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ON A GENERALIZED SUBCLASS OF MEROMORPHIC p-VALENT

CLOSE TO CONVEX FUNCTIONS IN q-ANALOGUE.

BAKHTIAR AHMAD∗ AND MUHAMMAD ARIF

Abstract. In this article, we define a new subclass of meromorphic multivalent close to

convex functions involving in q-calculus associated with janowski functions. We investigate

some useful geometric properties such as sufficiency criteria, distortion problem, growth

theorem, radii of starlikeness and convexity and coefficient estimates for this class.

1. Introduction

The q-calculus has motivated the researchers in the recent past due to its numerous physical

and mathematical applications. The generalization of derivative and integral in q-calculus

which are known as q-analogue of derivative and integral were introduced and studied by

Jackson [11, 12]. Aral and Gupta [5, 6] used some what similar concept and defined q-

Baskakov Durrmeyer operator by using q-beta function. Similarly the author’s in [3, 7]

generalized some complex operators, which are known as q-Picard and q-Gauss-Weierstrass

singular integral operators.Later, Srivastava and Bansal [20, pp. 62] used the q-analogue

of derivative in Geometric function theory by introducing the q-generalization of starlike

functions for the first time, see also [19, pp. 347 et seq.].
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In 2014, the q-analogue of Ruscheweyh operator were studied by Kanas and Răducanu

[14], and they investigated some of its properties as will. The applications of this differential

operator were further studied by Mohammed and Darus [2] and Mahmood and Sokó l [15].

In this article we introduce a subclass of meromorphic multivalent functions in association

with janowski functions and studty its geometric properties like sufficiency criteria, inclusion

property, coefficient bounds, radii problem and distortion theorem.

2. Preliminaries and Definitions

Let Ap denote the class of all meromorphic multivalent functions f (z) that are analytic in

the punctured disc D = {z ∈ C : 0 < |z| < 1} and satisfying the normalization

f(z) =
1

zp
+

∞∑
k=1

ak+pz
k+p, (z ∈ D) . (2.1)

The q-derivative of a function f is defined by

∂qf(z) =
f (qz)− f(z)

z (q − 1)
, (z 6= 0) , (2.2)

where 0 < q < 1. It can easily be seen that for n ∈ N and z ∈ D

∂q

{ ∞∑
n=1

anz
n

}
=

∞∑
n=1

[n, q] anz
n−1, (2.3)

where

[n, q] =
1− qn

1− q
= 1 +

n∑
l=1

ql, [0, q] = 0.

For any non-negative integer n the q-number shift factorial is defined by

[n, q]! =

 1, n = 0,

[1, q] [2, q] [3, q] · · · [n, q] , n ∈ N.

The Subordination concept has been utilized in the introduction of our new class which can

be defined as

Definition 2.1. If h1(z) and h2(z) are two functions both analytic in E, then h1(z) ≺ h2(z),

and we say that h1(z) is subordinated to h2(z) , while there is an analytic function w(z) which

is known as Schwarz function and satisfy the conditions |w(z)| < 1 and w(0) = 0 (z ∈ E),

imply that h1(z) = h2(w(z)). Especially, for a univalent function h2(z) this subordination is

equivalent to h1(E) ⊆ h2(E) and h1(0) = h2(0) .

Motivated from the work discussed above and studied in [8, 10, 13, 17, 18, 21, 23], we now

define a new subclass MKp,q (α, δ,A,B) of A as follows;
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Definition 2.2. Let −1 ≤ B < A ≤ 1 and 0 < q < 1. Then a function f ∈ A is in the class

MKp,q (α, δ,A,B) , if it satisfies

− z1−p∂qFδ (z)

[p, q]tpg (z) g (tz)
≺ p+ [pB + (p− α)(A−B)]z

p (1 +Bz)
. (2.4)

where g(z) is in the class MS∗p(1/2).

Fδ (z) =
(1− δ)[p, q]f(z)− δz∂qf (z)

[p, q]

and the notation ”≺” denotes the familiar subordinations.

We note that

(1) For A = 1, B = −1, δ = 0 and q → 1− we get MKp (α) the class of meromorphic

multivalent close to convex functions order α.

(2) For A = 1, B = −1, δ = 0, α = 0 and q → 1− we getMKp the class of meromorphic

multivalent close to convex functions.

(3) For A = 1, B = −1, δ = 0, p = 1 and q → 1− we get MK the class of meromorphic

close to convex functions of order α.

Equivalently a function f(z) ∈ A is in the class MKp,q (α, δ,A,B) , if and only if∣∣∣∣∣∣
z1−p∂qFδ(z)

[p,q]tpg(z)g(tz) + 1

B + (1− α
p )(A−B) +B

z1−p∂qFδ(z)
[p,q]tpg(z)g(tz)

∣∣∣∣∣∣ < 1. (2.5)

For our main reults we will need the following.

Lemma 2.1. [22] Let

h (z) = 1 +
∞∑
n=1

dnz
n ≺ k (z) = 1 +

∞∑
n=1

knz
n

in D. If k (z) is univalent in D and k (D) is convex, then

|dn| ≤ |k1| , for n ≥ 1.

Theorem 2.1. [4] Let gi(z) ∈MS∗p(αi) with i = 1, 2. Then

tp1t
p
2z
pg1(t1z)g2(t2z) ∈MS∗p(γ),

where γ = α1 + α2 − 1 and 0 < |ti| ≤ 1.

Now for t1 = 1, t2 = t and g1(z) = g2(z) = g(z) we get

Corollary 2.1. If g(z) ∈MS∗p(1/2) then G(z) = tpzpg(z)g(tz) ∈MS∗p(0) =MS∗p.
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3. Main Results

In this Section we start with sufficiency criteria for this class in the following theorem.

Theorem 3.1. Let f ∈ A be of the form (2.1) . Then the function f ∈MKp,q (α, δ,A,B) , if

and only if the following inequality holds

∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
(1 +B) [n+ p, q] |an+p|+ (1 +B

+(1− α
p )(A−B)2p[p,q]p+n

)
≤ (1− α

p ) (A−B) [p, q]. (3.6)

Proof. Let us suppose that the first inequality (3.6) holds. Then to show that

f ∈MKp,q (α, δ,A,B) , we only need to prove the inequality (2.5). For this consider∣∣∣∣ z∂qFδ(z)

[p,q]G(z)
+1

B+(1−α
p
)(A−B)+B

z∂qFδ(z)

[p,q]G(z)

∣∣∣∣ =

∣∣∣∣∣ z∂qFδ(z)+[p,q]G(z)(
B+(1−α

p
)(A−B)

)
[p,q]G(z)+Bz∂qFδ(z)

∣∣∣∣∣ .
Now with the help of (2.2), (2.3) , (2.1) and

G(z) =
1

zp
+

∞∑
k=1

bk+pz
k+p, (z ∈ D) , (3.7)

we have

=

∣∣∣∣∣ − [p,q]
zp

+
∑∞
n=1

(
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]an+pzn+p+

[p,q]
zp

+[p,q]
∑∞
n=1 bn+pz

n+p(
B+(1−α

p
)(A−B)

)(
[p,q]
zp

+[p,q]
∑∞
n=1 bn+pz

n+p
)
+B
(
− [p,q]

zp
+
∑∞
n=1

(
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]an+pzn+p

)
∣∣∣∣∣

=

∣∣∣∣∣
∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]an+p+[p,q]bn+p

)
zn+p

(1−αp )(A−B)[p,q]

zp
+
∑∞
n=1

(
B
(

(1−δ)[p,q]−δ[p+n,q]
[p,q]

)
[n+p,q]an+p+

(
B+(1−α

p
)(A−B)

)
[p,q]bn+p

)
zn+p

∣∣∣∣∣
=

∣∣∣∣∣
∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]an+p+[p,q]bn+p

)
zn+2p

(1−α
p
)(A−B)[p,q]+

∑∞
n=1

(
B
(

(1−δ)[p,q]−δ[p+n,q]
[p,q]

)
[n+p,q]an+p+

(
B+(1−α

p
)(A−B)

)
[p,q]bn+p

)
zn+2p

∣∣∣∣∣
≤

∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]|an+p|+[p,q]|bn+p|

)
(1−α

p
)(A−B)[p,q]−

∑∞
n=1

(
B
(

(1−δ)[p,q]−δ[p+n,q]
[p,q]

)
[n+p,q]|an+p|+

(
B+(1−α

p
)(A−B)

)
[p,q]|bn+p|

)
As g(z) ∈ MS∗p(1/2) then by corrolary 2.1 G(z) is in the class MS∗p with representation

(3.7) then by [24]

|bp+n| ≤
2p

p+ n
(3.8)

we get

≤
∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]|an+p|+ 2p[p,q]

p+n

)
(1−α

p
)(A−B)[p,q]−

∑∞
n=1

(
B
(

(1−δ)[p,q]−δ[p+n,q]
[p,q]

)
[n+p,q]|an+p|+

(
B+(1−α

p
)(A−B)

)
2p[p,q]
p+n

)
< 1
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where we have used the inequality (3.6) and this completes the direct part.

Conversely, let f ∈MKp,q (α, δ,A,B) be given by (2.1) . Then from (2.5) , we have for z ∈ D,∣∣∣∣ z∂qFδ(z)

[p,q]G(z)
+1

B+(1−α
p
)(A−B)+B

z∂qFδ(z)

[p,q]G(z)

∣∣∣∣
=

∣∣∣∣∣
∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]an+p+[p,q]bn+p

)
zn+2p

(1−α
p
)(A−B)[p,q]+

∑∞
n=1

(
B
(

(1−δ)[p,q]−δ[p+n,q]
[p,q]

)
[n+p,q]an+p+

(
B+(1−α

p
)(A−B)

)
[p,q]bn+p

)
zn+2p

∣∣∣∣∣
Since |Rez| ≤ |z|, we have

Re

{ ∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
[n+p,q]an+p+[p,q]bn+p

)
zn+2p

(1−α
p
)(A−B)[p,q]+

∑∞
n=1

(
B
(

(1−δ)[p,q]−δ[p+n,q]
[p,q]

)
[n+p,q]an+p+

(
B+(1−α

p
)(A−B)

)
[p,q]bn+p

)
zn+2p

}

< 1 (3.9)

Now choose values of z on the real axis so that
z∂qFδ(z)
[p,q]G(z) is real. Upon clearing the denominator

in (3.9) and letting z → 1− through real values, we obtain (3.6).

Taking q → 1− we get the result.

Corollary 3.1. [4] Let f ∈ A be of the form (2.1) . Then the function f ∈ limq→1−MKp,q (α, δ,A,B) ,

if and only if the following inequality holds

∑∞
n=1

((
(1−δ)p−δ(p+n)

p

)
(1 +B) (p+ n) |an+p|+ (1 +B

+(1− α
p )(A−B) 2p2

p+n

)
≤ (p− α) (A−B) .

Now we calculate the coefficients estimates for this newly defined class.

Theorem 3.2. Let f ∈MKp,q (α, δ,A,B) and be of the form (2.1) . Then

|ap+n| ≤ [p,q]2

[p+n,q]((1−δ)[p,q]−δ[p+n,q])

(
2p
p+n + 2(p− α)(A−B)

∑n−1
i=2

1
p+i

)
.

Proof. For f ∈ A is in the class MKp,q (α, δ,A,B) , if it satisfies

−z1−p∂qFδ (z)

[p, q]tpg (z) g (tz)
≺

1 + [B + (1− α
p )(A−B)]z

1 +Bz
.

Now if

G(z) = tpzpg(z)g(tz)

and

h(z) =
−z∂qFδ (z)

[p, q]G(z)
, (3.10)
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and it will be of the form

h(z) = 1 +
∞∑
n=1

dnz
n.

Since

h(z) ≺
1+[B+(1−α

p
)(A−B)]z

1+Bz = 1 + (p−α)(A−B)
p z + ....

Then by Lemma 2.1 we get

|dn| ≤
(p− α)(A−B)

p
(3.11)

Now putting the series expansions of h(z), G(z) and f(z) in (3.10), simplifying and comparing

the coefficients of zp+n on both sides

− (1−δ)[p,q]−δ[p+n,q]
[p,q]2

[p+ n, q] ap+n = bp+n + bp+n−1d1 +

bp+n−2d2 + ... + bp+1dn−1.

Taking absolute on both sides, using the triangle inequility and then using (3.11) and (3.8)

we obtain

(1−δ)[p,q]−δ[p+n,q]
[p,q]2

[p+ n, q] |ap+n| ≤ 2p
n+p + (p−α)(A−B)

p

n−1∑
i=2

2p
p+i ,

which implies that

|ap+n| ≤ [p,q]2

[p+n,q]((1−δ)[p,q]−δ[p+n,q])

(
2p
p+n + 2(p− α)(A−B)

∑n−1
i=2

1
p+i

)
.

where |a1| = 1 and we get the desired proof.

Taking q → 1− we get the coefficient estimates for the class which was studied by Arif et.

al. [4].

Corollary 3.2. Let f ∈ A be of the form (2.1) , and f ∈ limq→1−MKp,q (α, δ,A,B) ,then

|ap+n| ≤ p2

(p+n)((1−δ)p−δ(p+n))

(
2p
p+n + 2(p− α)(A−B)

∑n−1
i=2

1
p+i

)
.

The next result is about the distortion theorem for this class of functions.

Theorem 3.3. If f ∈MKp,q (α, δ,A,B) and has the form (2.1) . Then for |z| = r

[p,q](1−Cr)(1−r)p+1

rp+1(1−Br) ≤ |∂qFδ (z)| ≤ [p,q](1+Cr)(1+r)p+1

rp+1(1+Br)

where C = B + (1− α
p )(A−B).
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Proof. Suppose that f ∈MKp,q (α, δ,A,B). Then we can write

−z1∂qFδ (z)

[p, q]G(z)
≺ 1 + Cz

1 +Bz

then with |z| = r and ∣∣∣∣−z1∂qFδ (z)

[p, q]G(z)
− 1− CBr2

1−B2r2

∣∣∣∣ ≤ (C −B)r

1−B2r2
.

simplification gives us

1− Cr
1−Br

≤
∣∣∣∣−z∂qFδ (z)

[p, q]G (z)

∣∣∣∣ ≤ 1 + Cr

1 +Br
. (3.12)

Now since G(z) ∈MS∗p, thus we have

(1− r)p+1

rp
≤ |G(z)| ≤ (1 + r)p+1

rp
. (3.13)

Now by using (3.13) in (3.12), we obtain the required result.

In the following we give the growth theorem for this class.

Theorem 3.4. Let f ∈MK∗q (p, µ,A,B) and has the form (2.1) . Then for |z| = r

1

rp
− τ1rp ≤ |f(z)| ≤ 1

rp
+ τ1r

p,

where

τ1 =
[p, q]2 ((p− α)(A−B)− (p (1 +B) + (p− α)(A−B)))

(p+ 1) (1 +B) [p+ 1, q] ((1− δ) [p, q]− δ [p+ 1, q])
.

Proof. Consider

|f(z)| =

∣∣∣∣∣ 1

zp
+

∞∑
n=1

an+p z
n+p

∣∣∣∣∣ ,
≤ 1

|zp|
+
∞∑
n=1

|an+p| |z|n+p

=
1

rp
+

∞∑
n=1

|an+p| rn+p

As |z| = r < 1 so rn+p < rp and

|f(z)| ≤ 1

rp
+ rp

∞∑
n=1

|an+p| (3.14)

Similarly

|f(z)| ≥ 1

rp
− rp

∞∑
n=1

|an+p| (3.15)
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Since (3.6) implies that

∑∞
n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
(1 +B) [n+ p, q] |an+p|+(

1 +B + (1− α
p )(A−B)

)
2p[p,q]
p+n

)
≤ (1− α

p ) (A−B) [p, q].

But

(p (1 +B) + (p− α)(A−B)) 2[p,q]
p+1 + ((1−δ)[p,q]−δ[p+n,q])[p+1,q](1+B)

[p,q]

∑∞
n=1 |an+p|

≤
∑∞

n=1

((
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
(1 +B) [n+ p, q] |an+p|+ .(
1 +B + (1− α

p )(A−B)
)

2p[p,q]
p+n

)
.

Hence

(p (1 +B) + (p− α)(A−B)) 2[p,q]
p+1 + ((1−δ)[p,q]−δ[p+1,q])[p+1,q](1+B)

[p,q]

∑∞
n=1 |an+p|

≤ (1− α
p ) (A−B) [p, q],

which gives

∑∞
n=1 |an+p| ≤

[p,q]2((p−α)(A−B)−(p(1+B)+(p−α)(A−B)))
(p+1)(1+B)[p+1,q]((1−δ)[p,q]−δ[p+1,q])

Now by putting this value in (3.14) and (3.15) we get the required result.

In the next two results we determine the radii of convexity and starlikeness of order σ.

Theorem 3.5. Let f ∈MK∗q (p, µ,A,B) . Then f ∈MCp (σ) for |z| < r1, where

r1 =
(

p2(p−σ)(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])
(p+n)(n+p+σ)[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))

) 1
n+2p

.

Proof. Let f ∈MK∗q (p, µ,A,B). To prove f ∈MCp (σ) , we only need to show∣∣∣∣ zf ′′(z) + (p+ 1) f ′(z)

zf ′′(z) + (1 + 2σ − p) f ′(z)

∣∣∣∣ < 1.

Using (2.1) along with some simple computation yields

∞∑
n=1

(p+ n) (n+ p+ σ)

p (p− σ)
|an+p| |z|n+2p < 1. (3.16)

From (3.6) , we can easily obtain that

∑∞
n=1

(
(1−δ)[p,q]−δ[p+n,q]

[p,q]

)
(1 +B) [n+ p, q] |an+p|

≤ [p,q]((p−α)(A−B)−2(p(1+B)+(p−α)(A−B))p)
p(p+1) .

⇒
∑∞

n=1
p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])

[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))
|an+p| < 1.
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Now inequality (3.16) will be true, if the following holds

∑∞
n=1

(p+n)(n+p+σ)
p(p−σ) |an+p| |z|n+2p <∑∞

n=1
p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])

[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))
|an+p| ,

which implies that

|z|n+2p < p2(p−σ)(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])
(p+n)(n+p+σ)[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))

,

and so

|z| <
(

p2(p−σ)(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])
(p+n)(n+p+σ)[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))

) 1
n+2p

,

= r1.

we get the required condition.

Theorem 3.6. Let f ∈MK∗q (p, µ,A,B). Then f ∈MS∗p (σ) for |z| < r2, where

r2 =
(

(p−σ)p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])
(n+p+σ)[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))

) 1
n+2p

,

Proof. We know that f ∈MS∗p (σ) , if and only if∣∣∣∣ zf ′(z) + pf(z)

zf ′(z)− (p− 2σ)f(z)

∣∣∣∣ ≤ 1.

Using (2.1) and upon simplification yields

∞∑
n=1

(
n+ p+ σ

p− σ

)
|an+p| |z|n+2p < 1. (3.17)

Now from (3.6) we can easily obtain

⇒
∑∞

n=1
p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])

[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))
|an+p| < 1.

For inequality (3.17) to be true it will be enough if

∑∞
n=1

(
n+p+σ
p−σ

)
|an+p| |z|n+2p <∑∞

n=1
p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])

[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))
|an+p| .

This gives

|z|n+2p < (p−σ)p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])
(n+p+σ)[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))

,

and hence

|z| <
(

(p−σ)p(p+1)(1+B)[n+p,q]((1−δ)[p,q]−δ[p+n,q])
(n+p+σ)[p,q]2((p−α)(A−B)−2p((1+B)+(p−α)(A−B)))

) 1
n+2p

= r2,

Thus we obtain the required result.
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