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Abstract. We define and study a new parametrization of a Bertrand pair {α, α∗}, where

α is a Cartan null Bertrand curve and α∗ is a Bertrand partner curve of α in Minkowski 3-

space by not taking the principal normal vector of the Cartan null Bertrand curve α parallel

to
−−→
α∗ α. We characterize both cases when the curve α∗ is non-null and the null Bertrand

partner of the curve α. Further, we investigate this type of Bertrand pair curve as a helix

and a slant helix. Also, we provide some examples.

Keywords: Bertrand curves, general helices, slant helices, Cartan null curve, non-null
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1. Introduction

In 1802, Lancret [14] defined a helix as a curve whose tangent vector makes a constant

angle with a fixed straight line called the directrix. Later in 1845, Saint Venant [16] obtained

a necessary and sufficient condition for a curve to be a general helix if its ratio of curvature

to torsion is constant. In 1995, Scofield studied closed-form arc-length parametrizations for

curves of constant precession and slant helices with a constant speed of precession [17]. In

2004, Izumiya and Takeuchi introduced the concept of the slant helix in E3 saying that the

principal normal lines make a constant angle with a fixed direction. They characterized a
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curve as a slant helix if and only if the principal image of the major normal indicatrix has a

constant geodesic curvature [10].

In 2010, Kula et al. studied the relationship between slant helices and helices, and they

characterized slant helices in E3 in terms of differential equations [13]. In 2011, Ali and Lopez

[1] characterized a non-null spacelike and timelike curve with a spacelike principal normal

vector to be a slant helix in E3
1 if and only if either one of the two functions(τ

k

)′ k2

(k2 − τ2)3/2
or

(τ
k

)′ k2

(τ2 − k2)3/2
(1.1)

is a constant function and τ2 − k2 ̸= 0.

In 2019, Liu and Pei [15] characterized a null Cartan curve α to be a slant helix in E3
1

if and only if the principal image of the major normal indicatrix has a constant geodesic

curvature kg, i.e.,

kg =
τ ′(s)

2
√
2|τ(s)|3/2

(1.2)

is a constant function for a non-zero torsion τ(s) of the curve.

In the fields of computer-aided design and computer graphics, helices can be used for tool

path description, the simulation of kinematic motion, the design of highways, etc. [21]. Also,

helix and slant helix play an important role in curve theory with numerous applications in

the biological sciences, physics, etc. For instance, in the biological sciences, curves are used in

the analysis of Deoxyribonucleic Acid (DNA), and in physics, they are used in characterizing

the motion of particles in a magnetic field.

In 1845, Saint Venant [16] posed the question of whether the principal normal of a curve

is the principal normal of another curve on the surface generated by the principal normal of

the given one. Bertrand [4] gave an answer to this question in 1850 and introduced curves

with the property that the principal normal vector of a curve α coincides with the principal

normal vector of another curve α∗ at their corresponding points. Further, these curves

were characterized in E3 with condition ak + bτ = 1, where a and b are nonzero constants

and k and τ are the curvature and torsion of the curve, respectively [7]. Also, Bertrand

curves and their characterizations were studied by many researchers in Minkowski 3-space

(see [2, 3, 9, 11, 20]). In [3], Balgetir et al. studied the Cartan null Bertrand pair curve

{α, α∗} in E3
1. Later in 2021, Gokcek and Erdem [8] studied the Cartan null Bertrand curve

α with the non-null Bertrand partner curve α∗ in E3
1. In [6], Camci, et al. introduced a new

relationship between a Bertrand pair α and α∗ in E3 by not taking the vector
−−→
α∗α parallel to
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a normal vector of Bertrand curve α. Using this approach, the present authors studied a new

parametrization of Bertrand partner curves and spherical indicatrices in Euclidean 3-space

[18, 19].

In view of this, we define and study a new parametrization of a Bertrand pair {α, α∗},

where α is a Cartan null Bertrand curve and α∗ is a Bertrand partner curve of α in Minkowski

3-space by not taking the vector
−−→
α∗ α parallel to N of α in Minkowski 3-space.

2. Preliminaries

The Lorentz-Minkowski E3
1 is a space with metric,

⟨, ⟩ = −dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system. With respect to this metric, an arbi-

trary vector α = (α1, α2, α3) is said to be spacelike if ⟨α, α⟩ > 0, timelike if ⟨α, α⟩ < 0, and

null if ⟨α, α⟩ = 0. Similarly, if α = α(s) denotes the position vector of an arbitrary non-null

curve in E3
1, then it is called timelike and spacelike if all of its velocity vectors α′(s) are

timelike and spacelike, respectively. The norm of the vector α is given by ||α′|| =
√

|⟨α′, α′⟩|.

A non-null curve α(s) is parameterized by arc length s if ⟨α′(s), α′(s)⟩ = ±1. A null curve

is parameterized by pseudo-arc s if ⟨α′′(s), α′′(s)⟩ = 1. If a null curve is parameterized by a

pseudo-arc function, it is referred to as a Cartan null curve.

Let {T, N, B} be the moving Frenet frame along a curve in E3
1, consisting of the tangent,

the principal normal, and the binormal vector field, respectively. Depending on the causal

character of α, the Frenet equations have the following forms:

Case I. If α is a non-null curve, the Frenet formulas are [12]:
T ′

N ′

B′

 =


0 ϵ1k1 0

−ϵ0k1 0 ϵ2 k2

0 −ϵ1k2 0




T

N

B

 , (2.3)

where ⟨T, T ⟩ = ϵ0, ⟨N,N⟩ = ϵ1, ⟨B,B⟩ = ϵ2, and ϵ0, ϵ1, ϵ2 ∈ {−1, 1}, and k(s), τ(s) are

curvature and torsion of α.

Case II. If α is a Cartan null curve, the Frenet formulas are [5]:
T ′

N ′

B′

 =


0 k1 0

k2 0 −k1

0 −k2 0




T

N

B

 , (2.4)
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where ⟨T, B⟩ = ⟨N, N⟩ = 1, and ⟨T, T ⟩ = ⟨B, B⟩ = ⟨T, N⟩ = ⟨N, B⟩ = 0, and k1(s), k2(s)

are curvature and torsion of α.

In [3, 8], the authors defined the Cartan null Bertrand curve α : I → E3
1 with Bertrand

partner curve α∗ : I∗ → E3
1 as follows:

α∗(s∗) = α(s) + λ(s)N(s), (2.5)

such that the principal normal vectors of α(s) and α∗(s∗) coincides at s ∈ I, s∗ ∈ I∗, where

λ(s) is C∞-function on I.

Now, we define a new parametrization of a Bertrand pair {α, α∗}, where α is a Cartan

null curve and α∗ is a Bertrand partner curve of α in E3
1 such that the vector

−−→
αα∗ does not

have to be parallel to N , which is given by

α∗(s∗) = α(s) + u(s)T (s) + v(s)N(s) + w(s)B(s), (2.6)

where u(s), v(s) and w(s) are differentiable functions and {T (s), N(s), B(s)} is the Frenet-

Serret frame of α(s). If we take u = w = 0 in (2.6), we obtain (2.5). Hence, (2.6) is the

generalization of Cartan null Bertrand curves in E3
1.

3. New parametrization of Cartan null Bertrand curve in E3
1

In this section, we study a pair curve {α, α∗} in E3
1 satisfying (2.6), where α is a Cartan

null curve with curvature k1 and torsion k2, and α∗ is a Bertrand partner curve of α with

curvature k∗1 and torsion k∗2.

Now onwards, we denote the geodesic curvatures of the principal normal indicatrices (im-

ages) of a Cartan null Bertrand curve α by Γ, and that of a timelike and spacelike Bertrand

partner curve α∗ by Γ∗
1 and Γ∗

2, respectively.

Also, we set

µ =
(1 + u′ + v k2)

ds∗

ds

, ν =
(w′ − v k1)

ds∗

ds

, h =
µ

ν
, (3.7)

and 
β = (µk1−ν k2)

k∗1
ds∗
ds

= ±1, ρ(s) =
(w′−v k1) (h2 k21−k22)

2 k∗1

(
ds∗
ds

)2 ,

η(s) = − (w′−v k1) (h2 k21−k22)

2h k∗1

(
ds∗
ds

)2 , ρ(s) = −h η(s).

(3.8)

Next, we have:
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Theorem 3.1. Let α : I → E3
1 be a Cartan null curve in E3

1 with curvatures k1(s) ̸= 0 and

k2(s) satisfying (2.6).

(i) If α∗ is a timelike curve with k∗1 ̸= 0, then {α, α∗} is a Bertrand pair in E3
1 if and only

if there exist differentiable functions u, v, w, and a real number h satisfying

v′ + u k1 − w k2 = 0, h < 0, ν2 = − 1

2h
, h k1 − k2 ̸= 0. (3.9)

(ii) If α∗ is a spacelike curve with k∗1 ̸= 0 and having a spacelike principal normal vector,

then {α, α∗} is a Bertrand pair in E3
1 if and only if there exist differentiable functions u, v, w,

and a real number h satisfying

v′ + u k1 − w k2 = 0, h > 0, ν2 =
1

2h
, h k1 − k2 ̸= 0. (3.10)

Further, in both the cases (i) and (ii), if


k∗2 ̸= 0, then h k1 + k2 ̸= 0,

k∗2 = 0, then h k1 + k2 = 0.

Proof. (i) Let {α, α∗} be a Bertrand pair in E3
1 satisfying (2.6) such that α is a Cartan null

curve and α∗ is a timelike curve. Differentiating (2.6) with respect to s and then using (2.3)

and (2.4), we obtain

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (v′ + u k1 − w k2)N + (w′ − v k1)B. (3.11)

Taking the inner product of (3.11) with N , we get

v′ + u k1 − w k2 = 0. (3.12)

Using (3.12) in (3.11), we obtain

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (w′ − v k1)B. (3.13)

Using (3.7) in (3.13), we have

T ∗ = µT + ν B. (3.14)

If we take the inner product of the equation (3.14) first with T and then with N , the

following results are obtained

−1 = 2µ ν, (3.15)

which gives µ ̸= 0 and ν ̸= 0. Consequently, from (3.7), we find that 1 + u′ + v k2 ̸= 0 and

w′ − v k1 ̸= 0.
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Using the third relation of (3.7) in (3.15), we get

2h ν2 = −1, (3.16)

which gives h < 0.

Now, differentiating (3.14) with respect to s and then using (2.3) and (2.4), we obtain

k∗1 N
∗ ds

∗

ds
= µ′ T + (µk1 − ν k2)N + ν ′B. (3.17)

Taking the inner product of (3.17) with T and B, we find

ν ′ = 0, µ′ = 0. (3.18)

Using (3.18) in (3.17), we obtain

k∗1 N
∗ ds

∗

ds
= (µk1 − ν k2)N. (3.19)

Now, taking the inner product of (3.19) with itself and using (3.16) and the third relation

of (3.7), we get

(k∗1)
2
(ds∗
ds

)2
= − 1

2h
(h k1 − k2)

2, (3.20)

which gives (h k1 − k2) ̸= 0. Now, using the first relation of (3.8), we have

N∗ = β N. (3.21)

Differentiating (3.21) with respect to s and then using (2.3) and (2.4), we obtain

k∗2 B
∗ ds

∗

ds
= β (k2 T − k1B)− k∗1 T

∗ ds
∗

ds
. (3.22)

Using (3.13) in (3.22), we get

k∗2 B
∗ ds

∗

ds
=

(
β k2 − k∗1 (1 + u′ + v k2)

)
T −

(
β k1 + k∗1 (w

′ − v k1)
)
B. (3.23)

Using the first relation of (3.8) in (3.23), we have

k∗2 B
∗ ds

∗

ds
=

(ν k2 (h k1 − k2)

k∗1
ds∗

ds

− k∗1 (1 + u′ + v k2)
)
T −

(ν k1 (h k1 − k2)

k∗1
ds∗

ds

+ k∗1 (w
′ − v k1)

)
B.

(3.24)

Now, using (3.7) in (3.24), we find

k∗2 B
∗ ds

∗

ds
= (w′ − v k1)

((k2 (h k1 − k2)− k∗21 h (ds
∗

ds )
2

k∗1 (
ds∗

ds )
2

)
T

−
(k1 (h k1 − k2) + k∗21 (ds

∗

ds )
2

k∗1 (
ds∗

ds )
2

)
B
)
.

(3.25)
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Using (3.20), and the second and third relations of (3.8) in (3.25), we obtain

k∗2 B
∗ ds

∗

ds
= ρ(s)T (s) + η(s)B(s). (3.26)

Taking the inner product of (3.26) with itself, we get

k∗22

(ds∗
ds

)2
= 2 ρ(s) η(s) = −2h η(s)2. (3.27)

From (3.27), depending upon k∗2 = 0 or k∗2 ̸= 0, we find that h k1+k2 = 0 or h k1+k2 ̸= 0.

Conversely, let α be a Cartan null curve with curvatures k1 ̸= 0 and k2 in E3
1 satisfying

(3.10). Then, we can define the curve α∗ as (2.6). Differentiating (2.6) with respect to s and

then using (2.4), we obtain

T ∗ = µT + ν B. (3.28)

Using the third relation of (3.7) and the third relation of (3.9) in (3.28), we get

T ∗ =
1√
−2h

(hT +B), ⟨T ∗, T ∗⟩ = −1. (3.29)

Now, differentiating (3.29) with respect to s and then using (2.4), we get

dT ∗

ds
=

1√
−2h

(h k1 − k2)N, (3.30)

which gives

k∗1 = ||dT
∗

ds∗
|| = ξ1 (h k1 − k2)√

−2h ds∗

ds

, (3.31)

where ξ1 = ±1. Now, N∗ can be obtained as

N∗ = ξ1N, ⟨N∗, N∗⟩ = 1. (3.32)

Differentiating (3.32) with respect to s and using ϵ0 = −1, ϵ2 = 1, (2.3) and (2.4), we

obtain

(k∗1 T
∗ + k∗2 B

∗)
ds∗

ds
= ξ1 (k2 T − k1B). (3.33)

Taking the inner product of (3.33) with itself, we get

(−k∗21 + k∗22 )
(ds∗
ds

)2
= −2k1 k2. (3.34)

Using (3.31) in (3.34), we get

k∗2 =
ξ2 (h k1 + k2)√

−2h ds∗

ds

, (3.35)

where ξ2 = ±1.
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Using (3.29), (3.31), and (3.35) in (3.33), we find

B∗ =
ξ1 ξ2√
−2h

(−hT +B), ⟨B∗, B∗⟩ = 1. (3.36)

Then, α∗ is a timelike curve, and the Bertrand partner curve of the null Cartan curve α.

Thus, α is a Bertrand curve.

(ii) Let {α, α∗} be a Bertrand pair in E3
1 satisfying (2.6) such that α is a Cartan null curve

and α∗ is a spacelike curve. Differentiating (2.6) with respect to s, and using (2.3) and (2.4),

we get

T ∗ds
∗

ds
= (1 + u′ + v k2)T + (v′ + u k1 − w k2)N + (w′ − v k1)B. (3.37)

Taking the inner product of (3.37) with N , we obtain

v′ + u k1 − w k2 = 0. (3.38)

Using (3.38) in (3.37), we obtain

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (w′ − v k1)B. (3.39)

Using (3.7) in (3.39), we have

T ∗ = µT + ν B. (3.40)

Taking the inner product of (3.40) with itself, we find

1 = 2µ ν, (3.41)

which gives ν ̸= 0 and µ ̸= 0. Consequently, from (3.7), we find that 1 + u′ + v k2 ̸= 0 and

w′ − v k1 ̸= 0.

Using the third relation of (3.7) in (3.41), we obtain

2h ν2 = 1, (3.42)

which gives h > 0.

Now, differentiating (3.40) with respect to s and then using (2.3) and (2.4), we get

k∗1 N
∗ ds

∗

ds
= µ′ T + (µk1 − ν k2)N + ν ′B. (3.43)

If we take the inner product of the equation (3.43) first with T and then with B, the

following results are obtained

ν ′ = 0, µ′ = 0. (3.44)
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Using (3.44) in (3.43), we obtain

k∗1 N
∗ ds

∗

ds
= (µk1 − ν k2)N. (3.45)

Now, taking the inner product of (3.45) with itself and using (3.42) and the third relation

of (3.7), we get

(k∗1)
2
(ds∗
ds

)2
=

1

2h
(h k1 − k2)

2, (3.46)

which gives (h k1 − k2) ̸= 0. Now, using the first relation of (3.8), we have

N∗ = β N. (3.47)

Differentiating (3.47) with respect to s and then using (2.3) and (2.4), we get

−k∗2 B
∗ ds

∗

ds
= β (k2 T − k1B) + k∗1 T

∗ ds
∗

ds
. (3.48)

Using (3.39) in (3.48), we get

−k∗2 B
∗ ds

∗

ds
= β (k2 T − k1B) + k∗1

(
(1 + u′ + v k2)T + (w′ − v k1)B

)
. (3.49)

Using (3.7), (3.8) and (3.46) in (3.49), we get

−k∗2 B
∗ ds

∗

ds
= ρ(s)T (s)− η(s)B(s). (3.50)

Taking the inner product of (3.50) with itself, we get

k∗22

(ds∗
ds

)2
= 2 ρ(s) η(s) = −2h η(s)2. (3.51)

From (3.51), depending upon k∗2 = 0 or k∗2 ̸= 0, we find that h k1+k2 = 0 or h k1+k2 ̸= 0.

Conversely, let α be a Cartan null curve in E3
1 with curvatures k1 ̸= 0 and k2 satisfying

(3.10). Then, we can define the curve α∗ as (2.6). Now, differentiating (2.6) with respect to

s and then using (2.4), we get

T ∗ = µT + ν B. (3.52)

Using the third relation of (3.7) and the third relation of (3.10) in (3.52), we obtain

T ∗ =
1√
2h

(hT +B), ⟨T ∗, T ∗⟩ = 1. (3.53)

Now, differentiating (3.53) with respect to s and then using (2.4), we get

dT ∗

ds
=

1√
2h

(h k1 − k2)N, (3.54)
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which gives

k∗1 = ||dT
∗

ds∗
|| = ξ3 (h k1 − k2)√

2h ds∗

ds

, (3.55)

where ξ3 = ±1. Now, N∗ can be obtained as

N∗ = ξ3N, ⟨N∗, N∗⟩ = 1. (3.56)

Differentiating (3.56) with respect to s and using ϵ0 = 1, ϵ2 = −1, (2.3) and (2.4), we

obtain

(−k∗1 T
∗ − k∗2 B

∗)
ds∗

ds
= ξ3 (k2 T − k1B). (3.57)

Taking the inner product of (3.57) with itself, we get

(k∗21 − k∗22 )
(ds∗
ds

)2
= −2k1 k2. (3.58)

Using (3.55) in (3.58), we obtain

k∗2 =
ξ4 (h k1 + k2)√

2h ds∗

ds

, (3.59)

where ξ4 = ±1.

Using (3.53), (3.55), and (3.59) in (3.57), we find

B∗ =
−ξ3 ξ4√

2h
(hT −B), ⟨B∗, B∗⟩ = −1. (3.60)

Then, α∗ is a spacelike curve with a spacelike principal normal vector and the Bertrand

partner curve of α. As a result, α is a Bertrand curve, and the proof of the Theorem is

complete. □

Now, from Theorem 3.1, we have:

Corollary 3.1. Let α : I ⊂ R → E3
1 be a Cartan null Bertrand curve in E3

1 with non-zero

curvature k1 ̸= 0, k2, and the curve α∗ given in (2.6) be a non-null Bertrand partner curve

of α with the non zero curvatures k∗1, k
∗
2. Then α∗ is a general helix if and only if α is a

general helix.

Proof. Let α : I ⊂ R → E3
1 be a Cartan null Bertrand curve in E3

1 with the curvatures k1, k2

and the curve α∗ is a Bertrand partner curve of α.

(i) If α∗ is a timelike curve, then from (3.31) and (3.35), we have

k∗1
k∗2

= ξ1 ξ2
h k1

k2
− 1

h k1
k2

+ 1
. (3.61)
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(ii) If α∗ is a spacelike curve, then from (3.55) and (3.59), we have

k∗1
k∗2

= ξ3 ξ4
h k1

k2
− 1

h k1
k2

+ 1
. (3.62)

Combining (3.61) and (3.62), the proof is complete. □

Corollary 3.2. Let α : I ⊂ R → E3
1 be a Cartan null Bertrand curve in E3

1 with non-zero

curvatures k1 = 1, k2, and the curve α∗ be a non-null Bertrand partner curve of α with the

non zero curvatures k∗1, k
∗
2 satisfying (2.6). Then α∗ is a slant helix if and only if α is a

slant helix. Moreover, we have

Γ∗
1 = −ξ1 ξ2 Γ, Γ∗

2 = ξ3 ξ4 Γ. (3.63)

Proof. Assume that α : I ⊂ R → E3
1 is a Cartan null Bertrand curve in E3

1 with curvature

k1 ̸= 0, k2 and the curve α∗ is a Bertrand partner curve of α with the non-zero curvatures

k∗1, k
∗
2 satisfying (2.6). Now, if the curve α is a slant helix, and then for the principal normal

vector N of α and a constant vector field U , we have

⟨N, U⟩ = constant. (3.64)

Since N is parallel to N∗ from (3.64) we find

⟨N∗, U⟩ = constant, (3.65)

which implies α∗ is also a slant helix and converse is easy to prove. Further, we have:

(i) If α∗ is a timelike curve, then using k∗1 and k∗2 from (3.31) and (3.35) in (1.1), we have

Γ∗
1 = −ξ1 ξ2

k′2

2
√
2 k

3/2
2

. (3.66)

(ii) If α∗ is a spacelike curve, then using k∗1 and k∗2 from (3.55) and (3.59) in (1.1), we have

Γ∗
2 = ξ3 ξ4

k′2

2
√
2 k

3/2
2

. (3.67)

Then, using (1.2), (3.66), and (3.67), we have (3.63). Thus, the proof is complete. □

Now, we have:

Theorem 3.2. Let α and α∗ be a Cartan null curves in E3
1. Then, α∗ is a Bertrand partner

curve of the Bertrand curve α if

(i) there exist differentiable functions u, v, and w satisfying

v′ + u k1 − w k2 = 0, w′ − v k1 = 0, (3.68)
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and its Cartan null frames are related by

T ∗ = µT, N∗ = ξ5N, B∗ =
1

µ
B, (3.69)

or

(ii) there exist differentiable functions u, v, and w satisfying

v′ + u k1 − w k2 = 0, 1 + u′ + v k2 = 0, (3.70)

and its Cartan null frames are related by

T ∗ = ν B, N∗ = −ξ6N, B∗ =
1

ν
T, (3.71)

where ξ5 = ±1, ξ6 = ±1.

Proof. Let α is a Cartan null Bertrand curve in E3
1 with k1 ̸= 0, k2 and the curve α∗ is the

Cartan null Bertrand partner curve of the curve α satisfying (2.6). Now, differentiating (2.6)

with respect to s and then using (2.4), we get

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (v′ + u k1 − w k2)N + (w′ − v k1)B. (3.72)

Taking the inner product of (3.72) with N , we obtain

v′ + u k1 − w k2 = 0. (3.73)

Using (3.73) in (3.72), we get

T ∗ ds
∗

ds
= (1 + u′ + v k2)T + (w′ − v k1)B. (3.74)

Using (3.7) in (3.74), we have

T ∗ = µT + ν B. (3.75)

Taking the inner product of (3.75) with itself, we find

0 = 2µ ν. (3.76)

Now, we have two cases:

Case (i) If ν = 0, then we have

T ∗ = µT. (3.77)

Now, differentiating (3.77) with respect to s and then using (2.4), we get

k∗1 N
∗ ds

∗

ds
= µ′ T + µk1N. (3.78)
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Taking the inner product of (3.78) with B, we find

µ′ = 0. (3.79)

Using (3.79) in (3.78), we obtain

k∗1 N
∗ ds

∗

ds
= µk1N. (3.80)

Taking the inner product of (3.80) with itself, we get

(k∗1)
2
(ds∗
ds

)2
= µ2 k21, (3.81)

which gives

k∗1 =
ξ5 µk1

ds∗

ds

. (3.82)

Using (3.82) in (3.80), we obtain

N∗ = ξ5N. (3.83)

Differentiating (3.83) with respect to s and then using (2.4), we get

(k∗2 T
∗ − k∗1 B

∗)
ds∗

ds
= ξ5 (k2 T − k1B). (3.84)

Taking the inner product of (3.84) with itself, we get

k∗1 k
∗
2

(ds∗
ds

)2
= k1 k2. (3.85)

Using (3.82) in (3.85), we obtain

k∗2 =
ξ5 k2

µ ds∗

ds

. (3.86)

Using (3.77), (3.82), and (3.86) in (3.84), we get

B∗ =
1

µ
B. (3.87)

Case (ii) If µ = 0, then we have

T ∗ = ν B. (3.88)

Now, differentiating (3.88) with respect to s and then using (2.4), we get

k∗1 N
∗ ds

∗

ds
= ν ′B − ν k2N. (3.89)

Taking the inner product of (3.89) with T , we find

ν ′ = 0. (3.90)
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Using (3.90) in (3.89), we obtain

k∗1 N
∗ ds

∗

ds
= −ν k2N. (3.91)

Now, taking the inner product of (3.91) with itself, we get

(k∗1)
2
(ds∗
ds

)2
= ν2 k22, (3.92)

which gives

k∗1 =
ξ6 ν k2

ds∗

ds

. (3.93)

Using (3.93) in (3.91), we obtain

N∗ = −ξ6N. (3.94)

Differentiating (3.94) with respect to s and then using (2.4), we get

(k∗2 T
∗ − k∗1 B

∗)
ds∗

ds
= −ξ6 (k2 T − k1B). (3.95)

Taking the inner product of (3.95) with itself, we get

k∗1 k
∗
2

(ds∗
ds

)2
= k1 k2. (3.96)

Using (3.93) in (3.96), we obtain

k∗2 =
ξ6 k1

ν ds∗

ds

. (3.97)

Using (3.88), (3.93), and (3.97) in (3.95), we get

B∗ =
1

ν
T. (3.98)

Thus, the proof is complete. □

4. Examples

Example 4.1. Let α(s) be a Cartan null curve in E3
1 given by

α(s) =
( 1√

2
sinh(

√
2 s) +

1

2
cosh(

√
2 s),

1√
2
cosh(

√
2 s) +

1

2
sinh(

√
2 s),

1√
2
s
)
,

with curvature k1 = 1 and torsion k2 = 1.
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The Frenet frame of α(s) is given by
T =

(
cosh(

√
2 s) + 1√

2
sinh(

√
2 s), sinh(

√
2 s) + 1√

2
cosh(

√
2 s), 1√

2

)
,

N =
(√

2 sinh(
√
2s) + cosh(

√
2s),

√
2 cosh(

√
2s) + sinh(

√
2s), 0

)
,

B = −
(
cosh(

√
2 s) + 1√

2
sinh(

√
2 s), sinh(

√
2 s) + 1√

2
cosh(

√
2 s), − 1√

2

)
.

If we take u = 2 s, v = 5 s2

2 , w = −3 s in (2.6), we find the Bertrand partner curve α∗(s∗)

as:

α∗ =
(
sinh(

√
2 s)A(s) + cosh(

√
2 s)B(s), cosh(

√
2 s)A(s) + sinh(

√
2 s)B(s), 0

)
,

where A(s) = 1+5 s−5 s2√
2

, B(s) = 1+10 s−5 s2

2 .

By computing the curvature and torsion of α∗, we get

k∗1 =
2√

6− 5 s2
, k∗2 = 0.

Further, the Frenet frame of α∗ is given by
T ∗ =

(
sinh(

√
2 s) +

√
2 cosh(

√
2 s), cosh(

√
2 s) +

√
2 sinh(

√
2 s), 0

)
,

N∗ =
(√

2 sinh(
√
2s) + cosh(

√
2s),

√
2 cosh(

√
2s) + sinh(

√
2s), 0

)
,

B∗ =
(
0, 0, 1

)
.

Thus, α∗(s∗) is a timelike Bertrand partner curve of the curve α(s).

Figure 1. Curve α (red) and α∗ (blue) in E3
1

Example 4.2. Let α1(s) be a Cartan null curve in E3
1 given by

α1(s) =
(
sinh(s), cosh(s), s

)
,

with curvature k1 = 1 and torsion k2 = 1/2.
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The Frenet frame of α1(s) is given by
T1 =

(
cosh(s), sinh(s), 1

)
,

N1 =
(
sinh(s), cosh(s), 0

)
,

B1 =
(− cosh(s)

2
,
− sinh(s)

2
,
1

2

)
.

If we take u = s
2 , v = −1

3 , w = s in (2.6), we find the Bertrand partner curve α∗
1(s

∗) as:

α∗
1 =

(2
3
sinh(s),

2

3
cosh(s), 2 s

)
.

By computing the curvature and torsion of α∗
1, we get

k∗1 =
3

16
, k∗2 =

9

16
.

Further, the Frenet frame of α∗
1 is given by

T ∗
1 = 1

2
√
2

(
cosh(s), sinh(s), 3

)
,

N∗
1 =

(
sinh(s), cosh(s), 0

)
,

B∗
1 = − 1

2
√
2

(
3 cosh(s), 3 sinh(s), 1

)
.

Thus, α∗
1(s

∗) is a spacelike Bertrand partner curve of the curve α1(s).

Figure 2. Curve α1 (red) and α∗
1 (blue) in E3

1

Example 4.3. If we take u = s
4 , v = 1

2 , w = s
2 in (2.6) for the Cartan null curve α1(s) in

Example 4.2, we find the Bertrand partner curve α∗
2(s

∗) as:

α∗
2 =

1

2

(
3 sinh(s), 3 cosh(s), 3 s

)
.

By computing the curvature and torsion of α∗
2, we get

k∗1 = 1, k∗2 =
1

3
.
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Further, the Frenet frame of α∗
2 is given by

T ∗
2 =

√
3
2

(
cosh(s), sinh(s), 1

)
,

N∗
2 =

(
sinh(s), cosh(s), 0

)
,

B∗
2 = 1√

6

(
− cosh(s), − sinh(s), 1

)
.

Thus, α∗
2(s

∗) is a Cartan null Bertrand partner curve of the curve α1(s).

Figure 3. Cartan null Bertrand partner curve α∗
2 of a null Cartan curve α1

in E3
1
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