)g1(QÛ , Ŵ ) + cos2 θg1(∇ẐQÛ , Ŵ )

− 1

λ2
g2(Π∗(H∇ẐζψQÛ),Π∗(Ŵ ))− 1

λ2
g2(Π∗(H∇ẐζQÛ),Π∗(CŴ ))

− g1(AẐζQÛ ,BŴ ).

(4.47)

The second term on right hand side of above equations become 0 since QÛ and Ŵ both are

orthogonal, whereas the third term reduces with equations (2.11), (2.12) and Lemma 3.3 as,
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− cos2 θ(g1(∇Ẑψ
2QÛ, Ŵ ) + cos2 θg1(∇ẐζψQÛ , Ŵ )) + cos2 θg1(∇ẐζQÛ ,BŴ + CŴ ). With

this value equation (4.47) reduces to

1

λ2
g2((∇Π∗)(Ẑ, Û1),Π∗Ŵ )

=− g1(AẐPÛ , Ŵ )− cos2 θg1(∇Ẑψ
2QÛ, Ŵ ) + cos4 θg1(∇ẐζψQÛ , Ŵ )

+ cos2 θg1(∇ẐζQÛ ,BŴ + CŴ ) + cos2 θg1(∇ẐQÛ , Ŵ )

− 1

λ2
g2(Π∗(H∇ẐζψQÛ),Π∗(Ŵ ))− 1

λ2
g2(Π∗(H∇ẐζQÛ),Π∗(CŴ ))

− g1(AẐζQÛ ,BŴ ).

(4.48)

Since Π is a PWSSCS from KM onto RM, by using the formula of second fundamental

form of Π and Lemma 3.3, sixth term in the right hand side of above equations reduces to

1
λ2
g2(Ẑ(lnλ)Π∗ζψQÛ+ζψQÛ(lnλ)Π∗Ẑ−g1(Ẑ, ζψQÛ)Π∗(grad lnλ),Π∗Ŵ ) and the seventh

term as 1
λ2
g2(Ẑ(lnλ)Π∗ζQÛ + ζQÛ(lnλ)Π∗Ẑ − g1(Ẑ, ζQÛ)Π∗(grad lnλ),Π∗CŴ ). Putting

these values in equation (4.48), we have

1

λ2
g2((∇Π∗)(Ẑ, Û1),Π∗Ŵ )

=
1

λ2
g2(Ẑ(lnλ)Π∗ζψQÛ + ζψQÛ(lnλ)Π∗Ẑ − g1(Ẑ, ζψQÛ)Π∗(grad lnλ),Π∗Ŵ )

+
1

λ2
g2(Ẑ(lnλ)Π∗ζQÛ + ζQÛ(lnλ)Π∗Ẑ − g1(Ẑ, ζQÛ)Π∗(grad lnλ),Π∗CŴ )

− g1(AẐPÛ , Ŵ )− cos2 θg1(∇Ẑψ
2QÛ, Ŵ ) + cos2 θg1(∇ẐζψQÛ , Ŵ )− g1(AẐζQÛ ,BŴ )

+ cos2 θg1(∇ẐζQÛ ,BŴ + CŴ ) + cos4 θg1(∇ẐQÛ , Ŵ )

− 1

λ2
g2(∇Π

Ẑ
Π∗ζψQÛ ,Π∗Ŵ )− 1

λ2
g2(∇Π

Ẑ
Π∗ζQÛ ,Π∗CŴ ).

Finally, by using definition of horizontal conformality with Lemma 3.3 and equation (2.7),

we can write

1

λ2
g2((∇Π∗)(Ẑ, Û1),Π∗Ŵ )

= sin2 θ{ 1

λ2
g2(Ẑ(lnλ)Π∗ζψQÛ + ζψQÛ(lnλ)Π∗Ẑ − g1(Ẑ, ζψQÛ)Π∗(grad lnλ),Π∗Ŵ )

+
1

λ2
g2(Ẑ(lnλ)Π∗ζQÛ + ζQÛ(lnλ)Π∗Ẑ − g1(Ẑ, ζQÛ)Π∗(grad lnλ),Π∗CŴ )}

− sin2 θ
1

λ2
g2(∇Π

Ẑ
Π∗ζψQÛ ,Π∗Ŵ )− sin2 θ

1

λ2
g2(∇Π

Ẑ
Π∗ζQÛ ,Π∗CŴ )

− g1(AẐPÛ , Ŵ ) + cos4 θg1(∇ẐQÛ , Ŵ ),

from which we can get part (iii) of Theorem.
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5. Pluriharmonicity

In this section, we discussed the concept of J-pluriharmonicity on AHMs which was once

studied and defined by Y. Ohnita [26]. Let Π be a PWSSCS from KM (Θ1, g1, J) onto a RM

(Θ2, g2). Then PWSSCS is J-pluriharmonic, D-J-pluriharmonic, Dθ-J-pluriharmonic, (D−

Dθ)-ϕ pluriharmonic, kerΠ∗-J-pluriharmonic, (kerΠ∗)
⊥-J-pluriharmonic and ((kerΠ∗)

⊥ −

kerΠ∗)-ϕ-pluriharmonic if

(∇Π∗)(X̂, Ŷ ) + (∇Π∗)(JX̂, JŶ ) = 0, (5.49)

for any X̂, Ŷ ∈ Γ(D), for any X̂, Ŷ ∈ Γ(Dθ), for any X̂ ∈ Γ(D), Ŷ ∈ Γ(Dθ), for any

X̂, Ŷ ∈ Γ(kerΠ∗), for any X̂, Ŷ ∈ Γ(kerΠ∗)
⊥ and for any X̂ ∈ Γ(kerΠ∗)

⊥, Ŷ ∈ Γ(kerΠ∗).

Theorem 5.1. Let Π be a PWSSCS from KM (Θ1, g1, J) onto a RM (Θ2, g2). Suppose that

Π is Dθ-J-pluriharmonic. Then Dθ defines totally geodesic foliation on Θ1 if and only if

∇Π
JX̂1

Π∗JŶ1 +∇Π
ζX̂1

Π∗ζŶ1 =Π∗(H∇ψX̂1
ζŶ1 + AζX̂1

ψŶ1 + TψX̂1
ψ2PψŶ1 + H∇ψX̂1

ζψPψŶ1)

+ Π∗(TψX̂1
ψ2QψŶ1 + H∇ψX̂1

ζψQψŶ1)

− cos2 θΠ∗(TψX̂1
ψζQψŶ1 + TψX̂1

QψŶ1),

for any
ˆ̂
X1, Ŷ1 ∈ Γ(Dθ).

Proof. For any
ˆ̂
X1, Ŷ1 ∈ Γ(Dθ) and using the pluriharmonicity of J with equation (2.10), we

get

0 = (∇Π∗)(X̂1, Ŷ1) + (∇Π∗)(JX̂1, JŶ1)

= −Π∗∇ ˆ̂
X1
Ŷ1 +∇Π

JX̂1
Π∗JŶ1 −Π∗∇JX̂1

JŶ1.

Now, from the above equation, we can write

Π∗∇ ˆ̂
X1
Ŷ1 = ∇Π

JX̂1
Π∗JŶ1 −Π∗∇JX̂1

JŶ1.

The second term in the right hand side of above equation with using equation (3.15), takes

the form as Π∗∇ψX̂1
ψŶ1 +Π∗∇ψX̂1

ζŶ1 +Π∗∇ζX̂1
ψŶ1 +Π∗∇ψX̂1

ζŶ1. Now, equation (5) can

be write as

Π∗∇ ˆ̂
X1
Ŷ1 =∇Π

JX̂1
Π∗JŶ1 −Π∗∇ψX̂1

ψŶ1 −Π∗∇ψX̂1
ζŶ1

−Π∗∇ζX̂1
ψŶ1 −Π∗∇ψX̂1

ζŶ1.
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Taking account the fact that Π is PWSSCS with using equations (2.5), (2.6), (2.10) and

(3.14), we have

Π∗∇ ˆ̂
X1
Ŷ1 =−Π∗(TψX̂1

ζŶ1 + H∇ψX̂1
ζŶ1 + AζX̂1

ψŶ1 + V ∇ζX̂1
ψŶ1)

+ {ζX̂1(lnλ)Π∗ζŶ1 + ζŶ1(lnλ)Π∗ζX̂1 − g1(ζX̂1, ζŶ1)Π∗(grad lnλ)}

− ∇Π
JX̂1

Π∗JŶ1 −∇Π
ζX̂1

Π∗ζŶ1 +Π∗(J∇ψX̂1
J(PψŶ1 +QψŶ1)).

Operating J in the last term in the right hand side of above equation with Lemma 3.2 and

equations (2.5) and (2.6), we may have

Π∗∇ ˆ̂
X1
Ŷ1 ={ζX̂1(lnλ)Π∗ζŶ1 + ζŶ1(lnλ)Π∗ζX̂1 − g1(ζX̂1, ζŶ1)Π∗(grad lnλ)}

+Π∗(TψX̂1
ψ2PψŶ1 + V ∇ψX̂1

ψ2PψŶ1 + TψX̂1
ζψPψŶ1 + H∇ψX̂1

ζψPψŶ1)

+ Π∗(TψX̂1
ψ2QψŶ1 + V ∇ψX̂1

ψ2QψŶ1 + TψX̂1
ζψQψŶ1 + H∇ψX̂1

ζψQψŶ1)

− cos2 θΠ∗(TψX̂1
ψζQψŶ1 + V ∇ψX̂1

ψζQψŶ1 + TψX̂1
QψŶ1 + V ∇ψX̂1

QψŶ1)

+ Π∗(TψX̂1
ζŶ1 + H∇ψX̂1

ζŶ1 + AζX̂1
ψŶ1 + V ∇ζX̂1

ψŶ1)

−∇Π
JX̂1

Π∗JŶ1 −∇Π
ζX̂1

Π∗ζŶ1.

□

Theorem 5.2. Let Π be a PWSSCS from KM (Θ1, g1, J) onto a RM (Θ2, g2). Suppose

that Π is ((kerΠ∗)
⊥ − kerΠ∗)-J-pluriharmonic. Then the horizontal distribution (kerΠ∗)

⊥

defines totally geodesic foliation on Θ1 if and only if

Π∗∇Ŷ1
Ŵ −∇Π

JX̂1
Π∗(JŴ ) + cos4 θΠ∗ACŶ1

QŴ − cos2 θΠ∗ζACŶ1
ζQŴ

= sin2 θ{CŶ1(lnλ)Π∗(ζψQŴ ) + ζψQŴ (lnλ)Π∗(CŶ1)− g1(ζψQŴ ,CŶ1)Π∗grad lnλ}

+ cos2 θJ{CŶ1(lnλ)Π∗(ζQŴ ) + ζQŴ (lnλ)Π∗(CŶ1)− g1(ζQŴ ,CŶ1)Π∗grad lnλ}

−Π∗(TBŶ1
PψŴ + TBŶ1

QψŴ + ACŶ1
ψPŴ + H∇BŶ1

ζŴ )

− sin2 θ∇Π
CŶ1

Π∗(ζψQŴ ) + cos2 θJ∇Π
CŶ1

Π∗(ζQŴ ),

for any Ŷ1 ∈ Γ(kerΠ∗)
⊥ and Ŵ ∈ Γ(kerΠ∗).

Proof. For any Ŷ1 ∈ Γ(kerΠ∗)
⊥, Ŵ ∈ Γ(kerΠ∗) and using equations (2.10), (3.14), (3.15)

with considering the fact that the pluriharminicity of J , we can write

Π∗∇CŶ1
ζŴ = −Π∗(∇BŶ1

ψŴ +∇BŶ1
ζŴ +∇CŶ1

ψŴ )−Π∗∇Ŷ1
Ŵ +∇Π

JŶ1
Π∗JŴ .
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Now, by using equations (2.4), (2.6), (3.14), (3.15) and from the Lemma 3.2, above equation

can takes the form as

Π∗∇CŶ1
ζŴ =−Π∗(TBŶ1

ζŴ + H∇BŶ1
ζŴ )−Π∗∇Ŷ1

Ŵ +∇Π
JŶ1

Π∗JŴ −Π∗∇CŶ1
ζψQŴ

+Π∗(J∇BŶ1
JψŴ + J∇CŶ1

JψŴ )− cos2 θΠ∗(J∇CŶ1
JQŴ )

+ Π∗(−TBŶ1
PψŴ − V ∇BŶ1

PψŴ − TBŶ1
QψŴ )

+ Π∗(−V ∇BŶ1
QψŴ − ACŶ1

ψPŴ − V ∇CŶ1
ψPŴ ).

By using the horizontal conformality of Π, Lemma 3.2, equations (3.15) and (2.10) with some

simple steps of calculations, we may have

Π∗∇CŶ1
ζŴ =− cos4 θΠ∗(ACŶ1

QŴ ) + cos2 θΠ∗(ζACŶ1
ζQŴ ) + sin2 θ(∇Π∗)(CŶ1, ζψQŴ )

− sin2 θ∇Π
CŶ1

Π∗(ζψQŴ ) + cos2 θJ(∇Π∗)(CŶ1, ζQŴ ) + cos2 θJ∇Π
CŶ1

Π∗(ζQŴ )

−Π∗(TBŶ1
ζŴ + H∇BŶ1

ζŴ )−Π∗∇Ŷ1
Ŵ +∇Π

JŶ1
Π∗JŴ

−Π∗(TBŶ1
PψŴ + V ∇BŶ1

PψŴ + TBŶ1
QψŴ + V ∇BŶ1

QψŴ )

−Π ∗ (ACŶ1
ψPŴ − V ∇CŶ1

ψPŴ ).

Finally, by using the Lemma 2.1, the above equation takes the form

Π∗∇CŶ1
ζŴ

=sin2 θ{CŶ1(lnλ)Π∗(ζψQŴ ) + ζψQŴ (lnλ)Π∗(CŶ1)− g1(CŶ1, ζψQŴ )Π∗(grad lnλ)}

cos2 θJ{CŶ1(lnλ)Π∗(ζQŴ ) + ζQŴ (lnλ)Π∗(CŶ1)− g1(CŶ1, ζQŴ )Π∗(grad lnλ)}

−Π∗(TBŶ1
ζŴ + H∇BŶ1

ζŴ )−Π∗∇Ŷ1
Ŵ +∇Π

JŶ1
Π∗JŴ − cos4 θΠ∗(ACŶ1

QŴ )

−Π∗(TBŶ1
PψŴ + V ∇BŶ1

PψŴ + TBŶ1
QψŴ + V ∇BŶ1

QψŴ ) + cos2 θΠ∗(ζACŶ1
ζQŴ )

−Π ∗ (ACŶ1
ψPŴ − V ∇CŶ1

ψPŴ )− sin2 θ∇Π
CŶ1

Π∗(ζψQŴ ) + cos2 θJ∇Π
CŶ1

Π∗(ζQŴ ).

From the above equation, we can get the proof of Theorem 5.2. □
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