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ON e∗-TOPOLOGICAL RINGS

CAN DALKIRAN ID AND MURAD ÖZKOÇ ID ∗

Abstract. The main purpose of this manuscript is to introduce the concept of e∗-topological

ring. This class appears as a generalised version of the class of β-topological rings. In ad-

dition, we have discussed the relation between the concept of e∗-topological ring and some

other types of topological rings existing in the literature. Also, some fundamental results

about e∗-topological rings are revealed. Moreover, we give some counterexamples regarding

our results.
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1. Introduction

In topology, it is sometimes necessary to use algebra to find solutions to some problems,

such as determining whether two topological spaces are homeomorphic. For instance, if the

fundamental groups of two topological spaces are not isomorphic, then the topological spaces

can not be homeomorphic. Thanks to fundamental groups of topological spaces, we can

decide that two topological spaces are not homeomorphic but not all. This situation leads to

the definition of different concepts in the related field. One of these concepts is the concept

of topological ring. To better understand topological rings, the concept of topological groups

should be well known. A topological group is a group X that is also a topological space such

that the addition and the inversion are continuous as functions ψ : X → X, x 7→ −x and
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φ : X × X → X, (x, y) 7→ x + y, where X × X carries the product topology. The concept

of topological ring was first introduced in [4, 5] by Kaplansky. A topological ring is a ring

X that is also a topological space such that both the addition and the multiplication are

continuous as functions φ : X × X → X, where X × X carries the product topology. That

means X is an additive topological group and a multiplicative topological semigroup.

The types of open sets in the literature such as α-open [9], semi-open [8], pre-open [10], β-

open [1], etc. allow a generalization of the notion of topological ring. Studying the features of

these generalised versions and investigating their relations with topological rings are just some

of the different advances in the literature. Some of the recent advancements in this direction

are β-topological rings [2], irresolute topological rings [12] and α-irresolute topological rings

[11].

In 2021, Billawaria et al. studied β-topological ring which is a more general notion than

the notion of topological ring [2]. They have revealed some fundamental properties of β-

topological rings. Also, the authors gave some other useful results on β-topological rings.

In this paper, we introduce the notion of e∗-topological ring by utilizing e∗-open sets

defined by Ekici in [3]. Also, we obtain some of its fundamental properties. Moreover, we

compare between this notion and some notions existing in the literature. In addition, we give

some counterexamples regarding our results obtained in the scope of this study. Furthermore,

we provide an example of e∗-topological ring which is not a β-topological ring.

2. Preliminaries

Throughout this paper, (X, µ) and (Y, ρ) (or briefly X and Y) always mean topological

spaces. For a subset E of a topological space X, the interior of E and the closure of E are

denoted by int(E) and cl(E), respectively. The family of all open (resp. closed) sets of X will

be denoted by O(X) (resp. C(X)). In addition, the family of all open sets of X containing

a point a of X is denoted by O(X, a). Recall that a subset E of a space X is called regular

open [13] (resp. regular closed [13]) if E = int(cl(E)) (resp. E = cl(int(E))). The family of

all regular open subsets of X is denoted by RO(X). The family of all regular open sets of X

containing a point a of X is denoted by RO(X, a).

The union of all regular open sets of X contained in E is called the δ-interior [14] of E and is

denoted by δ-int(E). A subset E of a space X is said to be δ-open [14] if A = δ-int(A). Also,

a subset E of a space X is said to be δ-closed if its complement is δ-open. The intersection
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of all regular closed sets of X containing E is called the δ-closure [14] of E and is denoted by

δ-cl(E).

A subset E of a space X is called e∗-open if E ⊆ cl(int(δ-cl(E))). The complement of an

e∗-open set is called e∗-closed. The intersection of all e∗-closed sets of X containing E is

called the e∗-closure of E and is denoted by e∗-cl(E). Dually, the union of all e∗-open sets

of X contained in E is called the e∗-interior of E and is denoted by e∗-int(E). The family

of all e∗-open subsets (resp. e∗-closed) X denoted by e∗O(X) (resp. e∗C(X)). The family of

all e∗-open (resp. e∗-closed) sets of X containing a point a of X denoted by e∗O(X, a) (resp.

e∗C(X, a)).

Definition 2.1. [4] Let (X,+, ·) be a ring and µ be a topology on X. The quadruple (X,+, ·, µ)

is called a topological ring if the following three conditions hold:

i) For every a, b ∈ X and every open set M ∈ O(X, a + b), there exist K ∈ O(X, a) and

L ∈ O(X, b) such that K + L ⊆M,

ii) For every a ∈ X and every L ∈ O(X,−a), there exists K ∈ O(X, a) such that −K ⊆ L,

iii) For every a, b ∈ X and every M ∈ O(X, ab), there exist K ∈ O(X, a) and L ∈ O(X, b)

such that KL ⊆M.

Definition 2.2. [2] Let (X,+, ·) be a ring and µ be a topology on X. The quadruple (X,+, ·, µ)

is called an β-topological ring if the following three conditions hold:

i) For every a, b ∈ X and everyM ∈ O(X, a+b), there exist K ∈ βO(X, a) and L ∈ βO(X, b)

such that K + L ⊆M,

ii) For every a ∈ X and every L ∈ O(X,−a), there exists K ∈ βO(X, a) such that −K ⊆ L,

iii) For every a, b ∈ X and everyM ∈ O(X, ab), there exist K ∈ βO(X, a) and L ∈ βO(X, b)

such that KL ⊆M.

Definition 2.3. [3] A function f : (X, µ) → (Y, ρ) is said to be e∗-continuous if f−1[G] ∈

e∗O(X) for every G ∈ O(Y).

Lemma 2.1. [3] A function f : (X, µ) → (Y, ρ) is e∗-continuous if and only if for every

a ∈ X and for every H ∈ O(Y, f(a)), there exists G ∈ e∗O(X, a) such that f [G] ⊆ H.

Definition 2.4. [3] Let (X, µ) be a topological space and E ⊆ X. Then, the following state-

ments hold:

a) E is e∗-open if and only if E = e∗-int(E),

b) E is e∗-closed if and only if E = e∗-cl(E).
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Lemma 2.2. Let (X, µ) and (Y, ρ) be two topological spaces. If E ∈ e∗O(X) and F ∈ e∗O(Y),

then E × F ∈ e∗O(X× Y, µ ⋆ ρ).

Proof. Let E ∈ e∗O(X) and F ∈ e∗O(Y).
E ∈ e∗O(X) ⇒ E ⊆ cl(int(δ-cl(E)))

F ∈ e∗O(Y) ⇒ F ⊆ cl(int(δ-cl(F )))

 ⇒ E × F ⊆ cl(int(δ-cl(E)))× cl(int(δ-cl(F )))

⇒ E × F ⊆ cl(int(δ-cl(E)))× cl(int(δ-cl(F )))

= cl[int(δ-cl(E))× int(δ-cl(F ))]

= cl(int[δ-cl(E)× δ-cl(F )])

= cl(int(δ-cl(E × F )))

This means E × F ∈ e∗O(X× Y). □

3. e∗-Topological Rings

Now, we introduce and study the concept of e∗-topological ring by utilizing e∗-open sets.

Definition 3.1. Let (X,+, ·) be a ring and µ be a topology on X. The quadruple (X,+, ·, µ)

is called an e∗-topological ring if the following three conditions hold:

i) For every a, b ∈ X and every open set M ∈ O(X, a+ b), there exist K ∈ e∗O(X, a) and

L ∈ e∗O(X, b) such that K + L ⊆M,

ii) For every a ∈ X and every open set L ∈ O(X,−a), there exists K ∈ e∗O(X, a) such

that −K ⊆ L,

iii) For every a, b ∈ X and every open set M ∈ O(X, ab), there exist K ∈ e∗O(X, a) and

L ∈ e∗O(X, b) such that KL ⊆M.

Remark 3.1. It is clear that every β-topological ring is an e∗-topological ring since every

β-open set is an e∗-open set. Nevertheless, the converse need not always to be true as shown

in the following example.

Example 3.1. Let X = {k, l,m, n} and µ = {∅,X, {k}, {k, l}}. Let the addition and the

multiplication operations on X be as given in the following tables:

+ k l m n

k k l m n

l l m n k

m m n k l

n l k l m

· k l m n

k k k k k

l k m k m

m k k k k

n k m k m
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In this topological space, simple calculations show that e∗O(X) = 2X and βO(X) =

{∅,X, {k}, {k, n}, {k,m}, {k, l}, {k, l, n}, {k, l,m}, {k,m, n}}. Then, it is clear that (X,+, ·, µ)

is an e∗-topological ring but it is not a β-topological ring.

Example 3.2. Let (R,+, ·) be the ring of real numbers and let U the usual topology on R.

Then, (R,+, ·,U) is an e∗-topological ring.

Example 3.3. Let (X,+, ·) be any ring and let µ the discrete topology on X. Then, (X,+, ·, µ)

is an e∗-topological ring.

Theorem 3.1. Let (X,+, ·, µ) be an e∗-topological ring. Then, the following functions are

e∗-continuous.

a) + : X2 → X defined by +(x, y) = x+ y for all (x, y) ∈ X2,

b) · : X2 → X defined by ·(x, y) = xy for all (x, y) ∈ X2,

c) − : X → X defined by −(x) = −x for all x ∈ X.

Proof. a) Let (x, y) ∈ X2 and W ∈ O(X, x+ y).

W ∈ O(X, x+ y) ⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(U + V ⊆W )

O := U × V

 Lemma 2.2⇒

⇒ (O ∈ e∗O(X2, (x, y)))(+[O] = +[U × V ] = U + V ⊆W ).

b) Let (x, y) ∈ X2 and W ∈ O(X, xy).
W ∈ O(X, xy) ⇒ (∃U ∈ e∗O(X, x))(∃V ∈ e∗O(X, y))(UV ⊆W )

O := U × V

 Lemma 2.2⇒

⇒ (O ∈ e∗O(X2, (x, y)))(·[O] = ·[U × V ] = UV ⊆W ).

c) Let V ∈ O(X). Our aim is to show that −−1[V ] ∈ e∗O(X).
−−1[V ] = {x ∈ X : −(x) ∈ V } = {x ∈ X : −x ∈ V } = −V

V ∈ O(X)

 Teorem 3.2⇒ −−1[V ] ∈ e∗O(X).

□

Theorem 3.2. Let (X,+, ·, µ) be an e∗-topological ring. Then, the following properties hold.

a) If G ∈ O(X), then −G ∈ e∗O(X),

b) If G ∈ O(X) and a ∈ X, then a+G ∈ e∗O(X),

c) If G ∈ O(X) and a ∈ X, then G+ a ∈ e∗O(X).

Proof. a) Let G ∈ O(X).

G ∈ O(X) ⇒ −G ⊆ X ⇒ e∗-int(−G) ⊆ −G . . . (1)
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Now, let b ∈ −G. Our purpose is to show that b ∈ e∗-int(−G).
b ∈ −G⇒ −b ∈ G

G ∈ O(X)

 Definition 3.1⇒ (∃U ∈ e∗O(X, b))(−U ⊆ G)

⇒ (∃U ∈ e∗O(X, b))(U ⊆ −G)

⇒ b ∈ e∗-int(−G)

Then, we have −G ⊆ e∗-int(−G) . . . (2)

(1), (2) ⇒ e∗-int(−G) = −G⇒ −G ∈ e∗O(X).

b) Let G ∈ O(X) and a ∈ X. Our purpose is to show that a + G ∈ e∗O(X). For this, we

will show that a+G = e∗-int(a+G). Now, let b ∈ a+G. If we prove b ∈ e∗-int(a+G), then

the proof complete.

b ∈ a+G⇒ (∃c ∈ G)(b = a+ c)

G ∈ O(X)

 ⇒ −a+ b ∈ G ∈ O(X)

Definition 3.1⇒ (∃U ∈ e∗O(X,−a))(∃V ∈ e∗O(X, b))(−a+ V ⊆ U + V ⊆ G)

⇒ (∃V ∈ e∗O(X, b))(−a+ V ⊆ G)

⇒ (∃V ∈ e∗O(X, b))(V ⊆ a+G)

⇒ b ∈ e∗-int(a+G).

c) This follows (b) since the addition is commutative.

□

Corollary 3.1. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, the following

statements hold.

a) If G ∈ O(X), then −G ⊆ cl(int(δ-cl(−G))),

b) If G ∈ O(X), then a+G ⊆ cl(int(δ-cl(a+G))) for every a ∈ X,

c) If G ∈ O(X), then G+ a ⊆ cl(int(δ-cl(G+ a))) for every a ∈ X.

Theorem 3.3. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, the following

properties hold.

a) If G ∈ C(X), then −G ∈ e∗C(X),

b) If a ∈ X and G ∈ C(X), then a+G ∈ e∗C(X),

c) If a ∈ X and G ∈ C(X), then G+ a ∈ e∗C(X).

Proof. a) Let G ∈ C(X). Our purpose is to show that −G ∈ e∗C(X). Now, let b ∈ e∗-cl(−G).

We will show that b ∈ −G, i.e. −b ∈ G. Let W ∈ O(X,−b).
W ∈ O(X,−b) ⇒ (∃U ∈ e∗O(X, b))(−U ⊆W )

b ∈ e∗-cl(−G)

 ⇒ (U ⊆ −W )(U ∩ (−G) ̸= ∅)
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⇒ ∅ ≠ U ∩ (−G) ⊆ (−W ) ∩ (−G)

⇒W ∩G ̸= ∅

Then, we get −b ∈ cl(G). Since G ∈ C(X), we have −b ∈ G, i.e. b ∈ −G. Thus, we have

−G ⊆ e∗-cl(−G) ⊆ −G, i.e. −G = e∗-cl(−G). This means −G ∈ e∗C(X).

b) Let b ∈ X and G ∈ C(X). Our purpose is to show that a + G ∈ e∗C(X). Now, let

b ∈ e∗-cl(a+G). We will prove that b ∈ a+G, i.e. −a+ b ∈ G. Let W ∈ O(X,−b+ a).

W ∈ O(X,−a+ b) ⇒ (∃U ∈ e∗O(X,−a))(∃V ∈ e∗O(X, y))(U + V ⊆W )

b ∈ e∗-cl(a+G)

 ⇒

⇒ (U + V ⊆W )(V ∩ (a+G) ̸= ∅)

⇒ ∅ ≠ (−a+ V ) ∩G ⊆ (U + V ) ∩G ⊆W ∩G

⇒W ∩G ̸= ∅

Then, we have −a+ b ∈ cl(G). Since G ∈ C(X), we get −a+ b ∈ G. Hence, b ∈ a+G.

c) This follows (b) since the addition is commutative. □

Corollary 3.2. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, the following

statements hold.

a) If G ∈ C(X), then int(cl(int(−G))) ⊆ −G,

b) If G ∈ C(X), then int(cl(int(a+G))) ⊆ a+G for all a ∈ X,

c) If G ∈ C(X), then int(cl(int(G+ a))) ⊆ G+ a for all a ∈ X.

4. MAIN RESULTS

In this section, we obtain some basic properties of e∗-topological ring. In addition, this

section contains the definition of e∗-topological rings with unit and many fundamental results

on this new notion.

Theorem 4.1. Let (X,+, ·, µ) be an e∗-topological ring. Then, the following functions are

e∗-continuous:

a) For a fixed a ∈ X, fa : X → X defined by fa(b) = a+ b for all b ∈ X,

b) f : X → X defined by f(a) = −a for all a ∈ X,

c) For a fixed a ∈ X, fa : X → X defined by fa(b) = b+ a for all b ∈ X,

d) For a fixed a ∈ X, fa : X → X defined by fa(b) = a+ b+ a for all b ∈ X.
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Proof. a) Let H ∈ O(X). Our aim is to show that f−1
a [H] ∈ e∗O(X).

f−1
a [H] = {b ∈ X|fa(b) ∈ H} = {b ∈ X|b ∈ −a+H} = −a+H

H ∈ O(X)

 Theorem 3.2⇒

⇒ f−1
a [H] ∈ e∗O(X).

b) Let H ∈ O(X). Our purpose is to show that f−1[H] ∈ e∗O(X).
f−1[H] = {a ∈ X|f(a) ∈ H} = {a ∈ X| − a ∈ H} = −H

H ∈ O(X)

 Theorem 3.2⇒ f−1[H] ∈ e∗O(X).

c) This follows (b) since the addition is commutative.

d) This follows (b) and (c) since the addition is commutative.

□

Definition 4.1. A bijective function f : (X, µ) → (Y, ρ) which is e∗-continuous and whose

inverse is e∗-continuous is called an e∗-homeomorphism.

Corollary 4.1. Let (X,+, ·, µ) be an e∗-topological ring. Then, the following functions are

e∗-homeomorphism.

a) For a fixed a ∈ X, fa : X → X defined by fa(b) = a+ b for all b ∈ X,

b) f : X → X defined by f(a) = −a for all a ∈ X,

c) For a fixed a ∈ X, fa : X → X defined by fa(b) = b+ a for all b ∈ X,

d) For a fixed a ∈ X, fa : X → X defined by fa(b) = a+ b+ a for all b ∈ X.

Definition 4.2. Let (X,+, ·, µ) be an e∗-topological ring. If (X,+, ·) is a ring with unit, then

(X,+, ·, µ) is said to be an e∗-topological ring with unit. The notation X∗ will be used to

denote the set of all invertible elements in (X,+, ·).

Theorem 4.2. Let (X,+, ·, µ) be an e∗-topological ring with unit and G ⊆ X. Then, the

following properties hold.

a) If G ∈ O(X), then Gs is e∗-open in X for each s ∈ X∗,

b) If G ∈ O(X), then sG is e∗-open in X for each s ∈ X∗.

Proof. a) LetG ∈ O(X) and s ∈ X∗.We will proveGs ∈ e∗O(X). If we proveGs ⊆ e∗-int(Gs),

then the proof complete. Let b ∈ Gs.

b ∈ Gs⇒ (∃k ∈ G)(b = ks)

s ∈ T ∗

 ⇒ (∃k ∈ G)(bs−1 = k)

G ∈ O(X)

 ⇒

⇒ (∃U ∈ e∗O(X, b))(∃V ∈ e∗O(X, s−1))(Us−1 ⊆ UV ⊆ G)
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⇒ (∃U ∈ e∗O(X, b))(U ⊆ Gs)

⇒ y ∈ e∗-int(Gs)

Then, we have Gs ⊆ e∗-int(Gs) ⊆ Gs which means Gs ∈ e∗O(X).

b) It is proved similarly to (a). □

Theorem 4.3. Let (X,+, ·, µ) be an e∗-topological ring with unit and G ⊆ X. Then, the

following properties hold.

a) If G ∈ C(X), then Gs ∈ e∗C(X) for each s ∈ X∗,

b) If G ∈ C(X), then sG ∈ e∗C(X) for each s ∈ X∗.

Proof. Let G ∈ C(X) and s ∈ X∗.

b /∈ sG⇒ (∀k ∈ G)(b ̸= sk)

Hypothesis

 ⇒ (∀k ∈ cl(G))(b ̸= sG)

⇒ (∀k ∈ cl(G))(s−1b ̸= k)

⇒ s−1y /∈ cl(G)

⇒ (∃U ∈ O(X, s−1b))(U ∩G = ∅)

⇒ (∃K ∈ e∗O(X, s−1))(∃M ∈ e∗O(X, s−1))(s−1M ∩G ⊆ KM ∩G ⊆ U ∩G = ∅)

⇒ (∃M ∈ e∗O(X, b))(s−1M ∩G = ∅)

⇒ (∃M ∈ e∗O(X, b))(M ∩ sG = ∅)

⇒ b /∈ e∗-cl(sG)

Then, we have sG ⊆ e∗-cl(sG) ⊆ sG which means sG ∈ e∗C(X).

b) It is proved similarly to (a). □

Theorem 4.4. Let (X,+, ·, µ) be an e∗-topological ring with unit and G ⊆ X. Then, the

following properties hold:

a) s · e∗-cl(G) ⊆ cl(sG) for each s ∈ X,

b) int(sG) ⊆ s · e∗-int(G) for each s ∈ X.

c) s · int(G) ⊆ e∗-int(sG) for each s ∈ X∗,

d) e∗-cl(sG) ⊆ s · cl(G) for each s ∈ X∗,

e) e∗-cl(G) · s ⊆ cl(Gs) for each s ∈ X,

f) int(G) · s ⊆ e∗-int(Gs) for each s ∈ X∗.

Proof. a) Let a ∈ s · e∗-cl(G). Our purpose is to show that a ∈ cl(sG). Now, let U ∈ O(X, a).
a ∈ s · e∗-cl(G) ⇒ (∃b ∈ e∗-cl(G))(a = sb)

U ∈ O(X, a)

 ⇒
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⇒ (b ∈ e∗-cl(G))(∃K ∈ e∗O(X, s))(∃L ∈ e∗O(X, b))(KL ⊆ U)

⇒ (∃K ∈ e∗O(X, s))(∃L ∈ e∗O(X, b))(KL ⊆ U)(L ∩G ̸= ∅)

⇒ ∅ ≠ KL ∩ sG ⊆ U ∩ sG

⇒ ∅ ≠ U ∩ sG

Then, we have a ∈ cl(sG).

b) Let a ∈ int(sG). Our purpose is to show that a ∈ s · e∗-int(G).
a ∈ int(sG) ⇒ (a ∈ sG)(int(sG) ∈ O(X, a))

⇒ (∃b ∈ G)(a = sb)(int(sG) ∈ O(X, a))

⇒ (∃U ∈ e∗O(X, s))(∃V ∈ e∗O(X, b))(sV ⊆ UV ⊆ int(sG) ⊆ sG)

⇒ (∃V ∈ e∗O(X, b))(V ⊆ G)

⇒ b ∈ e∗-int(G)

⇒ a = sb ∈ s · e∗-int(G).
c) Let a ∈ s · int(G). Our purpose is to show that a ∈ e∗-int(sG).

a ∈ s · int(G) ⇒ s−1a ∈ int(G)

⇒ int(G) ∈ O(X, s−1a)

⇒ (∃U ∈ e∗O(X, s−1))(∃V ∈ e∗O(X, a))(s−1V ⊆ UV ⊆ int(G) ⊆ G)

⇒ (∃V ∈ e∗O(X, a))(V ⊆ sG)

⇒ a ∈ e∗-int(sG).

d) Let a ∈ e∗-cl(sG) and W ∈ O(X, s−1a).

W ∈ O(X, s−1a) ⇒ (∃U ∈ e∗O(X, s−1))(∃V ∈ e∗O(X, a))(s−1V ⊆ UV ⊆W )

a ∈ e∗-cl(sG)

 ⇒

⇒ (∃U ∈ e∗O(X, s−1))(∃V ∈ e∗O(X, a))(s−1V ⊆ UV ⊆W )(V ∩ sG ̸= ∅)

⇒ ∅ ≠ UV ∩A ⊆W ∩G

⇒W ∩G ̸= ∅

Then, we have s−1a ∈ cl(G) which means a ∈ s · cl(G).

e) Let a ∈ e∗-cl(G) · s. Our purpose is to show that a ∈ cl(Gs). Now, let U ∈ O(X, a).
a ∈ e∗-cl(G) · s⇒ (∃b ∈ e∗-cl(G))(a = bs)

U ∈ O(X, a)

 ⇒

⇒ (b ∈ e∗-cl(G))(∃K ∈ e∗O(X, b))(∃L ∈ e∗O(X, s))(KL ⊆ U)

⇒ (∃K ∈ e∗O(X, b))(∃L ∈ e∗O(X, s))(KL ⊆ U)(K ∩G ̸= ∅)

⇒ ∅ ≠ KL ∩Gs ⊆ U ∩Gs

⇒ ∅ ≠ U ∩Gs

Then, we have a ∈ cl(Gs).
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f) Let a ∈ int(G) · s. Our purpose is to show that a ∈ e∗-int(Gs).

a ∈ int(G) · s ⇒ as−1 ∈ int(G)

⇒ int(G) ∈ O(X, as−1)

⇒ (∃U ∈ e∗O(X, a))(∃V ∈ e∗O(X, s−1))(Us−1 ⊆ UV ⊆ int(G) ⊆ G)

⇒ (∃U ∈ e∗O(X, a))(U ⊆ Gs)

⇒ a ∈ e∗-int(Gs).

□

Theorem 4.5. Let (X,+, ·, µ) be an e∗-topological ring with unit and s ∈ X∗. Then, the

following functions are e∗-continuous.

a) fs : X → X defined by fs(a) = sa for all a ∈ X,

b) fs : X → X defined by fs(a) = as for all a ∈ X,

c) fs : X → X defined by fs(a) = sas for all a ∈ X.

Proof. a) Let U ∈ O(X). Our purpose is to show that f−1
s [U ] ∈ e∗O(X). For this, we will

prove f−1
s [U ] = e∗-int(f−1

s [U ]). We have always e∗-int(f−1
s [U ]) ⊆ f−1

s [U ] . . . (1)

Now, let b ∈ f−1
s [U ].

b ∈ f−1
s [U ] = s−1U

U ∈ O(X) ⇒ U = int(U)

 ⇒ b ∈ s−1 · int(U)
Theorem 4.4⇒ b ∈ e∗-int(s−1U)

s−1U = f−1
s [U ]

 ⇒

⇒ b ∈ f−1
s [U ]

Then, we have f−1
s [U ] ⊆ e∗-int(f−1

s [U ]) . . . (2)

(1), (2) ⇒ f−1
s [U ] = e∗-int(f−1

s [U ]) ⇒ f−1
s [U ] ∈ e∗O(X).

b) This follows Theorem 4.4.

c) This follows (a) and (b). □

Corollary 4.2. Let (X,+, ·, µ) be an e∗-topological ring with unit and s ∈ X∗. Then, the

following functions are e∗-homeomorphism.

a) fs : X → X defined by fs(a) = sa for all a ∈ X,

b) fs : X → X defined by fs(a) = as for all a ∈ X.

c) fs : X → X defined by fs(a) = sas for all a ∈ X.

Theorem 4.6. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, the following

properties hold for each a ∈ X.

a) a+ e∗-cl(G) ⊆ cl(a+G),

b) e∗-cl(a+G) ⊆ a+ cl(G),

c) a+ int(G) ⊆ e∗-int(a+G),
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d) int(a+G) ⊆ a+ e∗-int(G).

Proof. a) Let b ∈ a + e∗-cl(G). Our purpose is to prove that b ∈ cl(a + G). Now, let U ∈

O(X, b). If we prove U ∩ (a+G) ̸= ∅, then the proof complete.

b ∈ a+ e∗-cl(G) ⇒ (∃c ∈ e∗-cl(G))(b = a+ c)

U ∈ O(X, b)

 ⇒

⇒ (∃K ∈ e∗O(X, a))(∃L ∈ e∗O(X, c))(∅ ≠ (K + L) ∩ (a+G) ⊆ U ∩ (a+G))

⇒ U ∩ (a+G) ̸= ∅.

b) Let b ∈ e∗-cl(a+G).Our purpose is to show that b ∈ a+cl(G). Now, let U ∈ O(X,−a+b).

U ∈ O(X,−a+ b) ⇒ (∃K ∈ e∗O(X,−a))(∃L ∈ e∗O(X, b))(−a+ L ⊆ K + L ⊆ U)

⇒ ∅ ≠ (−a+ L) ∩G ⊆ U ∩G

Therefore, −a+ b ∈ cl(G) which means b ∈ a+ cl(G).

c) Let b ∈ a+ int(G). Our purpose is to show that b ∈ e∗-int(a+G).

b ∈ a+ int(G) ⇒ −a+ b ∈ int(G) ∈ O(X)

⇒ (∃U ∈ e∗O(X,−a))(∃V ∈ e∗O(X, b))(−a+ V ⊆ U + V ⊆ int(G) ⊆ G)

⇒ (∃V ∈ e∗O(X, b))(V ⊆ a+G)

⇒ b ∈ e∗-int(a+G).

d) Let b ∈ int(a+G). Our purpose is to show that b ∈ a+ e∗-int(G).

b ∈ int(a+G) ⇒ (∃U ∈ O(X, b))(U ⊆ a+G)

⇒ (∃U ∈ O(X, b))(−a+ U ⊆ G)

Theorem 3.2⇒ (−a+ U ∈ e∗O(X,−a+ b))(−a+ U ⊆ G)

⇒ −a+ b ∈ e∗-int(G)

⇒ b ∈ a+ e∗-int(G).

□

Theorem 4.7. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, we have the

following properties.

a) −e∗-cl(G) ⊆ cl(−G),

b) e∗-cl(−G) ⊆ −cl(G),

c) −int(G) ⊆ e∗-int(−G),

d) int(−G) ⊆ −e∗-int(G).
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Proof. a) Let b /∈ cl(−G).

b /∈ cl(−G) ⇒ (∃U ∈ O(X, b))(U ∩ (−G) = ∅)

⇒ (−U ∈ e∗O(X,−b))((−U) ∩G = ∅)

⇒ −b /∈ e∗-cl(G)

⇒ b /∈ −e∗-cl(G).

b) Let b /∈ −cl(G).

b /∈ −cl(G) ⇒ −b /∈ cl(G)

⇒ (∃U ∈ O(X,−b))(U ∩G = ∅)

⇒ (−U ∈ e∗O(X, b))((−U) ∩ (−G) = ∅)

⇒ b /∈ e∗-cl(−G).

c) Let b ∈ −int(G).

b ∈ −int(G) ⇒ −b ∈ int(G)

⇒ (∃U ∈ O(X,−b))(U ⊆ G)

⇒ (−U ∈ e∗O(X, b))(−U ⊆ −G)

⇒ b ∈ e∗-int(−G).

d) Let b ∈ int(−G).

b ∈ int(−G) ⇒ (∃U ∈ O(X, b))(U ⊆ −G)

⇒ (−U ∈ e∗O(X,−b))(−U ⊆ G)

⇒ −b ∈ e∗-int(G)

⇒ b ∈ −e∗-int(G). □

Theorem 4.8. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, we have the

following properties for all a ∈ X.

a) a+ int(cl(δ-int(G))) ⊆ cl(a+G),

b) int(cl(δ-int(a+G))) ⊆ a+ cl(G),

c) a+ int(G) ⊆ cl(int(δ-cl(a+G))),

d) int(a+G) ⊆ a+ cl(δ-cl(G)).

Proof. a) Let G ⊆ X and a ∈ X.

(G ⊆ X)(a ∈ X) ⇒ cl(a+G) ∈ C(X) Theorem 3.2⇒ −a+ cl(a+G) ∈ e∗C(X)

⇒ int(cl(δ-int(e∗-cl(G)))) ⊆ int(cl(δ-int(−a+ cl(a+G)))) ⊆ −a+ cl(a+G)

⇒ int(cl(δ-int(G))) ⊆ int(cl(δ-int(e∗-cl(G)))) ⊆ −a+ cl(a+G)

⇒ a+ int(cl(δ-int(G))) ⊆ cl(a+G).
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b) Let G ⊆ X and a ∈ X.
G ⊆ X ⇒ cl(G) ∈ C(X)

a ∈ X

 Theorem 3.2⇒ a+ cl(G) ∈ e∗C(X)

⇒ int(cl(δ-int(a+G))) ⊆ int(cl(δ-int(a+ cl(G)))) ⊆ a+ cl(a+G).

c) Let G ⊆ X and a ∈ X.
G ⊆ X ⇒ int(G) ∈ O(X)

a ∈ X

 Theorem 3.2⇒ a+ int(G) ∈ e∗O(X)

⇒ a+ int(G) ⊆ cl(int(δ-cl(a+ int(G)))) ⊆ cl(int(δ-cl(a+G))).

d) Let G ⊆ X and a ∈ X.

(G ⊆ X)(a ∈ X) ⇒ int(a+G) ∈ O(X) Theorem 3.2⇒ −a+ int(a+G) ∈ e∗O(X)

⇒ −a+ int(a+G) ⊆ cl(int(δ-cl(−a+ int(a+G)))) ⊆ cl(int(δ-cl(G))). □

Theorem 4.9. Let (X,+, ·, µ) be an e∗-topological ring and G ⊆ X. Then, we have the

following properties.

a) −int(cl(δ-int(G))) ⊆ cl(−G),

b) int(cl(δ-int(−G))) ⊆ −cl(G),

c) −int(G) ⊆ cl(int(δ-cl(−G))),

d) int(−G) ⊆ −cl(int(δ-cl(G))).

Proof. a) Let G ⊆ X.

G ⊆ X ⇒ cl(−G) ∈ C(X)
Theorem 3.2⇒ −cl(−G) ∈ e∗C(X)

⇒ int(cl(δ-int(G))) ⊆ int(cl(δ-int(−cl(−G)))) ⊆ −cl(−G)

⇒ −int(cl(δ-int(G))) ⊆ cl(−G).

b) Let G ⊆ X.

G ⊆ X ⇒ cl(G) ∈ C(X)
Theorem 3.2⇒ −cl(G) ∈ e∗C(X)

⇒ int(cl(δ-int(−G))) ⊆ int(cl(δ-int(−cl(G)))) ⊆ −cl(G).

c) Let G ⊆ X.

G ⊆ X ⇒ int(G) ∈ O(X)
Theorem 3.2⇒ −int(G) ∈ e∗O(X)

⇒ −int(G) ⊆ cl(int(δ-cl(−int(G)))) ⊆ cl(int(δ-cl(−G))).



INT. J. MAPS MATH. (2024) 7(2):307–323 / ON e∗-TOPOLOGICAL RINGS 321

d) Let G ⊆ X.

G ⊆ X ⇒ int(−G) ∈ O(X)
Theorem 3.2⇒ −int(−G) ∈ e∗O(X)

⇒ −int(−G) ⊆ cl(int(δ-cl(−int(−G)))) ⊆ cl(int(δ-cl(G)))

⇒ int(−G) ⊆ −cl(int(δ-cl(G))). □

Theorem 4.10. Let (X,+, ·, µ) be an e∗-topological ring and G,H ⊆ X. Then, e∗-cl(G) +

e∗-cl(H) ⊆ cl(G+H).

Proof. Let c ∈ e∗-cl(G) + e∗-cl(H). Our purpose is to show that c ∈ cl(G + H). Now, let

W ∈ O(X, c).
c ∈ e∗-cl(G) + e∗-cl(H) ⇒ (∃a ∈ e∗-cl(G))(∃b ∈ e∗-cl(H))(c = a+ b)

W ∈ O(X, c)

 ⇒

⇒ (∃U ∈ O(X, a))(∃V ∈ O(X, b))(U + V ⊆W )(U ∩G ̸= ∅)(V ∩H ̸= ∅)

⇒ (W ∈ O(X, c))((U ∩G) + (V ∩H) ̸= ∅)(U + V ⊆W )

⇒ (W ∈ O(X, c))(∃t ∈ X)(t ∈ (U ∩G) + (V ∩H))(U + V ⊆W )

⇒ (W ∈ O(X, c))(∃u ∈ U ∩G)(∃v ∈ V ∩H)(t = u+ v)(U + V ⊆W )

⇒ (W ∈ O(X, c))(u ∈ U)(u ∈ G)(v ∈ V )(v ∈ H)(U + V ⊆W )

⇒ (W ∈ O(X, c))(u+ v ∈ U + V )(u+ v ∈ G+H)(U + V ⊆W )

⇒ (W ∈ O(X, c))(u+ v ∈ (U + V ) ∩ (G+H) ⊆W ∩ (G+H))

⇒ (W ∈ O(X, c))(W ∩ (G+H) ̸= ∅). □

Remark 4.1. The following example shows that the converse of inclusion given in Theorem

4.10 need not to be true in general.

Example 4.1. Let X = {k, l,m, n} and µ = {∅,X, {k}, {k, l}}. Let the addition and multipli-

cation operations on X be as given in Example 3.1. For the subsets G = {k} and H = {m},

we have cl(G+H) = cl({m}) = {m,n} and e∗-cl(G)+ e∗-cl(H) = e∗-cl({k})+ e∗-cl({m}) =

{k}+ {m} = {m}. It is obvious that cl({m}) = {m,n} ⊈ {m} = e∗-cl(G) + e∗-cl(H).

Theorem 4.11. Let (X,+, ·, µ) be an e∗-topological ring and let (Y,+, ·, ρ) be a topological

ring. If f : X → Y is a ring homomorphism and continuous at 0X, then f is e∗-continuous.

Proof. Let f be a homomorphism and continuous at 0X. Our purpose is to show that f is

e∗-continuous. Now, let V ∈ O(X, f(a)).
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V ∈ O(X, f(a)) ⇒ f(a) = f(a+ 0X) ∈ V ∈ O(T )

f is homomorphism

 ⇒

⇒ f(a) + f(0X) ∈ V ∈ O(X) ⇒ −f(a) + V ∈ O(X, f(0X))

f is continuous in 0X

 ⇒

⇒ (∃W ∈ O(X, 0X))(f [W ] ⊆ −f(a) + V ) ⇒ (∃W ∈ O(X, 0X))(f(a) + f [W ] ⊆ V )

f is homomorphism

 ⇒

⇒ (∃W ∈ O(X, 0X))(f [a+W ] ⊆ V )

U := a+W

 ⇒ (U ∈ e∗O(X, a))(f [U ] ⊆ V ).

□

5. Conclusion

The idea of obtaining more general results than those existing in the literature has led

mathematicians to introduce new concepts such as topological groups, topological rings,

topological fields, and topological vector spaces. In this article, we have introduced a new

concept, called e∗-topological ring, by utilizing e∗-open sets. This new concept comes across

as a more general concept than the concept of β-topological rings. On the other hand, the

results given in this study coincide with the results given [2] in regular topological spaces,

since the collection of all β-open sets is equal to the collection of all e∗-open sets in regular

spaces. We obtained not only many results related to this new notion but also gave some

counterexamples. We believe that the results obtained in this study will find an important

place in future research on topological rings.
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