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Abstract. In this paper, we obtain classification results for spacelike affine translation

surfaces with constant mean curvature in three dimensional Minkowski space E3
1.
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1. Introduction

In 3-dimensional spaces, a regular surface parameterized as Ψ(u, v) = (u, v, z(u, v)) is called

a translation surface if usually z(u, v) is of the form

z(u, v) = f(u) + g(v),

where f and g are differentiable functions of u and v, respectively. Scherk [10] discovered

the first non-trivial minimal translation surface in Euclidean 3-space E3, famously known as

the Scherk surface, and is given by

z(u, v) =
1

c
log

∣∣∣∣cos (cu)cos (cv)

∣∣∣∣ ,
where c(̸= 0) is a constant. Planes and Scherk surfaces are the only minimal translation

surfaces in E3. More than a century later, Liu proved that the circular cylinder is the only
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translation surface with non-zero constant mean curvature [5]. The study of constant mean

curvature translation surfaces has gathered significant attention. For some of the studies,

we refer the reader to see [3, 4, 5, 8, 9, 12]. A natural extension of the translation surface

appears in the form of an affine translation surface, which is a surface parameterized by

Ψ(u, v) = (u, v, z(u, v)), where now

z(u, v) = f(u) + g(au+ v),

and a( ̸= 0) is a constant. Liu and Yu proved that the non-trivial minimal affine translation

surface in E3 is given by

z(u, v) =
1

b
log

∣∣∣∣∣cos (b
√
1 + a2u)

cos (b(v + au))

∣∣∣∣∣,
where b(̸= 0) is a constant. This surface is known as the affine Scherk surface [7]. For other

related works on affine translation surfaces, we refer the reader to see [1, 2, 6, 11].

In connection to the non-zero constant mean curvature of affine translation surfaces, Liu and

Jung [6] obtained the classification results in E3. Now, a Minkowski space is one of the most

trivial indefinite space forms, and it marks its great significance as the trivial solution to the

vacuum Einstein Field Equations without a cosmological constant. Inspired by the previous

developments in the theory of constant mean curvature surfaces, we seek to classify spacelike

affine translation surfaces with constant mean curvature in Minkowski 3-space E3
1.

Consider Ψ(u, v) to be a regular spacelike surface in Minkowski 3-space E3
1. The coefficients

of the 1st fundamental form E,F,G of Ψ(u, v) are given by

E = ⟨Ψu,Ψu⟩, F = ⟨Ψu,Ψv⟩, G = ⟨Ψv,Ψv⟩,

and the coefficients of the 2nd fundamental form L,M,N of Ψ(u, v) are given by

L = ⟨Ψuu, n̂⟩,M = ⟨Ψuv, n̂⟩, N = ⟨Ψvv, n̂⟩,

where n̂ is the unit normal vector and ⟨∗, ∗⟩ = du2+ dv2− dz2 is the Minkowski metric. The

mean curvature H of the surface Ψ(u, v) is given by

H(u, v) =
EN − 2FM +GL

2
(
EG− F 2)

. (1.1)

For a spacelike surface Ψ(u, v) in E3
1, we have EG − F 2 > 0, and for a timelike surfaces

EG−F 2 < 0. In regards to the regular surface Ψ(u, v) embedded in E3
1, following two types

of affine translation surfaces exist:
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(i) Affine translation surface of type 1:

Ψ(u, v) = (u, v, z(u, v)) (1.2)

such that

z(u, v) = f(u) + g(au+ v). (1.3)

(ii) Affine translation surface of type 2:

Ψ(u, v) = (u(v, z), v, z) (1.4)

such that

u(v, z) = h(v) + t(bv + z), (1.5)

where a( ̸= 0), b(̸= 0) are constants and f, g, h, t are smooth functions. We note that whenever

a = 0 or b = 0, affine translation surfaces reduce simply to translation surfaces.

2. Affine translation surfaces with non-zero constant mean curvature

Theorem 2.1. Let Ψ(u, v) = (u, v, z(u, v)) be a spacelike affine translation surface of type 1

in E3
1. If Ψ(u, v) has a non-zero constant mean curvature, then z(u, v) is given by

z(u, v) = ±
√
1 + a2 − c2

2H
(
1 + a2

) √
1 + a2 + 4H2(b− au− v)2 +

(
u− av

1 + a2

)
c+ p

such that c2 < 1 + a2; or

z(u, v) = cv ±
√
1− c2

2H

√
1 + 4H2(b− u)2 + q

such that c2 < 1; where a, b, c, p, q are all constants.

Proof. We know that the mean curvature of a spacelike surface Ψ(u, v) = (u, v, z(u, v)) in E3
1

is given by

H(u, v) =

(
z2u − 1

)
zvv − 2zuzvzuv +

(
z2v − 1

)
zuu

2
(
1− zu2 − zv2

) 3
2

, (2.6)
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where zu, zv denotes partial differentiation of z w.r.t. u and v, respectively. We obtain the

following partial derivatives of z(u, v) from (1.3)

zu = f ′ + ag′,

zv = g′,

zuu = f ′′ + a2g′′,

zvv = g′′,

zuv = ag′′,

(2.7)

where f ′ =
df

du
and g′ =

dg

dx
for x = au+ v. Using (2.7) in (2.6), gives us

−f ′′ −
(
1 + a2

)
g′′ +

(
g′

2
f ′′ + f ′2g′′

)
= 2HT 3, (2.8)

where T 2 = 1−
(
f ′ + ag′

)2 − g′2 and H (̸= 0) is a constant. Eqn (2.8) writes as

−
(
1− g′

2)
f ′′ −

(
1 + a2 − f ′2)g′′ = 2HT 3. (2.9)

Now, we have the following two cases:

Case I. When f ′′ = 0, we have f ′ = c, where c is a constant. Substituting f ′ = c in (2.9)

gives us

−
(
1 + a2 − c2

)
g′′ = 2H

[
1−

(
c+ ag′

)2 − g′
2
] 3

2
. (2.10)

Thus, we have

g′′ = −
2H

(
1 + a2

) 3
2

1 + a2 − c2

[
1 + a2 − c2(
1 + a2

)2 −
(
g′ +

ac

1 + a2

)2
] 3

2

. (2.11)

Making the following substitutions in (2.11)

α =
2H

(
1 + a2

) 3
2

1 + a2 − c2
, β =

ac

1 + a2
and γ2 =

1 + a2 − c2(
1 + a2

)2 ,

results in

g′′[
γ2 −

(
g′ + β

)2] 3
2

= −α. (2.12)

Integrating (2.12) and isolating the expression for g′ gives us

g′ = ± γ3(c1 − αx)√
1 + γ4(c1 − αx)2

− β, (2.13)
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where c1 is a constant. By integrating (2.13), we obtain

g(x) = ± 1

αγ

√
1 + γ4(c1 − αx)2 − βx+ c2, (2.14)

where c2 is a constant. Substituting the values of α, β and γ in (2.14) gives us

g(x) = ±
√
1 + a2 − c2

2H
(
1 + a2

) √
1 + a2 + 4H2(c3 − x)2 −

(
ac

1 + a2

)
x+ c2, (2.15)

where c3 is a constant. Also, f ′ = c gives us

f(u) = cu+ c4, (2.16)

where c4 is a constant. Thus from (1.3), (2.15) and (2.16), we have

z(u, v) =±
√
1 + a2 − c2

2H
(
1 + a2

) √
1 + a2 + 4H2(c3 − au− v)2

+

(
u− av

1 + a2

)
c+ p, (2.17)

where p is a constant and c2 < 1 + a2.

Case II. When f ′′ ̸= 0. Differentiating (2.9) w.r.t. u gives us

(
1− g′

2)
f ′′′ +

(
1 + a2 − f ′2)ag′′′ − 2

(
f ′ + ag′

)
g′′f ′′

= −6HT
[(
f ′ + ag′

)(
f ′′ + a2g′′

)
+ ag′g′′

]
. (2.18)

Now, differentiating (2.9) w.r.t. v gives us

(
1 + a2 − f ′2)g′′′ − 2g′g′′f ′′ = −6HT

[(
f ′ + ag′

)
ag′′ + g′g′′

]
. (2.19)

Eqn’s (2.18) and (2.19) yield

(
1− g′

2)
f ′′′ − 2f ′f ′′g′′ = −6HT

(
f ′ + ag′

)
f ′′. (2.20)

Substituting the value of g′′ from (2.9) in (2.20), we have

(
1− g′

2)
f ′′′ − 2f ′f ′′

[
2HT 3 −

(
1− g′2

)(
1 + a2 − f ′2

) ]
= −6HT

(
f ′ + ag′

)
f ′′. (2.21)

Thus, we obtain

(
1− g′

2) [(
1 + a2 − f ′2)f ′′′ + 2f ′f ′′2

]
= −2HT

[
3
(
f ′ + ag′

)(
1 + a2 − f ′2)− 2T 2f ′

]
f ′′. (2.22)
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Squaring both sides of (2.22) and substituting the value of T 2 gives us

(
1− g′

2)2[(
1 + a2 − f ′2)f ′′′ + 2f ′f ′′2

]2
= 4H2

[
1− (f ′ + ag′)

2 − g′
2
]

×
[
3
(
f ′ + ag′

)(
1 + a2 − f ′2)− 2

{
1−

(
f ′ + ag′

)2 − g′
2}

f ′
]2

f ′′2. (2.23)

We notice that the above expression can be expanded as a polynomial in the powers of g′.

The coefficients of g′ in the above expression are functions of u, and the expression itself is

identically zero, so each term must be zero. But, the coefficient of g′ with the highest degree,

i.e., 6 in (2.23), is −16H2(1 + a2)
3
f ′2f ′′2, which is non-zero. Thus, it follows that g′ is a

constant (Liu and Jung have used the same argument in [6]). Substituting g′ = c in (2.9)

yields

z(u, v) = cv ±
√
1− c2

2H

√
1 + 4H2(b− u)2 + q, (2.24)

where b, c, q are constants and c2 < 1. Thus, the proof of the theorem is complete. □

Theorem 2.2. Let Ψ(v, z) = (u(v, z), v, z) be a spacelike affine translation surface of type 2

in E3
1. If Ψ(v, z) has a non-zero constant mean curvature, then u(v, z) is given by

u(v, z) = ±
√
1− b2 + c2

2H
(
1− b2

) √
4H2

(
a− bv − z

)2 − (
1− b2

)
+

(
v + bz

1− b2

)
c+ p,

such that 1− b2 > 0; or

u(v, z) = ±
√
1 + c2

2H

√
4H2(a− v)2 − 1 + cz + q,

where a, b, c, p, q are all constants.

Proof. The mean curvature H(v, z) of a spacelike surface r(v, z) = (u(v, z), v, z) in E3
1 is

given by

H(v, z) =

(
u2v + 1

)
uzz − 2uvuzuvz +

(
u2z − 1

)
uvv

2
(
u2z − u2v − 1

) 3
2

, (2.25)
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where uv, uz denotes partial differentiation of u w.r.t. v and z, respectively. We obtain the

following partial derivatives of u(v, z) from (1.5)

uv = h′ + bt′,

uz = t′,

uvv = h′′ + b2t′′,

uzz = t′′,

uvz = bt′′,

(2.26)

where h′ =
dh

dv
and t′ =

dt

dy
for y = bv + z. Using (2.26) in (2.25), gives us

−h′′ +
(
1− b2

)
t′′ +

(
t′
2
h′′ + h′

2
t′′
)
= 2HT 3, (2.27)

where T 2 = t′2 −
(
h′ + bt′

)2 − 1 and H (̸= 0) is a constant. Eqn (2.27) writes as(
− 1 + t′

2)
h′′ +

(
1− b2 + h′

2)
t′′ = 2HT 3, (2.28)

Now, we have the following two cases:

Case I. When h′ = c is a constant. It follows from (2.28)(
1− b2 + c2

)
t′′ = 2H

[
t′
2 −

(
c+ bt′

)2 − 1
] 3

2
. (2.29)

Thus, we have

t′′ =
2H

(
1− b2

) 3
2

1− b2 + c2

[(
t′ − bc

1− b2

)2

− 1− b2 + c2(
1− b2

)2
] 3

2

. (2.30)

Making the following substitutions in (2.30)

α =
2H

(
1− b2

) 3
2

1− b2 + c2
, β = − bc

1− b2
and γ2 =

1− b2 + c2(
1− b2

)2 ,

results in

t′′[(
t′ + β

)2 − γ2
] 3

2

= α. (2.31)

Integrating (2.31) and isolating the expression for t′ gives us

t′ = ± γ3(c1 − αy)√
γ4(c1 − αy)2 − 1

− β, (2.32)

where c1 is a constant. Thereby integrating (2.32), we obtain

t(y) = ± 1

αγ

√
γ4(c1 − αy)2 − 1− βy + c2, (2.33)
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where c2 is a constant. Substituting the values of α, β and γ in (2.33) gives us

t(y) = ±
√
1− b2 + c2

2H
(
1− b2

) √
4H2(c3 − y)2 −

(
1− b2

)
+

bc

1− b2
y + c2. (2.34)

Also, h′ = c gives us

h(v) = cv + c4, (2.35)

where c4 is a constant. Thus, from (1.5), (2.34) and (2.35), we have

u(v, z) =±
√
1− b2 + c2

2H
(
1− b2

) √
4H2

(
c3 − bv − z

)2 − (
1− b2

)
+

(
v + bz

1− b2

)
c+ p, (2.36)

where p is a constant.

Case II. When h′′ ̸= 0. Differentiating (2.28) w.r.t. v gives us(
− 1 + t′

2)
h′′′ +

(
1− b2 + h′

2)
bt′′′ + 2

(
h′ + bt′

)
h′′t′′

= 6HT
[
bt′t′′ −

(
h′ + bt′

)(
h′′ + b2t′′

)]
. (2.37)

Now, differentiating (2.28) w.r.t. z gives us(
1− b2 + h′

2)
t′′′ + 2h′′t′t′′ = 6HT

[
t′t′′ −

(
h′ + bt′

)
bt′′

]
. (2.38)

Eqn’s (2.37) and (2.38) yield(
− 1 + t′

2)
h′′′ + 2h′h′′t′′ = −6HT

(
h′ + bt′

)
h′′. (2.39)

Substituting the value of t′′ from (2.28) in (2.39), we have

(
− 1 + t′

2)
h′′′ + 2h′h′′

[
2HT 3 −

(
− 1 + t′2

)(
1− b2 + h′2

) ]
= −6HT

(
h′ + bt′

)
h′′. (2.40)

Thus, we obtain (
− 1 + t′

2) [(
1− b2 + h′

2)
h′′′ − 2h′h′′

2
]

= 2HT
[
−3

(
h′ + bt′

)(
1− b2 + h′

2)− 2T 2h′
]
h′′ (2.41)

Squaring both sides of (2.41) and substituting the value of T 2 gives us(
− 1 + t′

2)2[(
1− b2 + h′

2)
h′′′ − 2h′h′′

2
]2

= 4H2
[
t′
2 −

(
h′ + bt′

)2 − 1
]

×
[
−3

(
h′ + bt′

)(
1− b2 + h′

2)− 2
{
t′
2 −

(
h′ + bt′

)2 − 1
}
h′
]2

h′′
2
. (2.42)
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The coefficient of t′6 in (2.42) is 16H2(1− b2)
3
h′2h′′2, which is non-zero and the concluding

argument in Theorem 2.1 results in t′ being constant. Substituting t′ = c in (2.28) yields

u(v, z) = ±
√
1 + c2

2H

√
4H2(a− v)2 − 1 + cz + q, (2.43)

where a, c, q is a constant. Thus, the proof of the theorem is complete. □

3. Maximal affine translation surfaces

Theorem 3.1. Let Ψ(u, v) = (u, v, z(u, v)) be a maximal affine translation surface of type 1

in E3
1. Then, Ψ(u, v) is either a planar surface or z(u, v) is given by

z(u, v) =
1

c
log

∣∣∣∣∣cosh
[
c
√
1 + a2u+ c1

]
cosh

[
c(au+ v) + c2

] ∣∣∣∣∣+ c3,

where a, c, c1, c2, c3 are constants and c ̸= 0.

Proof. Taking H = 0 in (2.9) gives us

−
(
1− g′

2)
f ′′ −

(
1 + a2 − f ′2)g′′ = 0, (3.44)

which writes as

f ′′

1 + a2 − f ′2 =
−g′′

1− g′2
= λ, (3.45)

where λ is a constant and
(
1 + a2 − f ′2

)(
1− g′2

)
̸= 0.

Depending on λ, we have the following 2 cases:

Case I. λ = 0, gives us

f ′′ = 0, g′′ = 0, (3.46)

which leads to a planar surface in E3
1.

Case II. λ ̸= 0, gives us

f(u) =
1

c
log

∣∣∣2 cosh [c√1 + a2u+ c1
]∣∣∣+ c3, (3.47)

g(au+ v) =
−1

c
log

∣∣∣2 cosh [c(au+ v) + c2
]∣∣∣+ c4, (3.48)

where a, c, c1, c2, c3, c4 are constants. Thus, we have

z(u, v) =
1

c
log

∣∣∣∣∣cosh
[
c
√
1 + a2u+ c1

]
cosh

[
c(au+ v) + c2

] ∣∣∣∣∣+ p, (3.49)

where c ̸= 0 and p is a constant. Thus, the proof of the theorem is complete. □
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Theorem 3.2. Let Ψ(v, z) = (u(v, z), v, z) be a maximal generalized affine translation surface

of type 2 in E3
1. Then, Ψ(v, z) is either a planar surface or u(v, z) is given by

u(v, z) =
1

c
log

∣∣∣∣∣ cos
[
c
√
1− b2v + c1

]
cosh

[
c(bv + z) + c2

]∣∣∣∣∣+ c3, b2 < 1

or

u(v, z) =
1

c
log

∣∣∣∣∣cosh
[
c
√
b2 − 1v + c1

]
cosh

[
c(bv + z) + c2

] ∣∣∣∣∣+ c3, b2 > 1;

where b, c, c1, c2, c3 are constants and c ̸= 0.

Proof. For H = 0, it follows from (2.28)

(
− 1 + t′

2)
h′′ +

(
1− b2 + h′

2)
t′′ = 0. (3.50)

Thus, we have

−h′′

1− b2 + h′2
=

t′′

−1 + t′2
= λ, (3.51)

where λ is a constant and
(
1− b2 + h′2

)(
−1 + t′2

)
̸= 0. λ = 0 leads to a planar surface in

E3
1 and when λ ̸= 0, we have the following cases:

Case I. If b2 < 1; (3.51) yields

u(v, z) = h(v) + t(bv + z),

=
1

c
log

∣∣∣∣∣ cos
[
c
√
1− b2v + c1

]
cosh

[
c(bv + z) + c2

]∣∣∣∣∣+ c3, (3.52)

where b, c, c1, c2, c3 are constants and c ̸= 0.

Case II. If b2 > 1; (3.51) yields

u(v, z) = h(v) + t(bv + z),

=
1

c
log

∣∣∣∣∣cosh
[
c
√
b2 − 1v + c1

]
cosh

[
c(bv + z) + c2

] ∣∣∣∣∣+ c3, (3.53)

where b, c, c1, c2, c3 are constants and c ̸= 0. Thus, the proof of the theorem is complete. □
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