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ALMOST G-CONTACT METRIC MANIFOLD

BELDJILALI GHERICI∗

Abstract. In this paper, starting from only a global basis of vector fields, we construct a

class of almost contact metric manifolds and we give concrete example. Next, we study some

essential types belonging to this class on dimension 3 and we construct several examples.

1. Introduction

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can,

to a great extent, be lifted to various bundles associated with a manifold. The notion of

global (and local) frame plays an important technical role.

It should be mentioned however that a global basis of X(M) ( the Lie algebra of smooth

vector fields on a manifold M) i.e., n vector fields that are linearly independent over F(M)

and span X(M), does not exist in general.

Manifolds that do admit such a global basis for X(M) are called parallelizable. it is straight-

forward to show that a finite-dimensional manifold is parallelizable if and only if its tangent

bundle is trivial (that is, isomorphic to the product, M × Rn).

Received:2018-11-10 Revised:2019-03-14 Accepted:2019-07-24

2010 Mathematics Subject Classification.53C25, 53C15.

Key words: Almost contact metric manifolds, Global basis.

∗ Corresponding author

175



176 BELDJILALI GHERICI∗

As an illustration, we can prove that the tangent bundle, TS1, of the circle, is trivial.

Indeed, we can find a section that is everywhere nonzero, i.e. a non-vanishing vector field,

namely

X(cosθ, sinθ) = (−sinθ, cosθ).

The reader should try proving that TS3 is also trivial (use the quaternions). However, TS2

is nontrivial, although this not so easy to prove.

More generally, it can be shown that TSn is nontrivial for all even n ≥ 2. It can even be

shown that S1, S3 and S7 are the only spheres whose tangent bundle is trivial. This is a

rather deep theorem and its proof is hard.

Here, starting from a Global frame we construct a class of almost contact metric struc-

tures, specifically, many well-known almost contact metric structures ( Sasakian, cosymplec-

tic, Kenmotsu ) in dimension three and we confirm the construction each time with a concrete

example showing that the case is non-vacuous.

This work is organized in the following way:

Section 2 is devoted to the background of the structures which will be used in the sequel.

In Section 3, we give the necessary techniques to construct an almost contact metric struc-

ture from a global frame of vector fields and we give an example. In Section 4, we focus

on the case of three-dimensional and we show how to construct some basic structures with

concrete examples.

2. Review of needed notions

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost contact

metric manifold if there exist on M a (1, 1)-tensor field ϕ, a vector field ξ (called the structure

vector field) and a 1-form η such that
(1) : η(ξ) = 1,

(2) : ϕ2(X) = −X + η(X)ξ,

(3) : g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

(2.1)

for any vector fields X,Y on M . In particular, in an almost contact metric manifold we also

have

ϕξ = 0 and η ◦ ϕ = 0. (2.2)

Such a manifold is said to be a contact metric manifold if dη = Ω, where Ω(X,Y ) =

g(X,ϕY ) is called the fundamental 2-form of M . If, in addition, ξ is a Killing vector field,
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then M is said to be a K-contact manifold. It is well-known that a contact metric manifold

is a K-contact manifold if and only if ∇Xξ = −ϕX, for any vector field X on M .

On the other hand, the almost contact metric structure of M is said to be normal if

Nϕ(X,Y ) = [ϕ,ϕ](X,Y ) + 2dη (X,Y )ξ = 0, (2.3)

for any X, Y , where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

An almost contact metric structures (ϕ, ξ, η, g) on M is said to be:
(a) : Sasaki ⇔ Ω = dη and (ϕ, ξ, η) is normal,

(b) : Cosymplectic ⇔ dΩ = dη = 0 and (ϕ, ξ, η) is normal,

(c) : Kenmotsu ⇔ dη = 0, dΩ = 2η ∧ Ω and (ϕ, ξ, η) is normal.

(2.4)

where d denotes the exterior derivative.

These manifolds can be characterized through their Levi-Civita connection, by requiring
(1) : Sasaki ⇔ (∇Xϕ)Y = g(X,Y )ξ − η(Y )X,

(2) : Cosymplectic ⇔ ∇ϕ = 0,

(3) : Kenmotsu ⇔ (∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX.

(2.5)

For more background on almost contact metric manifolds, we recommend the reference

[1],[2], [3] and [5].

3. Almost G-contact metric manifold

Let {e0, ei}1≤i≤2n be the global frame of vector fields and {θ0, θi}1≤i≤2n be the dual frame

of differential 1-forms on a (2n+1)-dimensional smooth manifold M . Define a (1, 1)-tensor

field ϕ on M by

ϕ =

n∑
i=1

e2i ∧ e2i−1 =

n∑
i=1

(
θ2i−1 ⊗ e2i − θ2i ⊗ e2i−1

)
, (3.6)

i.e. for all vector field X on M , we have

ϕX =

n∑
i=1

(e2i ∧ e2i−1)X

=
n∑
i=1

(
g(e2i−1, X)e2i − g(e2i, X)e2i−1

)
=

n∑
i=1

θ2i−1(X)e2i − θ2i(X)e2i−1,
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and a Riemannian metric g on M wich {ei}0≤i≤2n+1 is an orthonormal frame, so that

g =
2n∑
i=0

θi ⊗ θi. (3.7)

With these identities, we state the following:

Theorem 3.1. The manifold (M,ϕ, e0, θ
0, g) defined as above is an almost contact metric

manifold.

Proof. According to the conditions (2.1), the data (M, g, ϕ, e0, θ
0, g) is an almost

contact metric manifold if only two conditions are satisfied

ϕ2X = −X + θ0(X)e0 and g(ϕX,ϕY ) = g(X,Y )− θ0(X)θ0(Y ).

Using formula (3.6) we get

ϕe2i = −e2i−1 and ϕe2i−1 = e2i.

To prove the first condition, we have for all X vectors field on M

ϕ2X =

n∑
i=1

(
θ2i−1(X)ϕe2i − θ2i(X)ϕe2i−1

)
= −

n∑
i=1

(
θ2i−1(X)e2i−1 + θ2i(X)e2i

)
= −

2n∑
i=1

θi(X)ei

= −X + θ0(X)e0.

For the second condition, for all X and Y vectors fields on M we have

g(ϕX,ϕY ) =

n∑
i=1

(
θ2i−1(X)θ2i−1(Y ) + θ2i(X)θ2i(Y )

)
=

2n∑
i=1

θi(X)θi(Y )

= g
(
X ,

2n∑
i=1

θi(Y )ei

)
= g

(
X,Y − θ0(Y )e0

)
= g(X,Y )− θ0(X)θ0(Y ),

which completes the proof.

We refer to this construction as almost G-contact metric manifold.
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Example 3.1. Let (xi) be the Cartesian coordinates in R5 and ∂i = ∂
∂xi

. Define a global

frame of vector fields on R5 by:

e0 = ∂5, e1 = ∂1 + f∂5, e2 = ∂2, e3 = ∂3 + h∂5, e4 = ∂4,

where f, h are two strictly positive functions on R5 and let g be the Riemannian metric

defined by

g(ei, ej) = δij ∀i, j ∈ {0, ..., 5},

that is, the form of the metric becomes

g =



1 + f2 0 fh 0 −f

0 1 0 0 0

fh 0 1 + h2 0 −h

0 0 0 1 0

−f 0 −h 0 1


,

and the 1-form corresponding to e0 is θ0 = −f dx1 − h dx3 + dx5.

To define ϕ, let us use the formula

ϕ =

2∑
i=1

e2i ∧ e2i−1

= e2 ∧ e1 + e4 ∧ e3

= θ1 ⊗ e2 − θ2 ⊗ e1 + θ3 ⊗ e4 − θ4 ⊗ e3,

we get

ϕ =



0 −1 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 −f 0 −h 0


,

where we can check that (R5, ϕ, e0, θ
0, g) is an almost G-contact metric manifold.

Remark 3.1. Any almost G-contact metric manifold is an almost contact metric manifold,

the converse is not true in general.

While this is an area of possible future research we mention briefly that one easily has the

following:
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The fundamental 2-form Φ of (ϕ, e0, θ
0, g) is :

Φ(X,Y ) = g(X,ϕY )

= g
(
X,

n∑
i=1

(e2i ∧ e2i−1)Y
)

= g
(
X,

n∑
i=1

θ2i−1(Y )e2i − θ2i(Y )e2i−1

)
=

n∑
i=1

(
θ2i−1(Y )θ2i(X)− θ2i(Y )θ2i−1(X)

)
= 2

n∑
i=1

(θ2i ∧ θ2i−1)(X,Y ),

we can check that is very simply as follows:

Φ = 2 θ2i ∧ θ2i−1. (3.8)

Proposition 3.1. Let (M,Φ, e0, θ
0, g) be an almost G-contact manifold. Then, we have

dΦ =
α

n
θ0 ∧ Φ, (3.9)

where d denote the exterior derivative and

α = dive0 +
∑
i<j

(
(Le0g)(e2i−1, e2j−1) + (Le0g)(e2i, e2j)

)
.

Proof. Let U =
∑n

i=1 e2i−1 and V =
∑n

i=1 e2i two vectors fields on M . Putting

dΦ = σ θ0 ∧ Φ for a certain functions σ on M . Then, we get

3 (θ0 ∧ Φ)(e0, U, V ) = n,

3dΦ(e0, U, V ) = (∇e0Φ)(U, V ) + (∇UΦ)(V, ξ) + (∇V Φ)(ξ, U)

= −Φ(V,∇Uθ0)− Φ(∇V θ0, U)

=
n∑
i=1

(
θ2i−1(∇Uθ0) + θ2i(∇V θ0)

)
= g(∇Uθ0, U) + g(∇V θ0, V )

= divξ +
∑
i<j

(
(Le0g)(e2i−1, e2j−1) + (Le0g)(e2i, e2j)

)
= α,

which implies σ = α
n .
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4. 3-dimensional almost G-contact metric manifold

Let {e0, e1, e2} be the global frame of vector fields and {θ0, θ1, θ2} be the dual frame of

differential 1-forms on a 3-dimensional smooth manifold M3. Define a (1, 1)-tensor field ϕ

on M by

ϕ = e2 ∧ e1 = θ1 ⊗ e2 − θ2 ⊗ e1 (4.10)

and a Riemannian metric g on M wich {ei}0≤i≤2 is an orthonormal frame, so that

g =

2∑
i=0

θi ⊗ θi. (4.11)

According to the theorem 3.1, (M3, ϕ, e0, θ
0, g) is an almost G-contact metric manifold.

Through the rest of this paper, we are mainly interested in dimension three. Below we

recall certain results concerning this case.

For an arbitrary 3-dimensional almost contact metric manifold (M3, ξ, η, g), we have

dΦ = 2αη ∧ Φ. (4.12)

A 3-dimensional almost contact metric manifold M is normal if and only if for all X

vectors field on M([4], Prop. 2)

∇ϕXξ = ϕ∇Xξ, (4.13)

or, equivalently,

∇Xξ = −αϕ2X − βϕX, (4.14)

and for a normal almost contact metric manifold M we have ([4], Corollary 1)

∇ξξ = 0 and dη = βΦ. (4.15)

where α and β are the functions defined by 2α = divξ and 2β = tr(ϕ∇ξ) and ∇ is the

Levi-Civita connection on M .

From formulas (2.4) and (4.12)-(4.15), one can easily proof that
(a) : Sasaki ⇔ α = 0, β = 1 and (ϕ, ξ, η) is normal,

(b) : Cosymplectic ⇔ α = β = 0 and (ϕ, ξ, η) is normal,

(c) : Kenmotsu ⇔ α = 1, β = 0 and (ϕ, ξ, η) is normal.

(4.16)

As a consequence of the above formulas (2.5), we immediately obtain the following result:
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Theorem 4.1. A 3-dimensional almost G-contact metric manifold is:


(1) : G− Sasaki ⇔ ∇Xe0 = −ϕX,

(2) : G− cosymplectic ⇔ ∇Xe0 = 0,

(3) : G−Kenmotsu ⇔ ∇Xe0 = −ϕ2X.

(4.17)

for all vectors field X on M .

Proof. According to the cases given in formulas (2.5) we have:

(1): An almost G-contact metric manifold is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )e0 − θ0(Y )X, (4.18)

taking Y = e0 with θ0(∇Xe0) = 0, we obtain

(∇Xϕ)e0 = θ0(X)e0 −X ⇔ −ϕ∇Xe0 = θ0(X)e0 −X

⇔ −ϕ2∇Xe0 = −ϕX

⇔ ∇Xe0 = −ϕX,

we proved that if M is G-Sasakian then ∇Xe0 = −ϕX. Conversely, suppose that

∇Xe0 = −ϕX. (4.19)

It is easy to see that ∇ϕXe0 = ϕ∇Xe0, then the structure (ϕ, e0, θ
0) is normal and also we

have ( see [4], Prop. 2)

∇Xe0 = −αϕ2X − βϕX. (4.20)

From formulas (4.19) and (4.20), we get

α = 0 and β = 1,

following formulas (4.16), M is a G-Sasakian manifold.

(2): An almost G-contact metric manifold is cosymplectic if and only if

(∇Xϕ)Y = 0, (4.21)

taking Y = e0, we obtain ∇Xe0 = 0.

Conversely, suppose that

∇Xe0 = 0. (4.22)
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It is easy to see that ∇ϕXe0 = ϕ∇Xe0 = 0, then the structure (ϕ, e0, θ
0) is normal, using

formulas (4.14) , we get

α = β = 0,

following formulas (4.16), M is a G-cosymplectic manifold.

(3): An almost G-contact metric manifold is Kenmotsu if and only if

(∇Xϕ)Y = g(ϕX, Y )e0 − θ0(Y )ϕX, (4.23)

taking Y = e0, we get ∇Xe0 = −ϕ2X. we proved that if M is G-Kenmotsu then ∇Xe0 =

−ϕ2X. Conversely, suppose that

∇Xe0 = −ϕ2X. (4.24)

we obtain

∇ϕXe0 = −ϕ3X = ϕ∇Xe0,

therefore, the structure (ϕ, e0, θ
0) is normal and also we have ( see [4], Prop. 2)

∇Xe0 = −αϕ2X − βϕX. (4.25)

From formulas (4.24) and (4.25), we get

α = 1 and β = 0,

following formulas (4.16), M is a G-Kenmotsu manifold.

5. Examples

Let (x, y, z) denote the Cartesian coordinates in R3. We denote the global frame of vector

fields on R3 by (e0, e1, e2) and the dual frame of differential 1-forms by (θ0, θ1, θ2) such that

θi(ej) = δij for all i, j ∈ {0, 1, 2}.

Example 5.1. (G-Sasakian manifold)

Consider

θ0 = dx+ 2zdy, θ1 = dy, θ2 = dz,

and

e0 =
∂

∂x
, e1 = −2z

∂

∂x
+

∂

∂y
, e2 =

∂

∂z
.

For the non-zero Lie brackets of (ei), we have:

[e1, e2] = 2e0.
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Define an almost contact structure (ϕ, e0, θ
0) on M by assuming

ϕe0 = 0 , ϕe1 = e2 , ϕe2 = −e1.

Let g be the Riemannian metric on M for which (ei) is an orthonormal frame, so that

g =
∑
θi ⊗ θi. It is obvious that (ϕ, e0, θ

0, g) is an almost contact metric structure on R3.

For the Levi-Civita connection corresponding to g, we have

∇e0e0 = ∇e1e1 = ∇e2e2 = 0, ∇e0e1 = ∇e1e0 = −e2,

∇e0e2 = ∇e2e0 = e1, ∇e1e2 = −∇e2e1 = e0.

We can easily check that i ∈ {0, 1, 2}

∇eie0 = −ϕei.

Knowing that (∇Xϕ)Y = ∇XϕY − ϕ∇XY for all X and Y vectors fields on M , one can

check that

(∇eiϕ)ej = δije0 − θ0(ej)ei,

for all i, j ∈ {0, 1, 2}. Therefore, (R3, ϕ, e0, θ
0, g) is a G-Sasakian manifold.

Example 5.2. (G-cosymplectic manifold)

For the global frame

e0 =
∂

∂x
+ x

∂

∂z
, e1 =

∂

∂y
, e2 =

∂

∂z
,

we define a Riemannian metric g by

g(e0, e1) = g(e0, e2) = g(e1, e2) = 0,

g(e0, e0) = g(e1, e1) = g(e2, e2) = 1

that is, the form of the metric becomes

g =


1 + x2 0 −x

0 1 0

−x 0 1

 ,

and the corresponding 1-forms are

θ0 = dx, θ1 = dy, θ2 = −xdx+ dz,



ALMOST G-CONTACT METRIC MANIFOLD 185

To define ϕ, let’s use the formula ϕ = e2 ∧ e1, we get

ϕ =


0 0 0

x 0 −1

0 1 0

 .

where we can check that (ϕ, ξ, η, g) is an almost G-contact metric structure on E3.

It is easy to see that for all i, j ∈ {0, 1, 2},

[ei, ej ] = 0,

therefore, all components of the Levi-Civita connection are zero. Then, for all i ∈ {0, 1, 2}

we obtain

∇eie0 = 0,

which shows that (R3, ϕ, e0, θ
0, g) is a G-cosymplectic manifold. One can verify this result by

classical reasoning, using formulas (4.16).

Example 5.3. (G-Kenmotsu manifold)

Consider

θ0 = −xdx+ dz, θ1 = ezdx, θ2 = ezdy,

and

e0 =
∂

∂z
, e1 = e−z

( ∂
∂x

+ x
∂

∂z

)
, e2 = e−z

∂

∂y
.

For the non-zero Lie brackets of (ei), we have:

[e0, e1] = −e1, [e0, e2] = −e2, [e1, e2] = −xe−ze2.

Define an almost contact structure (ϕ, e0, θ
0) on M by assuming

ϕe0 = 0 , ϕe1 = e2 , ϕe2 = −e1.

Let g be the Riemannian metric on M for which (ei) is an orthonormal frame, so that

g =
∑
θi ⊗ θi. It is obvious that (ϕ, e0, θ

0, g) is an almost contact metric structure on R3.

For the Levi-Civita connection corresponding to g, we have

∇e0e0 = ∇e0e1 = ∇e0e2 = ∇e1e2 = 0,

∇e1e0 = e1, ∇e2e0 = e2, ∇e1e1 = e0

∇e2e1 = xe−ze2, ∇e2e2 = −e0 − xe−ze1.
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We can see that for all i ∈ {0, 1, 2}

∇eie0 = −ϕ2ei.

Knowing that (∇Xϕ)Y = ∇XϕY − ϕ∇XY , one can check that

(∇Xϕ)Y = g(ϕX, Y )e0 − θ0(Y )ϕX,

for all X,Y ∈ {e0, e1, e2}. Therefore, (R3, ϕ, e0, θ
0, g) is a G-Kenmotsu manifold.
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