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ON SOME TENSOR CONDITIONS OF NEARLY KENMOTSU
f-MANIFOLDS

YAVUZ SELIM BALKAN AND CENAP OZEL*

ABSTRACT. In this paper, we continue to study on nearly Kenmotsu f-manifolds motivated
by previous study. In this time, we prove that a second-order symmetric closed recurrent
tensor is a multiple of the associated metric tensor on nearly Kenmotsu f-manifolds. Then,
we get some necessary condition under which a vector field on a nearly Kenmotsu f-manifold
will be a strict generalized contact or Killing vector field. Finally, we show that every ¢-
recurrent nearly Kenmotsu f-manifold is an Einstein manifold of globally framed type and

every locally ¢-recurrent nearly Kenmotsu f-manifold is a manifold of constant curvature.

1. INTRODUCTION

The studies on complex manifold is initiated by Schouten and van Dantzig in 1930 [20].
In 1933, Kéhler introduced an important class of complex manifolds, which is called Kahler
manifold [I3]. Then, Weil proved that the existence of (1, 1) tensor field J on complex
manifold, which satisfies

J?=—1I,

where I denotes the identity transformation [23]. In 1950, Ehresmann defined almost complex
manifolds, using this tensor field J. He proved that every complex manifold is an almost

complex manifold, but the converse is not true [7].
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In 1970, A. Gray introduced nearly Kéhler manifolds which are not Kahler, using the
covariant derivative of almost complex structure J with respect to any vector field on manifold

[11]. Nearly Kéhler manifolds satisfy
(VxJ)X =0,

for each vector field X. Then, using this definition, Blair introduced nearly cosymplectic
manifold in 1971 [4] and Blair et al. defined nearly Sasakian structure in 1976 [5]. Recently,
Balkan carried this notion on globally framed metric f-manifolds and he introduced and
studied on nearly C' manifolds [2] and nearly Kenmotsu f-manifolds [1].

The notion of globally framed manifold or globally framed f-manifold, which is general-
ization of complex and contact manifolds, was introduced by Nakagawa in 1966 [L6]. Then,
Blair defined three classes of globally framed manifolds, called K-manifold, S-manifold and
C-manifold [3]. Many researchers studied on these manifolds. Falcitelli and Pastore in-
troduced almost Kenmotsu f-manifolds in 2007 [8]. In 2014, Oztiirk et al. defined almost
a-cosymplectic f-manifolds, which are generalization of almost C-manifolds and almost Ken-
motsu f-manifolds [18§].

Tensor properties are so important in differential geometry, in particular in Riemannian
geometry. Many researchers focused on many aspect of this topic. Wong studied recurrent
tensor fields on a manifold endowed with a linear connection [24]. Levy proved that on a space
of constant curvature, second order symmetric parallel non-singular tensors are constant
multiples of the metric tensor [15]. Najafi and Hosseinpour Kashani considered this topic for
nearly Kenmotsu f manifolds [17].

Now, let (M, g) be a Riemannian manifold. If a (0, 2)-tensor field « satisfies Vao = A®@ «
for some 1-form A, then it is said to be a recurrent tensor field on (M, g). Here, the 1-form
A is called the recurrence co-vector of «. It is easy to see that every multiple of the metric
tensor is a recurrent tensor. Furthermore, if « is called a closed recurrent tensor. Also we
can say that the set of closed recurrent tensors contains the set of parallel tensors as a subset,
for A =0 ([24], [25]).

In the present study, we focus on nearly Kenmotsu f-manifolds motivated by previous
studies. Firstly, we prove that a second-order symmetric closed recurrent tensor is a mul-
tiple of the associated metric tensor on nearly Kenmotsu f-manifolds. Then, we get some
necessary condition under which a vector field on a nearly Kenmotsu f-manifold will be

a strict generalized contact or Killing vector field. Finally, we show that every ¢-recurrent
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nearly Kenmotsu f-manifold is an Einstein manifold of globally framed type and every locally

p-recurrent nearly Kenmotsu f-manifold is a manifold of constant curvature —1.

2. PRELIMINARIES

Let M be (2n + s)-dimensional manifold and ¢ is a non-null (1, 1) tensor field on M. If

 satisfies
¢’ +p =0, (2.1)

then ¢ is called an f-structure and M is called f-manifold [26]. If ranky = 2n, namely
s = 0, ¢ is called almost complex structure and if ranky = 2n + 1, namely s = 1, then ¢
reduces an almost contact structure [10]. ranke is always constant [21].

On an f-manifold M, P; and P» operators are defined by
P1:_¢27 PQ:SO2+I7 (22)

which satisfy
Pi+P=1, P =Py, P} =P, 2.3
obr=Pio=¢, Pyp=pP,=0.
These properties show that P, and P» are complement projection operators. There are D and
D+ distributions with respect to P; and P; operators, respectively [27]. Also, dim (D) = 2n
and dim (DJ-) =s.
Let M be (2n + s)-dimensional f-manifold and ¢ is a (1, 1) tensor field, &; is vector field

and 7' is 1-form for each 1 <1 < s on M, respectively. If (cp, &, ni) satisfy

S
P=-I+> neg, (2.5)
=1

then (go, &, ni) is called globally framed f-structure or simply framed f-structure and M is
called globally framed f-manifold or simply framed f-manifold [I6]. For a framed f-manifold

M, the following properties are satisfied [16]:
¢& =0, (2.6)

iop=0. 2.7
n o

If on a framed f-manifold M, there exists a Riemannian metric which satisfies
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and
g(pX, oY) =g (X, Y)=> 7' (X)n' (Y), (2.9)
=1

for all vector fields X, Y on M, then M is called framed metric f-manifold [9]. On a framed

metric f-manifold, fundamental 2-form @ defined by
(X, Y)=g(X, ¢Y), (2.10)
for all vector fields X, Y € x (M) [9]. For a framed metric f-manifold,

Ny +2) dn' @&, (2.11)
=1

is satisfied, M is called normal framed metric f-manifold, where N, denotes the Nijenhuis
torsion tensor of ¢ [12].

A globally framed metric f-manifold M is called Kenmotsu f-manifold if it satisfies

s

(Vxp)Y =) {9 (X, V)& —n* (V) @X} ) (2.12)
k=1

for all vector fields X, Y € x (M) [18]. Furthermore, if a globally framed metric f-manifold
M satisfies

s

(Vx9)Y + (Tye) X = =3 {nf (X) ¥ +0* () X } (2.13)
k=1

then it is called nearly Kenmotsu f-manifold. It is easily seen that every Kenmotsu f-
manifold is a nearly Kenmotsu f-manifold, but the converse is not true. When a normal
Kenmotsu f-manifold M is normal, it is Kenmotsu f-manifold [I]. On a nearly Kenmotsu

f-manifold M, the following identities hold:

s

Ri& Xy =3 {~9(X. V)& +n" (") X}, (2.14)

R(X,Y)& = k; [ @)Y -oF () X}, (2.15)

S(pX, oY) =S (X, Y)+ 2n+s5—1) Zsjn’f (X)n®(v), (2.16)
=

(Vxi')Y =g(X, V)~ ;n’“ (X) 0" (V), (2.17)

;nk (R(X, Y)Z) = k: {9, 2t () =g v, 20" (0}, @218)

for any vector fields X, Y on M [I].
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A vector field X on a nearly Kenmotsu f-manifold M is said to be a generalized contact

vector field, if

Lyn* (V) = o (V) (2.19)
or a conformal vector field, if
Lxg(Y, Z2)=pg(Y, Z), (2.20)

for any vector fields Y and Z on M, where o and p are scalar function defined on M and Lx
denotes the Lie derivative along X. Moreover, X is called strict generalized contact vector

field or Killing vector field if ¢ = 0 or p = 0.

3. RECURRENT TENSOR FIELDS OF THE SECOND ORDER ON NEARLY KENMOTSU

f-MANIFOLDS

Theorem 3.1. Let M be a nearly Kenmotsu f-manifold. Then a second-order symmetric
closed recurrent temsor field whose recurrence co-vector annihilates & is a multiple of the

metric tensor g for each 1 < k < s.

Proof. We suppose that M is a nearly Kenmotsu f-manifold and « is a closed recur-
rent (0, 2)-tensor on M which satisfies A (§;) = 0, for each 1 < k < s. After a straightforward

calculation, we obtain
a(RW, X)Y, Z)+a(Y, RW, X)Z)=AX(W)a(VxY, Z)-X(X)a(VwY, Z), (3.21)

for any vector fields X, Y, Z, W on M. Putting Y = Z = W = &; in (3.21)) and using
Vxé& = —¢?X, then in view of A (£;) = 0 we have

a(R (& X)&, &) +a (e, R(E, X)&) =0. (3.22)

By using (2.14]) and (2.15) in (3.22)), we get

g(X, &)> fal &) +a& &} —a(X, & —a& X)=0 (3.23)

k=1

Differentiating (3.23) along Y and using V¢, & = 0, it follows that

{g(VyX, &) +9(X, Vy&)} Y {a (&, &)+ &)} (3.24)

P
= a(VyX, &) +a(X, Vy&§) +a(Vy&, X)+a(&, VyX).
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Replacing X by Vy X in (3.24)), we derive

g(Vy X, &)Y {a &) +al &)} —a(VyX, &) —a(& VyX)=0 (325
k=1

From (3.24)) and (3.25), we deduce

9(X, Vy&)> {a(&, &) +a, &)} =a(X, Vy&) +a(Vyé, X). (3.26)
k=1

Taking in account of Vx& = —@?X, then we conclude that

g (X, Y= nf (V) &) D Aalé, &) +al&, &)} (3.27)
k=1 k=1

= a (X, Y => n <Y>sk) +a (Y—an (Y) &, X) (3.28)
k=1 k=1
Using (3.23)) and (3.27)), we find

a’ (X7 Y) = Za* (flm gz) 9 (X, Y) : (3'29)
k=1

Here, a° denotes the symmetric part of « defined by

o (X, V) = S {a (X, V) + (Y. X)}
and o* (&, &) = a (&, &)+ a (&, &) . Furthermore, by using (3.23) and Va = A ® «, then
we have Vxpu = A (X) p, where X is an arbitrary vector field on M and

p=> o (& &).
k=1

Hence, if « is a parallel tensor or equivalently A = 0, so we can say p is a constant function,
but in general p is not a constant function. Additionally, if « is symmetric, i.e.cc = a°, then

we conclude o = pug and A = dp.

4. GEOMETRIC VECTOR FIELDS ON NEARLY KENMOTSU f-MANIFOLDS
Theorem 4.1. Every generalized contact vector field on a nearly Kenmotsu f-manifold leav-

ing the Ricci tensor invariant is a generalized strict contact vector field.

Proof. Let us suppose that a generalized contact vector field X leaves the Ricci
tensor invariant, i.e.

LxS(Y, Z) =0, (4.30)

for any vector fields Y and Z on M. Taking Y = &; in (4.30)), it implies that

Lx (S(Y, &)) =S (LxY, &)+ S (Y, Lx&). (4.31)
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By using (2.16]), (2.19) and (4.31]), then we have

(1—(2n+s)) Zn S(Y, Lx&).
Taking Y = &; in (4.32) and using (2.16]), then we obtain
S
o= 1" (Lx&).
k=1
On the other hand, substituting & for Y in (2.19) it follows that
S
== 9 (Lx&),
k=1

which means o = 0.
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(4.32)

(4.33)

(4.34)

Theorem 4.2. Every vector field on a nearly Kenmotsu f-manifold leaving the curvature

tensor invariant is a Killing vector field.

Proof. For a vector field X on a nearly Kenmotsu f-manifold, we assume that

Lx R = 0. It is well-known that the curvature tensor of g satisfies
g(RU, V)Y, Z)+g(R(U, V)Z, Y)=0,
for all vector fields U, V, Y, Z on M. Applying Lx to , we have
Lxg(R(U, V)Y, Z)+ Lxg(R(U, V)Z, Y)=0.
Setting U =Y = Z =¢; in (4.36) and using , we derive
Lxg(V, &) =n" (V) Lxg (&, &)-
On the other hand, putting U =Y =¢; in and using , it implies that

0 = Lxg(V, 2) ZLXQ (&, Z

+Lxg (&, V)Y 1" (2) = g(V, Z) Lxg (&, &)

From (4.37)) and (4.38)), then we get

Lxg(V, Z)=pg(V, Z),

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

where p = ¢ (&;, &) . Under the assumption Lx R = 0, we see that Lx.S = 0. Furthermore,

it is said to be

p=—29(Lx&, &)= S(Lx&, &)= LxS (&, &) =0

2n+s—1 (1 —-2n—s)

(4.40)
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5. ©-RECURRENT NEARLY KENMOTSU f-MANIFOLDS

Firstly, we give some basic definitions.

Definition 5.1. A nearly Kenmotsu f-manifold M is said to be locally p-symmetric manifold
in the sense of Takahashi [22] if it satisfies

¢’ (VwR) (X, Y)Z) =0, (5.41)
for all vector fields X, Y, Z, W orthogonal to &, for each 1 <k < s.

Definition 5.2. A nearly Kenmotsu f-manifold M is said to be p-recurrent manifold in the
sense of Takahashi [22] (locally p-recurrent manifold, resp.) if there exists a nonzero 1-form

B such that
o ((VwR) (X, Y)Z)=B(W)R(X, Y) Z, (5.42)

for arbitrary vector fields X, Y, Z, W (for all X, Y, Z, W orthogonal to &, for each
1<k<s)

Theorem 5.1. Let M be an n-FEinstein nearly Kenmotsu f-manifold. If at least one of the

coefficients is constant function, then M is an Einstein manifold.

Proof. From (5.42)), we have
(VwR) (X Zn (VwR) (X, Y)Z)&—B(W)R(X, Y) Z. (5.43)
By using (5.43)) and Bianchi identity, we obtain

s s
W)Y 0" (R(X, Y)Z)+B(X)> " (R(Y, W)Z)+B(Y)> 1" (R(W, X)Z)=0.
= = (5.44)
Now, let {e;}, 1 <1i < 2n+ s be an orthonormal basis of the tangent space at any point of
the manifold. Setting Y = Z = ¢; in (5.44]) and taking summation over i, in view of
and , then we conclude that

B(W)Y n*(X)=B(X)) n* (W), (5.45)
k=1

for any vector fields X, W. Replacing X by &; in (5.45)), it implies that

BW) = (B) Yo" (W), (5.46)
k=1
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where B (&) =g (5,', E) =7 (§> . Now, let us suppose that M is n-Einstein, the we can
write
S(X, Y)=ag(X, Y)+b) n" (X)1 (V). (547)
k=1
where a and b are scalar functions on M. Taking Y = &; in (2.17)), from (5.47) we deduce
a+b=1-2n—s. (5.48)

Using local coordinate, we can rewrite (5.47) as follows:

S
Rij = agij +b) i}, (5.49)
k=1
which implies
r=(2n+ s)a + sb. (5.50)

Taking the covariant derivative with respect to g from ([5.49), we derive
S
Rijom = am9ij + Y {b,mnfnf + bt + bnfnf,m} : (5.51)
k=1

By contracting (5.51)) with g™, we get

S
Ry = g+ {bm€™nf +bnlg ™0k + b g™ (5.52)
k=1
We know that R = ST Thus we have
S
r;=2 {aJ + Z [bm&™ + 2nb] 77;“} . (5.53)
k=1

Here, we use 1j and mmg"m = {gim —> e nfnfn} ¢"™ = 2n. Moreover, taking the
covariant derivative of (5.48]) and from (5.50|), then we obtain

r;=2na;. 5.54
7.7 7.] (

Substituting (5.54) into (5.53)), it follows that

S
naj=a;+ Y [bm&™ +2nb nt. (5.55)
k=1
By contracting (5.55) with ¢/ and using (5.48)), we deduce
bm&™ = —20b. (5.56)

Moreover, if b or a is a constant function, then (5.56|) implies that b = 0. Hence, M is an

Einstein manifold.
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Theorem 5.2. Every p-recurrent nearly Kenmotsu f-manifold is an Einstein manifold.

Proof. By using (5.43)), we obtain

—9(VwR) (X, Y)Z, U)+>_ 0" (VwR) (X, Y) Z) " (U) = B(W)g(R(X, Y)Z, U).
k=1
(5.57)

Let {e;}, 1 < i < 2n + s be an orthonormal basis of the tangent space at any point of the
manifold M. Setting X = U = ¢; in (5.57) and taking summation over i, then we deduce

that

2n+s
—(VwS) (Y, 2)+ Y 7' (VwR) (e, Y) Z)n' (e) = B(W) S (Y, Z). (5.58)
=1

Replacing Z by & in (5.58), we have

2n+s

—(VwS) (Y, &)+ > 0" (VwR) (e, Y)&)n' (&) = BIW) S (Y, &). (5.59)
i=1

Now, we will show that 222:# 't (VwR) (e;, Y)&)n' (e;) vanishes identically. Firstly, we

recall
2n+s ' ' s
S0 (VwR) (e, V)& 0 (e) = Y 0" (VwR) (ei, YV)&) (5.60)
i=1 k=1
= Y g(VwR) (ex, V)&, &),
k=1
where we use 7’ (e;) = 0 for i = 1, ...,2n. From the properties, we find
> g (VwR) (e, V) &k, &) (5.61)

k=1

= ) {9(VwR(ex, )&, &) —g(R(Vwer, V)&, &)
k=1

—g(R(ex, VwY) &y &) —g(R(er, V) Viwée, &)}

Making use of (5.61) at p € M and using g;; (p) = J;j, we conclude that Ve (p) = 0. On

the other hand, we get

> g (R(er, VwY) &, &) =—>_ g(R (&, &) VwY, ex) =0, (5.62)
k=1 k=1

since R skew-symmetric. By virtue of (5.62) and Ve (p) = 0 in (5.61)), we derive
> g(VwR) (er, V)& &) = Y {g(VwR (e, V)&, &) (5.63)
k=1 k=1

—g(R(er, Y)Vwé, k)}-
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By using g (R (ex, Y) &, &) = —g (R (&, &)Y, ex) =0, we find
> {9 (VwR(er, V)& &) — g (R(ex, V)&, Vwés)} =0, (5.64)
k=1

which implies

0 = g((VwR) (ex, Y) &k, &k) (5.65)

b
Il
_

= = {9R(ex, V)&, V&) +9(R(exr, YY)V, &)},
=1

since R skew-symmetric. Hence, we prove S2"F* i (Vi R) (e;, Y) &) ' (e;) = 0 and from

(5.59)) we have
—(VwS) (Y, &) =B W) S (Y, &). (5.66)
Furthermore, it is well-known that

(VwS) (Y, &) =VwS (Y, &) — S (VwY, &) = S(Y, Vwé). (5.67)

By applying (2.16), (2.17) and Vx¢& = —¢%X in (5.67), it follows

(VwS) (Y, &) ==C2n+s—-1)g(Y, W) =S¥, W). (5.68)

Plugging (5.68) into (5.66]) and using (5.46)), we conclude that

S(Y, W)y=(1—-2n—s)g(Y, W)+ (1 —2n—s)n ()Z”

which means the manifold n-Einstein of globally framed type with a = (1 — 2n — s) is con-

stant. By Theorem 4., it is said to be M is an Einstein manifold

Theorem 5.3. A locally p-recurrent nearly Kenmotsu f-manifold has constant curvature

—1.

Proof. Differentiating ([2.15]) with respect to any vector field W and taking in account

of (2.17)), after an easy calculation we find
(VwR) (X, Y)& = g(W, X)Y — g(W, Y) X -~ R(X, Y)W. (5.69)
By using (2.18]) and from (5.69)), we get

Zn (VwR) (X, Y)&) =0. (5.70)
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From (5.69)) and (5.70)), we have from (|5.43))
S S

> (VwR) (X, Y)& = B(W)Y R(X, Y)&. (5.71)

k=1 k=1

By virtue of (5.69)), it implies that

—g(W, X\)Y +g(W, V)X +R(X, Y)W =B(W)> R(X, Y)&. (5.72)
k=1

Thus, if X and Y are orthogonal to &, for each 1 < k < s, we derive

> R(X, V)& =0. (5.73)
k=1
Hence, for all vector fields X, Y and W, we deduce
R(X¢ Y)W: _{g(W7 X)Y+g(W7 Y)X}a

which gives us desired result.

6. EXAMPLE

Let M be a 6-dimensional manifold given by

M = {(z1, z2, Y1, Y2, 21, 22) ERC: 21, 20 # 0}

where (21, @2, Y1, Y2, 21, #2) are standard coordinates in R®. We choose the vector fields

as in the following:

e = 6—(z1+zz) eg = 6—(z1+z2) 9

8:1317 a5527
e3 = e—(21+22)7’ eq = e—(Z1+Z2)i’
oy y2
0 0
5T 8217 6 822.

which are linearly independent at any point of M. Denote g the Riemannian metric defined
by
2
g = e2(z1+22) Z {dsci ® dz; + dy; @ dy; + dz; ® dzi} .
i=1
Let 11 and 12 be 1-forms given by 71 (X) = g (X, e5) and 12 (X) = g (X, eg) for any vector
field on M, respectively. Thus {e;, e2, es, e4, €5, eg} is an orthornormal basis of tangent
space at any point on M. We define the (1, 1)-tensor field ¢ as follows:

2
0 0 0 0 0
“” (Z (50 3 *a)) =3 (n )

i=1 i=1 v
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Hence we derive

pep =e3, ey =ey4, ez = —e€1, peq4=—e3, wes=0, peg=70.
By virtue of the linearity of g and ¢, we deduce that
mes) =1, mleg) =1, X =-X~+mn(X)es+n2(X)es
g(@X, ¢Y) =g (X, Y)=m (X)m (Y) —n2 (X)n2 (V).

Then for £; = e5 and & = eg, (go, &, 1, g) defines a globally framed metric f-structure on
M. It is clear that the 1-forms are closed. On the other hand, we get

0 0 0 0 0 0
ol — 2 )= v R _ — o—2(z1+22)
<8£Ci7 8yi> g <a$i7 (Payi> g (83?1‘7 8:6,) €

which means that ® = —e2(?1+22) Therefore, we obtain

dd = 221722 (dzy + dzy) Ada Ady =2 (m + n2) A D

which gives us M is an almost Kenmotsu f-manifold. After some easy computations, it is
clearly seen that the Nijenhuis tensor field vanishes identically, that is, M is normal. So
M is a Kenmotsu f-manifold. It is well-known that every Kenmotsu f-manifold is a nearly
Kenmotsu f-manifold (see [2]). Thus we conclude that M is a nearly Kenmotsu f-manifold

Furthermore we have

le1, es] = [e1, es] = eq,
[e2, e5] = [e2, es] = ea,
[63’ 65] = [63, 66] = €3,

lea, e5] = [es, es] = e3
and remaning terms [e;, e;] =0 forall 1 <4, 7 <6

The Riemannian connection V of the metric tensor g is given by Koszul’s formula which

is defined by

20(VxY, Z) = Xg(Y, Z2)+Yg(Z, X)—Zg(X,Y)

-9 (X7 [Y¢ ZD - g(Y> [Xa Z]) +9g (Zv [X7 Y]) :
By using this Koszul’s formula, then we obtain

Velel = v62€2 = Ve363 = Ve464 = — (65 + 66)
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and the other terms V,e; = 0 for all 1 <4, 57 <6. It is welknown that Riemannian curvature

tensor is defined by

R(X, Y)Z=VxVyZ-VyVxZ —Vix yv|Z (6.74)

for any vector fields on M. By the above results, we can easily get the non-vanishing com-

ponents of the Riemannian curvature tensors as in the following:

R (e1, e5)e1 = R(e1, eg) e1 = e5 + eg,
R (e2, e5)ea = R ez, es)e2 = e5 + eg,
( ) ( ) (6.75)
R (e, e5)e3 = R(es, es)e3 = e5 + e,
R(€4, 65) €4 = R(€4, 66) €4 = €5 + €.
Now, let X, Y and Z be three vector fields given by
X = ajer + ages + azesz + aseq + ases + ages,
Y = bie1 + boea + bzesz + baes + bses + bges,
Z = cie1 + coes + czes + cqeq + cses + cgeq
where a;, b; and ¢; are all non-zero real numbers for all : = 1, ..., 6. By taking into account

of (6.75) in (6.74)), then we get

R (X, Y) 7 = {a101 + agco + ages + a4C4} (b5 + bﬁ) (65 + 66) .

Again by using (6.75]), then we obtain the scalar curvature » = 8. By these considerations, it

is said that the 6-dimensional manifold M satisfies Theorem 2 and Theorem 3.

7. CONCLUSION

In this paper, we study some tensor conditions on nearly Kenmotsu f-manifold and we
generalize some previous results obtain by Najafi and Hosseinpour in [17] since a nearly
Kenmotsu f-manifold is a nice generalization of nearly Kenmotsu one. Additonally, we

construct an example satisfying some corresponding results.
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