

 $International\ Journal\ of\ Maps\ in\ Mathematics$

Volume (3), Issue (3), (2020), Pages:(129-138)

ISSN: 2636-7467 (Online)

www.journalmim.com

CONTRIBUTION TO NULL KILLING MAGNETIC TRAJECTORIES

GÖZDE ÖZKAN TÜKEL * AND TUNAHAN TURHAN *

ABSTRACT. We analyze null magnetic trajectories of a magnetic field on a timelike surface in Minkowski 3—space \mathbb{E}^3_1 . We show that the Lorentz force can be written into the Darboux frame field of a null trajectory on the surface. We give the necessary and sufficient condition for writing a null curve as the magnetic trajectory of the magnetic field. After creating a variation, we derive the Killing magnetic flow equations with regard to the geodesic curvature, geodesic torsion and normal curvature of the curve γ on the timelike surface. Finally we examine the geodesics of some timelike surfaces in \mathbb{E}^3_1 .

1. Introduction

Any magnetic vector field is known divergence zero vector field in three- dimensional spaces. A magnetic trajectory of a magnetic flow created by magnetic vector field is a curve called as magnetic. Although the problem of investigating magnetic trajectories appears to be physical problem, recent studies show that the characterization of magnetic flow in a magnetic field have brought variational perspective in more geometrical manner. In particular, magnetic curves have been developed by techniques of differential geometry and methods of

Received: 2019-12-25 Revised: 2020-06-24 Accepted: 2020-07-15

2010 Mathematics Subject Classification. 53A35, 53B30.

Key words: Null magnetic curve, Lorentz force equation, Timelike surface, Geodesic curvature

* Corresponding author

calculus of variation from basic spaces to manifolds because the Lorentz force equation is a minimizer of the functional $\mathcal{L}:\Gamma\to\mathbb{R}$ defined by

$$\mathcal{L}\left(\gamma\right):\frac{1}{2}\int\limits_{\gamma}\left\langle \gamma^{\prime},\gamma\right\rangle ^{\prime}dt+\omega\left(\gamma^{\prime}\right)dt,$$

where Γ is a family of smooth curves that connect two fixed point of U, γ is a curve choosing from Γ and ω is a potential 1-form. The Euler-Lagrange equation of the functional \mathcal{L} is derived as

$$\phi\left(\gamma'\right) = \nabla_{\gamma'}\gamma',\tag{1.1}$$

where ϕ is the skew-symmetric operator. The critical point of the functional \mathcal{L} corresponds to a solution of the Lorentz force equation. So the solutions of the equations could be interpreted with a more geometric point of view [1, 3, 4, 5, 7, 10, 13].

In this work we consider null Killing magnetic trajectories on a timelike surface S in Minkowski 3-space \mathbb{E}^3_1 . Also, we get equation of the Lorentz force by using the Darboux frame field of a null magnetic curve on the such surface and give equations of the Killing magnetic flow by means of the structures of a magnetic vector field in \mathbb{E}^3_1 . Then we apply this formulation to give results about magnetic curves on the pseudo-sphere and the pseudo-cylinder surfaces, so we show that geodesics of these surfaces are null magnetic curves.

2. Preliminaries

We consider that $\mathbb{E}^3_{_1}$ denotes Minkowski 3—space with the inner product

$$\langle u, w \rangle = -u_1 w_1 + u_2 w_2 + u_3 w_3$$

which is a non-degenerate, symmetric and bilinear form and the vector product

$$u \times w = (-u_2w_3 + u_3w_2, u_3w_1 - u_1w_3, u_1w_2 - u_2w_2),$$

where $u=(u_1,u_2,u_3),\ w=(w_1,w_2,w_3)\in\mathbb{E}^3_1$. A vector u in \mathbb{E}^3_1 is called a spacelike vector if $\langle u,u\rangle>0$ or u=0, a timelike vector if $\langle u,u\rangle<0$, or null (lightlike) vector if $\langle u,u\rangle=0$ and $u\neq 0$. A regular curve in \mathbb{E}^3_1 is called spacelike, timelike or null, if its velocity vector is spacelike, timelike or null, respectively. A non-degenerate surface is named in terms of the induced metric. If the induced metric is indefinite, a non-degenerate surface is called timelike [9 12].

We can assign a frame to any point of a null curve since we investigate the geometry of the curve. This frame is known as Cartan frame field along a null curve in \mathbb{E}^3_1 . Let $\gamma = \gamma(s)$

be a null curve in \mathbb{E}^3 . Let T denote a null vector field along γ . So, there exists a null vector field B along γ satisfying $\langle T, B \rangle = 1$. If we write $N = B \times T$, then we can obtain a Cartan frame field $\mathcal{F} = \{T, N, B\}$ along γ . A Cartan framed null curve (γ, \mathcal{F}) is given by

$$T(s) = \gamma'(s), \quad N(s) = \gamma''(s), \quad B(s) = -\gamma'''(s) - \frac{1}{2} < \gamma'''(s), \gamma'''(s) > \gamma'(s)$$

at a point $\gamma(s)$, where

$$\langle T, T \rangle = \langle B, B \rangle = \langle T, N \rangle = \langle N, B \rangle = 0,$$

 $\langle N, N \rangle = \langle T, B \rangle = 1.$

We have the following derivative equations of the Cartan frame (generally knows as Frenet equations)

$$\begin{pmatrix} T' \\ N' \\ B' \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -\kappa & 0 & -1 \\ 0 & \kappa & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix},$$

where

$$\kappa(s) = \frac{1}{2} < \gamma'''(s), \gamma'''(s) >,$$

[2, 8, 12].

In order to study the geometry of a null curve on a timelike surface, we can construct a suitable frame, which is known the Darboux frame field, to any point of the curve. Let (γ, \mathcal{F}) be a null curve with frame $\mathcal{F} = \{T, N, B\}$ and S an oriented timelike surface in Minkowski 3–space. The Darboux frame at $\gamma(s)$ of γ is the orthonormal basis $\{T, Q, n\}$ of \mathbb{E}^3 , where Q is the unique vector obtained by

$$Q = \frac{1}{\langle V, T \rangle} \{ V - \frac{\langle V, V \rangle}{2 \langle V, T \rangle} T \}, \quad V \in T_{\gamma(s)} M, \quad \langle V, T \rangle \neq 0,$$

and n is the spacelike unit normal of S which is defined by $n = T \times Q$. So, we have

$$\langle T, T \rangle = \langle Q, Q \rangle = \langle Q, n \rangle = \langle T, n \rangle = 0,$$

$$\langle n, n \rangle = \langle T, Q \rangle = 1.$$

The first order variation of $\{T, Q, n\}$ is expressed as follow

$$\begin{bmatrix} T' \\ Q' \\ n' \end{bmatrix} = \begin{bmatrix} \kappa_g & 0 & \kappa_n \\ 0 & -\kappa_g & \tau_g \\ -\tau_g & -\kappa_n & 0 \end{bmatrix} \begin{bmatrix} T \\ Q \\ n \end{bmatrix}, \tag{2.2}$$

where the functions κ_g , κ_n and τ_g are called the geodesic curvature, the normal curvature and the geodesic torsion of the curve γ , respectively. From the comparison of Cartan and Darboux frames, we have

$$\kappa_n = \pm 1 \tag{2.3}$$

[6, 12].

3. Magnetic Vector Fields

The Lorentz force ϕ corresponding the magnetic field V is given by

$$\phi\left(\gamma'\right) = V \times \gamma'.$$

A curve γ in \mathbb{E}^3_1 is called magnetic curve of a magnetic field V if its tangent vector field satisfies

$$\nabla_{\gamma'}\gamma' = \phi\left(\gamma'\right) = V \times \gamma'. \tag{3.4}$$

The Lorentz force ϕ of a magnetic field F in \mathbb{E}^3_1 is defined to be skew symmetric operator given by

$$<\phi\left(X\right),Y>=F\left(X,Y\right)$$

for vector fields X and Y. The mixed product of the vector fields X, Y and Z is given by

$$\langle X \times Y, Z \rangle = \Omega(X, Y, Z),$$

where Ω a volume on \mathbb{E}^3 . So, the Lorentz force of the corresponding Killing magnetic force is given as $\phi(X) = V \times X$, where V is a Killing vector field [13].

Then we can give the following proposition for the Lorentz force.

Proposition 3.1. Let γ be a null magnetic curve on a timelike surface $S \subset \mathbb{E}^3_1$ and $\{T, Q, n\}$ is the Darboux frame field along γ . Then the Lorentz force in the Darboux frame $\{T, Q, n\}$ is written as follows

$$\phi(T) = \kappa_g T + \kappa_n n, \tag{3.5}$$

$$\phi(Q) = -\kappa_q Q + \omega n \tag{3.6}$$

and

$$\phi(n) = -\omega T - \kappa_n Q,\tag{3.7}$$

where the function $\omega(s) = \langle \phi(Q(s)), n(s) \rangle$ associated with each magnetic curve is quasislope measured with respect to the magnetic vector field V.

Proof. The unit tangent vector to γ at a point $\gamma(s)$ of γ is $T(s) = \gamma'(s)$. Then from (1.1), we have

$$\phi\left(T\right) = \nabla_T T = V \times T.$$

By using the Darboux formulas (2.2), we get

$$\phi\left(T\right) = \kappa_{a}T + \kappa_{n}n$$

and

$$<\phi(T), Q>=\kappa_q$$
 and $<\phi(T), n>=\kappa_n$.

Similarly, we can write the linear expansion of $\phi(Q)$, $\phi(n) \in S$ as follows

$$\phi\left(Q\right) = <\phi\left(Q\right), Q > T + <\phi\left(Q\right), T > Q + <\phi\left(Q\right), n > n$$

and

$$\phi(n) = <\phi(n), Q > T + <\phi(n), T > Q + <\phi(n), n > n,$$

respectively. Taking into consideration Eqs. (3.4) and (3.5), we get

$$<\phi(Q), T> = < V \times Q, T> = - < V \times T, Q> = - < \phi(T), Q> = -\kappa_{Q}$$

and

$$<\phi(n), T> = < V \times n, T> = - < V \times T, n> = - < \phi(T), n> = -\kappa_n.$$

Since ϕ is a skew-symmetric operator, we get $\langle \phi(Q), Q \rangle = \langle \phi(n), n \rangle = 0$.

Then by using Proposition 3.1 we can write the magnetic vector field according to Darboux frame on a timelike surface S in the following.

Proposition 3.2. A null curve $\gamma: I \subset \mathbb{R} \to S$ is a magnetic trajectory of a magnetic field V if and only if V can be written along γ as

$$V = \omega T - \kappa_n Q + \kappa_g n. \tag{3.8}$$

Proof. Suppose that γ is a null magnetic curve along a magnetic field V with the Darboux frame field $\{T, Q, n\}$. Then, V can written as $V = \langle V, Q \rangle T + \langle V, T \rangle Q + \langle V, n \rangle n$. To find coefficient of V, we use the Lorentz force in Darboux frame equations (3.5-3.7):

$$\omega = \langle \phi(Q), n \rangle = \langle V, Q \times n \rangle = \langle V, Q \rangle,$$

$$\kappa_n = \langle \phi(T), n \rangle = -\langle V, n \times T \rangle = -\langle V, T \rangle$$

and

$$\kappa_g = \langle \phi(T), Q \rangle = \langle V, T \times Q \rangle = \langle V, n \rangle.$$

4. KILLING MAGNETIC FLOW EQUATION FOR NULL MAGNETIC TRAJECTORIES

Let $\gamma: I \to S$ be pseudo-parametrized null curve on a timelike surface in \mathbb{E}^3_1 and V a magnetic vector field along that curve. One can take a variation of γ in the direction of V, say a map

$$\begin{array}{cccc} \Gamma: & [0,1] \times (-\varepsilon,\varepsilon) & \to & S \\ & & (s,t) & \to & \Gamma(s,t) \end{array}$$

which satisfies

$$\Gamma(s,0) = \gamma(s), \left(\frac{\partial \Gamma(s,t)}{\partial t}\right)_{t=0} = V(s) \text{ and } \left(\frac{\partial \Gamma(s,t)}{\partial s}\right)_{t=0} = \gamma'(s).$$

We recall that a spacelike or timelike curve in \mathbb{E}^3_1 can be reparametrize by an arclength. However, there would be not sense reparametrize by the arclength for a null curve γ . However, it has pseudo arc-length parametrized $\alpha(s) = \gamma(\phi(s))$, such that $\|\alpha''(s)\| = 1$, where ϕ is the differential function in suitable interval. Thus, we have the following equations:

$$\begin{split} T(s,t) &= \left(\frac{\partial \Gamma(s,t)}{\partial s}\right)_{t=0} = \gamma'\left(s\right), \\ \beta(s,t) &= \left(<\left(\frac{\partial^2 \Gamma(s,t)}{\partial s^2}\right)_{t=0}, \left(\frac{\partial^2 \Gamma(s,t)}{\partial s^2}\right)_{t=0}>\right)^{1/4}, \end{split}$$

(see [9, 12]).

By using above variational formulas, we have the following equalities (by similar method that of [3, 10]).

Lemma 4.1. We consider that γ is a null curve on a timelike surface in \mathbb{E}^3_1 and a magnetic vector field V is a variational vector field along the variation Γ . So we can give the following expressions;

$$V(\beta) = \frac{1}{2\beta^3} \langle \nabla_T \nabla_T V, \nabla_T T \rangle, \tag{4.9}$$

$$V(\kappa) = \frac{1}{2}V(\langle \nabla_T \nabla_T T, \nabla_T \nabla_T T \rangle) = \langle \nabla_T^3 V, \nabla_T^2 T \rangle. \tag{4.10}$$

Proposition 4.1. (see [11]). Let V(s) be the restriction to $\gamma(s)$ of a Killing vector field, then

$$V(\beta) = V(\kappa) = 0. \tag{4.11}$$

Thus, Killing magnetic flow equations can be given the following theorem.

Theorem 4.1. Let γ be a null curve on S in \mathbb{E}^3_1 . Suppose that $V = \omega T - \kappa_n Q + \kappa_g n$ is a Killing vector field along γ . Then the magnetic trajectories are curves on S satisfying following differential equations

$$b\kappa_q + c\kappa_n = 0 (4.12)$$

and

$$-a' + 2c\tau_g + b'\kappa_g' - b\kappa_g\kappa_g' - c\kappa_n\kappa_g' + \kappa_g^2b' - b\kappa_g^3$$

$$-c\kappa_n\kappa_g^2 - \kappa_n\tau_gb' + 2b\kappa_g\kappa_n\tau_g + c'\kappa_g\kappa_n = 0,$$
(4.13)

where

$$a = \omega'' + 2\omega'\kappa_g + \omega\kappa'_g - 2\kappa'_g\tau_g - \kappa_g\tau'_g + \omega\kappa_g^2 - \kappa_g^2\tau_g$$
$$-\omega\kappa_n\tau_g + \kappa_n\tau_g^2,$$
$$b = -\omega + \tau_g - \kappa'_g\kappa_n,$$
$$c = 2\omega'\kappa_n + \omega\kappa_g\kappa_n - \kappa_g\kappa_n\tau_g - \kappa_n\tau'_g + \kappa''_g.$$

Proof. Assume that V is a Killing vector field along γ on S. Along any magnetic trajectory γ , we have $V = \omega T - \kappa_n Q + \kappa_g n$. Using (2.3), we get

$$\nabla_T V = (\omega' + \omega \kappa_q - \kappa_q \tau_q) T + (\omega \kappa_n - \kappa_n \tau_q + \kappa_q') n. \tag{4.14}$$

We calculate derivative of (4.14) as follows

$$\nabla_T^2 V = \left(\omega'' + 2\omega' \kappa_g + \omega \kappa_g' - 2\kappa_g' \tau_g - \kappa_g \tau_g' + \omega \kappa_g^2 - \kappa_g^2 \tau_g - \omega \kappa_n \tau_g + \kappa_n \tau_g^2\right) T + \left(-\omega + \tau_g - \kappa_g' \kappa_n\right) Q$$

$$\left(2\omega' \kappa_n + \omega \kappa_g \kappa_n - \kappa_g \kappa_n \tau_g - \kappa_n \tau_g' + \kappa_g''\right) n$$

$$= aT + bQ + cn.$$
(4.15)

Substituting (4.15) into (4.9), we derive

$$V(\beta) = b\kappa_a + c\kappa_n = 0.$$

For variation of κ , taking derivative of (4.15), we have,

$$\nabla_T^3 V = (a' + a\kappa_g - c\tau_g)T + (b' - b\kappa_g - c\kappa_n)Q + (a\kappa_n + b\tau_g + c')n.$$
(4.16)

Substituting (4.16), (2.2) and (2.3) into (4.10), we obtain

$$V(\kappa) = -a' + 2c\tau_g + b'\kappa'_g - b\kappa_g\kappa'_g - c\kappa_n\kappa'_g + \kappa_g^2b' - b\kappa_g^3 - c\kappa_n\kappa_g^2 - \kappa_n\tau_gb' + 2b\kappa_g\kappa_n\tau_g + c'\kappa_g\kappa_n = 0.$$

Definition 4.1. Any null curve on a timelike surface S is called the null magnetic trajectory of a magnetic field V if it satisfies the differential equation system (4.12) and (4.13).

5. Applications

Magnetic trajectories on a timelike pseudo-sphere: We consider the timelike pseudo-sphere with radius r,

$$\mathbb{S}_1^2(r) = \left\{ (x_1, x_2, x_3) \in E_1^3 : x_1^2 + x_2^2 + x_3^2 = r^2 \right\}.$$

The geodesic torsion τ_g vanishes for all curves on $\mathbb{S}_1^2(r)$ and the normal curvature $\kappa_n^2 = 1$ [12]. Then any null geodesic curve γ on $\mathbb{S}_1^2(r)$ is a magnetic trajectory of a magnetic field V if and only if V can be written along γ as

$$V = \omega T \pm Q$$
,

where ω is a constant.

Magnetic trajectories on a pseudo-cylinder: The pseudo-cylinder

$$\mathbb{C}_1^2(1) = \{(x, y, z) \in \mathbb{E}_1^3 | -x^2 + y^2 = 1, z \in \mathbb{R} \}$$

is a timelike surface and parametrized by

$$X(u,v) = (\sinh s, \cosh s, s),$$

where r is radius of the circle. Then for a null geodesic

$$\gamma(s) = (\sinh s, \cosh s, s)$$

on $\mathbb{C}_1^2(1)$, we have

$$\kappa_g = 0, \ \kappa_n = 1 \text{ and } \tau_g = -\frac{1}{2},$$

(see [6, 12]). So, the null geodesic γ on a pseudo-cylinder are magnetic trajectories of the magnetic field

$$V = \omega T - Q$$

where ω is a constant (see Fig (5.1)).

FIGURE 1. A null magnetic trajectory on the pseudo-cylinder

Acknowledgement. The authors would like to thank the referee for his/her valuable comments.

References

- [1] Aydın, ME. Magnetic Curves Associated to Killing Vector Fields in a Galilean Space, Mathematical Sciences and Applications E-Notes 2016; 4(1): 144 150.
- [2] Ayyıldız, N., Turhan, T. A Study on a Ruled Surface with Lightlike Ruling for a Null Curve with Cartan Frame, Bull. Korean Math. Soc. 2012; 49(3): 635 645.
- [3] Barros, M., Cabrerizo, JL., Fernandez M., Romero A. Magnetic vortex filament flows, Journal of Mathematical Physics 2007; 48: 082904.
- [4] Barros, M., Romero, A. Magnetic vortices, EPL (Europhysics Letters) 2007; 77: 3402.
- [5] Cabrerizo, JL., Magnetic fields in 2D and 3D sphere, Journal of Nonlinear Mathematical Physics 2013; 20(3): 440-450.
- [6] Çöken, AC., Çiftçi, Ü. On null curves on surfaces and null vectors in Lorentz space, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi 2007; 2(1): 111 116.
- [7] Druţă-Romaniuc, SL., Munteanu, MI. Magnetic curves corresponding to Killing magnetic fields in E^3 , Journal of Mathematical Physics 2011; 52(11): 113506/1 11.
- [8] Duggal, KL., Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, 1996.
- [9] Lopez, R. Differential geometry of curves and surfaces in Lorentz-Minkowski space, International Electronic Journal of Geometry 2014; 7:44-107.
- [10] Özdemir, Z., Gök, İ., Yaylı, Y., Ekmekci, FN. Notes on magnetic curves in 3D semi-Riemannian manifolds, Turkish Journal of Mathematics 2015; 39(3): 412 – 426.

- [11] Özdemir, Z. Magnetic Trajectories on Lightlike Surfaces, Differential Equations and Dynamical Systems 2020; 1-13.
- [12] Özkan Tükel, G., Yücesan, A. A Curvature Energy Problem on a Timelike Surface, International Electronic Journal of Geometry 2018; 11(2): 120 125.
- [13] Turhan, T. Magnetic Trajectories in Three-Dimensional Lie Groups, Mathematical Methods in the Applied Sciences 2020; 43(5): 2747 2758.

ISPARTA UNIVERSITY OF APPLIED SCIENCES,, 32200, ISPARTA, TURKEY.

 $Email\ address{:}\ {\tt gozdetukel@isparta.edu.tr}$

ISPARTA UNIVERSITY OF APPLIED SCIENCES,, 32200, ISPARTA, TURKEY.

 $Email\ address {:}\ {\tt tunahanturhan@isparta.edu.tr}$