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SEMI-SYMMETRIC METRIC CONNECTION ON COSYMPLECTIC

MANIFOLDS

BABAK HASSANZADEH ID ∗

Abstract. In this paper we studied almost contact manifolds with semi-symmetric con-

nection, especially Sasakian manifolds. Curvature, sectional curvature and φ-sectional cur-

vature are calculated by semi-symmetric connection. Furthermore; geometric properties of

integral submanifold of Sasakian manifolds are investigated.

1. Introduction

The idea of a semi symmetric connection on a smooth manifolds was first introduce by

Friedmann and Schouten in 1924, [3]. The Sasakian manifolds were introduced in the 1960’s

by S. Sasaki as an odd-dimensional analogous of Kaehler manifolds. Kaehler manifolds are

a classical object of differential geometry and well studied in literature. Compared to that

Sasakian manifolds have only recently become subject of deeper research in mathematics

and physics. Semi-symmetric connection studied by many authors from 1924 so far. In 1993,

Benjancu and Duggal [2] introduced the concept of (ε)-Sasakian manifolds. Afterwards,

in 2014, Ram Nawal Singh, Shravan Kumar Pandey, Giteshwari Pandey and Kiran Tiwari

examined semi-symmetric connection in an (ε)-Kenmotsu manifold.
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In the present paper, in the first section, Sasakian manifold are examined, then in next

section cosymplectic manifolds are studied using semi symmetric metric connection.

2. Preliminaries

Let M be an odd dimensional smooth manifold with a Riemannian metric g and Rie-

mannian connection ∇. Denote by TM the Lie algebra of vector fields on M . Then M is

said to be an almost contact metric manifold if there exist on M a tensor φ of type (1, 1), a

vector field ξ called structure vector field and η, the dual 1-form of ξ satisfying the following

φ2X = −X + η(X)ξ, g(X, ξ) = η(X) (2.1)

η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0 (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

for any X,Y ∈ TM . In this case

g(φX, Y ) = −g(X,φY ). (2.4)

If dη(X,Y ) = g(X,φY ), for every X,Y ∈ TM , then we say that M is a contact metric

manifold. If ξ is a killing vector field with respect to g, the contact metric structure is called

a K-contact structure. It is easy to prove that a contact metric manifold is K-contact if and

only if ∇Xξ = −φX, for any X ∈ TM , where ∇ denotes the Levi-Civita connection on M.

We are thus led to define four tensors N1 , N2 , N3 , N4 by

N (1)(X,Y ) = [φ, φ](X,Y ) + 2dη(X,Y )ξ,

N (2)(X,Y ) = (LφXη)(Y )− (LφY η)(X),

N (3) = (Lξφ)X,

N (4) = (Lξη)X.

An almost contact structure (φ, ξ, η) is normal if and only if these four tensors are equal to

zero. Now we give some useful theorems.

Theorem 2.1. [2] An almost contact metric struture (φ, ξ, η, g) is Sasakian if and only if

(∇Xφ)Y = g(X,Y )ξ − η(Y )X.

A Sasakian manifold is K-contact then ξ is Killing vector field and ∇Xξ = −φX.
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Proposition 2.1. [2] On a Sasakian manifold,

R(X,Y )ξ = η(Y )X − η(X)Y.

Theorem 2.2. [2] A contact metric manifold is K-contact if and only if the sectional cur-

vature of all plane sections containing ξ are equal to 1. Moreover, on a K-contact manifold,

R(X, ξ)ξ = X − η(X)ξ.

Let M be a submanifold of M̃ and TM and T⊥M be the Lie algebras of vector fields

tangential and normal to M̃ , respectively. Suppose ∇̃ is the induced Levi-Civita connection

on M̃ . The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ), (2.5)

∇̃XV = −AVX +∇⊥
XV, (2.6)

for all X,Y ∈ TM and V ∈ T⊥M , where ∇⊥ is the connection on the normal bundle T⊥M ,

h is the second fundamental form and AV is the Weingarten map associated with V as

g(AVX,Y ) = g(h(X,Y ), V ), (2.7)

for then using the standard formula namely Koszul formula for the Levi-Civita connection,

g(∇XY,Z) =
1

2
{Xg(Y, Z) + Y g(X,Z)− Zg(X,Y ) (2.8)

+ g([X,Y ], Z) + g([Z,X], Y ) + g([Z, Y ], X)},

for all X,Y ∈ TM .

3. Semi-symmetric metric connections

A linear connection ∇̄ defined on contact metric manifold M is said to be semi-symmetric

connection[3], if its torsion tensor

T̄ (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]

satisfies

T̄ (X,Y ) = η(Y )X − η(X)Y.

Further, a connection is called a semi-symmetric metric connection[5] if

(∇̄Xg)(Y,Z) = 0.
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The relation between the semi-symmetric metric connection ∇̄ and the Levi-Civita connection

is given by[4]

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ. (3.9)

Let M be a Sasakian manifold and ∇ be a Levi-Civita connection defined on M. Using 3.9

we obtain

(∇̄Xη)Y = ∇̄Xg(Y, ξ)− η(∇̄XY ) = −η(∇XY )− η(Y )η(X) + g(X,Y ). (3.10)

From the definition immediately we obtain the following useful facts.

1)∇̄XφY = ∇XφY − g(X,φY )ξ,

2)∇̄φXY = ∇φXY + η(Y )φX − g(φX, Y )ξ,

3)∇̄φXφY = ∇φXφY + η(X)η(Y )ξ − g(X,Y )ξ,

4)∇̄φXξ = 0,

5)∇̄ξX = ∇ξX,

for all X,Y ∈ TM .

Lemma 3.1. On Sasakian manifold,

(∇̄φXφ)Y = g(φX, Y )ξ − g(X,Y )ξ − η(Y )φX + η(Y )X.

Proof.

(∇̄φXφ)Y = ∇̄φXφY − φ∇̄φXY = ∇φXφY − g(φX, φY )ξ − φ∇φXY − η(Y )φ2X,

= ∇φXφY − φ∇φXY + η(Y )φX − g(X,Y )ξ,

= g(φX, Y )ξ − g(X,Y )ξ − η(Y )φX + η(Y )X.

The proof is completed.

Let the curvature tensorR̄ given by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z,

where ∇̄ is semi-symmetric connection. Using 3.9, we obtain routinely

R̄(X,Y )Z = R(X,Y )Z + η(Z)η(Y )X − η(Z)η(X)Y, (3.11)

− g(Y, Z)X + g(X,Z)Y + g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ,

+ g(∇Xξ, Z)Y − g(Y,Z)∇Xξ − g(Z,∇Y ξ)X + g(X,Z)∇Y ξ.
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For Sasakian manifolda the equation 3.9 reduces to

R̄(X,Y )Z = R(X,Y )Z + η(Z)η(Y )X − η(Z)η(X)Y, (3.12)

− g(Y,Z)X + g(X,Z)Y + g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ,

− g(φX,Z)Y + g(Y,Z)φX + g(Z, φY )X − g(X,Z)φY.

To calculate the sectional curvature, first we have

R̄(X,Y, Y,X) = R(X,Y, Y,X) + η(Y )η(Y )g(X,X), (3.13)

− g(Y, Y )g(X,X) + g(X,Y )g(X,Y ) + η(X)η(X)g(Y, Y ).

Assume {X,Y } are orthonormal, then

R̄(X,Y, Y,X) = R(X,Y, Y,X) + η(Y )η(Y ) + η(X)η(X)− 1, (3.14)

therefore

K̄(X,Y ) = K(X,Y ) + η(Y )η(Y ) + η(X)η(X)− 1. (3.15)

For Sasakian manifolds we have R(X,Y )ξ = η(Y )X − η(X)Y , then from 3.9, we obtain

R̄(X,Y )ξ = η(Y )X − η(X)Y − η(X)φY + η(Y )φX.

3.1. Integral submanifolds.

Definition 3.1. A submanifold N of M is an integral submanifold, if η(X) = 0 for every

X ∈ TN . [1]

Lemma 3.2. Let M be a Sasakian manifold with a semi-symmetric metric connection. As-

sume N be an integral submanifold, then

(∇̄Xφ)Y = g(X,Y )ξ,

for any X,Y ∈ TN .

Proof. If N be an integral submanifold, then ξ is normal to N, hence

(∇̄Xφ)Y = ∇̄XφY − φ∇̄XY = ∇XφY − g(X,φY )ξ − φ∇XY + g(Y, ξ)φX = (∇Xφ)Y.

Using theorem 2.1 the proof is trivial.
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For integral submanifolds the equation 3.9 become to

R̄(X,Y )Z = R(X,Y )Z + g(X,Z)Y − g(Y, Z)X − g(X,Z)φY + g(Y, Z)φX, (3.16)

which present the relation between curvature tensors of connections ∇̄ and ∇ in integral

submanifolds of Sasakian manifolds. From 3.16, we get

g(R̄(X,Y )Z, V ) = g(R(X,Y )Z, V ) + g(X,Z)g(Y, V )− g(Y,Z)g(X,V ). (3.17)

SupposeR̄(X,Y )Z = 0, which by virtue of the equation 3.17 yields

g(R(X,Y )Z, V ) = g(Y, Z)g(X,V )− g(X,Z)g(Y, V ). (3.18)

We know R(X, ξ)ξ = X, and we can caculate easily R(ξ,X)ξ = X, hence

R̄(ξ,X)ξ = 2X − φX,

it’s trivial R̄(X,Y )ξ = R(X,Y )ξ = 0 and R̄(X, ξ)ξ = X. Also, φ−sectional curvature is

defined by

K(u) = K(X,φX) = R(X,φX;φX,X).

Assume X ∈ N be an unit vector field, then

R̄(X,φX;φX,X) = R(X,φX;φX,X)− g(X,X)g(φX, φX)

= R(X,φX;φX,X)− 1,

and we conclude K̄ = K − 1.

Lemma 3.3. Let N be an integral submanifold of Sasakian maniold M, then

∇ξY = [ξ, Y ],

for all X,Y ∈ N .

Proof. By 2.8, following equations are obtained

2g(∇ξX,Y ) = ξg(X,Y ) + g([ξ,X], Y ) + g([Y, ξ], X),

using ξg(X,Y ) = g(∇ξX,Y ) + g(X,∇ξY ) leads to

g(∇ξX,Y ) = g(X,∇ξY ) + g([ξ,X], Y ) + g([Y, ξ], X). (3.19)

Also,

2g(∇Xξ, Y ) = ξg(X,Y ) + g([X, ξ], Y ) + g([Y, ξ], X) = 0. (3.20)
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Comparing 3.19 and 3.20 complete the proof.

4. Cosymplectic manifolds

A normal almost contact metric manifold M is called a cosymplectic manifol if

(∇Xφ)Y = 0, ∇Xξ = 0, (4.21)

where ∇ denotes Levi-Civita connection. From we have

(∇̄Xφ)Y = −η(Y )φX − g(X,φY )ξ. (4.22)

Following facts easily can be obtained

(1) (∇̄XφY ) = φ∇XY − g(X,φY )ξ,

(2) ∇̄ξφX = ∇ξφX,

(3) ∇̄ξY = ∇ξY .

Using obtained facts we obtain

g(∇̄XφY, ξ) = g(φX, Y ), (4.23)

g(∇ξφX, Y ) = g(∇ξφY,X). (4.24)

From 2.4 and 3.9 we get

∇̄Xξ = −φ2X, (∇̄Xφ)ξ = −φX. (4.25)

Lemma 4.1. Let M be a cosymplectic manifold, then

η((∇̄Xφ)Y ) = η(∇̄XφY ),

for all X,Y ∈ TM .

Proof. Using 4.22 and other obtained facts for Cosymplectic manifolds we get

η((∇̄Xφ)Y ) = η(g(φX, Y )ξ) = g(φX, Y ) = η(∇̄XφY ),

the proof is complete.

Based on theorem 6.8 [1] it can be seen dη = 0, then

2dη(X,Y ) = Xη(Y )− Y η(X)− η([X,Y ]) = 0. (4.26)

Assume X,Y ∈ TM are orthogonal elements. Using 2.8, 4.25 and 4.26 we find out

2g(∇Xξ, Y ) = Xη(Y )− Y η(X) + g([X, ξ], Y ) + η([X,Y ]) + g([Y, ξ], X).
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Therefore g([X, ξ], Y ) + g([Y, ξ], X) = 0. Using 2.8 we have

η(∇XY ) = Xη(Y ), η(∇YX) = Y η(X). (4.27)

Since M is an almost cosymplectic manifold, from 4.26 following statement is valid

(∇Xη)(Y )− (∇Y η)(X) = 0.

Also, we have

(∇̄Xη)(Y ) = η(∇̄Xξ, Y ) = g(φX, φY ).

Thus

(∇̄Xη)Y + (∇̄Y η)X,

for all X,Y ∈ TM . Assume ∇̄XφY = 0, for all X,Y ∈ TM , from 3.9 we obtain

∇XφY = g(X,φY )ξ. (4.28)

For cosymplectic manifold we have

g(∇XφY, ξ) = Xη(φY )− g(φY,∇Xξ) = 0.

On the other side we know g(∇XφY, ξ) = g(X,φY ) we realized that X is orthogonal to Imφ

. From 4.28 we have φ2∇XY = 0, using 2.1 leads to

∇XY = η(∇XY )ξ.

Furthermore we have ∇YX = η(∇YX)ξ, comparing last two equations we have

[X,Y ] = (∇XY −∇YX)ξ. (4.29)

Now we have proved

Theorem 4.1. Let M be a cosymplectic manifold with semi symmetric metric connection ∇̄.

If there is vector fields X,Y ∈ TM , such that ∇̄XY = 0, then

φ([X,Y ]) = 0.

Proof. From 4.29 the proof is trivial.
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