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g-H-REGULAR AND g-H-NORMAL HEREDITARY SPACES
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Abstract. This paper presents the introduction of the concept of g-H-regularity within

the context of hereditary spaces. It delves into an exploration of various properties asso-

ciated with g-H-normality, offering proofs for some of these properties. Additionally, the

paper investigates the characterization of g-H-normality through the application of modified

versions of Urysohn’s lemma and the famous Tietze Extension Theorem.
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1. Introduction

The separation axioms play a pivotal role in the examination of topological spaces by

enabling us to use topological methods to distinguish between disjoint sets and distinct

points. In 2002, Á Császár [7] introduced the concept of generalized topology, which expands

upon this framework. For a non-empty set X, a family µ of subsets of X is designated as

a generalized topology on X if it satisfies two fundamental properties: it must include the

empty set ∅ and remain closed under arbitrary unions [6]. The pair (X,µ) is referred to as

a generalized topological space, where the elements of µ are known as µ-open sets, and their

complements are designated as µ-closed sets. We define the closure of a set A in this context

as clµ(A), given by ∩{F ⊂ X : X −F ∈ µ,A ⊂ F}, and the interior of A as intµ(A), defined

as ∪{G ⊂ X : G ∈ µ,G ⊂ A}.
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In 2004, Császár [8] introduced a modified framework for separation axioms (µ − T0,

µ − T1, µ − T2, µ − S1, µ − S2) tailored specifically for generalized topologies, where the

conventional open sets are substituted with µ-open sets. In 2007, he introduced the concept

of normality for generalized topological spaces and demonstrated several properties of normal

spaces. These properties were characterized using an adapted version of Urysohn’s lemma

[10]. Sarsak [17] expanded the study of separation axioms by introducing µ − D0, µ − D1,

µ − D2 generalized topological spaces. Xun et al. [18] conducted research on generalized

topological spaces and provided characterizations for µ−Ti spaces, for i = 0, 1, 2, 3, 4, as well

as µ − TD spaces and µ − R0 spaces. Additionally, Min conducted a study on separation

axioms within generalized topological spaces in [14].

Also hereditary classes, initially introduced by Császár [9], have been a subject of ongoing

exploration by numerous researchers over time. A non-empty familyH consisting of subsets of

X is termed a hereditary class onX if, whenever A is a subset of B and B is a member ofH, A

must also belong to H. The triple (X,µ,H) is denoted as a hereditary generalized topological

space, or simply a hereditary space. Császár [9] defined an operator cl∗(A) = A ∪A∗, where

A∗ = {x ∈ X : U ∩A /∈ H for each U ∈ µ, x ∈ U} for A ⊂ X. This operator induces another

generalized topology, denoted as µ∗, which is finer than µ, and it is referred to as the ∗-

generalized topology. The constituents of µ∗ are known as ∗-open sets and their complements

are designated as ∗-closed sets. Additionally, int∗(A) = ∪{G ⊂ X : G ∈ µ∗, G ⊂ A}. The

exploration of hereditary spaces has been a subject of ongoing research by various authors

[12, 1]. In a separate study, the author investigated some generalized separation axioms, such

as Hausdorff modulo H and H-regularity, as outlined in [5].

In 2009, Navaneethakrishnan et al. [16] introduced and examined the notions of Ig-normal

and Ig-regular ideal topological spaces, utilizing the concepts of Ig-open and Ig-closed sets

[15]. The author later extended these concepts to Hg-normal and Hg-regular hereditary

spaces in [4]. Furthermore, the author also introduced and investigated the concept of g-H-

normal spaces in the same study [4].

Recently, in 2024, Mesfer H. Alqahtani et al. [2] introduced a category of ℵ-open sets

in topological spaces and discussed its relationships with many different classes of open

sets. Additionally, the concepts of continuity of functions and separation axioms have been

investigated.

Many authors introduced modified separation axioms for generalized topologies in differ-

ent set-ups, which motivates the author to investigate further on separation axioms and find
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the generalizations of well known results for the same. This paper builds upon the previ-

ous research to provide further characterizations and a modified version of the well-known

Urysohn lemma and Tietze Extension Theorem specifically tailored for g-H-normal spaces.

Additionally, the concept of g-H-regular space is introduced and various properties of this

space are investigated.

2. Preliminaries

In our study, we will make reference to the following definitions and theorems:

Definition 2.1. [5] The generalized topological space (X,µ) is said to be µ-regular if, for

every point x within X and for every µ-closed set F that does not include x, there exist two

disjoint µ-open sets denoted as U and V in X, satisfying the conditions that x is an element

of U and F is entirely contained within V .

Definition 2.2. [3] In the context of a generalized topological space (X,µ) and any subset

Y of X, the collection {Y ∩ G : G ∈ µ} is a generalized topology on Y , which particularly

is referred to as the subspace generalized topology or relative generalized topology and it is

denoted by µY . Consequently, when we equip the set Y with this generalized topology µY , it

is described as a generalized subspace (or simply subspace) of X.

Definition 2.3. [4] A subset A of a generalized topological space X is said to be Hg-closed

when it satisfies the condition that if U is a µ-open set containing A, then A∗ must be entirely

contained within U . A is said to be Hg-open if X −A is Hg-closed.

Remark 2.1. [4] Each µ-open set is also Hg-open and each µ-closed set is also Hg-closed.

Definition 2.4. [4] A subset A of a generalized topological space X is called g-µ-closed when

it satisfies the condition that if U is µ-open set cotaining A, then clµ(A), the µ-closure of A,

must be entirely contained within U . A is said to be g-µ-open if X −A is g-µ-closed.

Definition 2.5. [4] A hereditary space (X,µ,H) is considered to be Hg-regular when, for

any point x and a µ-closed set B ⊂ X, provided that B does not contain x, there exist two

disjoint Hg-open sets U and V , within X satisfying x ∈ U and B ⊂ V .

Definition 2.6. [4] A hereditary space (X,µ,H) is Hg-normal if, for any two disjoint µ-

closed sets A and B in X, there exist two disjoint Hg-open sets U and V within X, such that

A is entirely contained in U and B is entirely contained in V .
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Definition 2.7. [4] A hereditary space (X,µ,H) is g-H-normal if, for any two disjoint Hg-

closed sets A and B in X, there exist two disjoint µ-open sets U and V within X such that

A is entirely contained in U and B is entirely contained in V .

Theorem 2.1. [9] For any two subsets A and B of a hereditary space (X,µ,H), the following

properties hold.

(1) A∗ ⊂ clµ(A).

(2) A∗ is µ-closed set, and therefore A∗ = clµ(A
∗) = clµ(A).

(3) cl∗(A) = A∗ = clµ(A) = clµ(A
∗), whenever A ⊂ A∗.

(4) If H = {∅}, then A∗ = clµ(A) = cl∗(A).

(5) (A ∩B)∗ ⊂ A∗ ∩B∗.

Lemma 2.1. [10] Let β be any family of subsets of the space X. The family ν of subsets of

X consists of the ∅ and all sets N that can be expressed as the union of sets
⋃

i∈I Bi, where

Bi ∈ β and I is a non-empty index set, is a generalized topology on X, which is referred to

as the generalized topology generated by the base β.

Example 2.1. [10] Consider X = R and the family of subsets β = {(−∞, t) : t ∈ R}
⋃
{(t,+∞) :

t ∈ R}. Then the generalized topology on R generated by β, denoted by ν, is known as the

usual generalized topology.

Lemma 2.2. [10] Suppose µ is a generalized topology on the space X and the generalized

topology ν on another space Y is generated by the base β. Then a mapping f : X → Y is

considered (µ, ν)-continuous if and only if the inverse image of each set B ∈ β under the

map f , denoted as f−1(B), belongs to the generalized topology µ.

Theorem 2.2. [4] A hereditary space (X,µ,H) is g-H-normal if and only if, for every Hg-

closed set A within X and an Hg-open set B that contains A, there exists a µ-open set V

satisfying A ⊂ V ⊂ clµ(V ) ⊂ B.

3. g-H-regular and g-H-normal Spaces

g-H-regular Spaces. This section will provide an introduction to the concept of g-H-regular

hereditary spaces and delve into an exploration of the different properties related to these

spaces.
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Definition 3.1. A hereditary space (X,µ,H) is defined to be g-H-regular if when, for a point

x in X and an Hg-closed set A that does not contain x, there exist two disjoint µ-open sets

U and V such that x is an element of U and A is entirely contained within V .

Definition 3.2. A generalized topological space (X,µ) is termed g-µ-regular if, for a point

x within X and a g-µ-closed set A that does not include x, there exist two disjoint µ-open

sets U and V such that x is a member of U and A is entirely contained within V .

Remark 3.1. Every hereditary space that is g-H-regular is also µ-regular because each set

that is µ-closed is also Hg-closed, however the converse does not necessarily hold, as illustrated

in Example 3.1.

Example 3.1. Let X = {p, q, r}, µ = {∅, {p}, {q, r}, X} and H = {∅}. This space is µ-

regular, but not g-H-regular, since {r} is Hg-closed set that does not contain q and there are

no disjoint µ-open sets that contain q and {r}.

The following Theorems 3.1 and 3.2 give characterizations of g-H-regular spaces.

Theorem 3.1. A hereditary space (X,µ,H) is g-H-regular if, and only if, for every point

x ∈ X and each Hg-open set A in X that includes x, there is a µ-open set V satisfying that

x ∈ V ⊂ clµ(V ) ⊂ A.

Proof. In a g-H-regular space X, consider a point x and an Hg-open set A containing x.

Then X−A is Hg-closed set that does not contain x. Since X is g-H-regular, there exist two

disjoint µ-open sets, V and W , such that x belongs to V and (X −A) is a subset of W . The

fact V ∩W = ∅ implies that clµ(V ) ⊂ X−W . Consequently, x ∈ V ⊂ clµ(V ) ⊂ X−W ⊂ A.

Conversely, suppose x is an element of X and A is any Hg-closed sets in X that does not

contain x. In this case, X−A is Hg-open set containing x. Then there exists a µ-open set V

such that x ∈ V ⊂ clµ(V ) ⊂ X −A. By defining W = X − clµ(V ), there will be two disjoint

µ-open sets V and W with the properties that x ∈ V and A ⊂ W . Therefore (X,µ,H) is

g-H-regular. □

By setting H = {∅} in the above Theorem 3.1, we can derive the following characterization

of g-µ-regular generalized topological spaces.

Corollary 3.1. A generalized topological space (X,µ) is g-µ-regular if and only if, for every

point x ∈ X and each g-µ-open set A that contains x, there exists a µ-open set U satisfying

x ∈ U ⊂ clµ(U) ⊂ A.
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Theorem 3.2. A hereditary space (X,µ,H) is g-H-regular if and only if, for every x ∈ X

and any Hg-closed set A that does not contain x, there exists a µ-open set V that contains x

such that clµ(V ) is disjoint from A.

Proof. The proof of the theorem is straightforward and follows directly from Theorem 3.1. □

The following Corollary 3.2 provides a way to characterize g-µ-regular spaces when we

take H = {∅} in the Theorem 3.2.

Corollary 3.2. A generalized topological space (X,µ) is g-µ-regular if and only if, for every

point x ∈ X and for any g-µ-closed set A that does not include x, there exists a µ-open set

V containing x such that clµ(V ) does not intersect with A.

We have defined Hg-regular hereditary spaces in [4]. Now we establish a relationship

between g-H-regularity and Hg-regularity of hereditary spaces in the Theorem 3.3.

Theorem 3.3. A hereditary space (X,µ,H), which is g-H-regular, is also Hg-regular.

Proof. The straightforward proof lies in the fact that every µ-open set is Hg-open and every

µ-closed set is Hg-closed. □

Remark 3.2. Every g-H-regular hereditary space is Hg-regular, as shown in the Theo-

rem 3.3, however the converse does not necessarily hold, as illustrated in Example 3.2.

Example 3.2. Let X = {p, q, r}, µ = {∅, {p}, {p, q}, {p, r}, X} and H = {∅, {p}}. Every

µ-open subset of X is ∗-closed, therefore every subset of X is Hg-open, which makes the space

(X,µ,H), Hg-regular. {r} is Hg-closed set that does not contain q and there are no disjoint

µ-open sets that contain q and {r}. Therefore (X,µ,H) is not g-H-regular.

g-H-normal Spaces. The notion of g-H-normal hereditary spaces was originally introduced

in the reference [4]. In this context, we will explore a range of properties and characterizations

of these g-H-normal hereditary spaces.

Theorem 3.4. Let X be g-H-normal space. Then a µ-closed subspace of X is g-H-normal.

Proof. In a µ-closed subspace Y of X, if A and B be two disjoint Hg-closed sets, then, by

Theorem 3.6, A and B are disjoint Hg-closed subsets of the space X. Since X is g-H-normal,

there exist two disjoint µ-open sets U and V in X such that A is contained in U and B

is contained in V . Then U ∩ Y and V ∩ Y are two disjoint µY -open sets in Y such that

A = (A ∩ Y ) ⊂ (U ∩ Y ) and B = (B ∩ Y ) ⊂ (V ∩ Y ). Hence Y is g-H-normal space. □
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The Theorem 3.5 discussed below establishes a relationship between the notions of g-H-

normality and Hg-normality within the context of hereditary spaces.

Theorem 3.5. If a hereditary space (X,µ,H) is g-H-normal, then it is Hg-normal.

Proof. The proof can be immediately established by the fact that every µ-open set is Hg-open

and every µ-closed set is Hg-closed. □

Remark 3.3. Every g-H-normal hereditary space is Hg-normal, as shown in the Theo-

rem 3.5, however the converse does not necessarily hold, as illustrated in Example 3.3.

Example 3.3. Consider the hereditary space X = {p, q, r}, µ = {∅, {p}, {p, q}, {p, r}, X}

and H = {∅, {p}}. In this space, every µ-open set is essentially ∗-closed, making every

subset of X, Hg-open. Consequently, (X,µ,H) is Hg-normal. However, {q} and {r} are

two disjoint Hg-closed sets which can not be separated by disjoint µ-open sets and therefore

(X,µ,H) is not g-H-normal.

Theorem 3.6. Consider a generalized subspace Y of the space X. If a subset A ⊂ Y is

Hg-closed within Y , then A is Hg-closed in X.

Proof. Let U be a µ-open set containing A. Then (U ∩ Y ) ∈ µY and A ⊂ (U ∩ Y ). Since A

is Hg-closed in Y , A∗ ⊂ (U ∩ Y ) ⊂ U . Therefore A is Hg-closed in X. □

Corollary 3.3. Consider a generalized subspace Y of the space X. If a subset A ⊂ Y is

µY -closed within Y then A is Hg-closed in X.

Theorem 3.7. Let Y be a generalized subspace of X. If a set A is Hg-closed within the

space X and Y is µ-closed within X, then the intersection A ∩ Y is Hg-closed within Y .

Proof. Consider (A∩Y ) ⊂ U with U ∈ µY . Then U can be expressed as U = (G∩Y ) for some

G ∈ µ. Then A = (A∩Y )∪(A∩(X−Y )) ⊂ (U∪(X−Y )) = (G∩Y )∪(X−Y ) = (G∪(X−Y )) ∈

µ, since Y is µ-closed in X. Also, A is Hg-closed set within X, A∗ ⊂ (G ∪ (X − Y )). Then

(A ∩ Y )∗ ⊂ (A∗ ∩ Y ∗) ⊂ (A∗ ∩ Y ) ⊂ ((G ∪ (X − Y )) ∩ Y ) = G ∩ Y = U . Therefore A is

Hg-closed in Y . □

Theorem 3.8. If a set A is Hg-closed and set B is µ-closed, then their intersection A ∩ B

is Hg-closed.

Proof. The proof can be deduced from the Theorems 3.6 and 3.7. □
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Urysohn’s Lemma. We will now provide a proof for the following variation of Urysohn’s

Lemma adapted for g-H-normal hereditary spaces:

Theorem 3.9. Necessary Condition for g-H-Normality in Hereditary Space: Let (X,µ,H)

be a g-H-normal hereditary space and let A, B be disjoint Hg-closed subsets of X. Then there

exist a function f : X → [0, 1] that is (µ, ν)-continuous where ν is the standard generalized

topology on the interval [0, 1], such that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B.

Proof. Consider the collection D of dyadic fractions in the interval [0,1], defined as m
2n , where

m = 0, 1, 2, .....2n and n = 0, 1, 2, 3, ..... For each r ∈ D, we construct µ-open sets Ur and

µ-closed sets Fr in such a way that:

(1) Ur ⊂ Fr for each r ∈ D.

(2) If r and s are in D and r < s, then Fr ⊂ Us.

Start by setting F0 = A and U1 = X − B. As A and B are disjoint, A ⊂ (X − B). Using

Theorem 2.2, since A is Hg-closed and X − B is Hg-open, there exists a µ-open set and

therefore Hg-open U 1
2
such that A ⊂ U 1

2
⊂ clµ(U 1

2
) ⊂ X −B. Continuing this construction,

we can obtain Ur and Fr for each r ∈ D, ensuring that Ur ⊂ Fr and Fr ⊂ Us for r < s.

Define a function f : X → [0, 1] as f(x) = inf{r ∈ D : x ∈ Fr}. Then f(x) = 0 for

x ∈ F0 = A and f(x) = 1 for x ∈ B. To show that f is (µ, ν)-continuous, it is sufficient

to prove that f−1([0, a)) and f−1((b, 1]) are µ-open sets in X. f−1([0, a)) = ∪{Ur : r < a}

and f−1((b, 1]) = ∪{X − Fr : r > b}, ensuring that both sets are µ-open, making f , (µ, ν)-

continuous. □

The following Theorem 3.10 provides a sufficient condition for g-H-normality in hereditary

spaces.

Theorem 3.10. Sufficient Condition for g-H-Normality in Hereditary Space: If (X,µ,H)

is a hereditary space with the property that for any two disjoint Hg-closed subsets A and B

of X, there exist a function f : X → [0, 1] that is (µ, ν)-continuous, where ν is the standard

generalized topology on the interval [0, 1], such that f(x) = 0 for x ∈ A and f(x) = 1 for

x ∈ B, then X is g-H-normal.

Proof. Consider the sets f−1([0, 1/2)) and f−1((1/2, 1]). These sets are disjoint µ-open sets

in X containing A and B, respectively. Consequently, X is g-H-normal. □
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Tietze Extension Theorem. A modified version of the Tietze Extension Theorem has been

established for g-H-normal hereditary spaces, as outlined in Theorem 3.11.

Theorem 3.11. Let (X,µ,H) be a g-H-normal hereditary space and let f : F → R be a

(µF , ν)-continuous mapping, where F is an Hg-closed subset of X. Then there exist a (µ, ν)-

continuous mapping g : X → R such that g(x) = f(x) for all x ∈ F , where ν is usual

generalized topology on R.

Proof. We first assume that f is bounded function with c = sup{|f(y)| : y ∈ F}. We define

sets A0 = {y ∈ F : f(y) ≤ −c/3} and B0 = {y ∈ F : f(y) ≥ c/3}. These sets are disjoint

ν-closed sets in the interval [−c, c]. Since f is (µF , ν)-continuous mapping, f−1(A0) and

f−1(B0) are disjoint µF -closed sets and consequently Hg-closed sets in X. By Theorem 3.9,

there exists a (µ, ν)-continuous function g0 : X → [−c/3, c/3] such that g0(A0) = −c/3 and

g0(B0) = c/3. This function satisfies |g0| ≤ c/3 and |f − g0| ≤ 2c/3 on F . We then define

sets A1 = {y ∈ F : (f − g0)(y) ≤ −2c/9} and B1 = {y ∈ F : (f − g0)(y) ≥ 2c/9}. These sets

are again disjoint ν-closed sets in [−c, c] and therefore (f − g0)
−1(A1) and (f − g0)

−1(B1)

are disjoint µ-closed sets in X, making them Hg-closed sets in X. By applying Theorem 3.9,

we obtain a (µ, ν)-continuous function g1 : X → [−2c/9, 2c/9] such that g1(A1) = −2c/9

and g1(B1) = 2c/9 and |g1| ≤ 2c/9, |f − g0 − g1| ≤ 4c/9 on F . This process is continued,

producing a sequence {gn} of (µ, ν)-continuous functions defined on X such that |gn| ≤ 2nc
3n+1

and |f − g0 − g1......− gn| ≤ 2n+1c
3n+1 on F .

We define hn = g0 + g1 + ...... + gn for n ≥ 1. This is a sequence of (µ, ν)-continuous

functions on X. For n ≥ m, |hn − hm| is bounded by (23)
m+1c. Therefore, {hn} is a Cauchy

sequence and converges uniformly to a real valued function h on X. This limit function

h = limn→∞ hn = lim(g0 + g1 + ......+ gn) =
∑∞

n=0 gn and therefore h(x) = f(x) on F .

To complete the proof, we prove that h is (µ, ν)-continuous function. Let x ∈ X and V be a

ν-open set in R containing h(x). Since hn(x) converges uniformly to h, for any given ϵ > 0,

there exists an integer N such that hn(x) ∈ V for all n ≥ N . Since hn is (µ, ν)-continuous,

there exists a µ-open set U in X containing x such that hn(U) ⊂ V . Therefore, h(U) =

limn→∞ hn(U) ⊂ V . Thus, we have established that h is (µ, ν)-continuous, concluding the

proof. □
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4. Conclusion

This research primarily delves into two distinct areas within the realm of hereditary gener-

alized topological spaces. The first area explores the concept of g-H-regularity in hereditary

spaces, which provides generalized versions of fundamental properties typically associated

with regular topological spaces. In the second area, the focus shifts to the generalization of

renowned results such as Urysohn’s lemma and the Tietze Extension Theorem, specifically

within the context of g-H-normal hereditary spaces.
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