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ALGORITHMIC APPROACH TO BITONIC ALGEBRAS AND THEIR

GRAPHS

SULE AYAR OZBAL ID , REFET POLAT ID ∗, SAADET ESKIIZMIRLILER ID ,
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Abstract. Under the aim of this paper, we establish the terms of graphs related with

bitonic-algebras, which is a bitonic-graph where the vertices are the elements of bitonic

algebra and where the edges are the companian of two vertices, that is two elements from

bitonic algebra. We designate the upper sets of elements in a bitonic algebra and studied

properties of these sets. We state algorithms to check whether the given set is a bitonic

algebra or a commutative bitonic algebra or not. Additionally, we mention the codes of

these algorithms. Moreover, we associate the algorithms of graphs of a bitonic algebra and

state properties of these graphs obtained.
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1. Introduction

In recent mathematical articles and studies, it has been an important matter that the

artificial intelligence is to make a computer simulate a human being in dealing with certainty

and uncertainty in information. At this stage, logic plays an important role to act the

foundation of this mission. Classical logic is a base for information processing dealing with

certain information whereas nonclassical logic including many-valued logic and fuzzy logic
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use classical logic to handle information with various facets of uncertainty, such as fuzziness

and randomness. For this reason, for computer science to deal with fuzzy information and

uncertain information, non classical logic has been used as a useful and a formal instrument.

As required for this reason, BCK-algebras are considered as a generalization of the notion

of algebra of sets with the set subtraction as the only fundamental nonnullary operation and

on the other hand the notion of implication algebra. They are defined by Imai and Iseki in

[19]. Later, Komori [24] introduced the new class of algebras called BCC-algebras as he gave

the name of this work to prove the class of all BCK-algebras does not form a variety. The

notion of dual BCC-algebras is a generalization of many different algebras such as DBCK-

algebras ([9, 23, 40]), Hilbert-algebras([13, 16, 17, 27]), Heyting-algebras (or Brouwerian

lattices)([11, 8]), implication algebras ([1]) and lattice implication algebras ([37, 38])that

ensure the property: (P) x ≤ y implies z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z. Lastly, Yon and Özbal

in [39] defined the bitonic algebras and with the help of derivations they studied properties

of this algebra. Additionally, Özbal studied on filters of bitonic algebras to investigate the

relations between filters and upper sets in [5].

With the help of graphs to deeply study algebraic systems, graphs have been considered

a significant method and topic in many mathematical papers and studies in recent times.

For instance, in 1998 Beck [7] studied rings and algebras in this manner. In this study, by

presenting the zero-divisor graph of a commutative ring a correlation between graph theory

and commutative ring theory is constructed. Then, many mathematicians extend this graphs

in classical structures more definitely, in commutative ring [3], commutative semirings [35]

and semigroups [25], near-rings [36], Cayley Vague Graphs [28]. These studies consider graphs

in classical and non-classical algebras. The total graph of a commutative ring is studied in [6]

and investigated the total graph of a commutative semiring with non-zero identity. Also, the

annihilator graph of a commutative ring is considered in [2] and the area of zero-divisor graphs

of commutative rings is focused in [12]. Bres̆ar et al.[10] defined the cover incomparability

graphs of posets and the directed graphs of lattices is examined in [32]. Nowadays, many

mathematicians have focused on graph of logical algebras because of the reason that these

algebras are related to information systems and many other different branches of computer

sciences. For example, Jun and Lee [20] studied zero-divisor graph in BCK/BCI-algebras

whereas Hu and Li [18] obtained some properties on graphs of BCH-algebras. Additionally,

Gürsoy et al. introduced an alternative construction of graphs on MV-algebras in [15] and

they obtained a suitable representation of MV-algebras by using graphs. Similarly, Kırcalı
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Gürsoy focused on the notion of graphs on Wajsberg algebras and stated that commutative

W-graphs are also symmetric graphs in [22]. And, many other graph operations are studied

in [21], such as coloring of a commutative ring in [4], and these will be applied on graphs of

bitonic algebras in the future work.

Motivated by these works, in this paper we study the associated graphs of bitonic algebras

that are the generalizations of dual BCC-algebras in a different manner than those mentioned

above.

2. Preliminaries

During this section, firstly, we give some fundamental definitions, lemmas, theorems about

bitonic algebras that will be used as a tool. Secondly, we remind some graph theory concepts

used in this study.

2.1. Bitonic Algebras. A dual BCC-algebra is an algebraic system (X, ∗, 1) satisfying the

following axioms for all x, y, z ∈ X :

(D1) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1,

(D2) 1 ∗ x = x,

(D3) x ∗ 1 = 1,

(D4) x ∗ x = 1,

(D5) x ∗ y = 1 and y ∗ x = 1 imply x = y.

Definition 2.1. [39] A bitonic algebra is an algebraic system (A, ∗, 1) satisfying the following

axioms for every a, b, c ∈ A:

(B1) a ∗ 1 = 1,

(B2) 1 ∗ a = a,

(B3) a ∗ b = 1 and b ∗ a = 1 implies a = b,

(B4) a ∗ b = 1 implies (c ∗ a) ∗ (c ∗ b) = 1 and (b ∗ c) ∗ (a ∗ c) = 1.

where A is a set, 1 an element in A and ∗ a binary operation on A.

Lemma 2.1. [39] In a bitonic algebra (A, ∗, 1) for all a, b, c ∈ A the followings hold:

(1) a ∗ a = 1,

(2) a ∗ b = b ∗ c = 1 implies a ∗ c = 1,

(3) a ∗ (b ∗ a) = 1.
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Corollary 2.1. [39] If a binary relation “≤” on A where (A, ∗, 1) be a bitonic algebra is

defined by

a ≤ b ⇐⇒ a ∗ b = 1

for any a, b ∈ A, then it is clear that by (B3) and Lemma 2.1 ≤ is a partial order on A.

Lemma 2.2. [39] Let (A, ∗, 1) be a bitonic algebra. Then for all a, b, c ∈ A :

(1) a ≤ b refers c ∗ a ≤ c ∗ b and b ∗ c ≤ a ∗ c,

(2) a ≤ b ∗ a.

Example 2.1. [39] Let ∗ be a binary operation on N = {1, x, y, z, w} with the table given

below:

Table 1. Cayley Table for N

∗ 1 x y z w

1 1 x y z w

x 1 1 y z w

y 1 x 1 z w

z 1 1 1 1 x

w 1 1 1 z 1

(N, ∗, 1) is a bitonic algebra and the Hasse diagram can be given as

1

x

z

y

w
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Figure 1. Hasse diagram of the bitonic algebra N in Example 2.1

Definition 2.2. Let (A, ∗, 1) be a bitonic algebra. The binary operation “♢” on A is defined

by a♢b = (a ∗ b) ∗ b for every a, b ∈ A.

Lemma 2.3. [39] For the binary operation ♢ on (A, ∗, 1) as a bitonic algebra

(1) b ≤ a♢b,
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(2) a ≤ b implies a♢b = b,

(3) 1♢a = 1 and a♢1 = 1

hold for every a, b ∈ A.

Definition 2.3. [39] S ̸= ∅ as a subset of a bitonic algebra A is called a bitonic subalgebra

of A if ”x ∗ y ∈ S” for all x, y ∈ S, and F ̸= ∅ as a subset of A is called a filter of A if

(F1) 1 ∈ F ,

(F2) x ∈ F with x ∗ y ∈ F refers y ∈ F for any x, y ∈ F .

Definition 2.4. [39] A bitonic algebra (A, ∗, 1) is said to be commutative if

(a ∗ b) ∗ b = (b ∗ a) ∗ a for every a, b ∈ A.

Example 2.2. Let ∗ be a binary operation on C = {1, a, b} with the table given below then

Table 2. Cayley Table for C

∗ 1 a b

1 1 a b

a 1 1 b

b 1 a 1

(C, ∗, 1) is a commutative bitonic algebra.

2.2. Some Basic Concepts on Graph Theory. Here, we consider some basic definitions

and concepts in graph theory.

Definition 2.5. [14] A graph is a pair G = (V,E) of sets satisfying E ⊆ V × V ; thus,

the elements of E are ordered pairs of V . To avoid notational ambiguities, we shall always

assume tacitly that V ∩E = ∅. The elements of V are the vertices (or nodes, or points) of the

graph G, the elements of E are its edge edges (or lines). The usual way to picture a graph is

by drawing a dot for each vertex and joining two of these dots by a line if the corresponding

two vertices form an edge.
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Example 2.3. Let V = {1, 2, 3, 4, 5} be a vertex set and E = {(1, 2), (2, 3), (3, 5), (3, 4), (4, 5)}

be a edge set of G = (V,E). We can illustrate this graph as Figure 2.

1

2

3

4

5

�
�

�

,
,
,
,
,

Figure 2. The graph of G = (V,E) for Example 2.3

Definition 2.6. [14] A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk}, E = {(x0, x1), (x1, x2), . . . , (xk−1, xk)}

where the xi are all distinct. The vertices x0 and xk are linked by P and are called its ends;

the vertices x1, x2, . . . , xk−1 are inner vertices of P . The number of edges of a path is its

length, and the path of length k ise denoted by P k.

Definition 2.7. [14] The distance dG(x, y) in G of two vertices x, y is the length of a shortest

x− y path in G; if no such path exist, we set d(x, y) = ∞. The greatest distance between any

two vertices in G is the diameter of G, diameter denoted by diam(G). The diameter of G is

said to be zero if there is only one vertex in G.

Definition 2.8. [26, 34] A connected graph with more than one vertex has a diameter of one

if and only if each pair of distinct vertices forms an edge and it is called a complete graph.

3. Some New Algorithms on Bitonic Algebra

In this section, we will introduce the algorithms that test whether the definitions given

in the previous section are ensured by any sets. These algorithms are coded in VB-Script

Language in Ms EXCEL Program to make our studies on these algebras easier than usual.

After explaining these mentioned algorithms we will share the codes belongs to this language.
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Algorithm 1: Determining Bitonic Algebra

Data: Set A, * operation, operator table

Result: (A, *, 1) is a bitonic algebra or not

1 initialization;

2 if A ̸= ∅ OR 1 /∈ A then

3 Return false

4 foreach x in A do

5 if x * 1 ̸= 1 then

6 Return false

7 if 1 * x ̸= x then

8 Return false

9 foreach x, y in A do

10 if x * y = 1 AND y * x = 1 then

11 if x ̸= y then

12 Return false

13 foreach x, y in A do

14 if x * y = 1 then

15 foreach z in A do

16 if (z * x) * (z * y) ̸= 1 OR (y * z) * (x * z) ̸= 1 then

17 Return false

In Algorithm 1, it is checked whether the given structure is a bitonic algebra or not by

using Definition 2.1 of bitonic algebras. The inputs of this algorithm are the set A and the

Cayley Table of the operator ∗. Firstly, the algorithm examines whether the given set A is

an empty set, and 1 belongs to A. If the given set A is empty or does not contain 1, then

the algorithm returns FALSE. Then, it examines for every x in A, whether the conditions

B1 and B2 of Definition 2.1 are satisfied. If any of these conditions are not satisfied then

the algorithm returns FALSE.
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The following step of the algorithm is to check the condition B3 of Definition 2.1. Accord-

ing to this step, whenever x ∗ y = 1 or y ∗ x = 1 is satisfied for any x, y in A, it is checked

whether these x and y are different elements. If these elements are different than each other

then the algorithm returns FALSE. The last step of the algorithm checks whether the last

part B4 of Definition 2.1 is satisfied or not. According to this step, it is examined whether

x∗y = 1 is satisfied or not for any elements x, y in A. If this is satisfied for any x, y in A, then

for any element in A (say z in A) the algorithm works out for the solution of (z ∗ x) ∗ (z ∗ y)

and (y ∗ z) ∗ (x ∗ z). If one these results is different than 1, then the algorithm FALSE.

1 ’The Cayley Table is being imported into a two -dimensional array

2 For i = 2 To m + 1

3 For j = 2 To m + 1

4 m1(i - 1, j - 1) = Cells(i, j)

5 Next j

6 Next i

7

8 ’The conditions B1 and B2 are being checked

9 control = 0

10 For i = 1 To m

11 If m1(1, i) <> Cells(1, i + 1) Then control = 1

12 If m1(i, 1) <> 1 Then control = 1

13 Next i

14

15 If control <> 0 Then

16 MsgBox "B1 OR B2 are not obtained"

17 GoTo bit

18 End If

19

20 ’The condition B3 is being checked

21 For i = 1 To m

22 For j = 1 To m

23 If m1(i, j) = 1 Then

24 If m1(j, i) = 1 Then

25 If i <> j Then

26 MsgBox "B3 is not obtained"
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27 control = 1

28 GoTo bit

29 End If

30 End If

31 End If

32 Next j

33 Next i

34

35 ’The condition B4 is being checked

36 For i = 1 To m

37 For j = 1 To m

38 If m1(i, j) = 1 Then

39 For k = 1 To m

40 If (m1(m1(k, i), m1(k, j)) = 1 And m1(m1(j, k), m1(i, k)) =

1) <> True Then

41 MsgBox "B4 is not appropriate (" & k & "*" & i & ")*(" &

k & "*" & j & ") or one of these (" & j & "*" & k & ")*(" & i & "*" & k &

") is not 1"

42 control = 1

43 GoTo bit

44 End If

45 Next k

46 End If

47 Next j

48 Next i

49

50 If control = 0 Then

51 Cells (12, 1) = "Bitonic Algebra"

52 Else

53 Cells (12, 1) = "Not a Bitonic Algebra"

54 GoTo bit

55 End If

56 bit:

Listing 1. Codes for Algorithm 1

We consider a code for this table that will be easily runned in EXCEL to list its entries.
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Algorithm 2: Generating ♢-Operation Table on a Bitonic Algebra

Data: (A, 1, *) Bitonic Algebra, * Operation Table

Result: ♢-Table[ , ]

1 ♢-Table[ , ]=null

2 foreach x, y in A do

3 ♢-Table[x,y]=(x*y)*y

The Cayley table of the ♢ operator is obtained with the help of the Algorithm 2. This

time, the input of this algorithm is a bitonic algebra. In the beginning, an empty Cayley

table of the ♢ operator is formed. Then, the solution of (x ∗ y) ∗ y is examined for every

element x, y in A.

One of the main purpose of this algorithm is that this algorithm is coded in VBScript

language and these codes are given in Listing 2.

1 For i = 1 To m

2 For j = 1 To m

3 m1v(i, j) = m1(m1(i, j), j)

4 Next j

5 Next i

Listing 2. Codes for Algorithm 2

Algorithm 3: Determining Commutativity of a Bitonic Algebra

Data: ♢-Table[ , ] of (A, 1, *) Bitonic Algebra

Result: (A, *, 1) is a Commutative Bitonic Algebra or not

1 initialization;

2 foreach x, y in A do

3 if x ♢ y ̸= y ♢ x then

4 Return false

In this Algorithm 3, it is checked whether the given bitonic algebra is commutative or

not. The inputs of this algorithm are a bitonic algebra and the cayley table of ♢ operation

defined in this bitonic algebra. If this table is symmetric then the given bitonic algebra is

commutative. For this reason, it is examined whether x♢y and y♢x are the same or not
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for any x, y in the given bitonic algebra. If a non-identical condition is detected, then the

algorithm outputs FALSE.

This algorithm is coded in VBScript language and these codes are given in Listing 3

1 controlv = 0

2 For i = 1 To m - 1

3 For j = i + 1 To m

4 If (m1v(i, j) <> m1v(j, i)) Then controlv = 1

5 Next j

6 Next i

7

8 If controlv = 0 Then

9 Cells (12, 13) = "Commutative Bitonic Algebra"

10 Else

11 Cells (12, 13) = "Not a Commutative Bitonic Algebra"

12 GoTo bit

13 End If

14 bit:

Listing 3. Codes for Algorithm 3

4. Graphs on Bitonic Algebras

To consider graphs of bitonic algebras, firstly we focus on upper sets of these algebras. In

this section, initially we give the definition of graph of bitonic algebras and introduce the

algorithm lists the entries of adjacency matrix on a bitonic algebra. Moreover, we consider

the codes of this algorithm to list the entries of the adjaceny matrix on a bitonic algebra.

Definition 4.1. (A, ∗, 1) as a commutative bitonic algebra corresponds to an undirected graph

G(A), where V (G(A)) consists of the elements of A and two distinct elements a, b ∈ A are

called adjacent if and only if a♢b = 1. G is said to be a A− graph under these conditions.
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Algorithm 4: Generating Adjacency Matrix on a Bitonic Algebra

Data: ♢-Table[ , ] of (A, 1, *) Bitonic Algebra

Result: Adj(G(A))[ , ] Adjacency Matrix

1 initialization;

2 foreach x, y in A do

3 if x ♢ y = 1 then

4 Adj(G(A))[x, y] = 1

5 else

6 Adj(G(A))[x, y] = 0

In this Algorithm 4, the adjacency matrix for any bitonic algebra given according to

the Definition 4.1 is created. The inputs of this algorithm are a bitonic algebra and the

Cayley table of ♢ operation defined in this algebra. In the beginning, the solution of x♢y

for any elements x, y in the given bitonic algebra is studied. If this solution is 1, then the

corresponding element in a two-dimensional array in the adjacency matrix is assigned as 1,

otherwise it is assigned as 0.

Coding in this algorithm VBScript language in MS EXCEL programe is one the most

important part of this paper and these codes are given is Listing 4.

1 For i = 1 To m

2 For j = 1 To m

3 If m1v(i, j) = 1 Then

4 m1vadj(i, j) = 1

5 Else

6 m1vadj(i, j) = 0

7 End If

8 Next j

9 Next i

Listing 4. Codes for Algorithm 4
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Example 4.1. Let (A, ∗, 1) be the bitonic algebra mentione in Example 2.2. Using the

Definition 4.1, the adjacency matrix of the graph of A is

Adj(G(A))=

1 a b

1 1 1 1

a 1 0 1

b 1 1 0

1

a b

�
�

� @
@

@

Figure 3. The graph of the bitonic algebra A given in Example 2.2 with

the Hasse Diagram

Example 4.2. Let (A, ∗, 1) be the bitonic algebra given in Example 2.1. Using the Definition

4.1, the adjacency matrix of the graph of A is:

Adj(G(A))=

1 x y z w

1 1 1 1 1 1

x 1 0 1 1 1

y 1 1 0 1 1

z 1 0 0 0 0

w 1 0 0 1 0

1

x

z

y

w

�
�

� \
\

\�
�
�
�
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Figure 4. The graph of the bitonic algebra A given in Example 2.1

Lemma 4.1. Vertex 1 in a A-graph is adjacent to all vertices in G(A).

Proof. By definition of a bitonic algebra a♢1 = (a ∗ 1) ∗ 1 = 1 ∗ 1 = 1 for ever a ∈ A . So,

vertex 1 and vertex a are connected with an edge in every A-graph. □



348 S. AYAR OZBAL, R. POLAT, S. ESKIIZMIRLILER, AND M. KURT

Lemma 4.2. A-graph G(A) is connected by having diam(G(A)) ≤ 2.

Proof. Let a, b ∈ A be any two distinct vertices on G(A). Assume that a♢b = 1. Therefore,

we get d(a, b) = 1, so have diam(G(A)) ≤ 2. Now, assume that a♢b ̸= 1. For a bitonic algebra

we have a♢1 = (a ∗ 1) ∗ 1 = 1 ∗ 1 = 1 and b♢1 = (b ∗ 1) ∗ 1. That is to say that a is adjacent

to 1 and b is adjacent to 1. Hence, we get d(a, b) ≤ 2 meaning that diam(G(A)) ≤ 2. □

Definition 4.2. (A, ∗, 1) as a bitonic algebra is said to be self − distributive if a ∗ (b ∗ c) =

(a ∗ b) ∗ (a ∗ c) for all a, b, c ∈ A.

Example 4.3. The bitonic algebra (A, ∗, 1) given in Example 1 is not a self-distributive

algebra. But, if ∗ on A = {1, x} is defined as a binary relation whose table is

∗ 1 x

1 1 x

x 1 1

It is easy to see that (A, ∗, 1) a self-distributive bitonic algebra.

We will consider the upper set of a as an element in a bitonic algebra A by

U(1, a) = {x ∈ A|1 ∗ (a ∗ x) = 1}

for each a ∈ A.

For the rest of the paper (A, ∗, 1) = A is given as a self-distributive bitonic algebra.

Proposition 4.1. For any a ∈ A, the upper set U(1, a) is a filter of A.

Proof. Let a ∈ A. Then by (B1), (B2) we have for all a ∈ A a ∗ 1 = 1 and 1 ∗ (a ∗ 1) = 1.

Therefore, 1 ∈ U(1, a). Now, let y ∈ U(1, a) and y ∗ x ∈ U(1, a) for any x, y ∈ A. Then we

have a ∗ y = 1 and a ∗ (y ∗ x) = 1. Since A is a self-distributive bitonic algebra we have

a ∗ (y ∗ x) = (a ∗ y) ∗ (a ∗ x) = 1 ∗ (a ∗ x) = (a ∗ x) = 1.

Therefore, x ∈ U(1, a). Hence we get U(1, a) is a filter of A. □

Proposition 4.2. Let B,C ⊆ A, then

(1) If B ⊆ C then U(1, C) ⊆ U(1, B),

(2) U(1, B ∪ C) = U(1, B) ∩ U(1, C),
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(3) U(1, B) ∪ U(1, C) ⊆ U(1, B ∩ C).

Proof. Let B,C ⊆ A.

(1) Let B ⊆ C and suppose that x ∈ U(1, C). So we have 1 ∗ (c ∗ x) = 1 and c ∗ x = 1

for all c ∈ C. But we know that B ⊆ C so every element of B is in C therefore,

b ∗ x = 1 ∗ (b ∗ x) = 1 for all b ∈ B ⊆ C. Therefore, x ∈ U(1, B) that is to say that

U(1, C) ⊆ U(1, B).

(2) We know that B ⊆ B∪C and C ⊆ B∪C, and by part 1 we have U(1, B∪C) ⊆ U(1, B)

and U(1, C). Then U(1, B ∪ C) ⊆ U(1, B) ∩ U(1, C).

Now, conversely, let x ∈ U(1, B) ∩ U(1, C). Then we have 1 ∗ (b ∗ x) = 1 that is

b ∗ x = 1 for all b ∈ B and similarly 1 ∗ (c ∗ x) = 1 that is (c ∗ x) = 1 for all c ∈ C.

Therefore, for any a ∈ B ∪ C we have a ∈ B or a ∈ C, and hence 1 ∗ (a ∗ x) = 1

that is (a ∗ x) = 1 for all a ∈ B ∪ C. And so we get x ∈ U(1, B ∪ C) gives us

U(1, B) ∩ U(1, C) ⊆ U(1, B ∪ C). Therefore, U(1, B ∪ C) = U(1, B) ∩ U(1, C).

(3) We have B ∩ C ⊆ B and B ∩ C ⊆ C and also by part 1 of this proposition we have

U(1, B) ⊆ U(1, B ∩ C) and U(1, C) ⊆ U(1, B ∩ C). Therefore, we get U(1, B) ∪

U(1, C) ⊆ U(1, B ∩ C).

□

Proposition 4.3. If B ̸= ∅ is a subset of A then, U(1, B) =
⋂

b∈B U(1, b).

Proof. Let B be a non-empty subset of a self-distributive bitonic algebra A. We have B =⋃
b∈B{b}, and by Proposition 4.2 (2) we have

U(1, B) = U(1,
⋃
b∈B

{b}) =
⋂
b∈B

U(1, b).

□

Proposition 4.4. If a ≤ b for any a, b ∈ A then U(1, a) ⊆ U(1, b).

Proof. Let x ∈ U(1, a). Then we get 1∗ (a∗x) = 1 that is a∗x = 1. And, by our assumption

we have a ≤ b and by Lemma 2.2 (1) (b ∗ x) ≤ (a ∗ x). Hence we get (b ∗ x) = 1 since

(a ∗ x) = 1. Therefore, x ∈ U(1, b). □

Definition 4.3. Let A be bitonic algebra (A, ∗, 1) that is self − distributive. Define a

relation ∼ on A as a ∼ b ⇔ U(1, a) = U(1, b).
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Lemma 4.3. The relation forms an equivalence relation on a bitonic algebra (A, ∗, 1) that

is self − distributive.

Lemma 4.4. For every a, b, c ∈ (A, ∗, 1)

a ∗ (b ∗ c) = b ∗ (a ∗ c).

Proof. Let a, b, c ∈ A. Then

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c),

and since b ≤ a ∗ b, (a ∗ b) ∗ (a ∗ c) ≤ b ∗ (a ∗ c). This implies a ∗ (b ∗ c) ≤ b ∗ (a ∗ c).

Interchanging the role of a and b, we can show b ∗ (a ∗ c) ≤ a ∗ (b ∗ c). Hence a ∗ (b ∗ c) =

b ∗ (a ∗ c). □

On the definition of upper set, since 1 ∗ a = a for every a ∈ A, we should define the upper

set by

U(a) = {x ∈ A | a ∗ x = 1}.

Definition 4.4. Let U(x) and U(y) be the upper sets of the bitonic algebra (A, ∗, 1) for all

x, y ∈ A. Then we can define ”♢” among the upper sets U(x) and U(y) as follow

U(x)♢U(y) = {z ∈ A|a♢b = z for all a ∈ U(x) and for all b ∈ U(y)}.

Then we can define the graph GU (A), where V (GU (A)) consists of the elements of U(A),

and two distinct elements U(a), U(b) ∈ U(A) are called adjacent if and only if U(a)♢U(b) =

{1}.

Example 4.4. Let A be the bitonic algebra given in Example 2.1. Then we can consider the

upper sets for every elements of A as given below.

U(1) = {1}, U(x) = {1, x}, U(y) = {1, y}, U(z) = {1, x, y, z}, U(w) = {1, x, y, w}.

Then, we can give the table of ♢ among these upper sets as follow.
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♢ U(1) U(x) U(y) U(z) U(w)

U(1) {1} {1} {1} {1} {1}

U(x) {1} {1, x} {1} {1, x} {1, x}

U(y) {1} {1} {1, y} {1, y} {1, y}

U(z) {1} {1, x} {1, y} {1, x, y, z} {1, x, y, w}

U(w) {1} {1, x} {1, y} {1, x, y} {1, x, y, w}

Then the graph GU (A), where V (GU (A)) consists of the elements of U(A) and two distinct

elements U(x), U(y) ∈ U(A) are called adjacent if and only if U(x)♢U(y) = {1} that we can

read from this table. Therefore, the adjacency matrix of the graph of GU (A) can be given as

follows:

Adj(GU (A))=

U(1) U(x) U(y) U(z) U(w)

U(1) 1 1 1 1 1

U(x) 1 0 1 0 0

U(y) 1 1 0 0 0

U(z) 1 0 0 0 0

U(w) 1 0 0 0 0

U(1)

U(x)

U(z)

U(y)

U(w)

�
�

� \
\

\�
�
�
�
�
�
�

B
B
B
B
B
B
B

Figure 5. The graph of the bitonic algebra A given in Example 2.1 with

the Hasse Diagram



352 S. AYAR OZBAL, R. POLAT, S. ESKIIZMIRLILER, AND M. KURT

Algorithm 5: Generating U(1, x) Upper Sets on a Bitonic Algebra

Data: (A, 1, *) Bitonic Algebra, * Operation Table

Result: (U(1, x) Upper Sets for all x ∈ A

1 initialization;

2 foreach x in A do

3 U(1, x)=null

4 foreach y in A do

5 if 1 * ( x * y ) = 1 then

6 add element y to U(1, x)

In Algorithm 5, the upper sets are examined according to the Definition 4.2 given for a

bitonic algebra. The input of this algorithm is a bitonic algebra. Here, according to the given

definition, the upper sets of every elements (except 1) are examined separately. Let x be the

element whose upper set is examined. In the algorithm, firstly an empty U(1, x) element is

created. Then, for every element y in the bitonic algebra given, the operation 1 ∗ (x ∗ y) is

calculated. If this is equivalent to 1, then y is assigned to the upper set U(1, x).

This algorithm is also coded in MS EXCEL programe in VBScript language and these

codes are given in Listing 5.

1

2 For a = 2 To m

3 ’the sets are written in a cell in EXCEL"

4 Cells(a, 37) = "U(1," & a & ") = "

5 counter = 0

6 For x = 1 To m

7 If m1(1, m1(a, x)) = 1 Then

8 If sayac <> 0 Then

9 Cells(a, 38) = Cells(a, 38) & "," & x

10 End If

11 If the counter = 0 Then

12 Cells(a, 38) = Cells(a, 38) & x

13 counter = counter + 1

14 End If
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15 End If

16 Next x

17 Next a

18

Listing 5. Codes for Algorithm 5

5. Conclusion and Future Works

In this work, firstly we evoke basic knowledge about bitonic algebras and graphs. Then,

algorithms are enhanced to check whether any given set is a bitonic algebra or not. These

algorithms check the properties or definitions given in preliminaries for a bitonic algebra

and additionally these algorithms are coded in VB-Script Language. In the third section,

with the help of the operators defined for bitonic algebras, the graphs based on bitonic

algebras are defined and some examples are stated. In recent years, the studies consider

the relations between algebraic structures and graphs gain very importance. A new point of

view is gained on daily life problems by graph modeling of theoretical findings in algebraic

structures. Additionally, the Sheffer Stroke Operation that reducts axiom systems of many

algebraic structures [30],[31], [29] and fuzzy concepts are used to study different notions of

algebraical systems [33]. Because of this reason, our work to search for the relationship

between bitonic algebra and different graph types continues based on this study. We will

consider fuzzy graphs of bitonic algebras and also extend our work to the graphs of Sheffer

stroke bitonic algebras.
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