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ANALYTICAL EXPLORATION OF WEYL-CONFORMAL CURVATURE

TENSOR IN LORENTZIAN β-KENMOTSU MANIFOLDS ENDOWED

WITH GENERALIZED TANAKA-WEBSTER CONNECTION

GYANVENDRA PRATAP SINGH ID , PRANJAL SHARMA ID ∗, AND ZOHRA FATMA ID

Abstract. This paper investigates the conformal curvature properties of Lorentzian β-

Kenmotsu (LβK) manifolds admitting a generalized Tanaka-Webster (g-TW) connection.

We begin by establishing the fundamental preliminaries of LβK manifolds and exploring

their curvature properties under the influence of g-TW connection. The study then focuses

on specific curvature conditions, namely R̃ · S̃ = 0, S̃ ·R̃ = 0, conformal flatness, ζ-conformal

flatness, and pseudo-conformal flatness, to examine their geometric and structural implica-

tions. Additionally, we construct an explicit example of a 3-dimensional LβK manifold

that admits a g-TW connection, providing concrete validation of our theoretical results.

The findings contribute to the broader understanding of curvature behaviors in almost con-

tact pseudo-Riemannian geometry and extend the study of non-Riemannian connections in

Lorentzian manifolds.
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1. Introduction

The Tanaka–Webster connection was introduced by Tanno [16] as a generalization of the

well-known connection formulated in the late 1970s by Tanaka [15] and independently by
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Webster [19]. This connection coincides with the classical Tanaka–Webster connection when

the associated CR-structure is integrable. It is defined as the canonical affine connection on

a non-degenerate, pseudo-Hermitian CR-manifold.

For a real hypersurface in a Kähler manifold endowed with an almost contact structure

(ϕ, ζ, η, g), Cho [3, 4] adapted Tanno’s g-Tanaka–Webster connection for a nonzero real

constant k. Utilizing this connection, several researchers have explored various geometric

properties of real hypersurfaces in complex space forms [17].

A Riemannian manifold is termed semisymmetric if its curvature tensor satisfies

R(H1,H2) ·R = 0, (1.1)

where R(H1,H2) is regarded as a field of linear operators acting on R. It is well established

that the class of semisymmetric manifolds properly contains locally symmetric manifolds

(where ∇R = 0). The concept of semisymmetry in Riemannian geometry was first investi-

gated by E. Cartan, A. Lichnerowicz, R. S. Couty, and N. S. Sinjukov.

A Riemannian manifold is called Ricci semisymmetric if its curvature tensor satisfies

R(H1,H2) · S = 0, (1.2)

where S denotes the Ricci tensor of type (0, 2). The class of Ricci semisymmetric manifolds

contains Ricci symmetric manifolds (where ∇S = 0) as a proper subset. Several researchers

have studied these manifolds extensively. It is known that every semisymmetric manifold

is Ricci semisymmetric, but the converse does not always hold. However, under certain

additional conditions, the equations

R(H1,H2) ·R = 0 and R(H1,H2) · S = 0

become equivalent. Szabó classified semisymmetric manifolds locally in [14], while funda-

mental studies in this area were carried out by Szabó [14], Boeckx et al. [2], and Kowalski

[6].

One notable example of a curvature condition related to semisymmetry is

Q ·R = 0, (1.3)

where Q is the Ricci operator defined by

S(H1,H2) = g(QH1,H2).
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Such curvature conditions naturally extend to pseudosymmetry-type conditions. The condi-

tion Q ·R = 0 was extensively studied by Verstraelen et al. in [18].

Several properties on Mβ and the g-TW connection have also been researched by numer-

ous geometers, such as ([1, 7, 8, 9, 10, 11, 12, 13]). Inspired by these foundational works, the

present paper aims to characterize Lorentzian β-Kenmotsu manifolds admitting the general-

ized Tanaka–Webster connection.

The arrangement of this paper is structured as follows: Section 2 presents the

fundamental definitions and preliminary results related to Lorentzian β-Kenmotsu (LβK)

manifolds. We introduce the structure equations and discuss essential properties that will

be used in subsequent sections. In section 3, we explore the curvature properties of a LβK

manifold admitting the generalized Tanaka-Webster (g-TW) connection. We derive explicit

expressions for the curvature tensor R̃ and the Ricci tensor S̃ with respect to g-TW connection

and establish some interesting geometric properties. Section 4 investigates the condition

R̃ · S̃ = 0 in a LβK manifold equipped with g-TW connection. We demonstrate that under

this condition, the manifold becomes a generalized η-Einstein manifold with respect to the

g-TW connection. In section 5, we analyze the condition S̃ · R̃ = 0 and establish that the

LβK manifold satisfying this curvature restriction is also a generalized η-Einstein manifold

with respect to g-TW connection. Section 6 is devoted to the study of conformally flat LβK

manifolds under the influence of g-TW connection. We prove that such manifolds naturally

admit a generalized η-Einstein structure with respect to g-TW connection. In section 7, we

focus on ζ-conformally flat LβK manifolds and derive certain interesting curvature properties

arising from this condition. Section 8 examines the notion of pseudo-conformal flatness in

the framework of LβK manifolds. Finally, in section 9, we construct an explicit example of

a 3-dimensional LβK manifold admitting g-TW connection and verify that it satisfies the

curvature conditions discussed in the previous sections. This structured approach ensures

a coherent development of our results, highlighting the interplay between various curvature

conditions and the geometry of Lorentzian β-Kenmotsu manifolds.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold is termed as LβK manifold (Mβ), if it

possesses a (1, 1)-tensor field ϕ, a contravariant vector field ζ, a covariant vector field η and

a Lorentzian metric g satisfying
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ϕ2H1 = H1 + η(H1)ζ, g(H1, ζ) = η(H1), (2.4)

η(ζ) = −1, ϕ(ζ) = 0, η(ϕH1) = 0, (2.5)

g(ϕH1, ϕH2) = g(H1,H2) + η(H1)η(H2), (2.6)

g(ϕH1,H2) = g(H1, ϕH2), (2.7)

for all vector fields H1,H2 on Mβ. Furthermore, Mβ satisfies

∇H1ζ = β[H1 − η(H1)ζ], (2.8)

(∇H1η)(H2) = β[g(H1,H2)− η(H1)η(H2)], (2.9)

(∇H1ϕ)(H2) = β[g(ϕH1,H2)ζ − η(H2)ϕH1], (2.10)

where ∇ represents the covariant differentiation operator with respect to the Lorentzian

metric g. Moreover, on Mβ, the following relations hold

η(R(H1,H2)H3) = β2[g(H1,H3)η(H2)− g(H2,H3)η(H1)], (2.11)

R(H1,H2)H3 = β2[g(H1,H3)H2 − g(H2,H3)H1], (2.12)

R(ζ,H1)H2 = β2[η(H2)H1 − g(H1,H2)ζ], (2.13)

R(H1,H2)ζ = β2[η(H1)H2 − η(H2)H1], (2.14)

S(H1, ζ) = −2nβ2η(H1), (2.15)

QH1 = −2nβ2H1, Qζ = −2nβ2ζ, (2.16)

S(ζ, ζ) = 2nβ2, (2.17)

g(QH1,H2) = S(H1,H2) = −2nβ2g(H1,H2), (2.18)

S(ϕH1, ϕH2) = S(H1,H2)− 2nβ2η(H1)η(H2), (2.19)

for any vector fields H1,H2 and H3 on Mβ, where R, S and Q stand for the curvature tensor,

the Ricci tensor and the Ricci operator on Mβ, respectively.

Let {e1, e2, e3, . . . , en = ζ} be an orthonormal basis for the tangent space at any point on

the manifold Mβ. The Ricci tensor S and the scalar curvature r of the manifold are given

by the following expression

S(H1,H2) =

2n+1∑
i=1

εig(R(ei,H1)H2, ei), (2.20)



INT. J. MAPS MATH. (2025) 8(2):567-588 / WEYL CURVATURE IN β-KENMOTSU GTW ... 571

where εi are the signs corresponding to the metric signature.

On LβK-manifolds, the scalar curvature r is given by

r =
2n+1∑
i=1

εiS(ei, ei), (2.21)

where εi are the signs corresponding to the metric signature. Additionally, we have

g(H1,H2) =

2n+1∑
i=1

εig(H1, ei)g(H2, ei), (2.22)

where H1,H2 ∈ χ(Mβ) and εi = g(ei, ei) = ±1.

Definition 2.1 A LβK-manifold Mβ is referred to as a generalized η-Einstein manifold

if its Ricci tensor S takes the form

S(H1,H2) = ν1g(H1,H2) + ν2η(H1)η(H2) + ν3Φ(H1,H2), (2.23)

where Φ(H1,H2) = g(ϕH1,H2) is the fundamental 2-form of the manifold Mβ and ν1, ν2,

ν3 are smooth functions on Mβ.

If ν3 = 0, then Mβ is said to be an η-Einstein manifold.

If ν2 = 0, ν3 = 0, then Mβ is said to be an Einstein manifold.

Definition 2.2 In a (2n + 1)-dimensional (n > 1) almost contact metric manifold, the

Weyl-conformal curvature tensor C (also known as conformal curvature tensor) with respect

to the Levi-Civita connection is defined as follows (see [20]):

C(H1,H2)H3 = R(H1,H2)H3 −
1

(2n− 1)

[
S(H2,H3)H1 − S(H1,H3)H2 + g(H2,H3)QH1

− g(H1,H3)QH2

]
+

r

2n(2n− 1)

[
g(H2,H3)H1 − g(H1,H3)H2

]
. (2.24)

for any vector fields H1,H2 and H3 on Mβ, R and r represent the curvature tensor and the

scalar curvature with respect to the Levi-Civita connection, respectively.

Definition 2.3 The sectional curvature κ(H1,H2) of a manifold is given by

κ(H1,H2) = − R(H1,H2,H1,H2)

g(H1,H1)g(H2,H2)− g(H1,H2)2
, (2.25)

where R(H1,H2,H1,H2) represents the associated curvature tensor.
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3. Curvature properties of a LβK manifold admitting g-TW connection

The g-TW connection ∇̃, associated with the Levi-Civita connection ∇, is defined by

[16, 5]

∇̃H1H2 = ∇H1H2 + (∇H1η)(H2)ζ − η(H2)∇H1ζ − η(H1)ϕH2, (3.26)

for any vector fields H1 and H2 on Mβ. Using (2.8) and (2.9) in (3.26), we obtain

∇̃H1H2 = ∇H1H2 + βg(H1,H2)ζ − βη(H2)H1 − η(H1)ϕH2, (3.27)

for all smooth vector fields H1 and H2 on Mβ.

Substituting H2 = ζ in (3.27), we have

∇̃H1ζ = 2βH1. (3.28)

Let R̃ and R denote the curvature tensors of Mβ with respect to the connections ∇̃ and ∇,

respectively. The curvature tensor of a (2n+ 1)-dimensional LβK manifold with respect to

the g-TW connection ∇̃ is defined by

R̃(H1,H2)H3 = ∇̃H1∇̃H2H3 − ∇̃H2∇̃H1H3 − ∇̃[H1,H2]H3. (3.29)

By virtue of (3.27) in (3.29), we obtain

R̃(H1,H2)H3 = R(H1,H2)H3 + ρη(H1)[g(H2,H3)ζ − η(H3)H2]

− ρη(H2)[g(H1,H3)ζ − η(H3)H1] + 3β2[g(H2,H3)H1 − g(H1,H3)H2]

− 2β[η(H2)g(H1, ϕH3)ζ − η(H1)g(H2, ϕH3)ζ], (3.30)

where ρ = ζβ and H1,H2,H3 are any vector fields on Mβ.

By taking the inner product of (3.30) with the vector field H4, we have

R̃(H1,H2,H3,H4) = R(H1,H2,H3,H4) + ρη(H1)[η(H4)g(H2,H3)− η(H3)g(H2,H4)]

− ρη(H2)[η(H4)g(H1,H3)− η(H3)g(H1,H4)]

+ 3β2[g(H2,H3)g(H1,H4)− g(H1,H3)g(H2,H4)]

− 2βη(H4)[η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)], (3.31)

where R̃(H1,H2,H3,H4) = g(R̃(H1,H2)H3,H4) is the curvature tensor associated with ∇̃.
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Let {e1, e2, e3, . . . , e2n+1} be a local orthonormal basis of the tangent space at any point of

the manifoldMβ. By settingH1 = H4 = ei in (3.31) and summing over i for 1 ≤ i ≤ (2n+1),

we obtain

S̃(H2,H3) = S(H2,H3) + (6nβ2 − ρ)g(H2,H3) + (2n− 1)ρη(H2)η(H3)− 2βΦ(H2,H3),

(3.32)

for all vector fields H2,H3 on Mβ, where S̃ and S denote the Ricci tensor of Mβ with respect

to the connections ∇̃ and ∇ respectively.

Using (3.32) , the Ricci operator Q̃ with respect to the connection ∇̃ is determined by

Q̃H2 = QH2 + (6nβ2 − ρ)H2 + (2n− 1)ρη(H2)ζ − 2βϕH2. (3.33)

Let r̃ and r denote the scalar curvature of Mβ with respect to the connections ∇̃ and ∇,

respectively. Let {e1, e2, e3, . . . , e2n+1} be a local orthonormal basis of the tangent space at

any point of the manifold Mβ. By setting H2 = H3 = ei in (3.32) and summing over i for

1 ≤ i ≤ (2n+ 1), we obtain

r̃ = r + 6n(2n+ 1)β2 − 4nρ− 2βψ, (3.34)

where ψ = trace(ϕ).

From above discussion, we state the following:

Theorem 3.1 In a (2n+1)-dimensional LβK manifold admitting g-TW connection ∇̃, the

following holds:

(i) The curvature tensor R̃, Ricci tensor S̃, Ricci operator Q̃, and scalar curvature r̃ with

respect to ∇̃ are given by (3.30), (3.32), (3.33), and (3.34) respectively,

(ii) R̃(H1,H2)H3 + R̃(H2,H1)H3 = 0,

(iii) R̃(H1,H2)H3 + R̃(H2,H3)H1 + R̃(H3,H1)H2 = 0,

(iv) The Ricci tensor S̃(H1,H2) is symmetric in nature.

Now, let Mβ be a Ricci flat with respect to the g-TW connection ∇̃. Then from (3.32),

we lead to

S(H2,H3) = −(6nβ2 − ρ)g(H2,H3)− (2n− 1)ρη(H2)η(H3) + 2βΦ(H2,H3), (3.35)



574 G. P. SINGH, P. SHARMA, AND Z. FATMA

where ρ = ζβ and Φ(H2,H3) = g(H2, ϕH3).

This leads to the following result:

Theorem 3.2 A LβK manifold Mβ is Ricci flat with respect to the g-TW connection ∇̃ if

and only if it is a generalized η-Einstein manifold with respect to the Levi-Civita connection

∇.

Now, if R̃(H1,H2)H3 = 0, then by virtue of (3.31), we have

R(H1,H2,H3,H4) = −ρη(H1)[η(H4)g(H2,H3)− η(H3)g(H2,H4)]

+ ρη(H2)[η(H4)g(H1,H3)− η(H3)g(H1,H4)]

− 3β2[g(H2,H3)g(H1,H4)− g(H1,H3)g(H2,H4)]

+ 2βη(H4)[η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)], (3.36)

Let ζ⊥ = {H1 : g(H1, ζ) = 0, ∀H1 ∈ χ(Mβ)} denotes a (2n + 1)-dimensional distribution

orthogonal to ζ, then for any H1,H2,H3,H4 ∈ ζ⊥, (3.36) takes the form

R(H1,H2,H3,H4) = −3β2[g(H2,H3)g(H1,H4)− g(H1,H3)g(H2,H4)]. (3.37)

Thus, we can state the following:

Theorem 3.3 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃. The curvature tensor of Mβ determined by H1,H2,H3,H4 ∈ ζ⊥ with respect to ∇̃

vanishes if and only if Mβ with respect to the Levi-Civita connection ∇ is isomorphic to the

hyperbolic space H2n+1(−3β2).

Replacing H3 by H1 and H4 by H2 in (3.37), we have

κ(H1,H2) = − R(H1,H2,H1,H2)

g(H1,H1)g(H2,H2)− g(H1,H2)2
= −3β2. (3.38)

Hence, we obtain the following result:

Corollary 3.1 If R̃(H1,H2)H3 = 0 in a LβK manifold, then the sectional curvature of

the plane section determined by H1,H2 ∈ ζ⊥ is −3β2.
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Furthermore, we obtain the following results:

Lemma 3.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connection

∇̃, then we have the following

(i) R̃(H1,H2)ζ = (2β2 − ρ)[η(H2)H1 − η(H1)H2],

(ii) R̃(ζ,H1)H2 = (2β2 − ρ)[g(H1,H2)ζ − η(H2)H1]− 2βΦ(H1,H2)ζ,

(iii) R̃(H1, ζ)H2 = −(2β2 − ρ)[g(H1,H2)ζ − η(H2)H1] + 2βΦ(H1,H2)ζ,

(iv) R̃(ζ,H1)ζ = (2β2 − ρ)ϕ2H1,

(v) S̃(H1, ζ) = 2n(2β2 − ρ)η(H1),

(vi) Q̃ζ = 2n(2β2 − ρ)ζ,

(vii) η(R̃(H1,H2)H3) = (2β2−ρ)[g(H2,H3)η(H1)−g(H1,H3)η(H2)]+2β[η(H2)Φ(H1,H3)−

η(H1)Φ(H2,H3)],

for any vector fields H1,H2 and H3 on Mβ.

Now, we define conformal curvature tensor with respect to g-TW connection ∇̃.

Definition 3.1 The conformal curvature tensor C̃ for a (2n+1)-dimensional LβK manifold

Mβ admitting g-TW connection is defined as

C̃(H1,H2)H3 = R̃(H1,H2)H3 −
1

(2n− 1)

[
S̃(H2,H3)H1 − S̃(H1,H3)H2 + g(H2,H3)Q̃H1

− g(H1,H3)Q̃H2

]
+

r̃

2n(2n− 1)

[
g(H2,H3)H1 − g(H1,H3)H2

]
. (3.39)

for any vector fields H1,H2 and H3 on Mβ. Here R̃, S̃ and r̃ are the Riemannian curvature

tensor, Ricci tensor and the scalar curvature with respect to the connection ∇̃, respectively

on Mβ.

Also, we can state the following:

Lemma 3.2 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connection

∇̃. Let C̃ be the conformal curvature tensor with respect to ∇̃. Then, we have the following

(i) C̃(H1,H2)H3 + C̃(H2,H1)H3 = 0,

(ii) C̃(H1,H2)H3 + C̃(H2,H3)H1 + C̃(H3,H1)H2 = 0,

for any vector fields H1,H2 and H3 on Mβ.
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4. Lorentzian β-Kenmotsu manifold admitting g-TW connection satisfying

R̃ · S̃ = 0 condition

Let us consider a LβK manifold admitting g-TW connection satisfying the condition

R̃(H1,H2) · S̃ = 0, (4.40)

for any vector fields H1,H2 on Mβ.

From (4.40), we infer

(R̃(H1,H2) · S̃)(F1,F2) = S̃(R̃(H1,H2)F1,F2) + S̃(F1, R̃(H1,H2)F2) = 0, (4.41)

for any vector fields H1,H2,F1 and F2 on Mβ.

Substituting H1 = ζ in (4.41), we have

S̃(R̃(ζ,H2)F1,F2) + S̃(F1, R̃(ζ,H2)F2) = 0, (4.42)

By virtue of (3.30), we have

S̃(R̃(ζ,H2)F1,F2) = (2β2 − ρ)[g(H2,F1)S̃(ζ,F2)− η(F1)S̃(H2,F2)]− 2βΦ(H2,F1)S̃(ζ,F2),

(4.43)

and

S̃(F1, R̃(ζ,H2)F2) = (2β2 − ρ)[g(H2,F2)S̃(F1, ζ)− η(F2)S̃(F1,H2)]− 2βΦ(H2,F2)S̃(F1, ζ),

(4.44)

where Φ(H2,F1) = g(H2, ϕF1) and Φ(H2,F2) = g(H2, ϕF2).

Substituting (4.43) and (4.44) in (4.42), we obtain

(2β2 − ρ)[g(H2,F1)S̃(ζ,F2)− η(F1)S̃(H2,F2) + g(H2,F2)S̃(F1, ζ)− η(F2)S̃(F1,H2)]

−2β[Φ(H2,F1)S̃(ζ,F2) + Φ(H2,F2)S̃(F1, ζ)] = 0.

(4.45)

Setting F1 = ζ in (4.45) and on further simplification, we have

S̃(H2,F2) = 2n(2β2 − ρ)g(H2,F2)− 4nβΦ(H2,F2). (4.46)

Contracting above, we have

r̃ = 2n(2n+ 1)(2β2 − ρ)− 4nβψ, (4.47)
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where ψ = trace(ϕ).

By virtue of (3.32) in (4.46), we obtain

S(H2,F2) = −[2nβ2 + (2n− 1)ρ]g(H2,F2)− (2n− 1)ρη(H2)η(F2)− 2(2n− 1)βΦ(H2,F2).

(4.48)

Contracting above, we have

r = −2n(2n+ 1)β2 − 2(2n− 1)[nρ+ βψ]. (4.49)

Thus, based on the discussion above, we can present the following theorem:

Theorem 4.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying R̃ · S̃ = 0 condition. Then we have the following:

(i) Mβ is a generalized η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the

form (4.46) and having scalar curvature r̃ of the form (4.47), and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (4.48) and having scalar curvature r of the form (4.49).

5. Lorentzian β-Kenmotsu manifold admitting g-TW connection satisfying

S̃ · R̃ = 0 condition

Let us consider a LβK manifold admitting g-TW connection satisfying the condition

(S̃(H1,H2) · R̃)(F1,F2)H3 = 0, (5.50)

for any vector fields H1,H2,H3,F1 and F2 on Mβ.

From(5.50), we infer that

(H1 ∧S̃
H2)R̃(F1,F2)H3 + R̃((H1 ∧S̃

H2)F1,F2)H3 + R̃(F1, (H1 ∧S̃
H2)F2)H3

+R̃(F1,F2)(H1 ∧S̃
H2)H3 = 0, (5.51)

where the endomorphism H1 ∧S̃
H2 is defined by

(H1 ∧S̃
H2)H3 = S̃(H2,H3)H1 − S̃(H1,H3)H2. (5.52)
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Substituting H2 = ζ in (5.51) and on further simplification, we obtain

S̃(ζ, R̃(F1,F2)H3)H1 − S̃(H1, R̃(F1,F2)H3)ζ + S̃(ζ,F1)R̃(H1,F2)H3

−S̃(H1,F1)R̃(ζ,F2)H3 + S̃(ζ,F2)R̃(F1,H1)H3 − S̃(H1,F2)R̃(F1, ζ)H3

+S̃(ζ,H3)R̃(F1,F2)H1 − S̃(H1,H3)R̃(F1,F2)ζ = 0. (5.53)

Taking inner product of (5.53) with ζ, we have

S̃(ζ, R̃(F1,F2)H3)η(H1) + S̃(H1, R̃(F1,F2)H3) + S̃(ζ,F1)η(R̃(H1,F2)H3)

−S̃(H1,F1)η(R̃(ζ,F2)H3) + S̃(ζ,F2)η(R̃(F1,H1)H3)− S̃(H1,F2)η(R̃(F1, ζ)H3)

+S̃(ζ,H3)η(R̃(F1,F2)H1)− S̃(H1,H3)η(R̃(F1,F2)ζ) = 0. (5.54)

Setting F1 = H3 = ζ in (5.54) and on simplification, we have

(2β2 − ρ)[S̃(H1,F2) + η(F2)S̃(H1, ζ)] + 2n(2β2 − ρ)2[g(H1,F2) + η(H1)η(F2)]

−4nβ(2β2 − ρ)Φ(H1,F2) = 0. (5.55)

From (3.32), we have

S̃(H1, ζ) = 2n(2β2 − ρ)η(H1). (5.56)

Using (5.56) in (5.55), we obtain

S̃(H1,F2) = −2n(2β2 − ρ)g(H1,F2)− 4n(2β2 − ρ)η(H1)η(F2) + 4nβΦ(H1,F2). (5.57)

Contracting above, we have

r̃ = −2n(2n− 1)(2β2 − ρ) + 4nβψ, (5.58)

where ψ = trace(ϕ).

Furthermore, using (3.32) in (5.57), we obtain

S(H1,F2) = [(2n+ 1)ρ− 10nβ2]g(H1,F2) + [(2n+ 1)ρ− 8nβ2]η(H1)η(F2)

+ 2(2n+ 1)βΦ(H1,F2). (5.59)

Contracting above, we have

r = 2n(2n+ 1)ρ− 2n(10n+ 1)β2 + 2(2n+ 1)βψ. (5.60)

Thus, based on the discussion above, we can present the following theorem:
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Theorem 5.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying S̃ · R̃ = 0 condition. Then we have the following:

(i) Mβ is a generalized η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the

form (5.57) and having scalar curvature r̃ of the form (5.58), and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (5.59) and having scalar curvature r of the form (5.60).

6. Conformally flat Lorentzian β-Kenmotsu manifold admitting g-TW

connection

In this section, we examine conformally flat Lorentzian β-Kenmotsu manifold admitting

g-TW connection ∇̃.

Definition 6.1 A LβK manifold is said to be conformally flat with respect to g-TW

connection ∇̃ if it satisfies

C̃(H1,H2)H3 = 0, (6.61)

for any vector fields H1,H2 and H3 on Mβ.

By virtue of (6.61) in (3.39), we obtain

R̃(H1,H2)H3 =
1

(2n− 1)

[
S̃(H2,H3)H1 − S̃(H1,H3)H2 + g(H2,H3)Q̃H1 − g(H1,H3)Q̃H2

]
− r̃

2n(2n− 1)

[
g(H2,H3)H1 − g(H1,H3)H2

]
. (6.62)

Taking inner product of (6.62) with ζ and on further simplification, we have

R̃(H1,H2,H3, ζ) =
1

(2n− 1)

[
S̃(H2,H3)η(H1)− S̃(H1,H3)η(H2)

]
+

[
4n2(2β2 − ρ)− r̃

(2n− 1)

]
[g(H2,H3)η(H1)− g(H1,H3)η(H2)] . (6.63)

Further, on substituting H4 = ζ in (3.31) and using (2.12), we obtain

R̃(H1,H2,H3, ζ) = (2β2 − ρ) [g(H2,H3)η(H1)− g(H1,H3)η(H2)]

+ 2β [η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)] . (6.64)
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Using (6.64) in (6.63), we infer

S̃(H2,H3)η(H1)− S̃(H1,H3)η(H2) =

[
r̃ − 2n(2β2 − ρ)

2n

]
[g(H2,H3)η(H1)− g(H1,H3)η(H2)]

+ 2(2n− 1)β [η(H2)g(H1, ϕH3)− η(H1)g(H2, ϕH3)] .

(6.65)

Assuming H1 = ζ in (6.65) and on further simplification, we have

S̃(H2,H3) =

[
r̃ − 2n(2β2 − ρ)

2n

]
g(H2,H3) +

[
r̃ − 2n(2n+ 1)(2β2 − ρ)

2n

]
η(H2)η(H3)

− 2(2n− 1)βΦ(H2,H3), (6.66)

where Φ(H2,H3) = g(H2, ϕH3). Using (3.32) in (6.66), we obtain

S(H2,H3) =

[
r + 2nβ2 − 2βψ

2n

]
g(H2,H3) +

[
r + 2n(2n+ 1)β2 − 2βψ

2n

]
η(H2)η(H3)

− 4(n− 1)βΦ(H2,H3). (6.67)

Thus, based on the discussion above, we can present the following theorem:

Theorem 6.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying conformally flat condition. Then we have the following:

(i) Mβ is a generalized η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the

form (6.66), and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (6.67).

7. ζ-conformally flat Lorentzian β-Kenmotsu manifold admitting g-TW

connection

In this section, we examine ζ-conformally flat Lorentzian β-Kenmotsu manifold admitting

g-TW connection ∇̃.

Definition 7.1 A LβK manifold is said to be ζ-conformally flat with respect to g-TW

connection ∇̃ if it satisfies

C̃(H1,H2)ζ = 0, (7.68)
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for any vector fields H1,H2 on Mβ.

Setting H3 = ζ in (3.39) and using (7.68), we obtain

R̃(H1,H2)ζ =
1

(2n− 1)

[
S̃(H2, ζ)H1 − S̃(H1, ζ)H2 + η(H2)Q̃H1 − η(H1)Q̃H2

]
− r̃

2n(2n− 1)

[
η(H2)H1 − η(H1)H2

]
. (7.69)

On further simplification, we have

η(H2)Q̃H1 − η(H1)Q̃H2 =

[
r̃ − 2n(2β2 − ρ)

2n

] [
η(H2)H1 − η(H1)H2

]
. (7.70)

Taking inner product of (7.70) with H3, we have

η(H2)S̃(H1,H3)− η(H1)S̃(H2,H3) =

[
r̃ − 2n(2β2 − ρ)

2n

] [
η(H2)g(H1,H3)− η(H1)g(H2,H3)

]
.

(7.71)

Substituting H1 = ζ in (7.71), we obtain

S̃(H2,H3) =

[
r̃ − 2n(2β2 − ρ)

2n

]
g(H2,H3) +

[
r̃ − 2n(2n+ 1)(2β2 − ρ)

2n

]
η(H2)η(H3).

(7.72)

Using (3.32) in (7.72), we have

S(H2,H3) =

[
r + 2nβ2 − 2βψ

2n

]
g(H2,H3) +

[
r + 2n(2n+ 1)β2 − 2βψ

2n

]
η(H2)η(H3)

+ 2βΦ(H2,H3), (7.73)

where Φ(H2,H3) = g(H2, ϕH3).

Thus, based on the discussion above, we can present the following theorem:

Theorem 7.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying ζ-conformally flat condition. Then we have the following:

(i) Mβ is an η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the form (7.72),

and

(ii) Mβ is a generalized η-Einstein manifold with respect to Levi-Civita connection ∇ whose

Ricci tensor is of the form (7.73).
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8. Pseudo-conformally flat Lorentzian β-Kenmotsu manifold admitting

g-TW connection

In this section, we examine pseudo-conformally flat Lorentzian β-Kenmotsu manifold ad-

mitting g-TW connection ∇̃.

Definition 8.1 A LβK manifold is said to be pseudo-conformally flat with respect to

g-TW connection ∇̃ if it satisfies

g(C̃(ϕH1,H2)H3, ϕH4) = 0, (8.74)

for any vector fields H1,H2,H3 and H4 on Mβ.

By virtue of (3.39) and (8.74), we have

R̃(ϕH1,H2,H3, ϕH4) =
1

(2n− 1)

[
S̃(H2,H3)g(ϕH1, ϕH4)− S̃(ϕH1,H3)g(H2, ϕH4)

+g(H2,H3)S̃(ϕH1, ϕH4)− g(ϕH1,H3)S̃(H2, ϕH4)
]

− r̃

2n(2n− 1)
[g(H2,H3)g(ϕH1, ϕH4)− g(ϕH1,H3)g(H2, ϕH4)] .

(8.75)

Let {e1, e2, e3, . . . , e2n+1} be a local orthonormal basis of the tangent space at any point of

the manifoldMβ. By settingH2 = H3 = ei in (8.75) and summing over i for 1 ≤ i ≤ (2n+1),

we obtain

(2n+ 1)r̃g(ϕH1, ϕH4) = 0. (8.76)

Since (2n+ 1) ̸= 0, therefore

r̃g(ϕH1, ϕH4) = 0. (8.77)

By virtue of (2.6), we have

r̃ [g(H1,H4) + η(H1)η(H4)] = 0. (8.78)

Replacing H1 by Q̃H1 in (8.78), we have

r̃
[
S̃(H1,H4) + 2n(2β2 − ρ)η(H1)η(H4)

]
= 0. (8.79)

From above, we infer following cases:
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Case I: If r̃ = 0. Then from (3.34), we obtain

r = −6n(2n+ 1)β2 + 4nρ+ 2βψ, (8.80)

where ψ = trace(ϕ).

Case II: If r̃ ̸= 0. Then from (8.79), we have

S̃(H1,H4) = −2n(2β2 − ρ)η(H1)η(H4). (8.81)

Contracting above, we infer

r̃ = 2n(2β2 − ρ). (8.82)

Using (3.32) in (8.81), we obtain

S(H1,H4) = −(6nβ2 − ρ)g(H1,H4)− (4nβ2 − ρ)η(H1)η(H4) + 2βΦ(H1,H4), (8.83)

where Φ(H1,H4) = g(H1, ϕH4).

Contracting above, we have

r = −2n(6n+ 1)β2 + 2nρ+ 2βψ. (8.84)

Thus, based on the discussion above, we can present the following theorem:

Theorem 8.1 Let Mβ be a (2n+1)-dimensional LβK manifold admitting g-TW connec-

tion ∇̃ satisfying pseudo-conformally flat condition. Then we have the following:

(i) The scalar curvature r̃ with respect to ∇̃ vanishes. Moreover, the scalar curvature r with

respect to Levi-Civita connection ∇ is of the form (8.80), or

(ii) Mβ is an η-Einstein manifold with respect to ∇̃ whose Ricci tensor is of the form (8.81)

and having scalar curvature r̃ of the form (8.82). Moreover, Mβ is a generalized η-Einstein

manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (8.83)

and having scalar curvature of the form (8.84).

9. Example of a three-dimensional Lorentzian β-Kenmotsu manifold

admitting g-TW connection

In this section, we illustrate an example of a three-dimensional Lorentzian β-Kenmotsu

manifold. Consider the three-dimensional manifold

M3 = {(x, y, z) ∈ R3 : z > 0}
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where (x, y, z) are the standard coordinates in R3. We define the vector fields

ϑ1 = e−z ∂

∂x
, ϑ2 = e−z ∂

∂y
, ϑ3 = e−z ∂

∂z
= ζ,

which remain linearly independent at each point in M .

The Lorentzian metric g is given by

g(ϑ1, ϑ1) = 1, g(ϑ2, ϑ2) = 1, g(ϑ3, ϑ3) = −1,

g(ϑ1, ϑ2) = g(ϑ2, ϑ3) = g(ϑ3, ϑ1) = 0,

which can be expressed as

g = e2z(dx⊗ dx+ dy ⊗ dy − dz ⊗ dz).

Let the 1-form η satisfy

η(H1) = g(H1, ϑ3)

The (1, 1)-tensor field ϕ is defined as

ϕ(ϑ1) = −ϑ2, ϕ(ϑ2) = −ϑ1, ϕ(ϑ3) = 0.

For any vector fields H1,H2 on M3, the following conditions hold:

ϕ2(H1) = H1 + η(H1)ϑ3,

g(ϕH1, ϕH2) = g(H1,H2) + η(H1)η(H2).

Thus, the structure M3(ϕ, ζ, η, g) forms an almost contact metric structure on M3, where

we set ϑ3 = ζ.

The Lie brackets of the vector fields are computed as follows:

[ϑ1, ϑ3] = e−zϑ1, [ϑ1, ϑ2] = 0, [ϑ2, ϑ3] = e−zϑ2.

Using Koszul’s formula, the Levi-Civita connection ∇ is obtained as
∇ϑ1ϑ1 = e−zϑ3, ∇ϑ2ϑ1 = 0, ∇ϑ3ϑ1 = 0,

∇ϑ1ϑ2 = 0, ∇ϑ2ϑ2 = e−zϑ3, ∇ϑ3ϑ2 = 0,

∇ϑ1ϑ3 = 0, ∇ϑ2ϑ3 = 0, ∇ϑ3ϑ3 = 0.

(9.85)
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From the above results, setting β = e−z, we conclude that M3(ϕ, ζ, η, g) defines a Mβ

structure in dimension three. From (3.27) and (9.85), we obtain
∇̃ϑ1ϑ1 = 2e−zϑ3, ∇̃ϑ2ϑ1 = 0, ∇̃ϑ3ϑ1 = −ϑ2,

∇̃ϑ1ϑ2 = 0, ∇̃ϑ2ϑ2 = 2e−zϑ3, ∇̃ϑ3ϑ2 = −ϑ1,

∇̃ϑ1ϑ3 = e−zϑ1, ∇̃ϑ2ϑ3 = e−zϑ2, ∇̃ϑ3ϑ3 = 0.

(9.86)

The components of the curvature tensor with respect to the Levi-Civita connection ∇ are

given by:
R(ϑ1, ϑ2)ϑ1 = e−2zϑ2, R(ϑ2, ϑ3)ϑ1 = 0, R(ϑ1, ϑ3)ϑ1 = e−2zϑ3,

R(ϑ1, ϑ2)ϑ2 = −e−2zϑ1, R(ϑ2, ϑ3)ϑ2 = e−2zϑ3, R(ϑ1, ϑ3)ϑ2 = 0,

R(ϑ1, ϑ2)ϑ3 = 0, R(ϑ2, ϑ3)ϑ3 = e−2zϑ2, R(ϑ1, ϑ3)ϑ3 = e−2zϑ1.

(9.87)

The components of the curvature tensor with respect to the g-TW connection ∇̃ are given

by:
R̃(ϑ1, ϑ2)ϑ1 = −2e−2zϑ2, R̃(ϑ2, ϑ3)ϑ1 = −2e−zϑ3, R̃(ϑ1, ϑ3)ϑ1 = −2e−2zϑ3 + ρϑ3,

R̃(ϑ1, ϑ2)ϑ2 = 2e−2zϑ1, R̃(ϑ2, ϑ3)ϑ2 = −2e−2zϑ3 + ρϑ3, R̃(ϑ1, ϑ3)ϑ2 = −2e−zϑ3,

R̃(ϑ1, ϑ2)ϑ3 = 0, R̃(ϑ2, ϑ3)ϑ3 = −2e−2zϑ2 + ρϑ2, R̃(ϑ1, ϑ3)ϑ3 = −2e−2zϑ1 + ρϑ1.

(9.88)

From (9.87), the non-vanishing components of Ricci tensor with respect to Levi-Civita con-

nection ∇ is as follows

S(ϑ1, ϑ1) = −2e−2z, S(ϑ2, ϑ2) = −2e−2z, S(ϑ3, ϑ3) = 2e−2z, (9.89)

which implies that the scalar curvature r with respect to ∇ can be evaluated by

r =
3∑

i=1

εiS(ei, ei) = −6e−2z. (9.90)

Furthermore, from (9.88), the non-vanishing components of Ricci tensor with respect to the

g-TW connection ∇̃ are given as

S̃(ϑ1, ϑ1) = 4e−2z − ρ, S̃(ϑ2, ϑ2) = 4e−2z − ρ, S̃(ϑ3, ϑ3) = −4e−2z + 2ρ, (9.91)

which implies that the scalar curvature r̃ with respect to ∇̃ can be evaluated by

r̃ =

3∑
i=1

εiS̃(ei, ei) = 12e−2z − 4ρ. (9.92)
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which can also be verified from (3.34) where ψ can be evaluated as

ψ = trace(ϕ) =
3∑

i=1

εiΦ(ei, ei) = 0. (9.93)

10. Conclusion

In this paper, we conducted a comprehensive study of Lorentzian β-Kenmotsu (LβK)

manifolds equipped with the generalized Tanaka-Webster (g-TW) connection. Beginning

with fundamental definitions and preliminary results, we established the essential structure

equations and derived explicit expressions for the curvature tensor R̃ and the Ricci tensor

S̃ in this setting. Our analysis revealed several significant geometric properties, including

the conditions under which an LβK manifold admitting the g-TW connection becomes a

generalized η-Einstein manifold.

We demonstrated that a LβK manifold satisfies crucial curvature identities, such as the

symmetry and skew-symmetry of the curvature tensor, and explored conditions like R̃ ·

S̃ = 0 and S̃ · R̃ = 0, under which the manifold naturally admits a generalized η-Einstein

structure. Further, we investigated the geometric implications of conformally flat and ζ-

conformally flat conditions, showing that such manifolds inherently exhibit the generalized

η-Einstein property with respect to the g-TW connection. Additionally, we examined the

notion of pseudo-conformal flatness in LβK manifolds, establishing key results regarding

scalar curvature and the structure of the Ricci tensor.

To solidify our theoretical findings, we provided an explicit example of a three-dimensional

LβK manifold equipped with the g-TW connection and verified that it satisfies the curvature

conditions discussed throughout the paper. This study offers new insights into the geometric

nature of Lorentzian β-Kenmotsu manifolds and their curvature properties under different

structural constraints. The results presented here open pathways for further research, in-

cluding extensions to higher-dimensional cases, the study of additional curvature conditions,

and potential applications in mathematical physics and relativity.

Acknowledgments. The authors would like to thank the referee for some useful comments

and their helpful suggestions that have improved the quality of this paper.

References

[1] Ahmad, M., Haseeb, A., & Jun, J.B. (2019). *Quasi-concircular curvature tensor on a

Lorentzian β-Kenmotsu manifold*. Journal of Chungcheong Mathematical Society, 32(3), 281–293.

https://doi.org/10.14403/jcms.2019.32.3.281



INT. J. MAPS MATH. (2025) 8(2):567-588 / WEYL CURVATURE IN β-KENMOTSU GTW ... 587

[2] Boeckx, E., Kowalski, O., & Vanhecke, L. (1996). Riemannian manifolds of conullity two. World Scientific

Publishing, Singapore.

[3] Cho, J.T. (1999). CR-structures on real hypersurfaces of a complex space form. Publications Mathemat-

icae, 54, 473–487. https://doi.org/10.5486/pmd.1999.2081

[4] Cho, J.T. (2008). Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form. Hokkaido

Mathematical Journal, 37, 1–17. https://doi.org/10.14492/hokmj/1253539581

[5] Ghosh, G., & De, U.C. (2017). Kenmotsu manifolds with generalized Tanaka-Webster connection. Pub-

lications de l’Institut Mathématique-Beograd, 102, 221–230. https://doi.org/10.2298/PIM1716221G

[6] Kowalski, O. (1996). An explicit classification of 3-dimensional Riemannian spaces satisfyingR(X,Y )·R =

0. Czechoslovak Mathematical Journal, 46(121), 427–474. https://doi.org/10.21136/CMJ.1996.127308

[7] Mishra, A.K., Prajapati, P., Rajan, & Singh, G.P. (2024). On M-projective curvature tensor of

Lorentzian β-Kenmotsu manifold. Bulletin of the Transilvania University of Brasov, 4(66), 201–214.

https://doi.org/10.31926/but.mif.2024.4.66.2.12

[8] Prakasha, D.G., Bagewadi, C.S., & Basavarajappa, N.S. (2008). On Lorentzian β-Kenmotsu manifolds.

International Journal of Mathematical Analysis, 2(19), 919–927.

[9] Singh, A., Ahmad, M., Yadav, S. K., & Patel, S. (2024). Some results on β-Kenmotsu manifolds with a

non-symmetric non-metric connection. International Journal of Maps in Mathematics, 7(1), 20–32.

[10] Singh, A., Das, L. S., Pankaj, P., & Patel, S. (2024). Hyperbolic Kenmotsu manifolds admitting a semi-

symmetric non-metric connection. Facta Universitatis (Nǐs), Series: Mathematics and Informatics, 39(1),
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