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POINTWISE HEMI-SLANT RIEMANNIAN MAPS INTO ALMOST
HERMITIAN MANIFOLDS AND CASORATI INEQUALITIES
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Dedicated to the memory of the late Professor Krishan Lal Duggal(1929-2022)

ABSTRACT. In the present paper, we introduce a new class of Riemannian maps which are
called pointwise hemi-slant Riemannian maps from Riemannian manifolds to almost Hermit-
ian manifolds as a natural generalization of hemi-slant submanifolds, hemi-slant submersions
and hemi-slant Riemannian maps in a very natural way. We mention some examples, present
a characterization and obtain the geometry of foliations in terms of the distributions which
are involved in the definition of such maps. We also find necessary and sufficient conditions
for pointwise hemi-slant Riemannian maps to be totally geodesic. Finally, we obtain Caso-
rati curvatures for pointwise hemi-slant Riemannian maps in complex space form.
Keywords: Kaehler manifold, Riemannian map, pointwise hemi-slant submanifold, hemi-
slant function, pointwise hemi-slant Riemannian map.
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1. INTRODUCTION

A considerable flaw in Riemannian geometry is to compare some geometric properties of
suitable types of maps between Riemannian manifolds. Such suitable maps between Rie-

mannian manifolds are isometric immersions and Riemannian submersions. Many geometers
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have been studied these maps between manifolds in ([I} 2, 9] 10, 12} [13], 14, 16 I8, 19, 25]
97, 32, (34, 133, 36, 35, 40, 37, 45, 48, 49]).

As a natural generalization of isometric immersions and Riemannian submersions, Fischer
[17] defined the concept of Riemannian maps between Riemannian manifolds as follows: Let
(M,g) and (N, g) be Riemannian manifolds and ¥ is a smooth map between them. Then

the tangent bundle of M has the following decompostion
TM = ker¥, @ (ker\Il*)l,

where kerW¥, denotes the kernel space of ¥, and (kerW,)* is the orthogonal complementary

space to kerWV,. In a similar way, the tangent bundle of N has the following decompostion

TN = (rangeV,) & (rangeV,)*

where range¥, denotes the range of ¥, and range®,)" is the orthogonal complementary
space to range¥,. Now, if the horizontal restriction \Ilfpl o (ker¥l) — (range¥,,, )
is a linear isometry between the inner product spaces ((ker¥., )+, g(p1) |(ker\1,*p1)i) and
(rangeVs,, , §(p2) |(rangew.),, ) P2 = ¥(p1) then a smooth map W : (M, g) — (IV, g) is called
Riemannian map at p; € M. One can see that Riemannian submersions and isometric im-
mersions are particular Riemannian maps with (ra'rzge\Ih.JL = 0 and kerW¥, = 0, respectively.

Inspried by Fischer’s article, B. Sahin introduced anti invariant Riemannian maps, holo-
morphic Riemannian maps and semi-invariant Riemannian maps to almost Hermitian man-
ifolds and studied the geomerty of total spaces and base spaces ([39), [41]). This notion
has opened a new original and effective area in the theory of Riemannian maps. Since
then many geometers have studied Riemannian maps in different kinds of structures in
[3, 4, B, 20] 29], 28, BT, B38|, [44], [43]. Recent developments in the theory of Riemannian map
can be found in the books [30] 42].

On the other hand, in [I1], Casorati introduced Casorati curvature which is a very natural
concept of regular surfaces in the three-dimensional Euclidean space. One can see some
optimal inequalities involving Casorati curvatures in ([7, 6} (15, 22] 24] 406 [47,, 23, 51, 52]).

Hemi-slant submanifolds were introduced by Carriazo (Bi-slant immersions. in: Proc.
ICRAMS 2000, Kharagpur, India, 2000, 88-97.) and Sahin (Annales Polonici Mathematici
95 (2009), 207-226) as a generalization of slant submanifolds. Hemi-slant submersions were

introduced by Tagtan, Sahin and Yanan (Mediterr. J. Math. 13, 2171-2184 (2016)) as

a natural generalization of slant submersions. On the other hand, hemi-slant Riemannian
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maps were defined by Sahin (Mediterr. J. Math. 14, 10 (2017)) as a natural generalization
of hemi-slant submanifolds and hemi-slant submersions. In 2022, Giindiizalp and Akyol
defined pointwise slant Riemannian maps as a generalization of pointwise slant submanifolds
[14] and pointwise slant submersions [25] in a natural way in [2I]. They obtained simple
characterizations and geometrical properties of pointwise slant Riemannian maps. As far as
we know, no author has studied pointwise hemi-slant Riemannian maps so far. In the present
paper, we are motivated to fill a gap in the literature by giving the notion of pointwise hemi-
slant Riemannian maps, in which the base space consist of an anti-invariant and a slant
distribution, as a special case of slant submanifold, hemi-slant submanifold, pointwise slant
submanifold, slant submersions, hemi-slant submersions and hemi-slant Riemannian map
and investigate the geometry of these maps.

The paper is organized as follows. Section [2]includes the main properties of the Riemannian
maps, the tensors introduced by B. O’Neill and the second fundamental form of a map.
Section [3| contains the definition of pointwise hemi-slant Riemannian maps from Riemannian
manifolds to almost Hermitian manifolds, many examples and investigate the geometry of
foliations which are arisen from the definition of a pointwise hemi-slant Riemannian map and
obtain decomposition theorems by using these maps. We also find necessary and sufficient
conditions for pointwise hemi-slant Riemannian maps to be totally geodesic. Finally, we

obtain Casorati curvatures for pointwise hemi-slant Riemannian maps in complex space form.

2. PRELIMINARIES

Let (M, gnr,, J1) be an almost Hermitian manifold. This means that M; admits a tensor

field J; of type (1,1) on M; such that

Ji = =1, ga, (&, Ni&e) = guy (§1,&), &,& € D(TM)). (2.1)

An almost Hermitian manifold M; is called Kaehler manifold [50] if
(Vfl J1>£2 = Oa 51752 S F(TM1)> (22)

where V denotes the Riemannian connection of the metric gy, on M.

Let (M1, gn,) and (Ma, gar,) be Riemannian manifolds and V¥ is a differentiable map
between them. Then the differential ¥, of ¥ can be viewed a section of the bundle
Hom(T M, \II*ITMQ) — M, where W~'T'M, is the pullback bundle which has fibres
(O1T M)y = Ty(yMa, ¢ € My. Hom(TM,, V~'TM,) has a connection V induced from
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the Levi-Civita connection VM1 and the pullback connection. The second fundamental form
of ¥ is given by [§]

(VE.)(&1,&) = VEW.o — U (Ve &) (2.3)
for &1,& € I'(T' M), where VY is the pullback connection. On the other hand, it is shown in
([39]) that (VW,)(&1,&2) has no components in ImW,, provided that &1,& € T'((ker®,)t).
More exactly,

(VU,)(£1,&) € D(ImW,)71), Ve, & € T((ker®,)th), (2.4)

here (Im¥,)* is the subbundle of ¥~ (T M) with fibre T'(W,.(T,M;)*), ¢ € M.
Let ¥ be a Riemannian map from a Riemannian manifold (M1, gar,) to a Riemannian man-

ifold (Ma, gar,). Then V&1, &, Y3 € T'((kerW,)L), we have

9r, (VV4)(€1, 62), V4(Y3)) = 0. (2.5)

O’Neill’s tensors T and A are defined by, respectively,
72152 = hvv§1 U€2 + UVU§1 h{Q (26)
and
./45152 = th& h& + hvhglvfg (2.7)

for every &1,&2 € T'(T'My), where V is the Levi-Civita connection of gys,. Here h and v are
the projections on horizontal and vertical distributions, respectively. It is known that the

tensor fields 7T is symetric and A is anti-symetric tensors. By using (2.6)) and ([2.7]), we obtain

Vit = Tontiz + Vi n2; (2.8)
Vi = Tp&a + bV & (2.9)
Vem = Agm +vVem; (2.10)
Ve &o = Ag €2 + hVe &, (2.11)

for any &1, & € T'((kerW,)b), n1,m2 € T(ker®,), here @mnz = vV, 2.

We denote by V2 both the levi-Civita connection of (Ma, grs,) and its pullback along W.
Then according to [26], for any vector field & on M; and any section 7; of (range®,)*, where
(rangeV )t is the subbundle of W~ (T'My) with fiber (¥, (T,M;))*— orthogonal complement
of (¥.(TyMy)) for gar, over g, we have Vg’lj-m which is the orthogonal projection of Vglm
on (U, (T,M;))*—such that V¥1gys, = 0. We now define S, as

Ve = =Sp Vi + Vetm (2.12)
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where S, ¥,&; is tangential component of V%I,* ¢, M- It is easy to see that Sy, V.& is bilinear in
n and U,& and S, U,&; at ¢ depends only on Uy and W,,Y7,. Thus,for &,& € I'((ker®l)

and n; € I'((rangeV,)"), we get

9M, (8771 .&1, \11*52) = gM; (771’ (V\IJ*)(SL 52)) (2'13)

Since (V¥,) is symmetric, it follows that Sy, is a symmetric linear transformation of rangeW..

3. POINTWISE HEMI-SLANT RIEMANNIAN MAPS TO KAEHLER MANIFOLDS

Let ¥ : (M1,9n,) — (M2, gn,,J2) be a Riemannian map from a Riemannian manifold
(Mi, g, ) to an almost Hermitian manifold (Ma, gar,, J2). If, at each given point p € Mo,
the Wirtinger angle ¢(X) between JoW,(X) and the space range¥, is independent of the
choice of the nonzero tangent vector W, (X) in range¥,, then we say that ¥ is a pointwise
slant Riemannian map. In this case, the angle ¢ can be regarded as a function on Ms, which
is called the slant function of the pointwise slant Riemannian map.

Let D be a differentiable distribution on Ms. Then D is pointwise slant if and only if
there exists a function p € [—1,0] such that (yQg)?n = un for n € D, where Q4 denotes the

orthogonal projection on D. Moreover, in this case u = — cos? ¢.

Definition 3.1. Let (M, gn,) be a Riemannian manifold and (Ma, gu,,J2) be an almost
Hermitian manifold. Then we say that a Riemannian map ¥ : My — M is a pointwise
hemi-slant Riemannian map if there exists a pair of orthogonal distributions D? and D on
rangeWV, such that

(1) The space range¥, admits the orthogonal direct decomposition D? @ D+,

(2) The distribution D+ is totally real.

(3) The distribution D? is pointwise slant with slant function .

In this case, the angle ¢ can be regarded as a function on Ms, which is called the hemi-slant
function of the pointwise hemi-slant Riemannian map.

Now we say that the pointwise hemi-slant Riemannian map V¥ is proper if D+ # {0} and

$#0,5.

Then, for n; € T'(range¥,), we can write
Jom = Nim + Nam, (3.14)
here Nin € T(D?) and Nan; € I'(D+4) and we can write

Jom = ym1 + dm, (3.15)
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here v, € I'(range¥,) and dn; € T'((range®,)*). Also, for any Y; € I'((rangeV,)"), we get
JoY1 =A74Y1 + 5Y1, (3.16)

here Y7 € I'(range¥,) and §Y; € I'((rangeV,)"b).

Theorem 3.1. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian man-

ifold (M, gar,) to an almost Hermitian manifold (Ma, gur,, J2) with hemi-slant function ¢.
2 _ 2
vim = —(cos” d)m (3.17)

for any m € T(D?).

Proof. Since,
g (Jom,sym) g (m, 7% m)

cos ¢ =

[ mllyml Imllym]
and cos ¢ == ‘?;Z;J', for 1 € T(D?) we obtain
cos? ¢ — _ 97" m)
m 2
Hence,
vm = —(cos® o).
Also converse of Theorem (3.1} it can be directly verified. O

Moreover, for any 7y, Us € I'(D?) we have

gas; (Y, YU2) = cos® ggag, (1, Us) (3.18)

gas, (671, 6Us) = sin® dgar, (m1, Uz). (3.19)

Furthermore, for 1, € I'(D?) we obtain
Jom = —sin® ¢n1, 60m = —6ym. (3.20)

Example 3.1. Let (R®, ggs) be the Buclid space. Consider {J1,J2} a pair of almost complex
structures on R8 satisfying J1Jo = —JoJ1, here

Ji(ay, ..., a8) = (—asz, —aq, a1, az, —ay, —ag, as, ap)
and

Jo(a, ..., a8) = (—az, a1, a4, —az, —ag, as, ag, —ay).

For any real-valued function \ : R® — R, we define new almost complex structure Jy on R®

by Jy = (cos \)J1 + (sin A)Ja.
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Then RS = (R®, Jy, ggs) is an almost Hermitian manifold.

Consider a Riemannian map ¥ : R® — ]R§\ by

U(y1, .., y8) = (Y1, Y3, Y6, Y8, T, €, C1, C2).

Then the map YV is a proper pointwise hemi-slant Riemannian map with the hemi-slant func-

tion \ such that

o 0
D? = — Dt = —
spcm{a nb }, and spcm{a ’823}
Also, we obtain
o o0 0 0
1_
(Tange*) - Span{ 621’ 8247 8257 827}7

here z1, ..., zg are the local coordinates on R8.

Theorem 3.2. Let Uy be a Riemannian submersion from a Riemannian manifold (M, gar,)
onto an almost Hermitian manifold (Ma, g, , J2) and Wy a poitwise hemi-slant immersion
from (Ma, gar,, J2) to an almost Hermitian manifold (M3, gar,, J2). Then Yoo Uy is a point-

wise hemi-slant Riemannian map.

This theorem is obvious from ([38], Theorem 5.2), and therefore we omit its proof.
As an application of the above Theorem, we give the following example of proper pointwise

hemi-slant Riemannian map.

Example 3.2. Let (R®, ggs) be the Euclid space. Consider {J1,J2} a pair of almost complex

structures on R® satisfying J1Jo = —JoJ1, here
Ji(ai,...,as) = (—az, a1, —ay, a3, —ag, a5, —as, ar)

and
JQ(alv ceey (IS) - (_a37 aq, a1, —az, —ar, as, as, —CLG).

For any real-valued function )\ : R® — R, we define new almost complex structure Jy on R®
by Jy = (cos A)Jy + (sin A)Ja.

Then, RS = (R®, Jy, ggs) is an almost Hermitian manifold. Consider the map

v (RSMQ) — (RE);\?J)\agRs)? \I/(yla "'7y8) = (y170707y470707y87y7)

which is the the composition of the Riemannian submersion

\Ijl : (Rsyg) — E4) \I’l(yh "'7y8) = (y17y47y7ay8)
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followed by the pointwise hemi-slant immersion
\112 : E4 — (RB, J)\, gRS)v \Ifz(ul, ceny ’LL4) = (ul, O, O, ug, 0, O, U4, U3).

It is easy to verify that ¥ is a pointwise hemi-slant Riemannian map with the slant function

¢ = f such that

0

o 0 0
D = = = d Dt = =)
Spa’n{ 827’ azg }? an Spa’n{ 821’ 824}

Also, we obtain
o 0 90 0

1 - - =z =
(Tange*) - Span{ 82’2, 6237 825’ 8Z6}7

here z1, ..., zg are the local coordinates on ]Ri.

First note that for W, € D? and U.& € D, we get gar, (Vi&r, Uula) = 0. Then,
Riemannian map ¥ implies that gas, (£1,&2) = 0. So we obtain two orthogonal distributions

D¢ and D+ such that
(ker¥,)t = D? @ DL,

Let ¥ be a C*°—map from a Riemannian manifold (M, gas,) to a Riemannian manifold

(Ma, gar,)- Then, the adjoint map *(W,),, of the differential (¥.),,, g1 € My, is given by

I (Pa) g1, Y1) = gary (01,7 (W), Y1) (3.21)

for any n € Ty, My and Yy € Ty, Mz. Furthermore if the map ¥ is a Riemannian map,

then for 71 € (rangeV¥.)y(q,) and Y1 € (ker(¥.),, )+, we obtain

q1)

(\I]*)Zl (\p*)qﬂh =, *(‘IJ*)lh(\I’*)thYl =Y,

1

thus the linear map *(W.)q, : (rangeV¥.)y(q) — (ker(¥yi)q )~ is an isomorphism. Define

C =" (V,)g7(¥). From Theorem (3.1, we obtain:

Corollary 3.1. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian mani-
fold (My, g, ) to an Hermitian manifold (Ma, g, , J2) with the hemi-slant function ¢. Then,
n1 € T(D?) we have

C?n = — cos? ¢y (3.22)
For Y1,Ys,Ys € (ker(0,)q, )" with U,Yy = 40, Ys, we define

(VY ) W.Ys = 6(V,)(V1,Ya) — (V) (Y1, V2). (3.23)
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Proposition 3.1. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian
manifold (M, gnr,) to a Kaehler manifold (Ma, gur,, J2) with the hemi-slant function ¢. If

the tensor § is parallel,then ny,Us € T'(D?) we obtain
(VT.,)(Cny, CUR) = — cos® (V) (11, Us). (3.24)

Proof. Assume that § is parallel. Then, using (3.24)), for 71, U € I'(D?) we get

(VW) (m, Uz) = (V¥)(m, CU2).

By replacing 71 and Us , we have

(V) (Uz,m) = (VV,)(Uz, Crn).
Since the tensor (V¥,) is symmetric, we obtain
(VU,)(m, CUs) = (V¥)(Uz,Cm).
Thus we have
(V.)(Cm, CUs) = (VT.)(m, C*Us) = — cos® p(VL..) (m, Ua).
Il

Theorem 3.3. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian man-
ifold (M1, gar) to a Kaehler manifold (Ma, gur,, J2) with the hemi-slant function ¢. Then,
the following assertions are equivalent:

(a) distribution D+ defines a totally geodesic foliation on Mo,
(b)

9 (V) (1.5 U (Y0 (U3)))), T2 (U2) = gty (V300 (Us), Jo W (Uz))
and

9 (V8 (1.5 O(31)), oW (U2) = gar, (V3 T2V (U2), 6Y1), (3.25)
(c) U satisfies and
90t (V0.) (01, Ua), 67 (Us)) = gasy (FV -0 (Us), W, (Uy))

for any W, (m), V.(Us) € T(DY), U, (Us) € T(D?) and Y1 € T'((range¥,)™b).
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Proof. For any U, (), V.(Uy) € T'(D+) and W, (Us) € T(D?), using (2.2)),(3.15) and (2.12)

we obtain
91t (Vo U (U2), W (Us)) = —gat, (S pyw, (1) W (1), 7P (Us))
+ 90, (V- T2 W (Us), 60 (Us)).
From , we arrive at
930, (Vi U (U2), U (U3)) = =gty (V) (1" (704 (U3))), Jo W (Ua))
+ 901, (V- 20, (Us), 60, (Us)). (3.26)
On the other hand, using , and , for Y1 € T'((range¥,)*) we have
9, (Vo U (U2), Y1) = =g, (S, 1) Vs (1), 7Y1)
+ g (Ve U, (Us), 611).
From , we get

900, (Vi W (U2), Y1) = =g, (V) (1" Wa (Y1), Jo W (Ua))

+ g0, (Vo) - 20 (Us), 6Y7). (3.27)

(3.26) and (3.27) gives (a) < (b). For any W, (1), V.(Us) € I'(D+) and U, (U3) € I'(D?),
from and (3.15)) we get

901 (Vo U (U2), W (U3)) = gas, (V3,77 W (Us), W (U))

+ 90, (V3 07 (Us), W (Uy))
— g, (V3260 (Us), Jo U, (U2)).
Using and , we obtain
sin® g, (V3 Vu(Us), W (Us)) = sin 2001 (¢)gar, (W (Us), U (Us)
— M, (Ssyw, (U) Y (1), Ui (Us))
— g0, (V) 00, (Us), J2 0, (U)).
So, from we arrive at
sin® ggar, (Vy, Ua (U2), Wa(Us)) = —gar, (VW) (1, Uz), 670 (Us))

— g0, (V) 00, (Us), J2 0. (Uz)). (3.28)

(3.27) and (3.28) gives (a) < (c). O
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In a similar way we obtain:

Theorem 3.4. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian man-
ifold (M1, g ) to a Kaehler manifold (Ma, gur,, Jo) with the hemi-slant function ¢. Then,
the following assertions are equivalent:

(a) distribution D? defines a totally geodesic foliation on Ms,

(b)
930, (V) (Uz,* W ((v04(U3)))), J2 W (m1)) = g, (Vi T2 W (m1), 6V (Us))
and
9t (V0.) (Ua,* Wi (311)), 69 (Us)) = gar, (Vi 0. (Us), 6Y1)
— g, (Vi 67 8(Us), Y1), (3.29)
(c) U satisfies and

9t (V) (Uz,m), 67 ¥ (U3)) = gar, (V5 004 (Us), Tu(m1))

for any W.(m) € T(DL), U, (Us), V. (Us) € T(D?) and Y1 € T'((range¥,)™L).
Using Theorems [3.3 and we obtain:

Theorem 3.5. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian mani-
fold (M, g, ) to a Kaehler manifold (Ma, gar,, J2) with integrable distribution and the hemi-

slant function ¢. Then, the leaf of (range¥,) is a locally product Riemannian manifold

Mi- x Mf if and only if

90t (V) (01" W7(11)), 694 (Us)) = g, (V60 (Us), 6Y1)

— 9M; (V%J_&Y\I/*(U?)v Y1)
and
90, (V) (1, U2), 69, (Us)) = gar, (FV -6 (Us), W (Ua))

for any n1, Uz € T((ker¥*)*), U, (Us) € T'(D?) and Y; € T'((range¥.,)*), here Mi- and ]\45’j

denotes the leaves of D+ and D?, respectively.

Theorem 3.6. Let ¥ be a pointwise hemi-slant Riemannian map from a Riemannian man-

ifold (M1, g, ) to a Kaehler manifold (Ma, gur,, J2) with the hemi-slant function ¢. Then,
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W is totally geodesic if and only if the following conditions are satisfied:
(a)
9t (V) (01,* WA (Y1), 694 (Us)) = g, (V00 (Us), 6Y1)
— 900, (V670 (U2), Y1)
for any my, Uy € T'((ker¥*)LY) and Y1 € T((range¥,)*),
(b)
sin 2011 (¢)gar, (V4 (Uz), Ws(Us)) = gas, (V) (1, Us), 07V (Uz))
— 9m, (Ssw, (UM YV (Us)
+ 901, (V- 60,. (Us), 60, (Us))
— sin? égnn, (hV, Us, Us)

for any m, Uz, Us € T((ker®,)*),
(c) the distribution kerW, is totally geodesic,
(d) the distribution (kerW,)* is integrable.

Proof. For any 1, Us, Us € I'((ker¥,)t), from ,, and we have
9 (VW) (1, Ua), Wa(Us)) = —gan, (Vi v2 04 (Ua), W (Us))
— g:y (V3 670, (Us), U, (Us))
+ 901, (Vi 05 (U2), 79+ (Us))
+ g1, (V3 00, (U2), 00, (Us)) — g, (W, Ua, Us).
Then, using , and we obtain
sin® ¢gar, (V84) (1, Uz), Ui (Us)) = — sin 26171 () gar, (¥ (U2), U (Us))
+ 90, (VW) (11, Us), 07W.(Uz))
— 9, (Ssw, ()M, YW (Us)
+ 90, (V300 (Uz), 60 (Us))

— sin® g, (hvm Uz, Us).

87

(3.30)

On the other hand, for 7, Uy € T'((kerW,)') and Vi, Vs € T'(ker®,), using (2.3), (2.8) and

(12.11)) we get

g (V) (Vi V2), Wa(m)) = —gnr, (Tvy Vo, )

(3.31)
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and
9 (V) (1, V1), Wi (U2)) = —gar, (Ag, U2, V1), (3.32)
Now, by using (3.30)),(3.31)), (3.32)) and Theorem the proof is completed. O

4. CASORATI INEQUALITIES ALONG HEMI-SLANT RIEMANNIAN MAPS TO COMPLEX SPACE

FORMS
Lemma 4.1. [46] Let W = {(y1, 92, ---sYm) € R™ 1 y1 + y2 + ... + ym, = 2z} be a hyperplane of
R™, and g : R™ — R a quadratic form given by
91,92, - Ym) = ST () + d(Ym)? — 281 <kcs<cm¥rys, ¢ >0, d > 0.

Then the constrained extremum problem ming,, ,, . .. ewg has the following solution:

z 2 z(m—1)
ct+ 1 Ym =

:(c—m+2)i,

Yi=Y2=--=Yn-1= d+1:(c—|—1)d crl

- _ m-1
provided that d = ch+2'

Let (M2, gn,, J2) be a Kaehler manifold. The Riemannian-Christoffel curvature tensor of

a complex space form Ms(v) of constant holomorphic sectional curvature v satisfies

Ris, (Y1, Ya, Vs, V1) = {95 (Y1, Vo) (Yo, ) — g (Y1, V)i, (Y, o)
+ 98, (Y1, J2Y3) 98, (J2Y2, Vi) — 98, (Y2, J2Y3) 98, (J2Y1, Vi)

+ 298,(Y1, J2Y2) 9B, (J2Vs, V) } (4.33)
for all vector fields Y1, Y, Y3, Yy € T'(TMs) ([50]).
Let ¥ be a Riemannian map from a Riemannian manifold (M, gpr,) to a Riemannian

manifold (Ma, gns,). Let Ry, and Ry, be the curvature tensor fields of VMt and VM2,

respectively. Then, for all Y7, Ys, Y3, Y, € T'((ker®,)*, we obtain the Gauss formula given by

(zy
9M, (RB2 (\II*Yla \I/*Yé)\P*Yg, \IJ*YZI) = agm, (RB1 (Ylv YVQ)YVS’ )/4)
+ 952((V\Ij*)(yvl7 Y33)7 (V\IJ*)(Y% Y;l))

- 932((V\P*)(}/1,Y4)7 (v‘lj*)(Y%YE’))) (4'34)

Now, we suppose that ¥ is a pointwise hemi-slant Riemannian map from a Riemannian

manifold (Mfl,ng) to the complex space form (Mé’2 (v), J2, g, ) such that 3 < p = rank¥ <
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min{bi, by}. Using and , for all Y1,Ys,Ys, Y € I'((kerV,)*, we obtain
aae, (B, (V1. ¥2)¥3, i) = {0, (V1. V), (Va. ¥a) — s, (V1. Ya)gss, (Y2, Vi)
+ 98, (WY1, oW, Y3)gB, (J2 V. Y2, V.Y))
— 98,(V.Y2, JoV.Y3) g5, (J2 V. Y1, V. YY)
+ 295, (V. Y1, J2V.Y2) g5, (J2 V. Y3, W.Yy) }
— 98,(VV.)(Y1,Y3), (VW.)(Ya, Ya))
+ 95, (V) (Y1, Ya), (V) (Yz, V3)). (4.35)

Let ¢ € M; and consider
{\I/*El, \I/*EQ = SecC ¢7\P*E1, ceey \I/*Egn_l, ‘I/*Egn = SecC gb’y‘l/*Egn_l, \I/*Egn+1, ceey \I/*Ep} and

{Epi1, Ept2, ..., By, } two orthonormal bases of (ker¥.)+ and (rangeW. )=, respectively. Then,

it follows that the dimension of rangeW, is p. We defined the scalar curvature rlker®)t op
the horizontal space (kerW.,)* by
L
TRert ™ = 58 g, (Rasy (Ex, Es) Es, Ey) (4.36)
and the normalized scalar curvature r*er¥=)™ of (kerW, )t as
kerW.)L
(ke _ 2T (4.37)
p(p—1)
Then, we can write
wlfs - ng((lel*)<Ek7 ES)7 E,B)7 ka S = 17 o Dy /8 =p + 17 ceey b27 (438)
1011* = 37, 195, (V) (Br, Bs), (V) (B, Ey)) (4.39)
tracey) = X0 _ (VU,)(Ey, Ey), |[tracey)||? = gg, (tracey, tracey). (4.40)

The squared norm of 1), the second fundamental form of the horizontal space (kerW¥,)* over
the manifold (MSQ,Jg,gMz), is denoted by C and is called the Casorati curvature of the

horizontal space (ker®,). Thus, we obtain

1 1,
C=—lvl* = ~Sf, Zh (0. (4.41)
p p
Now, assume that L*er¥9)" is a —dimensional subspace (k:er\ll*)qL, 2 <t and

let {E1, Es,..., By} be an orthonormal basis of L(ker®)* " Then the Casorati curvature

C(kerlll*)l(L(ker\I’*)J_ of L(keT‘I’*)l defined as

1 i 1 1
C(ker\ll*) (L(k’er\ll*) ) — 2HTHQ _ ;E%2:p+12278=1(Tkﬁs)2'



90 Y. GUNDUZALP, M. A. AKYOL, AND B. SAHIN

The normalized o*er%+)" — Casorati curvatures a((:ker\p -1 *(p—1) and a((:ker\p o (p—1) of

(kerW,),)*t are given by

[aékerlp*)L(p— ]y = %Cékew*) + p+1mf{C (ker.) (L(keT‘P*)L) : Liker®)t o hyperplane of

(kerW,),)*}, and

wékerw*)L(p ~ 1), = 2C(§ker\1!*)l _ %mf{c(ker\p*)l@(kew ") Ler¥)" 4 hyperplane
of (kerV,);}.

Using (4.35)), (4.36) and (4.41) we arrive at

v 3nv
Z(p2 —p)+ 5 cos® ¢ = o (ker¥.)* (q) +pC(k6N Htracewﬂ2 (4.42)

here 7(*ker¥+)" ig the scalar curvature of (ker®,)..
Now we define a function Q*er¥)" associated with the following quadratic polynomial with

respect to the components of 1 :

Q(ker\I/*)J- _ 5[(19 o p)c(kzer‘ll*)J- + (p2 - l)c(ker\ll*)L(L(ker\I/*)J-)]

3
— gp(ker®)® 4 Z(p2 —p)+ % cos® ¢.

Without loos of generality, by supposing that the hyperplane Lker®)* g spanned by
FEr, ..., E, 1}, using (4.42)) one can produce
{ P g
(keT\I’*)J‘ _ Ebz Ep—l /3 2 1 B 2
Q T B=p+1Tk=1 [p(¢pp.)” + (p + )(wkp) ]
b 1
5,200+ DI (W)
p—
- 2% k<s”¢kk¢§s + T(¢5p)2]
b p—1 2
252 p+1[ k= 1P(¢kk) + 9 (¢§p)

For B =p+1,...,ba, let us consider the quadratic form gg : R» — R defined by

97y, L)) = S (40, )? +—<¢pp> 2P Pl (4.44)

and the constrained extremum problem, mingg, subject to

L 1//?1 + ... -I—T/Jgp =27,
here 2P is a real constant. From Lemma we obtain c =p, d= %.

Thus, by Lemma we get the critical point (¢1ﬂ1, - wgp), given by

2P 3 2P

77b11 ¢22 wp—lp—l p+ 17 pp p+ 17



INT. J. MAPS MATH. (2024) 7(1):76-96 / POINTWISE HEMI-SLANT RIEMANNIAN MAPS... 91

is a global minimum point. Also, gﬁ(wfl, e wgp) = 0. Moreover we obtain
Q(kerlll*)l > (), (445)

which implies

ariker?)® < %[(pQ—p)c“m%)l+(p2—1)c<’f€”*“(L<’“’”‘I’*>L)J
b0 )+ T o g (4.46)

and using (4.46) we obtain

ﬁ(kerlll*)l < [lc(kerllf*)l + P+ 1C(ker\11*)L(L(ker\Il*)J_)]
2 2p
v 3nv 9
+ -+ ——— cos 4.47
1 - (447

for all hyperplane LEer¥)" of (kerw,)+.

Similarly, we can write
Z(ker\ll*)J- _ 2(]?2 o p)c(kerlll*)i- - %(2}92 —3p+ I)C(ker‘ll*)L(L(ker\Il*)J—)

v 3nv
—(p* = p) + =~ cos’ ¢,

—9 (ker®, )+
T + 1 5

(ker®, )+

here hyperplane L is a hyperplane of (ker®,)*. From here,

glher¥a)t > (4.48)

which implies

H(k’er‘ll*)l < 2C(keT\I!*)J- - 2p — lc(ker‘ll*)l(L(ker\Il*)L)]
2p
—I-*-i-?miycos%b (4.49)
4 2p(p—1) ' '

Now, taking the infimum in (4.47) and the supremum in (4.49) over all hyperplanes
Lker®.)® of (kerV¥,)* and analyzing the equality case in (|4.45|) and d4.48|), respectively,

R

we get:

Theorem 4.1. Let ¥V be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M?P gar,) to a complex space form (M22(v), Ja, gar,) with hemi-slant function ¢, 3 < p =

rank¥ < min{bi,ba}. Then the normalized c— Casorati curvatures Uéker‘ll*)L and 6éker\p*)L
on (ker\I/*)qL satisfy
3
(i) Kkervet < oot 1y p Xy o2, (4.50)

4 2p(p-1)
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e (ker®)t - _(ker®.)t 1 v 37171/ 9
n) kK S0 D + -+ cos® . 4.51
) ¢ =1y 2p(p— 1) (4.51)

Furthermore, the equality case holds in any inequalities at a point ¢ € My if and only if
with respect to suitable orthonormal basis {En, ..., Ep} on (k:er\IJ*)qL and {Ept1, ..., Ep, } on

((rangeW®.),)*, the components of ¥ satisfy
Wy = = .. = 7/’571;;71 = %%Z)ffp, Be{p+1,p+2,..,ba},
1/155 =0, k,se{l,,..,p}k#s), Be{p+1,p+2,....,b2}.
Using the Theorem [£.1], we obtain the following results.

Corollary 4.1. Let ¥ be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M{”,ng) to a complex space form (Mé’2 (v), J2, gm,) with hemi-slant function ¢ = 5, 3 <
1
p = rank¥ < min{by,be}. Then the normalized o— Casorati curvatures aékerq}*) and
(ker®., )+

a; on (ker\ll*)é satisfy

(i) mbert)t < gl p 1) + 2

(i) wber¥) ™ < gV (1) 4 Z

Furthermore, the equality case holds in any inequalities at a point ¢ € Mi if and only if
with respect to suitable orthonormal basis {En, ..., Ep} on (/-cer\I/*)ql and {Ept1, ..., Ep, } on

((rangeW.),)*, the components of ¥ satisfy

1
wfl = ng == wg—lp—l = §¢5p7 B € {p + 17p+ 27 "'>b2}7

Wl =0, kyse{l,,..p}(k#5s), BE{p+1,p+2, ....b}.

Corollary 4.2. Let ¥ be a pointwise hemi-slant Riemannian map a Riemannian manifold

(M{’l,ng) to a complex space form (MSQ(I/), J2, gr, ) with hemi-slant function ¢ =0, 3 <
(ker®, )+

p = rankV < min{by,ba}. Then the normalized o— Casorati curvatures o and
Eékerqj*)l on (kerllf*)f]- satisfy
(Z) /i(ker\ll*)L < O_(ker\I/*)L(p _ 1) + K(l + 37“)
- ¢ 22 plp-1)
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Furthermore, the equality case holds in any inequalities at a point q € My if and only if
with respect to suitable orthonormal basis {Ex, ..., Ep} on (k:er\IJ*)qL and {Ept1, ..., Ep, } on

((rangeV.),)*, the components of 1 satisfy
1
wfl = wé; == wg—lp—l = iwgpa B € {p + 1ap+ 27 -"7b2}7

WP =0, k,se{l,,...p}(k#s), Be{p+1,p+2, ..., b}

Corollary 4.3. Let ¥ be a pointwise hemi-slant Riemannian map a Riemannian manifold
b
(]\Jf1 , gr, ) to the complex Euclidean space C# with hemi-slant function ¢, 3 < p=rank¥ <

min{by,be}. Then we get
(6) RETTE < o (p 1), (i) WY < ST (p - 1),
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