

International Journal of Maps in Mathematics

Volume 7, Issue 2, 2024, Pages:324-334 E-ISSN: 2636-7467 www.journalmim.com

AFFINE TRANSLATION SURFACES WITH CONSTANT MEAN CURVATURE IN MINKOWSKI 3-SPACE

MOHAMD SALEEM LONE \mathbf{D}^* , FURQAN SHABIR \mathbf{D} , AND MEHRAJ AHMAD LONE \mathbf{D}

Abstract. In this paper, we obtain classification results for spacelike affine translation surfaces with constant mean curvature in three dimensional Minkowski space \mathbb{E}^3_1 . Keywords: Minkowski 3-space, affine translation surface, mean curvature, spacelike surface.

2010 Mathematics Subject Classification: 53A05; 53A10; 53C42.

1. INTRODUCTION

In 3-dimensional spaces, a regular surface parameterized as $\Psi(u, v) = (u, v, z(u, v))$ is called a translation surface if usually $z(u, v)$ is of the form

$$
z(u, v) = f(u) + g(v),
$$

where f and q are differentiable functions of u and v, respectively. Scherk [\[10\]](#page-10-0) discovered the first non-trivial minimal translation surface in Euclidean 3-space \mathbb{E}^3 , famously known as the Scherk surface, and is given by

$$
z(u, v) = \frac{1}{c} \log \left| \frac{\cos (cu)}{\cos (cv)} \right|,
$$

where $c(\neq 0)$ is a constant. Planes and Scherk surfaces are the only minimal translation surfaces in \mathbb{E}^3 . More than a century later, Liu proved that the circular cylinder is the only

Received:2024.04.15 Revised:2024.06.29 Accepted:2024.07.10

[∗] Corresponding author

Mohamd Saleem Lone \diamond saleemraja2008@gmail.com \diamond https://orcid.org/0000-0001-5833-3594 Furqan Shabir ⋄ furqanshabir619@gmail.com ⋄ https://orcid.org/0009-0009-9051-346X Mehraj Ahmad Lone ◇ mehraj.jmi@gmail.com ◇ https://orcid.org/0000-0002-4764-9224.

translation surface with non-zero constant mean curvature [\[5\]](#page-10-1). The study of constant mean curvature translation surfaces has gathered significant attention. For some of the studies, we refer the reader to see $[3, 4, 5, 8, 9, 12]$ $[3, 4, 5, 8, 9, 12]$ $[3, 4, 5, 8, 9, 12]$ $[3, 4, 5, 8, 9, 12]$ $[3, 4, 5, 8, 9, 12]$ $[3, 4, 5, 8, 9, 12]$. A natural extension of the translation surface appears in the form of an affine translation surface, which is a surface parameterized by $\Psi(u, v) = (u, v, z(u, v))$, where now

$$
z(u, v) = f(u) + g(au + v),
$$

and $a(\neq 0)$ is a constant. Liu and Yu proved that the non-trivial minimal affine translation surface in \mathbb{E}^3 is given by

$$
z(u, v) = \frac{1}{b} \log \left| \frac{\cos (b\sqrt{1 + a^2}u)}{\cos (b(v + au))} \right|,
$$

where $b(\neq 0)$ is a constant. This surface is known as the affine Scherk surface [\[7\]](#page-10-7). For other related works on affine translation surfaces, we refer the reader to see [\[1,](#page-10-8) [2,](#page-10-9) [6,](#page-10-10) [11\]](#page-10-11).

In connection to the non-zero constant mean curvature of affine translation surfaces, Liu and Jung [\[6\]](#page-10-10) obtained the classification results in \mathbb{E}^3 . Now, a Minkowski space is one of the most trivial indefinite space forms, and it marks its great significance as the trivial solution to the vacuum Einstein Field Equations without a cosmological constant. Inspired by the previous developments in the theory of constant mean curvature surfaces, we seek to classify spacelike affine translation surfaces with constant mean curvature in Minkowski 3-space \mathbb{E}^3_1 .

Consider $\Psi(u, v)$ to be a regular spacelike surface in Minkowski 3-space \mathbb{E}_1^3 . The coefficients of the 1st fundamental form E, F, G of $\Psi(u, v)$ are given by

$$
E = \langle \Psi_u, \Psi_u \rangle, F = \langle \Psi_u, \Psi_v \rangle, G = \langle \Psi_v, \Psi_v \rangle,
$$

and the coefficients of the 2^{nd} fundamental form L, M, N of $\Psi(u, v)$ are given by

$$
L = \langle \Psi_{uu}, \hat{n} \rangle, M = \langle \Psi_{uv}, \hat{n} \rangle, N = \langle \Psi_{vv}, \hat{n} \rangle,
$$

where \hat{n} is the unit normal vector and $\langle *, * \rangle = du^2 + dv^2 - dz^2$ is the Minkowski metric. The mean curvature H of the surface $\Psi(u, v)$ is given by

$$
H(u, v) = \frac{EN - 2FM + GL}{2(EG - F^2)}.
$$
\n(1.1)

For a spacelike surface $\Psi(u, v)$ in \mathbb{E}^3_1 , we have $EG - F^2 > 0$, and for a timelike surfaces $EG - F^2 < 0$. In regards to the regular surface $\Psi(u, v)$ embedded in \mathbb{E}_1^3 , following two types of affine translation surfaces exist:

(i) Affine translation surface of type 1:

$$
\Psi(u,v) = (u,v,z(u,v))\tag{1.2}
$$

such that

$$
z(u, v) = f(u) + g(au + v).
$$
 (1.3)

(ii) Affine translation surface of type 2:

$$
\Psi(u, v) = (u(v, z), v, z)
$$
\n(1.4)

such that

$$
u(v, z) = h(v) + t(bv + z),
$$
\n(1.5)

where $a(\neq 0), b(\neq 0)$ are constants and f, g, h, t are smooth functions. We note that whenever $a = 0$ or $b = 0$, affine translation surfaces reduce simply to translation surfaces.

2. Affine translation surfaces with non-zero constant mean curvature

Theorem 2.1. Let $\Psi(u, v) = (u, v, z(u, v))$ be a spacelike affine translation surface of type 1 in \mathbb{E}^3_1 . If $\Psi(u, v)$ has a non-zero constant mean curvature, then $z(u, v)$ is given by

$$
z(u,v) = \pm \frac{\sqrt{1+a^2-c^2}}{2H(1+a^2)}\sqrt{1+a^2+4H^2(b-au-v)^2} + \left(\frac{u-av}{1+a^2}\right)c + p
$$

such that $c^2 < 1 + a^2$; or

$$
z(u, v) = cv \pm \frac{\sqrt{1 - c^2}}{2H} \sqrt{1 + 4H^2(b - u)^2} + q
$$

such that $c^2 < 1$; where a, b, c, p, q are all constants.

Proof. We know that the mean curvature of a spacelike surface $\Psi(u, v) = (u, v, z(u, v))$ in \mathbb{E}^3_1 is given by

$$
H(u,v) = \frac{\left(z_u^2 - 1\right)z_{vv} - 2z_u z_v z_{uv} + \left(z_v^2 - 1\right)z_{uu}}{2\left(1 - z_u^2 - z_v^2\right)^{\frac{3}{2}}},\tag{2.6}
$$

where z_u, z_v denotes partial differentiation of z w.r.t. u and v, respectively. We obtain the following partial derivatives of $z(u, v)$ from (1.3)

$$
\begin{cases}\nz_u = f' + ag', \\
z_v = g', \\
z_{uu} = f'' + a^2 g'', \\
z_{vv} = g'', \\
z_{uv} = ag'', \\
\end{cases}
$$
\n(2.7)

where $f' = \frac{df}{du}$ and $g' = \frac{dg}{dx}$ for $x = au + v$. Using [\(2.7\)](#page-3-0) in [\(2.6\)](#page-2-1), gives us

$$
-f'' - (1 + a^2)g'' + (g'^2 f'' + f'^2 g'') = 2HT^3,
$$
\n(2.8)

where $T^2 = 1 - (f' + ag')^2 - g'^2$ and $H(\neq 0)$ is a constant. Eqn [\(2.8\)](#page-3-1) writes as

$$
-(1 - g'^2)f'' - (1 + a^2 - f'^2)g'' = 2HT^3.
$$
\n(2.9)

Now, we have the following two cases:

Case I. When $f'' = 0$, we have $f' = c$, where c is a constant. Substituting $f' = c$ in [\(2.9\)](#page-3-2) gives us

$$
-(1+a^2-c^2)g'' = 2H\left[1 - (c+ag')^2 - g'^2\right]^{\frac{3}{2}}.
$$
\n(2.10)

Thus, we have

$$
g'' = -\frac{2H(1+a^2)^{\frac{3}{2}}}{1+a^2-c^2} \left[\frac{1+a^2-c^2}{(1+a^2)^2} - \left(g' + \frac{ac}{1+a^2} \right)^2 \right]^{\frac{3}{2}}.
$$
 (2.11)

Making the following substitutions in [\(2.11\)](#page-3-3)

$$
\alpha = \frac{2H(1+a^2)^{\frac{3}{2}}}{1+a^2-c^2}
$$
, $\beta = \frac{ac}{1+a^2}$ and $\gamma^2 = \frac{1+a^2-c^2}{(1+a^2)^2}$,

results in

$$
\frac{g''}{\left[\gamma^2 - \left(g' + \beta\right)^2\right]^{\frac{3}{2}}} = -\alpha.
$$
\n(2.12)

Integrating (2.12) and isolating the expression for g' gives us

$$
g' = \pm \frac{\gamma^3 (c_1 - \alpha x)}{\sqrt{1 + \gamma^4 (c_1 - \alpha x)^2}} - \beta,
$$
\n(2.13)

where c_1 is a constant. By integrating (2.13) , we obtain

$$
g(x) = \pm \frac{1}{\alpha \gamma} \sqrt{1 + \gamma^4 (c_1 - \alpha x)^2} - \beta x + c_2,
$$
 (2.14)

where c_2 is a constant. Substituting the values of α , β and γ in [\(2.14\)](#page-4-0) gives us

$$
g(x) = \pm \frac{\sqrt{1+a^2-c^2}}{2H(1+a^2)} \sqrt{1+a^2+4H^2(c_3-x)^2} - \left(\frac{ac}{1+a^2}\right)x + c_2,
$$
 (2.15)

where c_3 is a constant. Also, $f' = c$ gives us

$$
f(u) = cu + c_4,\tag{2.16}
$$

where c_4 is a constant. Thus from (1.3) , (2.15) and (2.16) , we have

$$
z(u,v) = \pm \frac{\sqrt{1+a^2-c^2}}{2H(1+a^2)} \sqrt{1+a^2+4H^2(c_3-au-v)^2} + \left(\frac{u-av}{1+a^2}\right)c+p,
$$
\n(2.17)

where p is a constant and $c^2 < 1 + a^2$.

Case II. When $f'' \neq 0$. Differentiating [\(2.9\)](#page-3-2) w.r.t. u gives us

$$
(1 - g'^{2})f''' + (1 + a^{2} - f'^{2})ag''' - 2(f' + ag')g''f''
$$

= -6HT[(f' + ag')(f'' + a²g'') + ag'g'']. (2.18)

Now, differentiating (2.9) w.r.t. v gives us

$$
(1+a^2 - f'^2)g''' - 2g'g''f'' = -6HT[(f'+ag')ag'' + g'g''].
$$
\n(2.19)

Eqn's [\(2.18\)](#page-4-3) and [\(2.19\)](#page-4-4) yield

$$
(1 - g'^2)f''' - 2f'f''g'' = -6HT(f' + ag')f''.
$$
\n(2.20)

Substituting the value of g'' from (2.9) in (2.20) , we have

$$
(1 - g'^2)f''' - 2f'f'' \left[\frac{2HT^3 - (1 - g'^2)}{(1 + a^2 - f'^2)} \right] = -6HT(f' + ag')f''.
$$
 (2.21)

Thus, we obtain

$$
(1 - g'^2) \left[(1 + a^2 - f'^2) f''' + 2f' f''^2 \right]
$$

= -2HT \left[3(f' + ag') (1 + a^2 - f'^2) - 2T^2 f' \right] f'' . (2.22)

Squaring both sides of (2.22) and substituting the value of $T²$ gives us

$$
(1 - {g'}^2)^2 \left[\left(1 + a^2 - f'^2 \right) f''' + 2f' f''^2 \right]^2
$$

= $4H^2 \left[1 - (f' + ag')^2 - g'^2 \right]$

$$
\times \left[3(f' + ag') \left(1 + a^2 - f'^2 \right) - 2 \left\{ 1 - (f' + ag')^2 - g'^2 \right\} f' \right]^2 f''^2.
$$
 (2.23)

We notice that the above expression can be expanded as a polynomial in the powers of g' . The coefficients of g' in the above expression are functions of u , and the expression itself is identically zero, so each term must be zero. But, the coefficient of g' with the highest degree, i.e., 6 in [\(2.23\)](#page-5-0), is $-16H^2(1+a^2)^3f'^2f''^2$, which is non-zero. Thus, it follows that g' is a constant (Liu and Jung have used the same argument in [\[6\]](#page-10-10)). Substituting $g' = c$ in [\(2.9\)](#page-3-2) yields

$$
z(u,v) = cv \pm \frac{\sqrt{1-c^2}}{2H} \sqrt{1+4H^2(b-u)^2} + q,
$$
\n(2.24)

where b, c, q are constants and $c^2 < 1$. Thus, the proof of the theorem is complete. \Box

Theorem 2.2. Let $\Psi(v, z) = (u(v, z), v, z)$ be a spacelike affine translation surface of type 2 in \mathbb{E}^3_1 . If $\Psi(v, z)$ has a non-zero constant mean curvature, then $u(v, z)$ is given by

$$
u(v,z) = \pm \frac{\sqrt{1 - b^2 + c^2}}{2H(1 - b^2)} \sqrt{4H^2(a - bv - z)^2 - (1 - b^2)} + \left(\frac{v + bz}{1 - b^2}\right)c + p,
$$

such that $1-b^2 > 0$; or

$$
u(v, z) = \pm \frac{\sqrt{1 + c^2}}{2H} \sqrt{4H^2(a - v)^2 - 1} + cz + q,
$$

where a, b, c, p, q are all constants.

Proof. The mean curvature $H(v, z)$ of a spacelike surface $r(v, z) = (u(v, z), v, z)$ in \mathbb{E}_1^3 is given by

$$
H(v,z) = \frac{\left(u_v^2 + 1\right)u_{zz} - 2u_v u_z u_{vz} + \left(u_z^2 - 1\right)u_{vv}}{2\left(u_z^2 - u_v^2 - 1\right)^{\frac{3}{2}}},\tag{2.25}
$$

where u_v, u_z denotes partial differentiation of u w.r.t. v and z, respectively. We obtain the following partial derivatives of $u(v, z)$ from (1.5)

$$
u_v = h' + bt',
$$

\n
$$
u_z = t',
$$

\n
$$
u_{vv} = h'' + b^2 t'',
$$

\n
$$
u_{zz} = t'',
$$

\n
$$
u_{vz} = bt'',
$$

\n(2.26)

where $h' = \frac{dh}{dv}$ and $t' = \frac{dt}{dy}$ for $y = bv + z$. Using [\(2.26\)](#page-6-0) in [\(2.25\)](#page-5-1), gives us

 ϵ

$$
-h'' + (1 - b2)t'' + (t'2h'' + h'2t'') = 2HT3,
$$
\n(2.27)

where $T^2 = t'^2 - (h' + bt')^2 - 1$ and $H(\neq 0)$ is a constant. Eqn [\(2.27\)](#page-6-1) writes as

$$
(-1+t^2)h'' + (1-b^2+h^2)t'' = 2HT^3,
$$
\n(2.28)

Now, we have the following two cases:

Case I. When $h' = c$ is a constant. It follows from (2.28)

$$
(1 - b2 + c2)t'' = 2H[t'2 - (c + bt')2 - 1]^{\frac{3}{2}}.
$$
 (2.29)

Thus, we have

$$
t'' = \frac{2H(1-b^2)^{\frac{3}{2}}}{1-b^2+c^2} \left[\left(t' - \frac{bc}{1-b^2}\right)^2 - \frac{1-b^2+c^2}{(1-b^2)^2} \right]^{\frac{3}{2}}.
$$
 (2.30)

Making the following substitutions in [\(2.30\)](#page-6-3)

$$
\alpha = \frac{2H(1-b^2)^{\frac{3}{2}}}{1-b^2+c^2}
$$
, $\beta = -\frac{bc}{1-b^2}$ and $\gamma^2 = \frac{1-b^2+c^2}{(1-b^2)^2}$,

results in

$$
\frac{t''}{\left[\left(t'+\beta\right)^2 - \gamma^2\right]^{\frac{3}{2}}} = \alpha.
$$
\n(2.31)

Integrating (2.31) and isolating the expression for t' gives us

$$
t' = \pm \frac{\gamma^3 (c_1 - \alpha y)}{\sqrt{\gamma^4 (c_1 - \alpha y)^2 - 1}} - \beta,
$$
\n(2.32)

where c_1 is a constant. Thereby integrating (2.32) , we obtain

$$
t(y) = \pm \frac{1}{\alpha \gamma} \sqrt{\gamma^4 (c_1 - \alpha y)^2 - 1} - \beta y + c_2,
$$
\n(2.33)

where c_2 is a constant. Substituting the values of α , β and γ in [\(2.33\)](#page-6-6) gives us

$$
t(y) = \pm \frac{\sqrt{1 - b^2 + c^2}}{2H(1 - b^2)} \sqrt{4H^2(c_3 - y)^2 - (1 - b^2)} + \frac{bc}{1 - b^2}y + c_2.
$$
 (2.34)

Also, $h' = c$ gives us

$$
h(v) = cv + c_4,\tag{2.35}
$$

where c_4 is a constant. Thus, from (1.5) , (2.34) and (2.35) , we have

$$
u(v,z) = \pm \frac{\sqrt{1 - b^2 + c^2}}{2H(1 - b^2)} \sqrt{4H^2(c_3 - bv - z)^2 - (1 - b^2)}
$$

+
$$
\left(\frac{v + bz}{1 - b^2}\right)c + p,
$$
 (2.36)

where p is a constant.

Case II. When $h'' \neq 0$. Differentiating [\(2.28\)](#page-6-2) w.r.t. v gives us

$$
(-1+t'^{2})h''' + (1-b^{2}+h'^{2})bt''' + 2(h'+bt')h''t''
$$

= $6HT\left[bt't'' - (h'+bt')(h''+b^{2}t'')\right].$ (2.37)

Now, differentiating (2.28) w.r.t. z gives us

$$
(1 - b2 + h'2)t''' + 2h''t't'' = 6HT[t't'' - (h' + bt')bt''].
$$
\n(2.38)

Eqn's [\(2.37\)](#page-7-2) and [\(2.38\)](#page-7-3) yield

$$
(-1+t^2)h''' + 2h'h''t'' = -6HT(h'+bt')h''.
$$
\n(2.39)

Substituting the value of t'' from (2.28) in (2.39) , we have

$$
(-1+t^2)h''' + 2h'h'' \left[\frac{2HT^3 - (-1+t^2)}{(1-b^2+h^2)} \right] = -6HT(h'+bt')h''.
$$
 (2.40)

Thus, we obtain

$$
\begin{aligned} & \left(-1 + t'^2 \right) \left[\left(1 - b^2 + h'^2 \right) h''' - 2h'h''^2 \right] \\ & = 2HT \left[-3\left(h' + bt' \right) \left(1 - b^2 + h'^2 \right) - 2T^2 h' \right] h'' \end{aligned} \tag{2.41}
$$

Squaring both sides of (2.41) and substituting the value of $T²$ gives us

$$
(-1+t^2)^2 \left[(1-b^2+h^2)h''' - 2h'h''^2 \right]^2
$$

= $4H^2 \left[t'^2 - (h'+bt')^2 - 1 \right]$

$$
\times \left[-3(h'+bt')(1-b^2+h'^2) - 2\left\{ t'^2 - (h'+bt')^2 - 1 \right\} h' \right]^2 h''^2.
$$
 (2.42)

The coefficient of t'^6 in [\(2.42\)](#page-7-6) is $16H^2(1-b^2)^3h'^2h''^2$, which is non-zero and the concluding argument in Theorem [2.1](#page-2-3) results in t' being constant. Substituting $t' = c$ in [\(2.28\)](#page-6-2) yields

$$
u(v,z) = \pm \frac{\sqrt{1+c^2}}{2H} \sqrt{4H^2(a-v)^2 - 1} + cz + q,\tag{2.43}
$$

where a, c, q is a constant. Thus, the proof of the theorem is complete. \Box

3. Maximal affine translation surfaces

Theorem 3.1. Let $\Psi(u, v) = (u, v, z(u, v))$ be a maximal affine translation surface of type 1 in \mathbb{E}^3_1 . Then, $\Psi(u, v)$ is either a planar surface or $z(u, v)$ is given by

$$
z(u,v) = \frac{1}{c} \log \left| \frac{\cosh \left[c\sqrt{1+a^2}u + c_1\right]}{\cosh \left[c(au+v) + c_2\right]} \right| + c_3,
$$

where a, c, c_1, c_2, c_3 are constants and $c \neq 0$.

Proof. Taking $H = 0$ in [\(2.9\)](#page-3-2) gives us

$$
-(1 - g'^2)f'' - (1 + a^2 - f'^2)g'' = 0,
$$
\n(3.44)

which writes as

$$
\frac{f''}{1+a^2-f'^2} = \frac{-g''}{1-g'^2} = \lambda,
$$
\n(3.45)

where λ is a constant and $(1 + a^2 - f^2) (1 - g^2) \neq 0$.

Depending on λ , we have the following 2 cases:

Case I. $\lambda = 0$, gives us

$$
f'' = 0, \quad g'' = 0,\tag{3.46}
$$

which leads to a planar surface in \mathbb{E}^3_1 .

Case II. $\lambda \neq 0$, gives us

$$
f(u) = \frac{1}{c} \log |2 \cosh [c\sqrt{1 + a^2}u + c_1]| + c_3,
$$
\n(3.47)

$$
g(au + v) = \frac{-1}{c} \log |2 \cosh [c(au + v) + c_2]| + c_4,
$$
\n(3.48)

where a, c, c_1, c_2, c_3, c_4 are constants. Thus, we have

$$
z(u,v) = \frac{1}{c} \log \left| \frac{\cosh [c\sqrt{1+a^2}u + c_1]}{\cosh [c(au + v) + c_2]} \right| + p,
$$
 (3.49)

where $c \neq 0$ and p is a constant. Thus, the proof of the theorem is complete. \Box

Theorem 3.2. Let $\Psi(v, z) = (u(v, z), v, z)$ be a maximal generalized affine translation surface of type 2 in \mathbb{E}_1^3 . Then, $\Psi(v, z)$ is either a planar surface or $u(v, z)$ is given by

$$
u(v, z) = \frac{1}{c} \log \left| \frac{\cos \left[c\sqrt{1 - b^2}v + c_1\right]}{\cosh \left[c(bv + z) + c_2\right]} \right| + c_3, \quad b^2 < 1
$$

or

$$
u(v, z) = \frac{1}{c} \log \left| \frac{\cosh [c\sqrt{b^2 - 1}v + c_1]}{\cosh [c(bv + z) + c_2]} \right| + c_3, \quad b^2 > 1;
$$

where b, c, c₁, c₂, c₃ are constants and $c \neq 0$.

Proof. For $H = 0$, it follows from (2.28)

$$
(-1+t^2)h'' + (1-b^2+h^2)t'' = 0.
$$
\n(3.50)

Thus, we have

$$
\frac{-h''}{1 - b^2 + {h'}^2} = \frac{t''}{-1 + {t'}^2} = \lambda,
$$
\n(3.51)

where λ is a constant and $(1 - b^2 + h'^2)(-1 + t'^2) \neq 0$. $\lambda = 0$ leads to a planar surface in \mathbb{E}_1^3 and when $\lambda \neq 0$, we have the following cases:

Case I. If $b^2 < 1$; [\(3.51\)](#page-9-0) yields

$$
u(v, z) = h(v) + t(bv + z),
$$

= $\frac{1}{c} \log \left| \frac{\cos [c\sqrt{1 - b^2}v + c_1]}{\cosh [c(bv + z) + c_2]} \right| + c_3,$ (3.52)

where b, c, c_1, c_2, c_3 are constants and $c \neq 0$.

Case II. If $b^2 > 1$; [\(3.51\)](#page-9-0) yields

$$
u(v, z) = h(v) + t(bv + z),
$$

= $\frac{1}{c} \log \left| \frac{\cosh [c\sqrt{b^2 - 1}v + c_1]}{\cosh [c(bv + z) + c_2]} \right| + c_3,$ (3.53)

where b, c, c_1, c_2, c_3 are constants and $c \neq 0$. Thus, the proof of the theorem is complete. \Box

Acknowledgements. The third author is supported by the NBHM-DAE, India, Project number: (02011/44/2023/RDII/14757).

REFERENCES

- [1] Aydin, M. E. (2016). A generalization of translation surfaces with constant curvature in the isotropic space, Journal of Geometry, 107, 603–615.
- [2] Aydin, M. E. & Ergüt, M. (2017). Affine translation surfaces in the isotropic 3-space, International Electronic Journal of Geometry 10(1), 21-30.
- [3] Inoguchi, J. I., López, R., Munteanu, M. I. (2012). Minimal translation surfaces in the Heisenberg group $Nil₃$, Geometriae Dedicata, 161, 221-231.
- [4] Karacan, M. K., Yüksel, N., & Tuncer, Y. (2020). LCN-translation surfaces in Affine 3-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 461-472.
- [5] Liu, H. (1999). Translation surfaces with constant mean curvature in 3-dimensional spaces, Journal of Geometry, 64 141-149.
- [6] Liu, H. & Jung, S. D. (2017). Affine translation surfaces with constant mean curvature in Euclidean 3-space, Journal of Geometry, 108(2), 423-428.
- [7] Liu, H. & Yu, Y. (2013). Affine translation surfaces in Euclidean 3-space, Japan Academy Proceedings Series A, Mathematical Sciences, 89(9), 111-114.
- [8] López, R. (2011). Minimal translation surfaces in hyperbolic space, Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 52(1), 105-112.
- [9] López, R. & Munteanu, M. I. (2012). Minimal translation surfaces in Sol_3 , Journal of the Mathematical Society of Japan, 64(3), 985-1003.
- [10] Scherk, H. F. (1835). Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen, Journal für die reine und angewandte Mathematik, 14, 185-208.
- [11] Yang, D & Fu, Y. (2016). On affine translation surfaces in affine space, Journal of Mathematical Analysis and Applications, 440(2), 437-450.
- [12] Yoon, D. W. (2013). Minimal Translation Surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Taiwanese Journal of Mathematics, 17(5), 1545-1556.

Department of Mathematics, University of Kashmir, Srinagar - 190006, J&K, India.

Department of Mathematics, Jamia Millia Islamia, New Delhi - 110025, Delhi, India

Department of Mathematics, NIT, Srinagar - 190006, J&K, India.