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AFFINE TRANSLATION SURFACES WITH CONSTANT MEAN
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ABSTRACT. In this paper, we obtain classification results for spacelike affine translation
surfaces with constant mean curvature in three dimensional Minkowski space E3.
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1. INTRODUCTION

In 3-dimensional spaces, a regular surface parameterized as ¥(u,v) = (u, v, z(u,v)) is called

a translation surface if usually z(u,v) is of the form

2(u,v) = f(u) +g(v),

where f and g are differentiable functions of u and v, respectively. Scherk [10] discovered
the first non-trivial minimal translation surface in Euclidean 3-space E3, famously known as

the Scherk surface, and is given by

cos (cu)

Z(“)”) = 710g )

cos (cv)
where ¢(# 0) is a constant. Planes and Scherk surfaces are the only minimal translation

surfaces in E3. More than a century later, Liu proved that the circular cylinder is the only
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translation surface with non-zero constant mean curvature [5]. The study of constant mean
curvature translation surfaces has gathered significant attention. For some of the studies,
we refer the reader to see [3, 4, [5, 8, O, 12]. A natural extension of the translation surface
appears in the form of an affine translation surface, which is a surface parameterized by

U(u,v) = (u,v, z(u,v)), where now
2(u,v) = f(u) + glau +v),

and a(# 0) is a constant. Liu and Yu proved that the non-trivial minimal affine translation

surface in E? is given by

1 cos (bv'1 + a?u)
2(t,) = + log | <=0V ,
b cos (b(v + au))

where b(# 0) is a constant. This surface is known as the affine Scherk surface [7]. For other

related works on affine translation surfaces, we refer the reader to see [I, 2] 6], [11].

In connection to the non-zero constant mean curvature of affine translation surfaces, Liu and
Jung [6] obtained the classification results in E3. Now, a Minkowski space is one of the most
trivial indefinite space forms, and it marks its great significance as the trivial solution to the
vacuum Einstein Field Equations without a cosmological constant. Inspired by the previous
developments in the theory of constant mean curvature surfaces, we seek to classify spacelike

affine translation surfaces with constant mean curvature in Minkowski 3-space E3.

Consider W(u,v) to be a regular spacelike surface in Minkowski 3-space E3. The coefficients

of the 1% fundamental form E, F, G of ¥(u,v) are given by
E=(Wy, Uy), F = (Vy, Uy), G = (o, Uy,

and the coefficients of the 2"? fundamental form L, M, N of ¥(u,v) are given by
L= (Wyu, ), M = (Yo, 1), N = (W, 1),

where 7 is the unit normal vector and (x, *) = du? + dv? — dz? is the Minkowski metric. The

mean curvature H of the surface W (u,v) is given by

_ EN-2FM+GL
Hiwv) == Ba—m)

(1.1)

For a spacelike surface ¥(u,v) in E$, we have EG — F? > 0, and for a timelike surfaces
EG — F? < 0. In regards to the regular surface ¥(u,v) embedded in E3, following two types

of affine translation surfaces exist:
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(i) Affine translation surface of type 1:

U(u,v) = (u,v, z(u,v)) (1.2)

such that

z(u,v) = f(u) + glau + v). (1.3)

(ii) Affine translation surface of type 2:

U (u,v) = (u(v, 2),v,2) (1.4)

such that

u(v, z) = h(v) + t(bv + 2), (1.5)

where a(# 0), b(# 0) are constants and f, g, h,t are smooth functions. We note that whenever

a =0 or b= 0, affine translation surfaces reduce simply to translation surfaces.

2. AFFINE TRANSLATION SURFACES WITH NON-ZERO CONSTANT MEAN CURVATURE

Theorem 2.1. Let VU (u,v) = (u,v,z(u,v)) be a spacelike affine translation surface of type 1

in B3, If U(u,v) has a non-zero constant mean curvature, then z(u,v) is given by

Vit+aZ -2
2H(1 + a2)

2(u,v) = £ \/1+a2+4H2(bauv)2+<u_av>c+p

1+a?

such that ¢ < 1+ a?; or

V1—c?

o7 \/1+4H2(b—u)2+q

z(u,v) =cv+
such that ¢* < 1; where a,b, c,p,q are all constants.
Proof. We know that the mean curvature of a spacelike surface ¥ (u,v) = (u, v, z(u,v)) in E3
is given by

H(u,v) = (Zg - 1)ZW Pt © (Zg — 1)zuu, (2.6)

2(1 — 22— ZUQ)%
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where z,, z, denotes partial differentiation of z w.r.t. u and v, respectively. We obtain the

following partial derivatives of z(u,v) from ([1.3)

2y = f, + ag’,
By = g/7
Zyu = f” + CLQQ,/, (27)
Zvy = g//7
Zuy = agll,
\
,_ df ,_ dyg : : .
where [/ = T and ¢’ = e for £ = au + v. Using (2.7) in (2.6)), gives us
u x
_f// _ (1 _|_a2)g// + (g/2f// + f/29//) _ 2HT3, (2.8)

where 7% =1 — (f' + a,g’)2 — ¢'* and H(+0) is a constant. Eqn (2.8)) writes as
—(1=g)f" = (1+a® = f*)g" = 2HT". (2.9)

Now, we have the following two cases:

Case I. When f” = 0, we have f’ = ¢, where ¢ is a constant. Substituting f' = ¢ in (2.9))

gives us

Njw

~(1+a? =) =2H 1= (c+ag)* - g7 (2.10)
Thus, we have

2H (1 +a?)2
C14a2-c2

" __

14 a? —¢? ac \?|?
5 — (g’+ ) . (2.11)
(1+a?)

Making the following substitutions in (2.11]

3
2H (14 a?)? 1+a2—¢2
e L N & it
14+a%—¢? 1+a? (1+ a?)

results in

7

J = —a. (2.12)
[72 —(g'+ 5)2]

Integrating (2.12)) and isolating the expression for ¢’ gives us

Wl

s e —an)

- _ B, (2.13)
\/1 +44(e1 — az)?
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where ¢ is a constant. By integrating (2.13)), we obtain

1
g(x) = iCW\/l +44(e1 — ax)? — B + e,

where ¢y is a constant. Substituting the values of «, 5 and « in (2.14)) gives us

\/1+a2—02\/ 2 ac
=T T O a4 AH2 (e — 1) — [ —
g(x) 2H(1 n a2) + a2+ (c3 —x) <1 n a2> T+ co,

where c3 is a constant. Also, f = ¢ gives us

flu) = cu+cy,

where ¢4 is a constant. Thus from (1.3), (2.15]) and (2.16|), we have

V1+a2—c2
2H (1 + a?)

L(uzavy
— e
1+ a2 Py

where p is a constant and ¢ < 1 + a?.

2(u,v) =+ \/1+a2—|—4H2(03—au—v)2

Case II. When f” # 0. Differentiating ([2.9) w.r.t. u gives us

(1 _ g/2>f/// + (1 +a2— f/2)ag/// _ 2(f, + ag’)g”f”

_ —GHT[(f/ + ag/) (f// + GQQN) + ag/g//]'
Now, differentiating w.r.t. v gives us

(1 + a — f/2)g/// _ 2g/g//f// _ —GHT[(f/ + ag’)ag" + g/ //]

Eqn’s (2.18) and ([2.19)) yield

(1 _ g/Z)f/// _ 2f/f//g// _ —6HT(f/ + ag’)f".

Substituting the value of ¢” from (2.9)) in (2.20]), we have

2HT? — (1 — g'2)]

12\ et 1 el
(1=g")f" —2f'f (1+a2—f’2)

Thus, we obtain

(L=g®) [(1+a> = )7+ 20 )

=—2HT [3(f/ + ag/) (1 + a? — f’2) _ 2T2f/:| f”-

= —6HT(f’ + ag’)f”.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Squaring both sides of ([2.22) and substituting the value of T2 gives us

(1- 9/2)2 [(1 +a? — f’z)f'// + 2f/f”2r
= 4H? [1 = (f'+ ag)’ — "]

x [3(f’ +ag)(1+a>— ) —2{1— (f' +ag)’ - g’Q}f’rf”Q. (2.23)

We notice that the above expression can be expanded as a polynomial in the powers of ¢'.
The coefficients of ¢’ in the above expression are functions of u, and the expression itself is
identically zero, so each term must be zero. But, the coefficient of ¢’ with the highest degree,
ie., 6in (2.23), is —16H*(1 + a2)3f’2f”2, which is non-zero. Thus, it follows that ¢’ is a

constant (Liu and Jung have used the same argument in [6]). Substituting ¢’ = ¢ in (2.9))

yields
V1_c2
() = v+ YA \/1 FAH2(b—u)’ 4 q, (2.24)
where b, ¢, g are constants and ¢ < 1. Thus, the proof of the theorem is complete. O

Theorem 2.2. Let (v, z) = (u(v, 2),v, z) be a spacelike affine translation surface of type 2

in B3. If U(v, 2) has a non-zero constant mean curvature, then u(v,z) is given by

V1—0%+ 2 5 5 v+ bz
u(v,z)-:l:2H(1_b2 \/4H a—bv—z) —(1—b)+<1b2)c+p,

such that 1 — b > 0; or

\/1+c \/4H2

u(v, z) = a—v) —1+cz+q,

where a, b, c,p,q are all constants.

Proof. The mean curvature H (v, z) of a spacelike surface 7(v,2) = (u(v, 2),v,2) in E3 is
given by

H(v,z) = (u% * 1)uzz — 2ttztiv: £ (ug — 1)%”7 (2.25)

2(ug —u2 — 1)%
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where u,, u, denotes partial differentiation of u w.r.t. v and z, respectively. We obtain the

following partial derivatives of u(v, z) from ([1.5)

;

Uy = W' + bt/
u, =t
Uyy = h" + th//7

a4
uZZ_t7

Uy, = bt

where h' = dh and t' = di
dv Y

W+ (1 B bz)t” + (t/Qh// + h/zt”) _ 2HT3,

where T2 = /% — (R + bt’)2 — 1 and H(# 0) is a constant. Eqn (2.27) writes as

(= 1+ )R+ (1 - 6>+ )" = 2HT?,
Now, we have the following two cases:

Case 1. When b/ = ¢ is a constant. It follows from ([2.28))
3
2

(1= 82+ A" =20 |12 = (c+0t)* - 1
Thus, we have

3
2

_ 2H(1-10?)

t
7 for y = bv + z. Using (2.26)) in (2.25)), gives us

t//—
1—0%+¢2

v be 2_1—1)24-02

1 — b2 (1 _ b2)2
Making the following substitutions in ([2.30))

3

2H (1 —b?)2

C
= pye PTTiop =

results in

t//

5 = Q.
o]
Integrating (2.31)) and isolating the expression for ¢ gives us
v Vla—ay)
Ve —ap)? - 1

where ¢ is a constant. Thereby integrating (2.32)), we obtain

B,

1
t(y) = jEf\/VAL(Cl —ay)® =1 By +c,
ary

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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where ¢ is a constant. Substituting the values of «, § and ~ in (2.33) gives us

1 — 2 2
\/ b* + ¢ \/4H203—
2H 1—b2

t(y) = (1 — b2) Y+ co.

1-— b2
Also, h' = c gives us
h(v) = cv + ¢4,
where ¢4 is a constant. Thus, from (1.5, (2.34]) and (2.35)), we have
V1—02+c2

u(v,z) =+ 2H(1—62 \/4[—[ 03—bv—z) — (1-1?)

v+ bz
+ (1_1)2> C+p,

Case II. When h” # 0. Differentiating ([2.28]) w.r.t. v gives us

where p is a constant.

(= 1+ 3R + (1= + K)ot + 2(h + bt') "t
=6HT [bt't" — (B +bt') (W + b°t")].
Now, differentiating w.r.t. z gives us
(1= 0%+ W) 4 20"t = 6HT [t — (W + bt')bt"].
Equ’s and (2:38) yield
(= L+ ¢V + 20’ W't = —6HT (I + bt')h".

Substituting the value of ¢’ from (2.28) in (2.39), we have

2HT® — (—1+1t7)
(1—b2+n?)

(= 1+ t*)h" 4 21" = —GHT (K +bt')h".

Thus, we obtain
(—1+17) [(1 — b+ )R~ 2h’h”2}
= 2HT [-3( +bt') (1= 1+ /%) — 27| "
Squaring both sides of and substituting the value of T2 gives us
(—1+¢%)° (1= 0%+ )" — 2 ’
=4 [¢* = (1 + 0t - 1]

s [B( 40 (L= 8 4 %) 2 — (1 b)) — 1] m
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(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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The coefficient of #/® in (2.42) is 16H2(1 — bz)3h’ 2/ which is non-zero and the concluding

argument in Theorem results in ¢ being constant. Substituting ¢’ = ¢ in (2.28)) yields

B i\/l—l—CQ

u(v, 2) 5H

\/4H2(a—v)2 —1+cz+yq,
where a, ¢, ¢ is a constant. Thus, the proof of the theorem is complete.

3. MAXIMAL AFFINE TRANSLATION SURFACES

(2.43)

O

Theorem 3.1. Let VU (u,v) = (u,v, z(u,v)) be a mazimal affine translation surface of type 1

in B3. Then, U(u,v) is either a planar surface or z(u,v) is given by

1 cosh [cx/ 1+ a2u+ cl]

_—
2(u,v) ¢ 8| cosh [c(au + v) + ]

€3,
where a, ¢, c1, ¢, c3 are constants and ¢ # 0.
Proof. Taking H =0 in gives us

~(1=g®) )" = (14 a = f)g" =0,
which writes as

f// _ g//

l+a2—f% 1-g%

)

where A is a constant and (1 +a? — f’Q) (1 _ g’2> £ 0.
Depending on A, we have the following 2 cases:

Case I. A =0, gives us

which leads to a planar surface in [E3.

Case II. \ 75 0, gives us
1
f(u) = =log ‘2cosh [cmu + 01] ‘ + ¢,
c
-1
g(au+v) = — log ‘2 cosh [c(au +v) + Cz] ’ + ¢4,
c

where a, ¢, c1, c2, c3, c4 are constants. Thus, we have

1 cosh [C\/ 1+ a?u+ 01]
z(u,v) = —log +p,
c cosh [c(au + v) + c2]

where ¢ # 0 and p is a constant. Thus, the proof of the theorem is complete.

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)
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Theorem 3.2. Let ¥ (v, z) = (u(v, 2),v, 2) be a mazimal generalized affine translation surface

of type 2 in E3. Then, ¥(v,z) is either a planar surface or u(v,z) is given by

1
u(v,z) = =lo
c

coS [C\/ 1—0b%v+ cl]
& cosh [e(bv + 2) + c2]

+ c3, v <1

or

1

u(v,z) = —log
c

cosh [cx/ b2 — 1v + cl]

+e3, b2 >1;
cosh [c(bv + 2) + 3] ’

where b, ¢, c1, co, c3 are constants and ¢ # 0.
Proof. For H = 0, it follows from
(= 1+ )"+ (1= 02+ W)t = 0. (3.50)
Thus, we have
—h" t”

- — 3.51
1— b2+ B2 142 ( )

where ) is a constant and (1 — b+ h’2> <—1 + t’2> # 0. A = 0 leads to a planar surface in

E3 and when \ # 0, we have the following cases:

Case I. If b? < 1; (3.51)) yields

u(v, z) = h(v) + t(bv + 2),

1 1—b%v+
~ g cos [ev/T = B20 + ¢4 t s, (3.52)
c cosh [c(bv + 2) + 3]
where b, ¢, c1, co, c3 are constants and ¢ # 0.
Case II. If b* > 1; (3.51)) yields
u(v, z) = h(v) + t(bv + 2),
1 h [evb? — 1
T cosh [ev/BZ — v + ¢4 b, (3.53)
c cosh [c(bv + 2) + 3]

where b, ¢, c1, ca, c3 are constants and ¢ # 0. Thus, the proof of the theorem is complete. [J
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