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CONTRIBUTION TO NULL KILLING MAGNETIC TRAJECTORIES

GOZDE OZKAN TUKEL'Y ¥ AND TUNAHAN TURHAN

ABSTRACT. We analyze null magnetic trajectories of a magnetic field on a timelike surface
in Minkowski 3—space E3. We show that the Lorentz force can be written into the Darboux
frame field of a null trajectory on the surface. We give the necessary and sufficient condition
for writing a null curve as the magnetic trajectory of the magnetic field. After creating a
variation, we derive the Killing magnetic flow equations with regard to the geodesic curva-
ture, geodesic torsion and normal curvature of the curve v on the timelike surface. Finally

we examine the geodesics of some timelike surfaces in E3.

1. INTRODUCTION

Any magnetic vector field is known divergence zero vector field in three- dimensional
spaces. A magnetic trajectory of a magnetic flow created by magnetic vector field is a curve
called as magnetic. Although the problem of investigating magnetic trajectories appears to
be physical problem, recent studies show that the characterization of magnetic flow in a mag-
netic field have brought variational perspective in more geometrical manner. In particular,

magnetic curves have been developed by techniques of differential geometry and methods of
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calculus of variation from basic spaces to manifolds because the Lorentz force equation is

a minimizer of the functional £ : I' — R defined by

L) : ;/<'y','y>,dt+w (') dt,

~

where I' is a family of smooth curves that connect two fixed point of U, « is a curve choosing
from I" and w is a potential 1—form. The Euler-Lagrange equation of the functional L is
derived as

6 () = Vo (1.1)
where ¢ is the skew-symmetric operator. The critical point of the functional £ corresponds to
a solution of the Lorentz force equation. So the solutions of the equations could be interpreted
with a more geometric point of view [ [t ].

In this work we consider null Killing magnetic trajectories on a timelike surface S in
Minkowski 3—space E$. Also, we get equation of the Lorentz force by using the Darboux
frame field of a null magnetic curve on the such surface and give equations of the Killing
magnetic flow by means of the structures of a magnetic vector field in E3. Then we apply
this formulation to give results about magnetic curves on the pseudo-sphere and the pseudo-

cylinder surfaces, so we show that geodesics of these surfaces are null magnetic curves.

2. PRELIMINARIES

We consider that IEE’ denotes Minkowski 3—space with the inner product
(u,w) = —u, w, + u,w, + ugw,
which is a non-degenerate, symmetric and bilinear form and the vector product
u X w = (—ugws + uswsy, Uswi — UTW3, UTW2 — ULW3) ,

where u = (u,,uy,u,), w = (w,,w,,w,) € E?. A vector u in E? is called a spacelike vector
if (u,u) > 0 or uw = 0, a timelike vector if (u,u) < 0, or null (lightlike) vector if (u,u) = 0
and u # 0. A regular curve in E:f is called spacelike, timelike or null, if its velocity vector is
spacelike, timelike or null, respectively. A non-degenerate surface is named in terms of the
induced metric. If the induced metric is indefinite, a non-degenerate surface is called timelike
P

We can assign a frame to any point of a null curve since we investigate the geometry of

the curve. This frame is known as Cartan frame field along a null curve in E3. Let v = ~(s)
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be a null curve in Ef’ Let T denote a null vector field along . So, there exists a null vector
field B along  satisfying (T, B) = 1. If we write N = B x T, then we can obtain a Cartan
frame field F = {T, N, B} along 7. A Cartan framed null curve (v, F) is given by

T(s) = /(). N(s) =7"(5), Bls) = —7"(5) = 5 <7"(s)7"" () > 75
at a point 7 (s), where

<T7T> = <BvB> = <T7N> = <NvB> =0,
(N,N) = (T, B) = 1.

We have the following derivative equations of the Cartan frame (generally knows as Frenet

equations)
T 0 1 O T
N | =] -k 0 -1 N |,
B’ 0 « O B
where

2R [

In order to study the geometry of a null curve on a timelike surface, we can construct a
suitable frame, which is known the Darboux frame field, to any point of the curve. Let (v, F)
be a null curve with frame F = {T, N, B} and S an oriented timelike surface in Minkowski
3—space. The Darboux frame at 7(s) of «y is the orthonormal basis {T, @, n} of E:f, where
is the unique vector obtained by

A

C=wnV T

T}a Ve T'y(s)Ma <VY7 T> 7& 0,
and n is the spacelike unit normal of S which is defined by n =T x Q. So, we have

(T.T) =(Q,Q) = (Q,n) = (T,n) =0,
<n7 n) = (T, Q> =1L

The first order variation of {7, Q,n} is expressed as follow

T’ Kg 0 &y T
Q | = 0 —kry T4 Q | (22)
n —Tg —FKn O n
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where the functions kg4, #, and 74 are called the geodesic curvature, the normal curvature
and the geodesic torsion of the curve 7, respectively. From the comparison of Cartan and
Darboux frames, we have

Ky = *£1 (2.3)
6 2.

3. MAGNETIC VECTOR FIELDS

The Lorentz force ¢ corresponding the magnetic field V' is given by
¢ () =V x~.
A curve v in IE:;’ is called magnetic curve of a magnetic field V if its tangent vector field
satisfies
Vo =¢(y)=Vx+. (3.4)
The Lorentz force ¢ of a magnetic field F' in Ei” is defined to be skew symmetric operator
given by

<¢(X),Y >=F(X,Y)

for vector fields X and Y. The mixed product of the vector fields X, Y and Z is given by
<X xY,Z>=Q(X,Y,2),

where () a volume on Et? . So, the Lorentz force of the corresponding Killing magnetic force
is given as ¢ (X) = V x X, where V is a Killing vector field [L3].

Then we can give the following proposition for the Lorentz force.

Proposition 3.1. Let v be a null magnetic curve on a timelike surface S C E?and {T,Q,n}
is the Darbouz frame field along . Then the Lorentz force in the Darboux frame {T,Q,n} is

written as follows

O(T) = kT + knn, (3.5)
P(Q) = —rgQ+wn (3.6)

and
¢ (n) = —wl' — KyQ, (3.7)

where the function w(s) =< ¢ (Q(s)),n(s) > associated with each magnetic curve is qua-

sislope measured with respect to the magnetic vector field V.
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Proof. The unit tangent vector to v at a point (s) of v is T'(s) =+ (s) . Then from

(1.1)), we have
$(T)=VeT =V xT.

By using the Darboux formulas (2.2]), we get
¢ (T) = kgT + kpn
and
<o(T),Q >=ky and < @(T),n>= Ky.

Similarly, we can write the linear expansion of ¢ (Q), ¢ (n) € S as follows

9(Q)=<9¢(Q),Q>T+<¢(Q),T>Q+<¢(Q),n>n
and
p(n)=<oé(n),Q>T+<od(n),T>Q+<¢(n),n>n,

respectively. Taking into consideration Egs. (3.4) and (3.5)), we get

<o(Q),T>=<VxQT>=—-<VxT,Q>=—<¢(T),Q>=—r,

and

<opn),T>=<VxnT>=—-<VxTn>=—-<¢(T),n>=—kKy.

Since ¢ is a skew-symmetric operator, we get < ¢ (Q),Q >=< ¢ (n),n >= 0.
Then by using Proposition 3.1 we can write the magnetic vector field according to Darboux

frame on a timelike surface S in the following.

Proposition 3.2. A null curve v : I C R — S is a magnetic trajectory of a magnetic field

V if and only if V' can be written along v as
V =WwT — k,Q + Kgn. (3.8)

Proof. Suppose that v is a null magnetic curve along a magnetic field V' with the Dar-

boux frame field {7, @, n}. Then, V can writtenas V =< V,Q > T+ < V,T > Q+ < V,n > n.

To find coefficient of V', we use the Lorentz force in Darboux frame equations ((3.53.7)):

w = <¢(Q),n>=<V,Qxn>=<V,Q >,

kp = <o(T),n>=—-<VnxT>=—-<V,T>
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and

kg =<0¢(T),Q >=<V,T xQ>=<V,n>.

4. KILLING MAGNETIC FLOW EQUATION FOR NULL MAGNETIC TRAJECTORIES

Let v : I — S be pseudo-parametrized null curve on a timelike surface in Ef’ and V a
magnetic vector field along that curve. One can take a variation of + in the direction of V,
say a map

r': [0,1] x (—e,e) — S
(s,t) — T'(s,t)

which satisfies

T (5,0) = 7 (s), <8Féi’ t)>t:o —V(s) and (aréi’ t))t:o — A (s).

We recall that a spacelike or timelike curve in E} can be reparametrize by an arclength.

However, there would be not sense reparametrize by the arclength for a null curve . However,
it has pseudo arc-length parametrized a(s) = v(¢(s)), such that ||o”(s)|| = 1, where ¢ is the

differential function in suitable interval. Thus, we have the following equations:

T(st) = ("), =),

Bls,t) = (< <%>t:07 <%>t:0 >>1/4’

('see [9[12]]) .

By using above variational formulas, we have the following equalities (by similar method

that of ).

Lemma 4.1. We consider that v is a null curve on a timelike surface in IE‘:’ and a magnetic

vector field V' is a variational vector field along the variation I'. So we can give the following

exTPTessions;
1
V(p) = 2763 < VvV, V7T >, (4.9)
1
V() = SV(<SVrVrT, VeVeT >) =< V3V, VAT > . (4.10)

Proposition 4.1. (see [11]]) . Let V (s) be the restriction to v (s) of a Killing vector field,
then

V(8) =V (k) = 0. (4.11)

Thus, Killing magnetic flow equations can be given the following theorem.
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Theorem 4.1. Let v be a null curve on S in E“:’ Suppose that V = wT' — £,Q + kgn is
a Killing vector field along ~. Then the magnetic trajectories are curves on S satisfying

following differential equations

bkg + ckp =0 (4.12)
and
/ /0 / / 271 3
—a’ +2cty + b Ky — b/iglig — Chpky + Iigb — blig (4.13)
— C/{n/{?] — knTgb' + 2bkgknTy + ' Kgkp = 0,
where
a=w" + 20 kg + WK — 26Ty — KgT) + WK, — KTy
—WkpTg + Iin7'g2,
b= —w+ 1Ty — Kykn,
¢ =20k + Whgkn — KghnTg — KnTy + K-
Proof. Assume that V is a Killing vector field along v on S. Along any magnetic
trajectory v, we have V = wT — k,Q + rgn. Using (2.3), we get
VrV = (W' + wky — kig7g) T+ (Wkn — knTg + Ky) 0. (4.14)
We calculate derivative of (4.14) as follows
ViV = (w” + 2w kg + Why — 2K Ty — KT, + wmg
—koTy — WhnTg + kinT2) T+ (—w + 7y — Kjkn) Q (4.15)
(Qw%n + Whgkn — KglnTg — /inT; + ng) n
=al + bQ + cn.
Substituting (4.15)) into (4.9)), we derive
V(B) = bkg + ckp = 0.
For variation of k, taking derivative of (4.15]), we have,
V3V = (d + aky — c1,))T + (b — bk, — ckp)Q
1Y = (@ awy = e T+ (= by — o) e

+ (aky, + b1y + )n.
Substituting (4.16)), (2.2]) and (2.3) into (4.10]), we obtain

V (k) = —a' + 2c7y + VKl, — bigh, — chnkiy, + K0 — b

— CkpK?

/ /
5 — Tl + 2bkgrnTg + Kghin = 0.

Definition 4.1. Any null curve on a timelike surface S is called the null magnetic trajectory

of a magnetic field V if it satisfies the differential equation system and .
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5. APPLICATIONS

Magnetic trajectories on a timelike pseudo-sphere: We consider the timelike pseudo-

sphere with radius 7,
ST (r) = {(21,22,23) € E? : 2} + a5 + 23 = r*} .

The geodesic torsion 7, vanishes for all curves on S? (r) and the normal curvature £2 = 1
. Then any null geodesic curve v on S? (r) is a magnetic trajectory of a magnetic field V/

if and only if V' can be written along ~ as
V=wl+0Q,

where w is a constant.

Magnetic trajectories on a pseudo-cylinder: The pseudo-cylinder
C?(1) = {(z,y,2) EE?‘ 22y’ =1, 2 e R}
is a timelike surface and parametrized by
X (u,v) = (sinh s, coshs, s),
where r is radius of the circle. Then for a null geodesic
v (s) = (sinh s, cosh s, s)

on C? (1), we have

1
kg =0, mnzlandTg:—ﬁ,

(see []§|, ) So, the null geodesic v on a pseudo-cylinder are magnetic trajectories of the

magnetic field

where w is a constant (see Fig (5.1)).



CONTRIBUTION TO NULL KILLING MAGNETIC TRAJECTORIES 137

5

e i i

T

A A A i

AR

ATITITITIR TN TAR RRANANAN

RETILARTEAR AT ARAAAAY

FIGURE 1. A null magnetic trajectory on the pseudo-cylinder
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