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ON THE HARARY INDEX OF Γ(Zn)
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Abstract. In this work, the Harary index of zero-divisor graphs of rings Zn are calculated

when n is a member of the set {2p, p2, pλ, pq, p2q, pqr} where p, q and r are distinct prime

numbers and λ is an integer number . We give the formulas for computing the Harary index

of Γ(Zn). Moreover, the Harary index of graphs for products of rings were computed.
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1. Introduction and Preliminaries

The numerical invariants of chemical graphs are used to characterize some properties of the

graph of a molecule [35]. These invariants are named in the chemical literature as topologi-

cal indices also known as molecular descriptors, which are a single number [21]. Topological

indices have found application in various areas of chemistry, physics, mathematics, infor-

matics, biology, etc. [1, 2, 20, 28, 29]. Topological indices have found some applications in

theoretical chemistry, Chemical graph theory is a branch of mathematical chemistry that

has a significant impact on the development of the chemical sciences. This study, due to its

mathematical convergence, will attract many researchers.
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Many times, nearby atoms affect each other more than distant atoms. Ivanciuc et al.

defined a new molecular graph matrix for researching this interaction, namely the Harary

matrix [22]. It was also called initially the reciprocal distance matrix [24]. The Harary index

has been introduced independently by Plavšić et al. [31]. The Harary index is derived from

the Harary matrix and has a number of exciting properties. For this reason, many researchers

have studied this notion for many years [3, 10, 11, 12, 13, 14, 16, 36, 37, 38].

Graphs are a powerful tool for exploring algebraic structures, and their use has become a

prominent area of research. By mapping a graph to a ring or other algebraic structures, many

academics have investigated the algebraic properties of these structures using the associated

graphs [4, 6, 7, 15, 17, 19, 26, 27, 30].

Let G = (V,E) be a connected graph with vertex set V (G) = {ν1, ν2, ..., νn} and edge set

E(G) such that |V (G)| = n and |E(G)| = m. Let di,j denote by the distance between the

vertices νi and νj in G. The Harary matrix of G denoted by RD(G) is an n × n matrix

(RDi,j) such that [23, 31]

RDi,j =


1

di,j
, i ̸= j

0, i = j.

The Harary index of the graph G, denoted by HI(G), is defined as

HI(G) =
1

2

n∑
i=1

n∑
j=1

RDi,j

=
∑
i<j

RDi,j .

Zero-divisor graph of a commutative ring was introduced by Beck [7]. In that study,

Beck constitutes a connection between graph theory and commutative ring theory. Then,

Anderson and Livingston modified the definition of the zero-divisor graph of a commutative

ring [4]. They defined the zero-divisor graph of a commutative ring on nonzero zero-divisor

elements of the ring as follows:

Let Zn be the ring of integers modulo n. The zero-divisor graph Γ(Zn) is the simple

undirected graph without loops which has its vertex set coincides with the nonzero zero-

divisors of Zn and two distinct vertices υ and ν in Γ(Zn) are adjacent whenever υν = 0 in

Zn. Zero-divisor graphs have been a topic of interest to many researchers for many years

[8, 9, 32, 34].

Throughout this paper, we study Harary index of zero-divisor graphs of Zn and find some

formulas for computing the Harary index of Γ(Zn) which are examined. In Section 2, we
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calculate Harary index of zero-divisor graphs of Zn for n ∈ {2p, p2, pλ, pq, p2q, pqr} where p, q

and r are distinct prime numbers and λ > 2 is an integer number. Moreover, we arrive at the

Harary index of the Cartesian product of these graphs. Finally, we provide some examples

to support these theorems.

2. Harary index of Γ(Zn)

Lately, the zero-divisor graph of the ring Zn is popular research in spectral graph and

chemical graph theory. Many researchers have examined some topological indices of zero-

divisor graph of the Zn [5, 17, 18, 25, 33].

Theorem 2.1. Let p > 2 be a prime number, then

HI(Γ(Z2p)) =
(p− 1)(p+ 2)

4
.

Proof. Since Γ(Z2p) is a star graph it is isomorphic to K1,p−1. In this graph, the vertex set

V (Γ(Z2p)) is divided into two distinct subsets as follow:

S1 ={p},

S2 ={2x | x = 1, ..., p− 1},

where |S1| = Φ(2pp ) = 1 and |S2| = Φ(2p2 ) = p − 1. d(υ, ν) = 1 for ∀υ ∈ S1,∀ν ∈ S2, and

d(υ, ν) = 2 for ∀υ, ν ∈ S2. Therefore,

HI(Γ(Z2p)) =
∑

υ,ν∈V (Γ(Z2p))

1

d(υ, ν)

=
∑

υ∈S1,ν∈S2

1

d(υ, ν)
+

∑
υ,ν∈S2

1

d(υ, ν)

= |S2|
1

d(υ, ν)
+

|S2|(|S2| − 1)

2

1

d(υ, ν)

=
(p− 1)(p+ 2)

4
.

□

Theorem 2.2. Let p > 2 be a prime number, then

HI(Γ(Zp2)) =
(p− 1)(p− 2)

2
.
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Proof. Since Γ(Zp2) is a complete graph having p− 1 vertices, so

Γ(Zp2) ∼= Kp−1. In a complete graph, d(υ, ν) = 1 for ∀υ, ν ∈ V (Γ(Zp2)). Therefore,

HI(Γ(Zp2)) =
∑

υ,ν∈V (Γ(Zp2 ))

1

d(υ, ν)

=
(p− 1)(p− 2)

2
.

□

Theorem 2.3. Let p be a prime number and λ > 2 be an integer, then

HI(Γ(Zpλ)) =
(λ− 1)

4
pλ − (λ+ 3)

4
pλ−1 − p⌊

λ
2
⌋

4
+

p2(λ−1)

4
+ 1.

Proof. Firstly, we suppose that λ is even.

Case 1. In the first case, there are two subpart to be considered. In the first subpart, it is

considered the distance between a vertex from Si and a vertex from Sj where i = 2, ..., λ2 − 1

and j = 1, 2, ..., i− 1 is 2 as d(υ, ν) = 2, υ ∈ Si, ν ∈ Sj . So,

λ
2
−1∑

i=2

i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

The next subpart is related to the distance between a vertex from Si and a vertex from Sj

where i =
λ

2
, ..., λ− 2 and j = 1, ..., λ− i− 1

λ−2∑
i=λ

2

λ−i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

Case 2. We consider vertex set Si and Sj where i = λ
2 + 1, ..., λ− 1 and

j = λ − 1, .., i − 1. The distance between a vertex from Si and a vertex from Sj is 1. From

this,

λ−1∑
i=λ

2
+1

i−1∑
j=λ−i

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

Case 3. In this case, we take into account vertices in Si where

i = 1, ..., λ− 1. When considering vertices υ, ν ∈ Si for i ≥ λ
2 , the distance is 1, otherwise 2.

Hence, we get

λ
2
−1∑

i=1

|Si|(|Si| − 1)

2

1

d(υ, ν)
+

λ−1∑
i=λ

2

|Si|(|Si| − 1)

2

1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .
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Using above three cases, when λ is even, the Harary index of Γ(Zpλ) is as follows:

HI(Γ(Zpλ)) =

λ
2
−1∑

i=2

i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
+

λ−2∑
i=λ

2

λ−i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
+

λ−1∑
i=λ

2
+1

i−1∑
j=λ−i

|Si||Sj |
1

d(υ, ν)
+

λ
2
−1∑

i=1

|Si|(|Si| − 1)

2

1

d(υ, ν)
+

λ−1∑
i=λ

2

|Si|(|Si| − 1)

2

1

d(υ, ν)
.

Now, we suppose that λ is odd.

Case 1. In this case, we consider vertex sets Si and Sj where i = 2, ..., λ−1
2 and j = 1, ..., i−1.

The distance from Si to Sj is 2 as d(υ, ν) = 2, where υ ∈ Si and ν ∈ Sj . Hence, we get

λ−1
2∑

i=2

i−1∑
j=i

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

Also, in other part of this case, it is considered vertex sets Si and Sj where i = λ+1
2 , ..., λ− 2

and j = 1, ..., λ− i− 1. The distance between these vertices is also 2. So, we have

λ−2∑
i=λ+1

2

λ−i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

Case 2. In this case, we are interested in vertex sets Si and Sj where

i = λ+1
2 , ..., λ−1 and j = λ− i, ..., i−1. The distance is d(υ, ν) = 1 where υ ∈ Si and ν ∈ Sj .

Then, we have

λ−1∑
i=λ+1

2

i−1∑
j=λ−i

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

Case 3. In this case, we are interested in vertex sets Si and Sj where

i = λ+1
2 , ..., λ−1 and j = λ− i, ..., i−1. The distance is d(υ, ν) = 1 where υ ∈ Si and ν ∈ Sj .

Then, we have

λ−1∑
i=λ+1

2

i−1∑
j=λ−i

|Si||Sj |
1

d(υ, ν)
υ ∈ Si, ν ∈ Sj .

Case 4. In the last case, it is considered vertices in Si where

i = 1, ..., λ− 1. When considering vertices υ, ν ∈ Si for i ≥ λ+1
2 , the distance is 1, otherwise
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2. So, we attain

λ−1
2∑

i=1

|Si|(|Si| − 1)

2

1

d(υ, ν)
+

λ−1∑
i=λ+1

2

|Si|(|Si| − 1)

2

1

d(υ, ν)
υ ∈ Si, ν ∈ Sj

When λ is odd, using above three cases, the Harary index of Γ(Zpλ) is as follows:

HI(Γ(Zpλ)) =

λ−1
2∑

i=2

i−1∑
j=i

|Si||Sj |
1

d(υ, ν)
+

λ−2∑
i=λ+1

2

λ−i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
+

λ−1∑
i=λ+1

2

i−1∑
j=λ−i

|Si||Sj |
1

d(υ, ν)
+

λ−1
2∑

i=1

|Si|(|Si| − 1)

2

1

d(υ, ν)
+

λ−1∑
i=λ+1

2

|Si|(|Si| − 1)

2

1

d(υ, ν)
.

Therefore, Harary index of Γ(Zpλ) in a single form is as follows:

HI(Γ(Zpλ)) =

⌊λ−1
2

⌋∑
i=2

i−1∑
j=i

|Si||Sj |
1

d(υ, ν)
+

λ−2∑
i=⌈λ

2
⌉

λ−i−1∑
j=1

|Si||Sj |
1

d(υ, ν)
+

λ−1∑
i=⌈λ+1

2
⌉

i−1∑
j=λ−i

|Si||Sj |
1

d(υ, ν)
+

⌊λ−1
2

⌋∑
i=1

|Si|(|Si| − 1)

2

1

d(υ, ν)
+

λ−1∑
i=⌈λ

2
⌉

|Si|(|Si| − 1)

2

1

d(υ, ν)
.

Note that |Si| = ϕ(λi ) = pλ−i − pλ−i−1.

HI(Γ(Zpλ)) =

⌊λ−1
2

⌋∑
i=2

i∑
j=1

(pλ−i − pλ−i−1)(pλ−j − pλ−j−1)
1

2
+

λ−2∑
i=⌈λ

2
⌉

λ−i−1∑
j=1

(pλ−i − pλ−i−1)(pλ−j − pλ−j−1)
1

2
+

λ−1∑
i=⌈λ+1

2
⌉

i−1∑
j=λ−i

(pλ−i − pλ−i−1)(pλ−j − pλ−j−1)+

⌊λ−1
2

⌋∑
i=1

(pλ−i − pλ−i−1)(pλ−i − pλ−i−1 − 1)

2

1

2
+

λ−1∑
i=⌈λ

2
⌉

(pλ−i − pλ−i−1)(pλ−i − pλ−i−1 − 1)

2
. (2.1)
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After reducing and simplifying Equation 2.1, we get

HI(Γ(Zpλ)) =
(λ− 1)

4
pλ − (λ+ 3)

4
pλ−1 − p⌊

λ
2
⌋

4
+

p2(λ−1)

4
+ 1.

□

Example 2.1. Given Γ(Z27) where p = 2 and λ = 7 as in Figure 1. We consider Harary

index of Γ(Z27) according to Theorem 2.3 while λ is odd.

HI(Γ(Zpλ)) =
(λ− 1)

4
pλ − (λ+ 3)

4
pλ−1 − p⌊

λ
2
⌋

4
+

p2(λ−1)

4
+ 1

=
6

4
27 − 10

4
26 − 23

4
+

212

4
+ 1

=1055.
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Figure 1. Γ(Z27)
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Example 2.2. Given Γ(Z36) where p = 3 and λ = 6 as in Figure 2. In this example, we

consider Harary index of Γ(Z36) according to Theorem 2.3 when λ is even.

HI(Γ(Zpλ)) =
(λ− 1)

4
pλ − (λ+ 3)

4
pλ−1 − p⌊

λ
2
⌋

4
+

p2(λ−1)

4
+ 1

=
5

4
36 − 9

4
35 − 33

4
+

310

4
+ 1

=15121.
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Figure 2. Γ(Z36)

Theorem 2.4. Let Γ(Zpq) be a zero divisor graph and p and q be distinct prime numbers,

then

HI(Γ(Zpq)) = (p− 1)(q − 1)

[
1 +

(p− 2)

4(q − 1)
+

(q − 2)

4(p− 1)

]
.
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Proof. Note that the graph Γ(Zpq) is isomorphic to Kp−1,q−1 which is a complete bipartite

graph. The vertex set of this graph can be partitioned into two distinct subsets as

S1 = {px | x = 1, ..., q − 1},

S2 = {qx | x = 1, ..., p− 1},

where |S1| = Φ(pqp ) = q − 1 and |S2| = Φ(pqq ) = p − 1. It is clear that we have two cases to

calculate the Harary Index.

Case 1. d(υ, ν) = 1 for ∀υ ∈ S1 and ∀ν ∈ S2 where S1 ∪ S2 = V (Γ(Zpq)). Then

∑
υ∈S1,ν∈S2

1

d(υ, ν)
= |S1| · |S2|

= (p− 1)(q − 1).

Case 2. d(υ, ν) = 2 for ∀υ, ν ∈ Si where i = 1, 2. Then

2∑
i=1

∑
υ∈S1,ν∈S2

1

d(υ, ν)
=

(
|S1|
2

)
· 1
2
+

(
|S2|
2

)
· 1
2

=
1

4
·
[
(p− 1)(p− 2) + (q − 1)(q − 2)

]
.

According to these cases, we attain that

HI(Γ(Zpq)) = (p− 1)(q − 1)

[
1 +

(p− 2)

4(q − 1)
+

(q − 2)

4(p− 1)

]
.

□

Theorem 2.5. Let p and q be two distinct prime numbers, then Harary index of zero divisor

graph Γ(Zp2q) is

HI(Γ(Zp2q)) = (p− 1)(q − 1)

[
p(p+ 5)

3
+

(p+ 1)(q − 1)− 1

4

+
p3 + p2 − p− 4

4(q − 1)
+

q − 2

4(p− 1)

]
.
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Proof. In zero divisor graph Γ(Zp2q), the vertex set is split four subsets as

S1 = {px | x = 1, ..., pq − 1, p ∤ x, q ∤ x},

S2 = {qx | x = 1, ..., p2 − 1, p ∤ x},

S3 = {p2x | x = 1, ..., q − 1},

S4 = {pqx | x = 1, ..., p− 1},

where
4⋃

i=1
Si = V (Γ(Zp2q)) and Si ∩ Sj = ∅ for i, j = 1, ..., 4, i ̸= j.

Using these four distinct subsets, there are three possible cases to evaluate Harary index

of Γ(Zp2q).

Case 1. In this case, we consider (υ, ν) vertex couples where ∀υ ∈ Si and ∀ν ∈ Sj for

i = 1, ..., 3 and j > i. Then

3∑
i=1

4∑
j=i+1

∑
υ∈Si,ν∈Sj

1

d(υ, ν)
=

3∑
i=1

4∑
j=i+1

|Si| · |Sj | ·
1

d(υ, ν)

∣∣∣
υ∈Si,ν∈Sj

= |S1||S2|
1

3
+ |S1||S3|

1

2
+ |S1||S4|

+ |S2||S3|+ |S2||S4|
1

2
+ |S3||S4|

= p(p− 1)(q − 1)

[
2 +

p− 1

3
+

q − 1

2p
+

p− 1

2(q − 1)

]
.

Case 2. This case takes into account two distinct vertices υ and ν where ∀υ, ν ∈ Si for

i = 1, ..., 3. Then

3∑
i=1

∑
υ,ν∈Si

1

d(υ, ν)
=

3∑
i=1

|Si| · |Si| ·
1

d(υ, ν)

∣∣∣
υ,ν∈Si

=

3∑
i=1

(
|Si|
2

)
· 1
2

=

[(
|S1|
2

)
+

(
|S2|
2

)
+

(
|S3|
2

)]
· 1
2

=
1

4
(p− 1)(q − 1)

[
(p− 1)(q − 1)− 1 +

p (p(p− 1)− 1)

q − 1

+
q − 2

p− 1

]



132 A. GÜRSOY, A. ÜLKER, AND N. KIRCALI GÜRSOY

Case 3. In the last case, we consider the vertices from the S4 which forms a complete

subgraph in Γ(Zp2q). Then ∑
υ,ν∈S4

1

d(υ, ν)
=

|S4|(|S4| − 1)

2

=
(p− 1)(p− 2)

2
.

Evaluating above three cases, Harary index of Γ(Zp2q) is

HI(Γ(Zp2q)) = (p− 1)(q − 1)

[
p(p+ 5)

3
+

(p+ 1)(q − 1)− 1

4

+
p3 + p2 − p− 4

4(q − 1)
+

q − 2

4(p− 1)

]
.

□

Theorem 2.6. Let p, q and r be three distinct prime numbers, then Harary index of zero

divisor graph Γ(Zpqr) is

HI(Γ(Zpqr)) =αβγ

(
3 +

α

3
+

β

3
+

γ

3

)
+ αβ

(
α

2
+

β

2
+

αβ

4
+

3

4

)
+

αγ

(
α

2
+

γ

2
+

αγ

4
+

3

4

)
+ βγ

(
β

2
+

γ

2
+

βγ

4
+

3

4

)
+

1

4

(
α2 + β2 + γ2 − α− β − γ

)
where α = p− 1, β = q − 1, and γ = r − 1.

Proof. V (Γ(Zpqr)) is divided into six separate subsets such as

S1 = {px | x = 1, ..., qr − 1, q ∤ x, r ∤ x},

S2 = {qx | x = 1, ..., pr − 1, p ∤ x, r ∤ x},

S3 = {rx | x = 1, ..., pq − 1, p ∤ x, q ∤ x},

S4 = {pqx | x = 1, ..., r − 1},

S5 = {prx | x = 1, ..., q − 1},

S6 = {qrx | x = 1, ..., p− 1}.

where
6⋃

i=1
Si = V (Γ(Zpqr)) and Si ∩ Sj = ∅ for i, j = 1, ..., 6, i ̸= j. Using these six distinct

vertex subsets, there are three possible cases to evaluate Harary index of Γ(Zpqr).
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Case 1. In this case, we consider (υ, ν) vertex couples where ∀υ ∈ Si and ∀ν ∈ Sj for

i = 1, ..., 2 and j = i+ 1, ..., 3, and d(υ, ν) = 3 according to the graph. Then

2∑
i=1

3∑
j=i+1

∑
υ∈Si,ν∈Sj

1

d(υ, ν)
=

2∑
i=1

3∑
j=i+1

|Si| · |Sj | ·
1

d(υ, ν)

∣∣∣
υ∈Si,ν∈Sj

= |S1||S2|
1

3
+ |S1||S3|

1

3
+ |S2||S3|

1

3

=
1

3

[
(p− 1)(q − 1)(r − 1)2 + (p− 1)(q − 1)2(r − 1)

+ (p− 1)2(q − 1)(r − 1)

]
=

(p− 1)(q − 1)(r − 1)

3
(p+ q + r − 3).

Case 2. This case takes into account two distinct vertex set couples Si and Sj υ where

d(υ, ν) = 2, υ ∈ Si and ν ∈ Sj . Then

∑
j∈{4,5}

∑
υ∈S1,
ν∈Sj

1

d(υ, ν)
+

∑
j∈{4,6}

∑
υ∈S2,
ν∈Sj

1

d(υ, ν)
+

∑
j∈{5,6}

∑
υ∈S3,
ν∈Sj

1

d(υ, ν)

= |S1| · |S4| ·
1

2
+ |S1| · |S5| ·

1

2
+ |S2| · |S4| ·

1

2
+ |S2| · |S6| ·

1

2

+ |S3| · |S5| ·
1

2
+ |S3| · |S6| ·

1

2

=
1

2

[
(q − 1)(r − 1)2 + (q − 1)2(r − 1) + (p− 1)(r − 1)2+

(p− 1)2(r − 1) + (p− 1)(q − 1)2 + (p− 1)2(q − 1)
]
.

Case 3. In this case, it is considered the vertex set couples such as Si and Sj where d(υ, ν) =

1, υ ∈ Si and ν ∈ Sj in Γ(Zpqr). Then

3∑
i=1

∑
υ∈Si,
ν∈S7−i

1

d(υ, ν)
+

5∑
i=4

6∑
j=i+1

∑
υ∈Si,
ν∈Sj

1

d(υ, ν)

= |S1| · |S6|+ |S2| · |S5|+ |S3| · |S4|+ |S4| · |S5|+ |S4| · |S6|+ |S5| · |S6|

= (q − 1)(r − 1)(p− 1) + (p− 1)(r − 1)(q − 1) + (p− 1)(q − 1)(r − 1)+

(r − 1)(q − 1) + (r − 1)(p− 1) + (q − 1)(p− 1).
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Case 4. In the last case, we consider the remaining vertex couples such as d(υ, ν) = 2 where

υ, ν ∈ Si and i = 1, ..., 6 in Γ(Zpqr). Then

6∑
i=1

∑
υ,ν∈Si

1

d(υ, ν)
=

6∑
i=1

|Si|(|Si| − 1)

2

1

d(υ, ν)

∣∣∣
υ,ν∈Si

=
1

2

[
(q − 1)(r − 1) [(q − 1)(r − 1)− 1]

2

+
(p− 1)(r − 1) [(p− 1)(r − 1)− 1]

2

+
(p− 1)(q − 1) [(p− 1)(q − 1)− 1]

2

+
(r − 1)(r − 2)

2

+
(q − 1)(q − 2)

2
+

(p− 1)(p− 2)

2

]
.

Evaluating above all four cases, Harary index of Γ(Zpqr) is

HI(Γ(Zpqr)) =
(p− 1)(q − 1)(r − 1)

3
(p+ q + r − 3)

+
(p− 1)(q − 1)(r − 1)

2

[
r − 1

p− 1
+

q − 1

p− 1
+

r − 1

q − 1
+

p− 1

q − 1

+
q − 1

r − 1
+

p− 1

r − 1

]
+ (p− 1)(q − 1)(r − 1)

[
3 +

1

p− 1
+

1

q − 1
+

1

r − 1

]
+

(p− 1)(q − 1)(r − 1)

4

[
(q − 1)(r − 1)− 1

p− 1
+

(p− 1)(r − 1)− 1

q − 1

+
(p− 1)(q − 1)− 1

r − 1
+

r − 2

(p− 1)(q − 1)
+

q − 2

(p− 1)(r − 1)

+
p− 2

(q − 1)(r − 1)

]
=αβγ

(
3 +

α

3
+

β

3
+

γ

3

)
+ αβ

(
α

2
+

β

2
+

αβ

4
+

3

4

)
+ αγ

(
α

2
+

γ

2
+

αγ

4
+

3

4

)
+ βγ

(
β

2
+

γ

2
+

βγ

4
+

3

4

)
+

1

4

(
α2 + β2 + γ2 − α− β − γ

)
.

where α = p− 1, β = q − 1, and γ = r − 1. □

Theorem 2.7. Let Γ(Zp ×Zq), Γ(Zp ×Zq ×Zr), Γ(Zpq), and Γ(Zpqr) be zero-divisor graphs

where p, q, and r are distinct prime numbers. The followings hold:

i) HI(Γ(Zp × Zq)) = HI(Γ(Zpq))
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ii) HI(Γ(Zp × Zq × Zr)) = HI(Γ(Zpqr))

Proof. If R1
∼= R2, then Γ(R1) ∼= Γ(R2) [18]. Therefore proof of this theorem is clear. □

3. conclusion

Topological indices is very important in chemical graph theory since they are one of these

methods of studying graphs and obtaining new applications of them. We computed Harary

index of the zero-divisor graphs of Zn this article. Some formulas was found for computing

the Harary index of Zn for n ∈ {2p, p2, pλ, pq, p2q, pqr} where p, q and r are distinct prime

numbers and λ > 2 is an integer number. Finally, some examples were given support to the

Theorems in this article.
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(A. Ülker) Department of Mathematics and Computer Science, İstanbul Kültür University,
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