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ON THE HARARY INDEX OF TI'(Z,)
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ABSTRACT. In this work, the Harary index of zero-divisor graphs of rings Z,, are calculated
when n is a member of the set {2p,p2,pk,pq,p2q,pqr} where p, ¢ and r are distinct prime
numbers and A is an integer number . We give the formulas for computing the Harary index
of I'(Z,). Moreover, the Harary index of graphs for products of rings were computed.
Keywords: Graph theory, Topological indeces, Harary index, Zero-divisor graph, Distance
in graph.
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1. INTRODUCTION AND PRELIMINARIES

The numerical invariants of chemical graphs are used to characterize some properties of the
graph of a molecule [35]. These invariants are named in the chemical literature as topologi-
cal indices also known as molecular descriptors, which are a single number [21]. Topological
indices have found application in various areas of chemistry, physics, mathematics, infor-
matics, biology, etc. [1I, 2l 20, 28, 29]. Topological indices have found some applications in
theoretical chemistry, Chemical graph theory is a branch of mathematical chemistry that
has a significant impact on the development of the chemical sciences. This study, due to its

mathematical convergence, will attract many researchers.
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Many times, nearby atoms affect each other more than distant atoms. Ivanciuc et al.
defined a new molecular graph matrix for researching this interaction, namely the Harary
matrix [22]. It was also called initially the reciprocal distance matrix [24]. The Harary index
has been introduced independently by Plavsi¢ et al. [3I]. The Harary index is derived from
the Harary matrix and has a number of exciting properties. For this reason, many researchers
have studied this notion for many years [3], 10}, 111 12} 13|, 14} [16, [36] 37, B38].

Graphs are a powerful tool for exploring algebraic structures, and their use has become a
prominent area of research. By mapping a graph to a ring or other algebraic structures, many
academics have investigated the algebraic properties of these structures using the associated
graphs [4], [6], [7, 15, 17, 19, 26, 27, 30].

Let G = (V, E) be a connected graph with vertex set V(G) = {v1,v2, ..., vn} and edge set
E(G) such that |V(G)| = n and |E(G)| = m. Let d;; denote by the distance between the
vertices v; and v; in G. The Harary matrix of G denoted by RD(G) is an n x n matrix

(RD; ;) such that [23] 31]

1 . .
a5 17

0, i=j.

RD;; =

The Harary index of the graph G, denoted by HI(G), is defined as

n n

HHG):%EZE:RDM

i=1 j=1

=> RD;;.

1<j

Zero-divisor graph of a commutative ring was introduced by Beck [7]. In that study,
Beck constitutes a connection between graph theory and commutative ring theory. Then,
Anderson and Livingston modified the definition of the zero-divisor graph of a commutative
ring [4]. They defined the zero-divisor graph of a commutative ring on nonzero zero-divisor
elements of the ring as follows:

Let Z, be the ring of integers modulo n. The zero-divisor graph I'(Z,) is the simple
undirected graph without loops which has its vertex set coincides with the nonzero zero-
divisors of Z,, and two distinct vertices v and v in I'(Z,,) are adjacent whenever vv = 0 in
Z,,. Zero-divisor graphs have been a topic of interest to many researchers for many years
[8, 9] 32, [34].

Throughout this paper, we study Harary index of zero-divisor graphs of Z,, and find some

formulas for computing the Harary index of I'(Z,) which are examined. In Section 2, we
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calculate Harary index of zero-divisor graphs of Z,, for n € {2p, p%, p*, pq, p?q, pqr} where p, q
and r are distinct prime numbers and A > 2 is an integer number. Moreover, we arrive at the
Harary index of the Cartesian product of these graphs. Finally, we provide some examples

to support these theorems.

2. HARARY INDEX OF I'(Z,,)

Lately, the zero-divisor graph of the ring 7Z, is popular research in spectral graph and
chemical graph theory. Many researchers have examined some topological indices of zero-

divisor graph of the Z, [5] 17, [18] 25] B33].

Theorem 2.1. Let p > 2 be a prime number, then

HI(T(Zy) = =0 +2),

Proof. Since I'(Zgyp) is a star graph it is isomorphic to Kj ,—1. In this graph, the vertex set
V(I'(Zap)) is divided into two distinct subsets as follow:

S1 ={p},

So={2z|xz=1,...,p—1},

where |S1] = @(%’) =1 and |S2| = @(27”) =p—1. d(v,v) =1 for Vv € S1,Vv € Sy, and
d(v,v) = 2 for Yu,v € Sy. Therefore,

1
HI(F(ZQP)) = Z d(’U V)
v,vEV (T(Zap)) ’

1 1
- Z (v,v) + Z d(v,v)

d(v,
vES,VESS v,VESs
_ 1 52| (1S2] —1) 1
N ‘52‘d(v,1/) + 2 d(v,v)
_(-1D+2)
1 )

Theorem 2.2. Let p > 2 be a prime number, then

(P-1p-2)

HI(T(Z,)) = 5
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Proof. Since F(sz) is a complete graph having p — 1 vertices, so

I'(Z,2) = Kp_1. In a complete graph, d(v,v) = 1 for Vu,v € V(I'(Z,2)). Therefore,

HIT(Zp) = > !

d(v,v)
vveV(I'(Z,2))

_(=Dp-2)

Theorem 2.3. Let p be a prime number and A > 2 be an integer, then

A
HI(T(Z ()‘ 1) A ()‘ 3) A—1 pLQJ p2()\ b
( ( p)‘)) 1 p 1 p | +

+ 1.

Proof. Firstly, we suppose that A is even.

Case 1. In the first case, there are two subpart to be considered. In the first subpart, it is

considered the distance between a vertex from S; and a vertex from S; where ¢ = 2, ..., % -1

and j =1,2,...,i—1lis 2 as d(v,v) =2, v € S;,v € S;. So,

Zsusy ) veS,vesS;

=2 j=1

>

The next subpart is related to the distance between a vertex from S; and a vertex from S
A
where ¢ = 5,...,)\—2 and j=1,...,A—7—1

A—2 A —i—1

> 2 ISillSigE s ) veSiveSs;.

i=3 J=1

Case 2. We consider vertex set S; and S; where 7 = % +1,..,A—1and

j=XA—1,..,i— 1. The distance between a vertex from S; and a vertex from S; is 1. From

this,
A—1 i—1
> Zysnsy ) veS,veS;
7,—7+13 A—i

Case 3. In this case, we take into account vertices in S; where
i=1,...,A—1. When considering vertices v,v € S; for ¢ > 5, the distance is 1, otherwise 2.

Hence, we get

|S|!5|—1 1 [Sil(1Sil =1) 1 , ,
Zz; d(v,v) Z 2 d(v,v) v €Sy € 5.
i=3

A
2
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Using above three cases, when A is even, the Harary index of I'(Z,) is as follows:

>

E* — A—2 A—i—1

) = SIS 5+ T 2 SIS
i=2 j=1 /\]1
A—-1 -1 S S—]_ 1
i=3+1J=A—0

— [Si|(1Si| - 1) 1
; 2 d(v,v)’

Now, we suppose that A is odd.

Case 1. In this case, we consider vertex sets S; and S; where 7 = 2, ..., % andj=1,..,i—1.

The distance from S; to S; is 2 as d(v,v) = 2, where v € S; and v € S;. Hence, we get

ZZ|S\|S| ) vESiveES;

=2 j=1

Also, in other part of this case, it is considered vertex sets S; and S; where ¢ = %, o A—2

and j =1,..., XA —4¢— 1. The distance between these vertices is also 2. So, we have

A=2 A—i—1
> sl Sil G ) veS,veS,
i?)\-&-l ] 1

Case 2. In this case, we are interested in vertex sets S; and S; where
= >‘+1 sA—land j = A—i,...,i—1. The distance is d(v,v) =1 where v € S; and v € Sj.

Then, we have

Zernsr ) veESiveSs;.

=2 j=A—i

Case 3. In this case, we are interested in vertex sets S; and S; where
1= >‘+1 sA—land j = A—i,...,i—1. The distance is d(v,v) =1 where v € S; and v € Sj.

Then, we have

Z Zysn Sil gt ) veS,veS,

i_>\+1 Jj=A—1

Case 4. In the last case, it is considered vertices in S; where

i =1,...,A— 1. When considering vertices v,v € 5; for ¢ > %, the distance is 1, otherwise
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2. So, we attain

d(v,v) 2 d(v,v)

A—1

< |Si|(|Si] — 1 1 = Si|(1S;] — 1 1

SISISI=)_ 1 3 isisi- Vesives
i—1

At
="

When A is odd, using above three cases, the Harary index of I'(Z,) is as follows:

A—2 A—i—1

o> S s S s

=2 j=1 i/\+1]1

|S||S!—1 1
Z d(v, 1/)+

’i>‘+1j)‘7‘

z_: [Si[([Si] —=1) 1 .
Sh 2 d(v,v)
- 2

Therefore, Harary index of I'(Z,x) in a single form is as follows:

1252t A—2 A—i—1
ZZ\SHS\ S+ 5114127 )
=2 j=t i ’.;\] j=1
A-1 i-1 1252 ]
Sl (1S - 1) 1
|5 + n
i= %ﬂg;z ) ; 2 d(v,v)
SEA \Slfl) 1
e d(v,v)’
2
Note that |S;| = qj(%) — pA—i _ pA—i—l.
1251
Z IR |
HI(L(Zp) = Y > 0 = HeM 7 =)o+
=2 j=1
A—2 A—i—1 )
D e e [ G R
i=[3] =1
A—1 i—1
S =M - pr T+
i=[Ap1] j=A—i
23 5 i1 i
3 (p P = -1
5 -

127

(2.1)
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After reducing and simplifying Equation [2.1] we get

A—1 A+3) 4, plel pO-D
HI(F(ZP)\)):( )p)\_( )p)\ 1_p +p

1.
4 4 4 4 +

g

Example 2.1. Given I'(Zy7) where p = 2 and A = 7 as in Figure . We consider Harary
index of I'(Zy7) according to Theorem while X is odd.

A
A=1) v (A+3) plz)  p2O-1)
HI(Z.»)) = - - 1
(L(Zp)) == P Tt
6 10 23 9l2
e ) N |
4 4 1Tt
=1055
@34 100
®36 ?92/
@28 g44 / ‘8 172

058
032
2
46
®74
@098
114
o122
o386
@38
102 ®90
®42
50
® 66
®126 'Y
®14 @70 54
©106
®110
@6 094
®78 ®118 ®10
@138 ®34 oo ®30
022 @26

FIGURE 1. T'(Zy7)
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Example 2.2. Given I'(Zss) where p = 3 and A = 6 as in Figure @ In this example, we

consider Harary index of I'(Zss) according to Theorem when X is even.

A
A1)y (A H3) sy phl pA
HI(D(Z,)) =~ T e
5.6 9.5 33 310
—13 Z3 Z—FT—FI
=15121.

\

=
=7

=

FIGURE 2. T'(Zss)

Theorem 2.4. Let I'(Zy,) be a zero divisor graph and p and q be distinct prime numbers,

then

(r—2) , (¢g—2)
Mg-1) Tap-n)

HI((Zpg)) = (p—1)(g—1) |1+
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Proof. Note that the graph I'(Z,,) is isomorphic to K,_1 41 which is a complete bipartite

graph. The vertex set of this graph can be partitioned into two distinct subsets as

Si={pzx|x=1,..,q— 1},

So={qzr|xz=1,...p—1},

where [S1| = ®(51) = g — 1 and [S| = ®(E!) = p— 1. It is clear that we have two cases to

calculate the Harary Index.

Case 1. d(v,v) =1 for Vv € 51 and Vv € Sy where S1 U Sy = V(I'(Zpq)). Then

1
Z d(U,I/) - |Sl| : |52|

vES1,VES?

={@-1D(g-1).

Case 2. d(v,v) = 2 for Yu,v € S; where i = 1,2. Then

22: 2 d(;,y):@l)';*(‘?‘)é

i=1 veS,,vESy

(p=Dp—-2)+(¢—1)(q—2)].

NG

According to these cases, we attain that

(p—2) n (q—2)

Theorem 2.5. Let p and q be two distinct prime numbers, then Harary index of zero divisor

graph T'(Z,2,) is

HI(F(szq)) = (p - 1)((] - 1) |:p(p; 5) + (p+ 1)(2 1) -1

pP+p’—p—4  q-2 ]
4(g - 1) 4(p-1)
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Proof. In zero divisor graph I'(Z,2,), the vertex set is split four subsets as

Si={pzx|xz=1,..,pg— 1L, ptx,qtz},
ng{q:):]le,...,pQ—l,pJ(x},
Ss={p*x|z=1,..q—1},
Sy={pgzr |x=1,....p— 1},

where U Si = V(I'(Zy,)) and S;NS; =0 ford,j =1,...,4,1 # j.

=1
Using these four distinct subsets, there are three possible cases to evaluate Harary index

of I'(Zy2,).

Case 1. In this case, we consider (v,v) vertex couples where Vv € S; and Vv € S; for

i=1,...,3 and j > 4. Then

3 4 1 3 4 1
Z Z Z d(v,v) - ; :Z: d(v,v)lves;ves,

i=1 j=1+1 UGS»;,I/GS]'

= ’51||52|§ + \51||53’§ + 51|54

1
+ |S2|S3] + |52|’54|§ + |S3][S4]

p—1 g¢-1 p-1
= —1)(g—1) (2

Case 2. This case takes into account two distinct vertices v and v where Yu,v € S; for

i=1,...,3. Then

w

zzd =114 70

1%
i=1 v,VES; i=1 v )
3

SERCREE
— 1= D= D] D1 -1+

q—2
+p—J

v,VES;

p(plp—1)—1)
qg—1
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Case 3. In the last case, we consider the vertices from the S; which forms a complete

subgraph in I'(Z,2,). Then

L [Saf([Sa = 1)
) d(v,v) 2
_ (=D -2)
5 :

Evaluating above three cases, Harary index of I'(Z,2,) is

HI(F(Zp2q)) = (p— 1)((]— 1) |:p(p;_ 5) + (p+ 1)(%1_ 1) -1
p3+p2—p—4 q—2
i 4(¢-1) 4(p—1)]'

g

Theorem 2.6. Let p, q and r be three distinct prime numbers, then Harary index of zero

divisor graph T'(Zypqy) is

3 3 3 2 2 4 4

a v oy 3 By By 3
ay<2+2+4+4>+ﬁv<2+2+4+4 +

HI(T (Zpgr)) Zaﬁfy(3+a+6+7> +af <a+ﬂ+0‘ﬁ+3>+

(@+8+7—a—B—7)

=

wherea=p—1,8=q—1, andy=r—1.

Proof. V(I'(Zpg)) is divided into six separate subsets such as

Si=A{pzr|x=1,...,qr —1,qfx, 71z},
So=A{qr|xz=1,..,pr—Lpta,riz}
Sy={rx|z=1,...,pg - 1,ptz,qfz},
Sy=A{pgz |x=1,..,r—1},
Ss={prz|x=1,..,q— 1},
Se={qrz|z=1,..,p—1}.

6
where |J S; = V(I'(Zpgr)) and S; N S; =0 for 4,5 = 1,...,6, i # j. Using these six distinct
i=1
vertex subsets, there are three possible cases to evaluate Harary index of I'(Zyqy).
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Case 1. In this case, we consider (v,v) vertex couples where Vv € S; and Vv € S; for

i=1,..,2and j =i+ 1,...,3, and d(v,v) = 3 according to the graph. Then

2 3 ] 2 3
; Z Z d(v,v) - Z Z [9il - 1551 - d(v,v) lves;ves;

—i+1veS; veS;

= [S11Sa15 + 1151 + 191151
3 [@ ~ D=0 =1+ @-1e-D*r-1)

- 12— 1) — 1>]

SRS U T A

Case 2. This case takes into account two distinct vertex set couples S; and S; v where

d(v,v) =2,v € S; and v € Sj. Then

T2 ot 2 2

je{4,5} veS, j€{4,6} vES?, je{b,6} vES3,
VGS] vES; veS;

( v)

= I51]- 15l % EANCE % 12l 181]- 2 + 1900 -1 - 1
1851151+ 18511851

= 2= =12+ (= D26 = )+ (- D~ 1%

(p=1*r =)+ p-@-1)*+{p-1)%—1)].

Case 3. In this case, it is considered the vertex set couples such as S; and S; where d(v,v) =

1,veS;and v e S;in I'(Zpgr). Then

5 6
>y e
i=1 veS;, =4 j=i+1veS;,
1/657 i VES

= |S1| - |Se| + |S2| - |S5| + |S3| - [Sa| + [Sa| - |S5] + |Sa| - |Se| + |S5] - |S6]
=(@@-Dr-Dp-D+@-Dr-@-1)+@-1-1)-1)+

(r=D@-D+0r-)pE-1)+(@-1{E-1).
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Case 4. In the last case, we consider the remaining vertex couples such as d(v, v) = 2 where

v,v € S;and i =1,...,6 in I'(Zpg,). Then

. 1 lSil(sil -1 1
Z Z WZZ 2 d(v,v)lvves;

i=1 v,vES; =1
1 [(q (=1 [(g—1(r—-1)—1]
2 2
n (p—1(r—1) [(J;— D(r—1)—1]
n (p—1(g—1) [(1;— D(g—1)—1]
n (7“—1)2(7"—2)
N (q—l)z(q—2) N (p—1)2(p—2) '

Evaluating above all four cases, Harary index of I'(Z,q;) is

(P—D@—1)(r—1)

HI(F(quT)) = 3

p+q+r-3)

p-D@-)(r-1)[r—-1 ¢g—1 r—1 p-—1
+ 2 {pl—i_pl—'_ql q—1
g—1 p-1
+7‘—1+r—1}

1 1 1
—i—(p—l)(q—l)(r—l)[?)—i—p_l—&-q_l-i-r_l
NEEE (RIEE A

4 p—1 q—1
(p—1(g-1) -1 r—2 q—2
= T I )[R ) R o} [ )
p—2
+<q—1><r—1>}
:a67<3+§+§+g>+aﬁ g+§+of+z>
a, v,ay 3 By By 3
+a7<2+2+4+4>+5’y<2+2+4+4>
+%(a2+52+72—a—6—7).
wherea=p—1,6=qgq—1,and y=7—1. O

Theorem 2.7. Let I'(Zy, X Zy), T'(Zp X Zq X L), T'(Zypq), and I'(Zpqr) be zero-divisor graphs

where p, q, and r are distinct prime numbers. The followings hold:

1) HI(U(Zyp % Zq)) = HI(T(Zpq))
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i) HI(T(Zy x Zg X Z)) = HI(T(Zypgy))

Proof. If R = Ry, then I'(R;) = I'(R2) [18]. Therefore proof of this theorem is clear. O

3. CONCLUSION

Topological indices is very important in chemical graph theory since they are one of these

methods of studying graphs and obtaining new applications of them. We computed Harary

index of the zero-divisor graphs of Zn this article. Some formulas was found for computing

the Harary index of Z,, for n € {2p,p?, p*, pq, p*q, pgr} where p,q and r are distinct prime

numbers and A > 2 is an integer number. Finally, some examples were given support to the

Theorems in this article.
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