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FAULHABER-TYPE FORMULAS FOR THE SUMS OF POWERS OF

ARITHMETIC SEQUENCES

MORGAN SCHREFFLER ID AND TÜRKAY YOLCU ID ∗

Abstract. In this article, we derive explicit formulas for computing the sums of powers in

arithmetic sequences. We begin with a historical odyssey, tracing the contributions of some

of the world’s most influential mathematicians whose work has shaped and inspired our

approach. We then present two distinct Faulhaber-type formulas–one involving Bernoulli

numbers and closely resembling the classical formula for sums of powers of integers. To es-

tablish these results, we employ two different techniques: the first is based on the principle

of invariance, while the second uses the differencing operator applied to polynomials. Al-

though the methods differ in form, we emphasize that they share the similar computational

complexity, a point we demonstrate with illustrative examples at the end.

Keywords: Faulhaber-type formulas, Bernoulli numbers, Principle of invariance, Differ-

encing operator.
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1. Introduction

According to legend, a precocious primary school student by the name of Carl Friedrich

Gauss surprised his teacher by calculating

S = 1 + 2 + 3 + · · ·+ 100,
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almost without effort. His trick was to consider the sum twice, once adding in ascending

order, and once in descending order, then adding them side-by-side. In modern notation,

2S =
100∑
n=1

n+
100∑
n=1

(101− n) =
100∑
n=1

101 = 100× 101 = 10, 100.

Once Gauss had calculated twice the sum he wanted, the only thing left was to divide his

result by 2, and voila! He had obtained S = 5, 050. Extending his technique to compute the

sum of the first N positive integers, the general formula

N∑
n=1

n = 1 + 2 + · · ·+N =
N(N + 1)

2

is easily obtained. The elegance of Gauss’s technique is made more evident when we consider

that it can be used to compute the sum of any finite arithmetic sequence {a, a+r, . . . , a+Nr}.

Indeed, we obtain

N∑
n=0

(a+ rn) =
(2a+ rN)(N + 1)

2
.

Despite the brilliance of young Gauss’s tenacious tallying, the formulas above were known

at least 2000 years before his birth! In fact, formulas for the sum of squares and the sum of

cubes,

N∑
n=1

n2 = 12 + 22 + · · ·+N2 =
N(N + 1)(2N + 1)

6
,

N∑
n=1

n3 = 13 + 23 + · · ·+N3 =
N2(N + 1)2

4
,

respectively, were known in antiquity [20, 27, 19, 2, 18, 17, 3]. The former was described

by the legendary Greek polymath Archimedes in his work On Conoids and Spheroids [1, 6],

and the latter is famously attributed to Nicomachus of Gerasa, another well-known Greek

mathematician, who published the result in his Introduction to Arithmetic [2, 5]. Due to the

nature of ancient Greek mathematics, these proofs are geometric in nature, and certainly

valuable from both a mathematical and a historical standpoint. The interested reader can

find more information in David M. Burton’s historical treatise [2].

A formula for the sum of the fourth powers of the first N natural numbers,
∑

n4, is

described by Pierre de Fermat in letters written in 1636 to Gilles Persone de Roberval and

Marin Mersenne, all of whom were prominent mathematicians at the time [2]. It is possible

that Fermat was under the impression that such a formula was unknown at the time [27].

Fermat’s belief notwithstanding, formulas for the sums of powers of integers up to the 17th
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power, and even as high as the 23rd power, were known to the German mathematician Johann

Faulhaber as late as 1631 [27, 8, 21]. Arguably, Faulhaber’s greatest contribution was the

discovery of the fact that, in the case of an odd exponent k, the sum
∑N

n=1 n
k is a polynomial

in terms of the variable a = N(N+1)
2 and, moreover, for odd k > 1 the polynomial is divisible

by a2. He also described a method to obtain a formula for the sum
∑

n2k once the formula

for the sum
∑

n2k+1 is known [27, 26, 8, 21, 23, 16]. It is not clear whether Faulhaber knew

how to prove his assertions in generality; in his day, mathematical discoveries were usually

kept secret, given as challenges to other mathematicians, or intentionally written in code!

[27, 15, 21]

A proof of the general explicit formula for the sum
∑

nk, and its rigorous verification,

would have to wait until 1834, with the publication of Carl Jacobi’s paper De usu legitimo

formulae summatoriae Maclaurinianae [9]. Jacobi’s formula incorporates the Bernoulli num-

bers, which is the sequence of rational numbers {BN}∞N=0 given recursively by the formula

1

B0 = 1,
N∑

n=0

(
N + 1

n

)
Bn = 0, N ≥ 1. (1.1)

The first few nonzero Bernoulli numbers are given in Table 1.1 below. Note that for all odd

N > 1, BN = 0.

Table 1.1. Bernoulli numbers.

N 0 1 2 4 6 8 10 12

BN 1 −1
2

1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730

The numbers BN can also be defined explicitly by the formula

BN =
N∑

n=0

n∑
k=0

(−1)k
(
n

k

)
kN

n+ 1
, where 00 and

(
0

0

)
are both taken to be 1.

Though this will not be necessary for our discussion, it is still an important observation, since

any explicit formula for calculating sums of powers of integers which utilizes the Bernoulli

numbers would be easily stymied by requiring the Bernoulli numbers to be calculated recur-

sively. We will refer to the Bernoulli numbers again in Section 2.2.

The Bernoulli numbers were discovered independently by the Swiss mathematician Jakob

Bernoulli, as well as the Japanese mathematician Seki Takakazu [2, 11, 10]. Specifically,

1There are two common conventions for defining the Bernoulli numbers, but only the sign of B1 is affected

by the choice. We use the convention in which B1 = − 1
2
.
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Bernoulli discovered the sequence while attempting to derive formulas for the sums of powers

of integers. As an interesting side note, both Bernoulli’s and Takakazu’s discoveries were

published posthumously, the former in 1713 and the latter a year earlier in 1712 [11, 10].

Armed with the Bernoulli numbers, Jacobi was able to rigorously verify Faulhaber’s formula

(often referred to as Bernoulli’s formula) [9],

N∑
n=1

nk =
N + 1

k + 1

k∑
m=0

(
k + 1

m

)
(N + 1)k−mBm. (1.2)

Our goal is to find a Faulhaber-type formula for sums of powers of finite arithmetic se-

quences, i.e., sums of the form

SN,k[a, r] :=

N∑
n=0

(a+ rn)k,

where a and r are arbitrary real numbers, and k and N are nonnegative integers. Using the

binomial theorem and changing the order of summation yields

SN,k[a, r] =

N∑
n=0

(a+ nr)k

=
N∑

n=0

k∑
m=0

(
k

m

)
ak−mnmrm

=
k∑

m=0

(
k

m

)
ak−mrm

N∑
n=0

nm

=

k∑
m=0

(
k

m

)
ak−mrmSN,m[0, 1].

(1.3)

The aforementioned formula provides a straightforward recursive approach for calculating

SN,k[a, r], contingent upon having knowledge of the sums SN,m[0, 1]. If the values of these

sums are unknown, this method can become quite laborious. As an example, let us use the

formula above to find closed formulas for the first few sums SN,k[a, r]. Note that

SN,0[0, 1] = N + 1,
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and that

SN,1[a, r] = (N + 1)a+
N(N + 1)

2
r,

SN,2[a, r] = (N + 1)a2 + 2
N(N + 1)

2
ar +

N(N + 1)(2N + 1)

6
r2,

SN,3[a, r] = (N + 1)a3 + 3
N(N + 1)

2
a2r + 3

N(N + 1)(2N + 1)

6
ar2

+
N2(N + 1)2

4
r3.

The next important development in our story comes courtesy of Blaise Pascal [27, 2]. In

his famous work Treatise on the Arithmetic Triangle [12], the author outlines a formula for

the sums of powers of terms in an arithmetic sequence. He illustrates his process via the

example

P = 53 + 83 + 113 + 143 = 4712,

and claims that the process can be generalized. In fact, his approach is similar to the one

we will begin with in Section 2, before using it to derive our explicit formula. First, Pascal

showed (using techniques he had developed earlier in the paper) that

(t+ 3)4 − t4 = 12t3 + 54t2 + 108t+ 81.

He then substituted t = 5, t = 8, t = 11, and t = 14 into this identity and added the results,

noticing that the left side “telescopes.” At this point, we are left with

174 − 54 = 12(53 + 83 + 113 + 143) + 54(52 + 82 + 112 + 142)

+ 108(5 + 8 + 11 + 14) + 81(1 + 1 + 1 + 1),

from which we compute

174 − 54 = 12P + 54(406) + 108(38) + 81(4).

Finally, solving for P gives P = 4712 as expected.

More generally, Pascal recognized that on one hand, the sum

N∑
n=1

[
(a+ (n+ 1)r)k+1 − (a+ nr)k+1

]
“telescopes” to the expression [a+ (N + 1)r]k+1 − ak+1, while on the other hand, it can be

expanded (using the entries from his eponymous triangle) into a combination of sums with

exponents lower than k + 1. At this point, he solved for SN,k[a, r] in terms of the sums of

lower powers, i.e., the sums Sn,0[a, r], Sn,1[a, r], . . ., and Sn,k−1[a, r].
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Observe that Pascal’s method is recursive in nature, requiring the formulas for the sums

of all lower powers in order to compute the desired sum. This makes the method easy to

describe, but impractical to use directly for larger numbers of terms or for higher powers.

However, this recursive approach is the first step to obtaining our Faulhaber-type formulas,

which do not rely on recursion. These formulas exhibit a remarkable level of effectiveness,

which is made apparent by their resilience and their ability to unify and generalize various

formulas involving the summation of different powers of integers. This potent set of formulas

demonstrates its versatility when applied to the computation of exceedingly high powers of

arithmetic sums, as well as when dealing with a substantial number of terms within these

sums of arithmetic sequences.

In Section 2, we derive an explicit formula to calculate SN,k[a, r] which is quite similar to

Equation (1.2). We first obtain a recursive formula in the style of Pascal. Next, we develop

a unique approach to proving Faulhaber’s formula without induction. The crux of our proof

relies on a clever argument in which we show that a particular expression, which we call

QN,k(j), is invariant with respect to j. It turns out that N+1
k+1 QN,k(0) and

N+1
k+1 QN,k(k−1) are

equal to the left- and right-hand sides of Equation (1.2), respectively, from which Faulhaber’s

formula follows immediately. We also provide a more traditional inductive proof of Equation

(1.2). Finally, we combine Faulhaber’s formula with our recursive formula, culminating in

Theorem 2.3.

In Section 3, we use methods from the theory of finite differences to derive a somewhat

different version of Faulhaber’s formula which does not require any knowledge of the Bernoulli

numbers. As in Section 2, we take inspiration from Pascal and consider a special telescoping

sum; the notation of difference operators arises naturally as a result, and provides us with

an alternate, yet equally robust, Faulhaber-type formula, stated explicitly in Theorem 3.1.

2. Faulhaber’s Formula with Bernoulli Numbers

In what follows, N and k are always nonnegative integers, a and r are real numbers, and

we use the conventions that 00 = 1 and
(
0
0

)
= 1.

2.1. Recursive Formulas. Recall that in Section 1 we introduced the notation

SN,k[a, r] =
N∑

n=0

(a+ nr)k = ak + (a+ r)k + · · ·+ (a+Nr)k.

Our first theorem is a recursive formula for SN,k[a, r] in terms of the sums SN,m[a, r] with

lower exponents m = 0, 1, . . . , k − 1. This is an important first step in finding an explicit
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formula for SN,k[a, r], and a generalization of Pascal’s method, which we discussed in Section

1. Immediately thereafter, we provide as a corollary a recursive formula for the sums SN,k[0, 1]

in terms of the sums SN,m[0, 1]. We make extensive use of this corollary in our deductive proof

of Faulhaber’s formula for SN,k[0, 1], as well as the Faulhaber-type formula for SN,k[a, r].

Theorem 2.1. The sums SN,k[a, r] are given recursively in k by the formula

SN,k[a, r] = (N + 1)ak +

k∑
m=1

(
k

m

)
rm

m+ 1

[
(N + 1)m+1ak−m − SN,k−m[a, r]

]
.

Proof. The result is trivial when r = 0, so we prove it for nonzero r. We begin by considering

the telescoping sum

T (N) :=
N∑

n=0

(
[a+ (n+ 1)r]k+1 − [a+ nr]k+1

)
.

On one hand, if we first telescope T (N), then use the binomial theorem to expand the

expression [a+ (N + 1)r]k+1, we obtain

T (N) = [a+ (N + 1)r]k+1 − ak+1

=
k+1∑
m=0

[(
k + 1

m

)
(N + 1)mrmak+1−m

]
− ak+1

=
k+1∑
m=1

(
k + 1

m

)
(N + 1)mrmak+1−m

=

k∑
m=0

(
k + 1

m+ 1

)
(N + 1)m+1rm+1ak−m

= (k + 1)r
k∑

m=0

(
k

m

)
(N + 1)m+1rm

m+ 1
ak−m.
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On the other hand, if we first distribute the sum in n, then use the binomial theorem to

expand the expression [a+ (n+ 1)r]k+1 = [(a+ nr) + r]k+1, we are left with

T (N) =
N∑

n=0

[
k+1∑
m=0

(
k + 1

m

)
rm(a+ nr)k+1−m

]
− SN,k+1[a, r]

=

k+1∑
m=0

[
rm

(
k + 1

m

) N∑
n=0

(a+ nr)k+1−m

]
− SN,k+1[a, r]

=
k+1∑
m=0

[(
k + 1

m

)
rmSN,k+1−m[a, r]

]
− SN,k+1[a, r]

=
k+1∑
m=1

(
k + 1

m

)
rmSN,k+1−m[a, r]

=

k∑
m=0

(
k + 1

m+ 1

)
rm+1SN,k−m[a, r]

= (k + 1)r
k∑

m=0

(
k

m

)
rm

m+ 1
SN,k−m[a, r].

Equating the two expressions above and dividing by (k + 1)r gives us

k∑
m=0

(
k

m

)
(N + 1)m+1rm

m+ 1
ak−m =

k∑
m=0

(
k

m

)
rm

m+ 1
SN,k−m[a, r],

from which we deduce

SN,k[a, r] =

k∑
m=0

(
k

m

)
(N + 1)m+1rm

m+ 1
ak−m −

k∑
m=1

(
k

m

)
rm

m+ 1
SN,k−m[a, r]

= (N + 1)ak +
k∑

m=1

(
k

m

)
rm

m+ 1

(
(N + 1)m+1ak−m − SN,k−m[a, r]

)
,

which is the desired result. □

Corollary 2.1. The sums SN,k[0, 1] are given recursively in k by the formula

SN,k[0, 1] =
(N + 1)k+1

k + 1
− 1

k + 1

k−1∑
m=0

(
k + 1

m

)
SN,m[0, 1].

Proof. First, consider the mth term

τm :=

(
k

m

)
rm

m+ 1
(N + 1)m+1ak−m

from the sum in Theorem 2.1. Observe that when a = 0 and r = 1,

τm =
(N + 1)k+1

k + 1
δk(m),
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where δk(m) is the Kroenecker delta. If we substitute the revised τm back into the sum from

Theorem 2.1, then channel our “inner Gauss” and rewrite the sum in descending order, we

conclude

SN,k[0, 1] =
(N + 1)k+1

k + 1
−

k∑
m=1

(
k

m

)
1

m+ 1
SN,k−m[0, 1]

=
(N + 1)k+1

k + 1
−

k−1∑
m=0

(
k

k −m

)
1

k −m+ 1
SN,m[0, 1]

=
(N + 1)k+1

k + 1
− 1

k + 1

k−1∑
m=0

(
k

m

)
k + 1

k + 1−m
SN,m[0, 1]

=
(N + 1)k+1

k + 1
− 1

k + 1

k−1∑
m=0

(
k + 1

m

)
SN,m[0, 1].

This is precisely the desired result. □

Before moving on to the next section and demonstrating one of our main results, it is

worth noting that Theorem 2.1 remains a labor-intensive method for directly computing the

sums SN,k[a, r], yet it yields identical outcomes to those previously observed.

SN,1[a, r] = (N + 1)a+
r

2
((N + 1)2 − SN,0[a, r])

= (N + 1)a+
r

2
((N + 1)2 − (N + 1))

= (N + 1)a+
N(N + 1)

2
r,

SN,2[a, r] = (N + 1)a2 + r((N + 1)2a− SN,1[a, r]) +
r2

3
((N + 1)3 − SN,0[a, r])

= (N + 1)a2 + r

(
(N + 1)2a− (N + 1)a− N(N + 1)

2
r

)
+

r2

3
((N + 1)3 − (N + 1))

= (N + 1)a2 + 2
N(N + 1)

2
ar +

N(N + 1)(2N + 1)

6
r2,

and, after much simplification which we leave to the reader,

SN,3[a, r] = (N + 1)a3 +
3r

2
((N + 1)2a2 − SN,2[a, r])

+ r2((N + 1)3a− SN,1[a, r]) +
r3

4
((N + 1)4 − SN,0[a, r])

= (N + 1)a3 + 3
N(N + 1)

2
a2r + 3

N(N + 1)(2N + 1)

6
ar2

+
N2(N + 1)2

4
r3.



778 M. SCHREFFLER AND T. YOLCU

As we can see, even for small k, direct use of Theorem 2.1 to calculate a formula for SN,k[a, r]

is quite time-consuming. However, without an efficient algorithm for generating formulas for

the sums SN,k[0, 1], it remains our only option. This is precisely the issue we address in the

next section, and unsurprisingly, it is Theorem 2.1 (or rather, its corollary) which we rely on

most heavily to obtain our results.

2.2. Connections with Bernoulli numbers. In Section 1, we introduced the Bernoulli

numbers {Bj}, which are a recursively defined sequence of rational numbers. For our pur-

poses, we shall utilize the following reformulation of Equation (1.1):

B0 = 1, Bj+1 = − 1

j + 2

j∑
n=0

(
j + 2

n

)
Bn, j ≥ 0. (2.4)

In order to prove the main results for this section, we first establish two intermediate lemmas.

The first of these can be regarded as an alternate recursive definition of the Bernoulli numbers.

The second lemma invokes the first to demonstrate the invariance under j of a particular

quantity, which we refer to as QN,k(j), via repeated use of Corollary 2.1. Before embarking

on this quest of quantification, we introduce a bit of notation to clean up future calculations.

Let j, k, and m be integers, with 0 ≤ j,m < k, and define the sums

Θj,k(m) :=

j∑
n=0

Bn

(
k + 1

n

)(
k + 1− n

m

)
,

and

QN,k(j) :=

j∑
m=0

(
k + 1

m

)
(N + 1)k−mBm − 1

N + 1

k−j−1∑
m=0

Θj,k(m)SN,m[0, 1].

Armed with this new notation, we are in position to establish the lemmas.

Lemma 2.1. For any integers j and k satisfying 0 ≤ j < k, we have

Θj,k(k − j − 1) = −(k − j)

(
k + 1

j + 1

)
Bj+1.

Proof. We use the well-known identities

(
n

k

)
=

(
n

n− k

)
,

(
n

k

)(
n− k

ℓ− k

)
=

(
n

ℓ

)(
ℓ

k

)
, and

(
n

k + 1

)
=

n− k

k + 1

(
n

k

)
,



INT. J. MAPS MATH. (2025) 8(2):769-790 / FAULHABER-TYPE FORMULAS 779

along with the recursive definition of the Bernoulli numbers expressed in Equation (2.4), to

establish the equality

Θj,k(k − j − 1) =

j∑
n=0

(
k + 1

n

)(
k + 1− n

j + 2− n

)
Bn

=

(
k + 1

j + 2

) j∑
n=0

(
j + 2

n

)
Bn

=
k − j

j + 2

(
k + 1

j + 1

) j∑
n=0

(
j + 2

n

)
Bn

= −(k − j)

(
k + 1

j + 1

)
Bj+1,

which is precisely the desired result. □

Lemma 2.2. For all integers j, 0 ≤ j < k,

QN,k(j) = QN,k(j + 1).

Proof. Before beginning, in order to prevent heads from unnecessarily spinning, we briefly

outline the process. We first suitably partition QN,k(j) into two terms A(j) and B(j).

Following this, with surgical precision we will introduce an auxiliary term C(j) which in

turn is split into two more terms D(j) and E(j) so that A(j) + D(j) = A(j + 1) and

E(j) +B(j)− C(j) = B(j + 1). In the end, we will have

QN,k(j) = A(j) +B(j)

= A(j) + C(j) +B(j)− C(j)

= [A(j) +D(j)] + [E(j) +B(j)− C(j)] (2.5)

= A(j + 1) +B(j + 1)

= QN,k(j + 1).

Now for the gory details. Let

A(j) :=

j∑
m=0

(
k + 1

m

)
(N + 1)k−mBm,

B(j) := − 1

N + 1

k−j−1∑
m=0

Θj,k(m)SN,m[0, 1],
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so that QN,k(j) = A(j) + B(j). Next, we define C(j) to be the last term in B(j), which

corresponds to m = k − j − 1. In other words,

C(j) := − 1

N + 1
Θj,k(k − j − 1)SN,k−j−1[0, 1].

Using our result from Lemma 2.1, we reformulate C(j) to be

C(j) =
k − j

N + 1

(
k + 1

j + 1

)
SN,k−j−1[0, 1]Bj+1. (2.6)

Subsequently, we apply the recursive formula from Corollary 2.1 to the sum SN,k−j−1[0, 1]

and obtain

SN,k−j−1[0, 1] =
1

k − j

[
(N + 1)k−j −

k−j−2∑
m=0

(
k − j

m

)
SN,m[0, 1]

]
. (2.7)

Inserting (2.7) into (2.6), we are left with the following decomposition of C(j):

C(j) =: D(j) + E(j)

=

(
k + 1

j + 1

)
(N + 1)k−(j+1)Bj+1 +

−Bj+1

N + 1

k−j−2∑
m=0

(
k − j

m

)(
k + 1

j + 1

)
SN,m[0, 1].

Notice that adding D(j) to A(j) gives A(j + 1). Explicitly, we have

A(j) +D(j) =

j∑
m=0

(
k + 1

m

)
(N + 1)k−mBm +

(
k + 1

j + 1

)
(N + 1)k−(j+1)Bj+1

=

j+1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm

= A(j + 1).

Furthermore, adding E(j) to B(j)− C(j) gives B(j + 1). Indeed,

E(j) + (B(j)− C(j)) =
−1

N + 1
Bj+1

k−j−2∑
m=0

(
k − j

m

)(
k + 1

j + 1

)
SN,m[0, 1]+

+
−1

N + 1

k−j−2∑
m=0

Θj,k(m)SN,m[0, 1]

=
−1

N + 1

k−j−2∑
m=0

[(
k + 1

j + 1

)(
k + 1− (j + 1)

m

)
Bj+1 +Θj,k(m)

]
SN,m[0, 1]

=
−1

N + 1

k−(j+1)−1∑
m=0

Θj+1,k(m)SN,m[0, 1]

= B(j + 1).

This completes the proof as previously outlined in Equation (2.5). □
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We are now ready to present two different proofs of Faulhaber’s eponymous Formula. The

first is a direct proof which, as far as the authors are aware, is a novel approach to the

problem. Thanks to the work put into Lemmas 2.1 and 2.2, it is both short and elegant.

The second proof invokes the principle of strong induction on k, and relies on the recursion

formula of Corollary 2.1. Faulhaber’s Formula is well-known, yet is instrumental in proving

the first of our two main results, a Faulhaber-type formula for SN,k[a, r] which utilizes the

Bernoulli numbers.

Theorem 2.2 (Faulhaber’s Formula). For any k ≥ 0,

SN,k[0, 1] =

N∑
n=0

nk =
N + 1

k + 1

k∑
m=0

(
k + 1

m

)
(N + 1)k−mBm. (2.8)

Remark 2.1. It is worth nothing that it is common to use N instead of N +1 in (2.8) when

B1 is taken to be 1/2 instead of −1/2 . That is, for any k ≥ 0, if B1 = 1/2, then

SN,k[0, 1] =
N∑

n=0

nk =
1

k + 1

k∑
m=0

(
k + 1

m

)
Nk−m+1Bm. (2.9)

Direct Proof. On the one hand, the recursion formula of Corollary 2.1 is equivalent to the

equation

QN,k(0) =
k + 1

N + 1
SN,k[0, 1].

On the other hand, using the recursive definition of the Bernoulli numbers from Equation

(2.4), we observe that

Θk−1,k(0) =

k−1∑
n=0

Bn

(
k + 1

n

)(
k + 1− n

0

)

=
k−1∑
n=0

Bn

(
k + 1

n

)
= −(k + 1)Bk

= −
(
k + 1

k

)
(N + 1)k−kBk.
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Consequently, after recalling that SN,0[0, 1] = N + 1, we arrive at

QN,k(k − 1) =
k−1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm − 1

N + 1

k−(k−1)−1∑
m=0

Θk−1,k(m)SN,m[0, 1]

=
k−1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm − 1

N + 1
Θk−1,k(0)SN,0[0, 1]

=

k−1∑
m=0

(
k + 1

m

)
(N + 1)k−mBm +

(
k + 1

k

)
(N + 1)k−kBk

=
k∑

m=0

(
k + 1

m

)
(N + 1)k−mBm.

Finally, by the invariance of QN,k(j) under j, which we painstakingly established in Lemma

2.2, we conclude

QN,k(0) = QN,k(k − 1),

from which the desired result follows immediately. □

And now we present our strong induction proof of Theorem 2.2.

Strong Induction Proof. In the base case where k = 0, we know SN,0[0, 1] = (N+1). Keeping

in mind that B0 = 1, the right-hand side of Equation (2.8) is

N + 1

0 + 1

(
0 + 1

0

)
(N + 1)0−0B0 = N + 1,

hence the base case is proved. Next, suppose that for some K > 0 Equation (2.8) holds

whenever 0 ≤ k ≤ K − 1. We will show that the result also holds when k = K. Indeed, by

Corollary 2.1, we have

SN,K [0, 1] =
(N + 1)K+1

K + 1
− 1

K + 1

K−1∑
m=0

(
K + 1

m

)
SN,m[0, 1]. (2.10)

We now use the induction hypothesis, reverse the order of summation a la Gauss, and utilize

the identity

1

m+ ℓ+ 1

(
K + 1

m+ ℓ

)(
m+ ℓ+ 1

m

)
=

1

ℓ+ 1

(
K + 1

ℓ

)(
K − ℓ+ 1

m

)
,
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to compute

K−1∑
m=0

(
K + 1

m

)
SN,m[0, 1] =

K−1∑
m=0

(
K + 1

m

)[
N + 1

m+ 1

m∑
ℓ=0

(
m+ 1

ℓ

)
(N + 1)m−ℓBℓ

]

=
K−1∑
m=0

(
K + 1

m

)[
N + 1

m+ 1

m∑
ℓ=0

(
m+ 1

m− ℓ

)
(N + 1)ℓBm−ℓ

]

=

K−1∑
ℓ=0

(N + 1)ℓ+1
K−1∑
m=ℓ

1

m+ 1

(
K + 1

m

)(
m+ 1

m− ℓ

)
Bm−ℓ

=

K−1∑
ℓ=0

(N + 1)ℓ+1
K−ℓ−1∑
m=0

1

m+ ℓ+ 1

(
K + 1

m+ ℓ

)(
m+ ℓ+ 1

m

)
Bm

=

K−1∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)ℓ+1

ℓ+ 1

K−ℓ−1∑
m=0

(
K − ℓ+ 1

m

)
Bm.

At this stage, we use the definition of the Bernoulli numbers from Equation (2.4) to write

K−1∑
m=0

(
K + 1

m

)
SN,m[0, 1] = −

K−1∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)ℓ+1

ℓ+ 1
(K − ℓ+ 1)BK−ℓ.

Additionally, multiplication by a clever choice of 1 yields

(N + 1)K+1 =

(
K + 1

K

)
(N + 1)K+1

K + 1
(K −K + 1)BK−K ,

which, when substituted into Equation (2.10) above, enables us to conclude

SN,K [0, 1] =
1

K + 1

K∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)ℓ+1

ℓ+ 1
(K − ℓ+ 1)BK−ℓ

=
1

K + 1

K∑
ℓ=0

(
K + 1

K − ℓ

)
(N + 1)K−ℓ+1

K − ℓ+ 1
(ℓ+ 1)Bℓ

=
1

K + 1

K∑
ℓ=0

(
K + 1

ℓ

)
(N + 1)K−ℓ+1Bℓ

=
N + 1

K + 1

K∑
m=0

(
K + 1

m

)
(N + 1)K−mBm.

This completes the induction proof. □

Our main result for this paper is a byproduct of all we have done thus far, but especially

Equation (1.3) and Theorem 2.2.

Theorem 2.3 (Faulhaber’s Formula for SN,k[a, r]). For all a, r ∈ R, we have

SN,k[a, r] =

k∑
m=0

(
k

m

)
ak−mrm

m+ 1

 m∑
j=0

(
m+ 1

j

)
(N + 1)m−j+1Bj

 .
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Proof. The result follows from Equation (1.3), which states

SN,k[a, r] =

k∑
m=0

(
k

m

)
ak−mrmSN,m[0, 1],

along with a straightforward use of Theorem 2.2 to replace the expression SN,m[0, 1]. □

There are a number of alternative formulations and proofs of Faulhaber’s formula. They

are proven using tools which include, but are not limited to, generating functions, matrix

techniques, Bernoulli polynomials, the Stirling numbers of the first and second kinds, and

finite discrete convolutions [21, 14, 23]. In this section, we have explored Faulhaber’s Formula

through the use of the Bernoulli numbers. In what follows, we turn our attention to the

versatile theory of finite differences, which is applied extensively in fields as far-flung as

statistics, combinatorics, numerical analysis, differential equations, and even particle physics.

In particular, we make use of the finite discrete difference operator, which we introduce in

the next section.

3. Faulhaber’s Formula via Differencing

We have already seen that the sums of powers of integers can be calculated using a tele-

scoping sum. We formalize this notion by introducing the (forward, finite) difference operator

∆ whose action on a functions f is defined by [4]

∆[f ](x) = f(x+ 1)− f(x).

Further, for m a nonnegative integer, the mth order difference operator ∆m is given recur-

sively by

∆0[f ] = f, ∆m+1[f ] = ∆[∆m[f ]], m ≥ 1.

For example,

∆[f ](x) = f(x+ 1)− f(x)

∆2[f ](x) = f(x+ 2)− 2f(x+ 1) + f(x)

∆3[f ](x) = f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x).

In general, we can express ∆m[f ] in the following manner.

Lemma 3.1. For any function f and integer m ≥ 0,

∆m[f ](x) =

m∑
j=0

(−1)m−j

(
m

j

)
f(x+ j).
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Proof. We use induction on m. When m = 0, we have ∆0[f ](x) = f(x) by definition, and

0∑
j=0

(−1)0−j

(
0

j

)
f(x+ j) = (−1)0

(
0

0

)
f(x+ 0) = f(x),

thus the result holds in the base case. Now, suppose the result holds for some natural number

m. Recalling Pascal’s identity, (
m

j − 1

)
+

(
m

j

)
=

(
m+ 1

j

)
,

we compute

∆m+1[f ](x) = ∆ [∆m[f ]] (x)

= ∆

 m∑
j=0

(−1)m−j

(
m

j

)
f(·+ j)

 (x)

=
m∑
j=0

(−1)m−j

(
m

j

)
f(x+ 1 + j)−

m∑
j=0

(−1)m−j

(
m

j

)
f(x+ j)

=
m+1∑
j=0

(−1)m+1−j)

(
m

j − 1

)
f(x+ j) +

m+1∑
j=0

(−1)m+1−j

(
m

j

)
f(x+ j)

=
m+1∑
j=0

(−1)(m+1)−j)

[(
m

j − 1

)
+

(
m

j

)]
f(x+ j)

=

m+1∑
j=0

(−1)m+1−j

(
m+ 1

j

)
f(x+ j).

This completes the induction proof. □

Since it will be relevant later in the discussion, we also present a special case of Lemma

3.1 as a corollary.

Corollary 3.1. If P (x) = (a+ rx)k, then

∆m[P ](0) =
m∑
j=0

(−1)m−j

(
m

j

)
(a+ jr)k. (3.11)

From here on, we focus our attention to the case in which ∆ is acting on a polynomial P ,

despite the richness of the more general theory [4]. It is not difficult to see that the operator

∆ reduces the degree of a polynomial P by 1. That is to say, if P is a polynomial of degree

deg(P ), then ∆[P ] is a polynomial of degree deg(P )−1. This follows easily from the binomial

theorem. Indeed,

(x+ 1)d − xd =
d−1∑
j=0

(
d

j

)
xj .
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Furthermore, for any integer m > deg(P ), we observe that ∆m[P ] = 0.

One important advantage of using difference operators is it gives us the ability to write

polynomials evaluated at integer inputs, say n ≥ 0, as

P (n) =

deg(P )∑
j=0

∆j [P ](0)

(
n

j

)
. (3.12)

This special case of a far more general result (called the Gregory-Newton interpolation for-

mula, first published by Newton in 1687 [13]) can be easily verified by a robust and interesting

use of induction on n. Indeed, in the base case of n = 0, both sides of Equation (3.12) are

equal to P (0). Now assume Equation (3.12) holds true for some n ≥ 0. Then, noticing

that P (n + 1) = P (n) + ∆[P ](n), and appealing to Pascal’s identity and the fact that

∆deg(P )+1[P ] = 0, we can conclude

P (n+ 1) = P (n) + ∆[P ](n)

=

deg(P )∑
j=0

∆j [P ](0)

(
n

j

)
+

deg(P )∑
j=0

∆j+1[P ](0)

(
n

j

)

=

deg(P )∑
j=0

∆j [P ](0)

(
n

j

)
+

deg(P )∑
j=1

∆j [P ](0)

(
n

j − 1

)

= P (0) +

deg(P )∑
j=1

∆j [P ](0)

[(
n

j

)
+

(
n

j − 1

)]

= P (0) +

deg(P )∑
j=1

∆j [P ](0)

(
n+ 1

j

)

=

deg(P )∑
j=0

∆j [P ](0)

(
n+ 1

j

)
.

Now that Equation (3.12) has been verified, we are ready to take the plunge back into our

original problem. Recall that we are seeking a way to reduce the number of computations

required to evaluate the sums SN,k[a, r], which are merely sums of the form
∑N

n=0 P (n) for

a particular polynomial P . Armed with Equation (3.12), and the aptly named “hockey stick

identity,” that is,

N∑
n=0

(
n

j

)
=

N∑
n=j

(
n

j

)
=

(
N + 1

j + 1

)
, (3.13)
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we can convert a sum
∑N

n=0 P (n) with N + 1 terms into a sum with only deg(P ) + 1 terms.

This can be quite advantageous if N is significantly greater than deg(P ). Indeed, interchang-

ing the finite sums in n and j allows us to write [4]

N∑
n=0

P (n) =
N∑

n=0

deg(P )∑
j=0

∆j [P ](0)

(
n

j

) =

deg(P )∑
j=0

∆j [P ](0)

(
N + 1

j + 1

)
. (3.14)

Let us consider a simple polynomial: the monic monomial P (n) = nk of degree k ≥ 1. In

light of Corollary 3.1, it is not difficult to see that we can write

∆j [nk](0) = j!

{
k

j

}
,

where
{
k
j

}
denotes the Stirling number of the second kind given by{

k

j

}
=

1

j!

j∑
ℓ=0

(−1)j−ℓ

(
j

ℓ

)
ℓk, j ≥ 0.

In view of Equation (3.14) and the fact
{
k
0

}
= 0, we obtain the formula

N∑
n=1

nk =
k∑

j=1

j!

{
k

j

}(
N + 1

j + 1

)
. (3.15)

We now illustrate the utility of the formulas discussed above by way of a concrete example.

Example 3.1. Let P (n) = n2. We have

∆[n2](0) = 1!

{
2

1

}
= 1, and ∆2[n2](0) = 2!

{
2

2

}
= 2,

and hence, by (3.12) we are able to write n2 as the sum

n2 = ∆P (0)

(
n

1

)
+∆2P (0)

(
n

2

)
=

(
n

1

)
+ 2

(
n

2

)
.

In light of Equation (3.13), we have recovered the well-known formula

N∑
n=0

n2 =
2∑

j=1

j!

{
2

j

}(
N + 1

j + 1

)
=

(
N + 1

2

)
+ 2

(
N + 1

3

)
=

N(N + 1)(2N + 1)

6
.

We are now ready to present yet another Faulhaber-type formula, one which does not

make use of the Bernoulli numbers, but makes use of the terms of the original sum SN,k[a, r],

rather than being written in powers of a, r, and N + 1.

Theorem 3.1 (Faulhaber-type Formula for SN,k[a, r]). For all a, r ∈ R,

SN,k[a, r] =
k∑

m=0

(N + 1

m+ 1

) m∑
j=0

(−1)m−j

(
m

j

)
(a+ jr)k

 . (3.16)
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Proof. Letting P (n) = (a + rn)k in Corollary 3.1, and substituting into Equation 3.14, we

get

SN,k[a, r] =

N∑
n=0

(a+ nr)k =

N∑
n=0

P (n) =

k∑
m=0

∆m[P ](0)

(
N + 1

m+ 1

)

=
k∑

m=0

 m∑
j=0

(−1)m−j

(
m

j

)
(a+ jr)k

(
N + 1

m+ 1

)
from which we get the formula in Equation 3.16, completing the proof. □

As a parting gift, we illustrate the utility of Theorems 2.3 and 3.1 with a worked example.

One common aspect of the calculations which should be noted is the number of terms required

to evaluate the sum. In fact, a careful inspection of the two formulas reveals that they both

require that (k + 1)(k + 2)/2 terms be taken into account. In the example presented below,

we have k = 2, and there are indeed (3)(4)/2 = 6 terms in both calculations. This is far

better than the 101 terms it would take in order to calculate the sum directly.

Example 3.2. Let us compute

S100,2[5, 3] =
100∑
n=0

(5 + 3n)2 = 52 + 82 + 112 + · · ·+ 3052.

Recalling the values B0 = 1, B1 = −1/2, and B2 = 1/6, Theorem 2.3 states

S100,2[5, 3] =

2∑
m=0

(
2

m

)
52−m3m

m+ 1

 m∑
j=0

(
m+ 1

j

)
101m+1−jBj


=

(
2

0

)
5230

1

 0∑
j=0

(
1

j

)
1011−jBj

+

(
2

1

)
5131

2

 1∑
j=0

(
2

j

)
1012−jBj


+

(
2

2

)
5032

3

 2∑
j=0

(
3

j

)
1013−jBj


= 2525B0 + 15

[(
2

0

)
1012B0 +

(
2

1

)
1011B1

]
+ 3

[(
3

0

)
1013B0 +

(
3

1

)
1012B1 +

(
3

2

)
1011B2

]
= 3(1013)− 3

2
(1012)− 1

2
(101)

= 3, 199, 175,
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while the formula from Theorem 3.1 yields

S100,2[5, 3] =
2∑

m=0

( 101

m+ 1

) m∑
j=0

(−1)m−j

(
m

j

)
(5 + 3j)2


=

(
101

1

)
(−1)0

(
0

0

)
52 +

(
101

2

)(
(−1)1

(
1

0

)
52 + (−1)0

(
1

0

)
82
)

+

(
101

3

)(
(−1)2

(
2

0

)
52 + (−1)1

(
2

1

)
82 + (−1)0

(
2

2

)
112

)
= 3, 199, 175.

As expected, the two results above are in agreement. It is also worth noting that the second

calculation from Theorem 3.1 is a more robust and practical choice, as it avoids the use of

Bernoulli numbers.
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