

International Journal of Maps in Mathematics

Volume 8, Issue 2, 2025, Pages:567-588

E-ISSN: 2636-7467

www.simadp.com/journalmim

ANALYTICAL EXPLORATION OF WEYL-CONFORMAL CURVATURE TENSOR IN LORENTZIAN β -KENMOTSU MANIFOLDS ENDOWED WITH GENERALIZED TANAKA-WEBSTER CONNECTION

GYANVENDRA PRATAP SINGH (D), PRANJAL SHARMA (D) *, AND ZOHRA FATMA (D)

ABSTRACT. This paper investigates the conformal curvature properties of Lorentzian β -Kenmotsu (L β K) manifolds admitting a generalized Tanaka-Webster (g-TW) connection. We begin by establishing the fundamental preliminaries of $L\beta$ K manifolds and exploring their curvature properties under the influence of g-TW connection. The study then focuses on specific curvature conditions, namely $\tilde{R} \cdot \tilde{S} = 0$, $\tilde{S} \cdot \tilde{R} = 0$, conformal flatness, ζ -conformal flatness, and pseudo-conformal flatness, to examine their geometric and structural implications. Additionally, we construct an explicit example of a 3-dimensional $L\beta$ K manifold that admits a g-TW connection, providing concrete validation of our theoretical results. The findings contribute to the broader understanding of curvature behaviors in almost contact pseudo-Riemannian geometry and extend the study of non-Riemannian connections in Lorentzian manifolds.

Keywords: Lorentzian β-Kenmotsu manifolds, Generalized Tanaka-Webster connection, Weyl-conformal curvature tensor, Generalized η-Einstein manifolds.

2020 Mathematics Subject Classification: Primary: 53C05, 53C15, 53C25, Secondary: 53D10.

1. Introduction

The *Tanaka–Webster connection* was introduced by *Tanno* [16] as a generalization of the well-known connection formulated in the late 1970s by *Tanaka* [15] and independently by

Received: 2025.05.08 Revised: 2025.06.16 Accepted: 2025.06.18

Gyanvendra Pratap Singh \diamond gpsingh.singh700@gmail.com \diamond https://orcid.org/0009-0000-2155-7180 Pranjal Sharma \diamond pranjal.sharma.gkp@gmail.com \diamond https://orcid.org/0009-0000-2106-8969 Zohra Fatma \diamond zohrafatmazaidi@gmail.com \diamond https://orcid.org/0009-0003-7294-7025.

^{*} Corresponding author

Webster [19]. This connection coincides with the classical Tanaka–Webster connection when the associated CR-structure is integrable. It is defined as the canonical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold.

For a real hypersurface in a Kähler manifold endowed with an almost contact structure (ϕ, ζ, η, g) , Cho [3, 4] adapted Tanno's g-Tanaka-Webster connection for a nonzero real constant k. Utilizing this connection, several researchers have explored various geometric properties of real hypersurfaces in complex space forms [17].

A Riemannian manifold is termed semisymmetric if its curvature tensor satisfies

$$R(\mathcal{H}_1, \mathcal{H}_2) \cdot R = 0, \tag{1.1}$$

where $R(\mathcal{H}_1, \mathcal{H}_2)$ is regarded as a field of linear operators acting on R. It is well established that the class of semisymmetric manifolds properly contains locally symmetric manifolds (where $\nabla R = 0$). The concept of semisymmetry in Riemannian geometry was first investigated by E. Cartan, A. Lichnerowicz, R. S. Couty, and N. S. Sinjukov.

A Riemannian manifold is called *Ricci semisymmetric* if its curvature tensor satisfies

$$R(\mathcal{H}_1, \mathcal{H}_2) \cdot S = 0, \tag{1.2}$$

where S denotes the $Ricci\ tensor$ of type (0,2). The class of $Ricci\ semisymmetric\ manifolds$ contains $Ricci\ symmetric\ manifolds$ (where $\nabla S=0$) as a proper subset. Several researchers have studied these manifolds extensively. It is known that every $semisymmetric\ manifold$ is $Ricci\ semisymmetric$, but the converse does not always hold. However, under certain additional conditions, the equations

$$R(\mathcal{H}_1, \mathcal{H}_2) \cdot R = 0$$
 and $R(\mathcal{H}_1, \mathcal{H}_2) \cdot S = 0$

become equivalent. Szabó classified semisymmetric manifolds locally in [14], while fundamental studies in this area were carried out by Szabó [14], Boeckx et al. [2], and Kowalski [6].

One notable example of a curvature condition related to *semisymmetry* is

$$Q \cdot R = 0, \tag{1.3}$$

where Q is the *Ricci operator* defined by

$$S(\mathcal{H}_1, \mathcal{H}_2) = q(Q\mathcal{H}_1, \mathcal{H}_2).$$

Such curvature conditions naturally extend to pseudosymmetry-type conditions. The condition $Q \cdot R = 0$ was extensively studied by Verstraelen et al. in [18].

Several properties on \mathcal{M}_{β} and the g-TW connection have also been researched by numerous geometers, such as ([1, 7, 8, 9, 10, 11, 12, 13]). Inspired by these foundational works, the present paper aims to characterize Lorentzian β -Kenmotsu manifolds admitting the generalized Tanaka–Webster connection.

The arrangement of this paper is structured as follows: Section 2 presents the fundamental definitions and preliminary results related to Lorentzian β -Kenmotsu (L β K) manifolds. We introduce the structure equations and discuss essential properties that will be used in subsequent sections. In section 3, we explore the curvature properties of a $L\beta K$ manifold admitting the generalized Tanaka-Webster (g-TW) connection. We derive explicit expressions for the curvature tensor \widetilde{R} and the Ricci tensor \widetilde{S} with respect to g-TW connection and establish some interesting geometric properties. Section 4 investigates the condition $\widetilde{R}\cdot\widetilde{S}=0$ in a $L\beta K$ manifold equipped with g-TW connection. We demonstrate that under this condition, the manifold becomes a generalized η -Einstein manifold with respect to the g-TW connection. In section 5, we analyze the condition $\widetilde{S} \cdot \widetilde{R} = 0$ and establish that the $L\beta K$ manifold satisfying this curvature restriction is also a generalized η -Einstein manifold with respect to g-TW connection. Section 6 is devoted to the study of conformally flat $L\beta K$ manifolds under the influence of g-TW connection. We prove that such manifolds naturally admit a generalized η -Einstein structure with respect to g-TW connection. In section 7, we focus on ζ -conformally flat $L\beta K$ manifolds and derive certain interesting curvature properties arising from this condition. Section 8 examines the notion of pseudo-conformal flatness in the framework of $L\beta K$ manifolds. Finally, in section 9, we construct an explicit example of a 3-dimensional $L\beta K$ manifold admitting g-TW connection and verify that it satisfies the curvature conditions discussed in the previous sections. This structured approach ensures a coherent development of our results, highlighting the interplay between various curvature conditions and the geometry of Lorentzian β -Kenmotsu manifolds.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold is termed as $L\beta K$ manifold (\mathcal{M}_{β}) , if it possesses a (1,1)-tensor field ϕ , a contravariant vector field ζ , a covariant vector field η and a Lorentzian metric g satisfying

$$\phi^2 \mathcal{H}_1 = \mathcal{H}_1 + \eta(\mathcal{H}_1)\zeta, \quad g(\mathcal{H}_1, \zeta) = \eta(\mathcal{H}_1), \tag{2.4}$$

$$\eta(\zeta) = -1, \quad \phi(\zeta) = 0, \quad \eta(\phi \mathcal{H}_1) = 0,$$
(2.5)

$$g(\phi \mathcal{H}_1, \phi \mathcal{H}_2) = g(\mathcal{H}_1, \mathcal{H}_2) + \eta(\mathcal{H}_1)\eta(\mathcal{H}_2), \tag{2.6}$$

$$g(\phi \mathcal{H}_1, \mathcal{H}_2) = g(\mathcal{H}_1, \phi \mathcal{H}_2), \tag{2.7}$$

for all vector fields $\mathcal{H}_1, \mathcal{H}_2$ on \mathcal{M}_{β} . Furthermore, \mathcal{M}_{β} satisfies

$$\nabla_{\mathcal{H}_1} \zeta = \beta [\mathcal{H}_1 - \eta(\mathcal{H}_1)\zeta], \tag{2.8}$$

$$(\nabla_{\mathcal{H}_1} \eta)(\mathcal{H}_2) = \beta [g(\mathcal{H}_1, \mathcal{H}_2) - \eta(\mathcal{H}_1) \eta(\mathcal{H}_2)], \tag{2.9}$$

$$(\nabla_{\mathcal{H}_1}\phi)(\mathcal{H}_2) = \beta[g(\phi\mathcal{H}_1, \mathcal{H}_2)\zeta - \eta(\mathcal{H}_2)\phi\mathcal{H}_1], \tag{2.10}$$

where ∇ represents the covariant differentiation operator with respect to the Lorentzian metric g. Moreover, on \mathcal{M}_{β} , the following relations hold

$$\eta(R(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3) = \beta^2[g(\mathcal{H}_1, \mathcal{H}_3)\eta(\mathcal{H}_2) - g(\mathcal{H}_2, \mathcal{H}_3)\eta(\mathcal{H}_1)], \tag{2.11}$$

$$R(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = \beta^2 [g(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2 - g(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1], \tag{2.12}$$

$$R(\zeta, \mathcal{H}_1)\mathcal{H}_2 = \beta^2 [\eta(\mathcal{H}_2)\mathcal{H}_1 - g(\mathcal{H}_1, \mathcal{H}_2)\zeta], \tag{2.13}$$

$$R(\mathcal{H}_1, \mathcal{H}_2)\zeta = \beta^2 [\eta(\mathcal{H}_1)\mathcal{H}_2 - \eta(\mathcal{H}_2)\mathcal{H}_1], \qquad (2.14)$$

$$S(\mathcal{H}_1, \zeta) = -2n\beta^2 \eta(\mathcal{H}_1), \tag{2.15}$$

$$Q\mathcal{H}_1 = -2n\beta^2 \mathcal{H}_1, \quad Q\zeta = -2n\beta^2 \zeta, \tag{2.16}$$

$$S(\zeta, \zeta) = 2n\beta^2, \tag{2.17}$$

$$g(Q\mathcal{H}_1, \mathcal{H}_2) = S(\mathcal{H}_1, \mathcal{H}_2) = -2n\beta^2 g(\mathcal{H}_1, \mathcal{H}_2), \tag{2.18}$$

$$S(\phi \mathcal{H}_1, \phi \mathcal{H}_2) = S(\mathcal{H}_1, \mathcal{H}_2) - 2n\beta^2 \eta(\mathcal{H}_1) \eta(\mathcal{H}_2), \tag{2.19}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 on \mathcal{M}_{β} , where R, S and Q stand for the curvature tensor, the Ricci tensor and the Ricci operator on \mathcal{M}_{β} , respectively.

Let $\{e_1, e_2, e_3, \dots, e_n = \zeta\}$ be an orthonormal basis for the tangent space at any point on the manifold \mathcal{M}_{β} . The Ricci tensor S and the scalar curvature r of the manifold are given by the following expression

$$S(\mathcal{H}_1, \mathcal{H}_2) = \sum_{i=1}^{2n+1} \varepsilon_i g(R(e_i, \mathcal{H}_1)\mathcal{H}_2, e_i), \qquad (2.20)$$

where ε_i are the signs corresponding to the metric signature.

On $L\beta K$ -manifolds, the scalar curvature r is given by

$$r = \sum_{i=1}^{2n+1} \varepsilon_i S(e_i, e_i), \tag{2.21}$$

where ε_i are the signs corresponding to the metric signature. Additionally, we have

$$g(\mathcal{H}_1, \mathcal{H}_2) = \sum_{i=1}^{2n+1} \varepsilon_i g(\mathcal{H}_1, e_i) g(\mathcal{H}_2, e_i), \qquad (2.22)$$

where $\mathcal{H}_1, \mathcal{H}_2 \in \chi(\mathcal{M}_\beta)$ and $\varepsilon_i = g(e_i, e_i) = \pm 1$.

Definition 2.1 A $L\beta K$ -manifold \mathcal{M}_{β} is referred to as a generalized η -Einstein manifold if its Ricci tensor S takes the form

$$S(\mathcal{H}_1, \mathcal{H}_2) = \nu_1 g(\mathcal{H}_1, \mathcal{H}_2) + \nu_2 \eta(\mathcal{H}_1) \eta(\mathcal{H}_2) + \nu_3 \Phi(\mathcal{H}_1, \mathcal{H}_2), \tag{2.23}$$

where $\Phi(\mathcal{H}_1, \mathcal{H}_2) = g(\phi \mathcal{H}_1, \mathcal{H}_2)$ is the fundamental 2-form of the manifold \mathcal{M}_{β} and ν_1 , ν_2 , ν_3 are smooth functions on \mathcal{M}_{β} .

If $\nu_3 = 0$, then \mathcal{M}_{β} is said to be an η -Einstein manifold.

If $\nu_2 = 0$, $\nu_3 = 0$, then \mathcal{M}_{β} is said to be an Einstein manifold.

Definition 2.2 In a (2n + 1)-dimensional (n > 1) almost contact metric manifold, the Weyl-conformal curvature tensor C (also known as conformal curvature tensor) with respect to the Levi-Civita connection is defined as follows (see [20]):

$$C(\mathcal{H}_{1}, \mathcal{H}_{2})\mathcal{H}_{3} = R(\mathcal{H}_{1}, \mathcal{H}_{2})\mathcal{H}_{3} - \frac{1}{(2n-1)} \Big[S(\mathcal{H}_{2}, \mathcal{H}_{3})\mathcal{H}_{1} - S(\mathcal{H}_{1}, \mathcal{H}_{3})\mathcal{H}_{2} + g(\mathcal{H}_{2}, \mathcal{H}_{3})Q\mathcal{H}_{1} - g(\mathcal{H}_{1}, \mathcal{H}_{3})Q\mathcal{H}_{2} \Big] + \frac{r}{2n(2n-1)} \Big[g(\mathcal{H}_{2}, \mathcal{H}_{3})\mathcal{H}_{1} - g(\mathcal{H}_{1}, \mathcal{H}_{3})\mathcal{H}_{2} \Big].$$
(2.24)

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 on \mathcal{M}_{β} , R and r represent the curvature tensor and the scalar curvature with respect to the Levi-Civita connection, respectively.

Definition 2.3 The sectional curvature $\kappa(\mathcal{H}_1, \mathcal{H}_2)$ of a manifold is given by

$$\kappa(\mathcal{H}_1, \mathcal{H}_2) = -\frac{R(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_1, \mathcal{H}_2)}{q(\mathcal{H}_1, \mathcal{H}_1)q(\mathcal{H}_2, \mathcal{H}_2) - q(\mathcal{H}_1, \mathcal{H}_2)^2},\tag{2.25}$$

where $R(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_1, \mathcal{H}_2)$ represents the associated curvature tensor.

3. Curvature properties of a $L\beta K$ manifold admitting g-TW connection

The g-TW connection $\widetilde{\nabla}$, associated with the Levi-Civita connection ∇ , is defined by [16, 5]

$$\widetilde{\nabla}_{\mathcal{H}_1}\mathcal{H}_2 = \nabla_{\mathcal{H}_1}\mathcal{H}_2 + (\nabla_{\mathcal{H}_1}\eta)(\mathcal{H}_2)\zeta - \eta(\mathcal{H}_2)\nabla_{\mathcal{H}_1}\zeta - \eta(\mathcal{H}_1)\phi\mathcal{H}_2, \tag{3.26}$$

for any vector fields \mathcal{H}_1 and \mathcal{H}_2 on \mathcal{M}_{β} . Using (2.8) and (2.9) in (3.26), we obtain

$$\widetilde{\nabla}_{\mathcal{H}_1}\mathcal{H}_2 = \nabla_{\mathcal{H}_1}\mathcal{H}_2 + \beta g(\mathcal{H}_1, \mathcal{H}_2)\zeta - \beta \eta(\mathcal{H}_2)\mathcal{H}_1 - \eta(\mathcal{H}_1)\phi\mathcal{H}_2, \tag{3.27}$$

for all smooth vector fields \mathcal{H}_1 and \mathcal{H}_2 on \mathcal{M}_{β} .

Substituting $\mathcal{H}_2 = \zeta$ in (3.27), we have

$$\widetilde{\nabla}_{\mathcal{H}_1} \zeta = 2\beta \mathcal{H}_1. \tag{3.28}$$

Let \widetilde{R} and R denote the curvature tensors of \mathcal{M}_{β} with respect to the connections $\widetilde{\nabla}$ and ∇ , respectively. The curvature tensor of a (2n+1)-dimensional $L\beta K$ manifold with respect to the g-TW connection $\widetilde{\nabla}$ is defined by

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = \widetilde{\nabla}_{\mathcal{H}_1}\widetilde{\nabla}_{\mathcal{H}_2}\mathcal{H}_3 - \widetilde{\nabla}_{\mathcal{H}_2}\widetilde{\nabla}_{\mathcal{H}_1}\mathcal{H}_3 - \widetilde{\nabla}_{[\mathcal{H}_1, \mathcal{H}_2]}\mathcal{H}_3. \tag{3.29}$$

By virtue of (3.27) in (3.29), we obtain

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = R(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 + \rho\eta(\mathcal{H}_1)[g(\mathcal{H}_2, \mathcal{H}_3)\zeta - \eta(\mathcal{H}_3)\mathcal{H}_2]$$

$$-\rho\eta(\mathcal{H}_2)[g(\mathcal{H}_1, \mathcal{H}_3)\zeta - \eta(\mathcal{H}_3)\mathcal{H}_1] + 3\beta^2[g(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 - g(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2]$$

$$-2\beta[\eta(\mathcal{H}_2)g(\mathcal{H}_1, \phi\mathcal{H}_3)\zeta - \eta(\mathcal{H}_1)g(\mathcal{H}_2, \phi\mathcal{H}_3)\zeta], \tag{3.30}$$

where $\rho = \zeta \beta$ and $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ are any vector fields on \mathcal{M}_{β} .

By taking the inner product of (3.30) with the vector field \mathcal{H}_4 , we have

$$\widetilde{R}(\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3}, \mathcal{H}_{4}) = R(\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3}, \mathcal{H}_{4}) + \rho \eta(\mathcal{H}_{1}) [\eta(\mathcal{H}_{4})g(\mathcal{H}_{2}, \mathcal{H}_{3}) - \eta(\mathcal{H}_{3})g(\mathcal{H}_{2}, \mathcal{H}_{4})]
- \rho \eta(\mathcal{H}_{2}) [\eta(\mathcal{H}_{4})g(\mathcal{H}_{1}, \mathcal{H}_{3}) - \eta(\mathcal{H}_{3})g(\mathcal{H}_{1}, \mathcal{H}_{4})]
+ 3\beta^{2} [g(\mathcal{H}_{2}, \mathcal{H}_{3})g(\mathcal{H}_{1}, \mathcal{H}_{4}) - g(\mathcal{H}_{1}, \mathcal{H}_{3})g(\mathcal{H}_{2}, \mathcal{H}_{4})]
- 2\beta \eta(\mathcal{H}_{4}) [\eta(\mathcal{H}_{2})g(\mathcal{H}_{1}, \phi\mathcal{H}_{3}) - \eta(\mathcal{H}_{1})g(\mathcal{H}_{2}, \phi\mathcal{H}_{3})],$$
(3.31)

where $\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4) = g(\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3, \mathcal{H}_4)$ is the curvature tensor associated with $\widetilde{\nabla}$.

Let $\{e_1, e_2, e_3, \dots, e_{2n+1}\}$ be a local orthonormal basis of the tangent space at any point of the manifold \mathcal{M}_{β} . By setting $\mathcal{H}_1 = \mathcal{H}_4 = e_i$ in (3.31) and summing over i for $1 \leq i \leq (2n+1)$, we obtain

$$\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3) = S(\mathcal{H}_2, \mathcal{H}_3) + (6n\beta^2 - \rho)g(\mathcal{H}_2, \mathcal{H}_3) + (2n - 1)\rho\eta(\mathcal{H}_2)\eta(\mathcal{H}_3) - 2\beta\Phi(\mathcal{H}_2, \mathcal{H}_3),$$
(3.32)

for all vector fields \mathcal{H}_2 , \mathcal{H}_3 on \mathcal{M}_{β} , where \widetilde{S} and S denote the Ricci tensor of \mathcal{M}_{β} with respect to the connections $\widetilde{\nabla}$ and ∇ respectively.

Using (3.32) , the Ricci operator \widetilde{Q} with respect to the connection $\widetilde{\nabla}$ is determined by

$$\widetilde{Q}\mathcal{H}_2 = Q\mathcal{H}_2 + (6n\beta^2 - \rho)\mathcal{H}_2 + (2n - 1)\rho\eta(\mathcal{H}_2)\zeta - 2\beta\phi\mathcal{H}_2. \tag{3.33}$$

Let \tilde{r} and r denote the scalar curvature of \mathcal{M}_{β} with respect to the connections $\tilde{\nabla}$ and ∇ , respectively. Let $\{e_1, e_2, e_3, \dots, e_{2n+1}\}$ be a local orthonormal basis of the tangent space at any point of the manifold \mathcal{M}_{β} . By setting $\mathcal{H}_2 = \mathcal{H}_3 = e_i$ in (3.32) and summing over i for $1 \leq i \leq (2n+1)$, we obtain

$$\tilde{r} = r + 6n(2n+1)\beta^2 - 4n\rho - 2\beta\psi,$$
(3.34)

where $\psi = trace(\phi)$.

From above discussion, we state the following:

Theorem 3.1 In a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$, the following holds:

- (i) The curvature tensor \widetilde{R} , Ricci tensor \widetilde{S} , Ricci operator \widetilde{Q} , and scalar curvature \widetilde{r} with respect to $\widetilde{\nabla}$ are given by (3.30), (3.32), (3.33), and (3.34) respectively,
- (ii) $\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 + \widetilde{R}(\mathcal{H}_2, \mathcal{H}_1)\mathcal{H}_3 = 0$,
- (iii) $\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 + \widetilde{R}(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 + \widetilde{R}(\mathcal{H}_3, \mathcal{H}_1)\mathcal{H}_2 = 0$,
- (iv) The Ricci tensor $\widetilde{S}(\mathcal{H}_1, \mathcal{H}_2)$ is symmetric in nature.

Now, let \mathcal{M}_{β} be a Ricci flat with respect to the g-TW connection $\widetilde{\nabla}$. Then from (3.32), we lead to

$$S(\mathcal{H}_2, \mathcal{H}_3) = -(6n\beta^2 - \rho)g(\mathcal{H}_2, \mathcal{H}_3) - (2n - 1)\rho\eta(\mathcal{H}_2)\eta(\mathcal{H}_3) + 2\beta\Phi(\mathcal{H}_2, \mathcal{H}_3),$$
 (3.35)

where $\rho = \zeta \beta$ and $\Phi(\mathcal{H}_2, \mathcal{H}_3) = g(\mathcal{H}_2, \phi \mathcal{H}_3)$.

This leads to the following result:

Theorem 3.2 A $L\beta K$ manifold \mathcal{M}_{β} is Ricci flat with respect to the g-TW connection $\widetilde{\nabla}$ if and only if it is a generalized η -Einstein manifold with respect to the Levi-Civita connection ∇ .

Now, if $\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = 0$, then by virtue of (3.31), we have

$$R(\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3}, \mathcal{H}_{4}) = -\rho \eta(\mathcal{H}_{1}) [\eta(\mathcal{H}_{4})g(\mathcal{H}_{2}, \mathcal{H}_{3}) - \eta(\mathcal{H}_{3})g(\mathcal{H}_{2}, \mathcal{H}_{4})]$$

$$+ \rho \eta(\mathcal{H}_{2}) [\eta(\mathcal{H}_{4})g(\mathcal{H}_{1}, \mathcal{H}_{3}) - \eta(\mathcal{H}_{3})g(\mathcal{H}_{1}, \mathcal{H}_{4})]$$

$$- 3\beta^{2} [g(\mathcal{H}_{2}, \mathcal{H}_{3})g(\mathcal{H}_{1}, \mathcal{H}_{4}) - g(\mathcal{H}_{1}, \mathcal{H}_{3})g(\mathcal{H}_{2}, \mathcal{H}_{4})]$$

$$+ 2\beta \eta(\mathcal{H}_{4}) [\eta(\mathcal{H}_{2})g(\mathcal{H}_{1}, \phi\mathcal{H}_{3}) - \eta(\mathcal{H}_{1})g(\mathcal{H}_{2}, \phi\mathcal{H}_{3})], \qquad (3.36)$$

Let $\zeta^{\perp} = \{\mathcal{H}_1 : g(\mathcal{H}_1, \zeta) = 0, \forall \mathcal{H}_1 \in \chi(\mathcal{M}_{\beta})\}$ denotes a (2n+1)-dimensional distribution orthogonal to ζ , then for any $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4 \in \zeta^{\perp}$, (3.36) takes the form

$$R(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4) = -3\beta^2 [g(\mathcal{H}_2, \mathcal{H}_3)g(\mathcal{H}_1, \mathcal{H}_4) - g(\mathcal{H}_1, \mathcal{H}_3)g(\mathcal{H}_2, \mathcal{H}_4)].$$
(3.37)

Thus, we can state the following:

Theorem 3.3 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$. The curvature tensor of \mathcal{M}_{β} determined by $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4 \in \zeta^{\perp}$ with respect to $\widetilde{\nabla}$ vanishes if and only if \mathcal{M}_{β} with respect to the Levi-Civita connection ∇ is isomorphic to the hyperbolic space $H^{2n+1}(-3\beta^2)$.

Replacing \mathcal{H}_3 by \mathcal{H}_1 and \mathcal{H}_4 by \mathcal{H}_2 in (3.37), we have

$$\kappa(\mathcal{H}_1, \mathcal{H}_2) = -\frac{R(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_1, \mathcal{H}_2)}{g(\mathcal{H}_1, \mathcal{H}_1)g(\mathcal{H}_2, \mathcal{H}_2) - g(\mathcal{H}_1, \mathcal{H}_2)^2} = -3\beta^2.$$
(3.38)

Hence, we obtain the following result:

Corollary 3.1 If $\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = 0$ in a $L\beta K$ manifold, then the sectional curvature of the plane section determined by $\mathcal{H}_1, \mathcal{H}_2 \in \zeta^{\perp}$ is $-3\beta^2$.

Furthermore, we obtain the following results:

Lemma 3.1 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$, then we have the following

(i)
$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\zeta = (2\beta^2 - \rho)[\eta(\mathcal{H}_2)\mathcal{H}_1 - \eta(\mathcal{H}_1)\mathcal{H}_2],$$

(ii)
$$\widetilde{R}(\zeta, \mathcal{H}_1)\mathcal{H}_2 = (2\beta^2 - \rho)[g(\mathcal{H}_1, \mathcal{H}_2)\zeta - \eta(\mathcal{H}_2)\mathcal{H}_1] - 2\beta\Phi(\mathcal{H}_1, \mathcal{H}_2)\zeta,$$

(iii)
$$\widetilde{R}(\mathcal{H}_1,\zeta)\mathcal{H}_2 = -(2\beta^2 - \rho)[g(\mathcal{H}_1,\mathcal{H}_2)\zeta - \eta(\mathcal{H}_2)\mathcal{H}_1] + 2\beta\Phi(\mathcal{H}_1,\mathcal{H}_2)\zeta,$$

(iv)
$$\widetilde{R}(\zeta, \mathcal{H}_1)\zeta = (2\beta^2 - \rho)\phi^2\mathcal{H}_1$$
,

(v)
$$\widetilde{S}(\mathcal{H}_1,\zeta) = 2n(2\beta^2 - \rho)\eta(\mathcal{H}_1),$$

(vi)
$$\widetilde{Q}\zeta = 2n(2\beta^2 - \rho)\zeta$$
,

$$(vii) \ \eta(\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3) = (2\beta^2 - \rho)[g(\mathcal{H}_2, \mathcal{H}_3)\eta(\mathcal{H}_1) - g(\mathcal{H}_1, \mathcal{H}_3)\eta(\mathcal{H}_2)] + 2\beta[\eta(\mathcal{H}_2)\Phi(\mathcal{H}_1, \mathcal{H}_3) - \eta(\mathcal{H}_1)\Phi(\mathcal{H}_2, \mathcal{H}_3)],$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 on \mathcal{M}_{β} .

Now, we define conformal curvature tensor with respect to g-TW connection $\widetilde{\nabla}$.

Definition 3.1 The conformal curvature tensor \widetilde{C} for a (2n+1)-dimensional $L\beta K$ manifold \mathcal{M}_{β} admitting g-TW connection is defined as

$$\widetilde{C}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = \widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 - \frac{1}{(2n-1)} \Big[\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 - \widetilde{S}(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2 + g(\mathcal{H}_2, \mathcal{H}_3)\widetilde{Q}\mathcal{H}_1 \\ - g(\mathcal{H}_1, \mathcal{H}_3)\widetilde{Q}\mathcal{H}_2 \Big] + \frac{\widetilde{r}}{2n(2n-1)} \Big[g(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 - g(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2 \Big].$$
(3.39)

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 on \mathcal{M}_{β} . Here \widetilde{R} , \widetilde{S} and \widetilde{r} are the Riemannian curvature tensor, Ricci tensor and the scalar curvature with respect to the connection $\widetilde{\nabla}$, respectively on \mathcal{M}_{β} .

Also, we can state the following:

Lemma 3.2 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$. Let \widetilde{C} be the conformal curvature tensor with respect to $\widetilde{\nabla}$. Then, we have the following (i) $\widetilde{C}(\mathcal{H}_1,\mathcal{H}_2)\mathcal{H}_3 + \widetilde{C}(\mathcal{H}_2,\mathcal{H}_1)\mathcal{H}_3 = 0$,

(ii)
$$\widetilde{\mathcal{C}}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 + \widetilde{\mathcal{C}}(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 + \widetilde{\mathcal{C}}(\mathcal{H}_3, \mathcal{H}_1)\mathcal{H}_2 = 0$$
,

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 on \mathcal{M}_{β} .

4. Lorentzian β -Kenmotsu manifold admitting g-TW connection satisfying $\widetilde{R}\cdot\widetilde{S}=0 \text{ condition}$

Let us consider a $L\beta K$ manifold admitting g-TW connection satisfying the condition

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2) \cdot \widetilde{S} = 0, \tag{4.40}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ on \mathcal{M}_{β} .

From (4.40), we infer

$$(\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2) \cdot \widetilde{S})(\mathcal{F}_1, \mathcal{F}_2) = \widetilde{S}(\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{F}_1, \mathcal{F}_2) + \widetilde{S}(\mathcal{F}_1, \widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{F}_2) = 0, \tag{4.41}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2, \mathcal{F}_1$ and \mathcal{F}_2 on \mathcal{M}_{β} .

Substituting $\mathcal{H}_1 = \zeta$ in (4.41), we have

$$\widetilde{S}(\widetilde{R}(\zeta, \mathcal{H}_2)\mathcal{F}_1, \mathcal{F}_2) + \widetilde{S}(\mathcal{F}_1, \widetilde{R}(\zeta, \mathcal{H}_2)\mathcal{F}_2) = 0, \tag{4.42}$$

By virtue of (3.30), we have

$$\widetilde{S}(\widetilde{R}(\zeta, \mathcal{H}_2)\mathcal{F}_1, \mathcal{F}_2) = (2\beta^2 - \rho)[g(\mathcal{H}_2, \mathcal{F}_1)\widetilde{S}(\zeta, \mathcal{F}_2) - \eta(\mathcal{F}_1)\widetilde{S}(\mathcal{H}_2, \mathcal{F}_2)] - 2\beta\Phi(\mathcal{H}_2, \mathcal{F}_1)\widetilde{S}(\zeta, \mathcal{F}_2),$$
(4.43)

and

$$\widetilde{S}(\mathcal{F}_1, \widetilde{R}(\zeta, \mathcal{H}_2)\mathcal{F}_2) = (2\beta^2 - \rho)[g(\mathcal{H}_2, \mathcal{F}_2)\widetilde{S}(\mathcal{F}_1, \zeta) - \eta(\mathcal{F}_2)\widetilde{S}(\mathcal{F}_1, \mathcal{H}_2)] - 2\beta\Phi(\mathcal{H}_2, \mathcal{F}_2)\widetilde{S}(\mathcal{F}_1, \zeta),$$
(4.44)

where $\Phi(\mathcal{H}_2, \mathcal{F}_1) = g(\mathcal{H}_2, \phi \mathcal{F}_1)$ and $\Phi(\mathcal{H}_2, \mathcal{F}_2) = g(\mathcal{H}_2, \phi \mathcal{F}_2)$.

Substituting (4.43) and (4.44) in (4.42), we obtain

$$(2\beta^{2} - \rho)[g(\mathcal{H}_{2}, \mathcal{F}_{1})\widetilde{S}(\zeta, \mathcal{F}_{2}) - \eta(\mathcal{F}_{1})\widetilde{S}(\mathcal{H}_{2}, \mathcal{F}_{2}) + g(\mathcal{H}_{2}, \mathcal{F}_{2})\widetilde{S}(\mathcal{F}_{1}, \zeta) - \eta(\mathcal{F}_{2})\widetilde{S}(\mathcal{F}_{1}, \mathcal{H}_{2})]$$
$$-2\beta[\Phi(\mathcal{H}_{2}, \mathcal{F}_{1})\widetilde{S}(\zeta, \mathcal{F}_{2}) + \Phi(\mathcal{H}_{2}, \mathcal{F}_{2})\widetilde{S}(\mathcal{F}_{1}, \zeta)] = 0.$$

$$(4.45)$$

Setting $\mathcal{F}_1 = \zeta$ in (4.45) and on further simplification, we have

$$\widetilde{S}(\mathcal{H}_2, \mathcal{F}_2) = 2n(2\beta^2 - \rho)g(\mathcal{H}_2, \mathcal{F}_2) - 4n\beta\Phi(\mathcal{H}_2, \mathcal{F}_2). \tag{4.46}$$

Contracting above, we have

$$\widetilde{r} = 2n(2n+1)(2\beta^2 - \rho) - 4n\beta\psi,$$
(4.47)

INT. J. MAPS MATH. (2025) 8(2):567-588 / WEYL CURVATURE IN β -KENMOTSU GTW ... 577 where $\psi = trace(\phi)$.

By virtue of (3.32) in (4.46), we obtain

$$S(\mathcal{H}_2, \mathcal{F}_2) = -[2n\beta^2 + (2n-1)\rho]g(\mathcal{H}_2, \mathcal{F}_2) - (2n-1)\rho\eta(\mathcal{H}_2)\eta(\mathcal{F}_2) - 2(2n-1)\beta\Phi(\mathcal{H}_2, \mathcal{F}_2).$$
(4.48)

Contracting above, we have

$$r = -2n(2n+1)\beta^2 - 2(2n-1)[n\rho + \beta\psi]. \tag{4.49}$$

Thus, based on the discussion above, we can present the following theorem:

Theorem 4.1 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$ satisfying $\widetilde{R} \cdot \widetilde{S} = 0$ condition. Then we have the following:

- (i) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to $\widetilde{\nabla}$ whose Ricci tensor is of the form (4.46) and having scalar curvature \widetilde{r} of the form (4.47), and
- (ii) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (4.48) and having scalar curvature r of the form (4.49).
 - 5. Lorentzian β -Kenmotsu manifold admitting g-TW connection satisfying $\widetilde{S}\cdot\widetilde{R}=0 \text{ condition}$

Let us consider a $L\beta K$ manifold admitting g-TW connection satisfying the condition

$$(\widetilde{S}(\mathcal{H}_1, \mathcal{H}_2) \cdot \widetilde{R})(\mathcal{F}_1, \mathcal{F}_2)\mathcal{H}_3 = 0, \tag{5.50}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{F}_1$ and \mathcal{F}_2 on \mathcal{M}_{β} .

From (5.50), we infer that

$$(\mathcal{H}_1 \wedge_{\widetilde{S}} \mathcal{H}_2)\widetilde{R}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{H}_3 + \widetilde{R}((\mathcal{H}_1 \wedge_{\widetilde{S}} \mathcal{H}_2)\mathcal{F}_1, \mathcal{F}_2)\mathcal{H}_3 + \widetilde{R}(\mathcal{F}_1, (\mathcal{H}_1 \wedge_{\widetilde{S}} \mathcal{H}_2)\mathcal{F}_2)\mathcal{H}_3$$
$$+ \widetilde{R}(\mathcal{F}_1, \mathcal{F}_2)(\mathcal{H}_1 \wedge_{\widetilde{S}} \mathcal{H}_2)\mathcal{H}_3 = 0, \qquad (5.51)$$

where the endomorphism $\mathcal{H}_1 \wedge_{\widetilde{S}} \mathcal{H}_2$ is defined by

$$(\mathcal{H}_1 \wedge_{\widetilde{S}} \mathcal{H}_2)\mathcal{H}_3 = \widetilde{S}(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 - \widetilde{S}(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2. \tag{5.52}$$

Substituting $\mathcal{H}_2 = \zeta$ in (5.51) and on further simplification, we obtain

$$\widetilde{S}(\zeta, \widetilde{R}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{H}_3)\mathcal{H}_1 - \widetilde{S}(\mathcal{H}_1, \widetilde{R}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{H}_3)\zeta + \widetilde{S}(\zeta, \mathcal{F}_1)\widetilde{R}(\mathcal{H}_1, \mathcal{F}_2)\mathcal{H}_3
- \widetilde{S}(\mathcal{H}_1, \mathcal{F}_1)\widetilde{R}(\zeta, \mathcal{F}_2)\mathcal{H}_3 + \widetilde{S}(\zeta, \mathcal{F}_2)\widetilde{R}(\mathcal{F}_1, \mathcal{H}_1)\mathcal{H}_3 - \widetilde{S}(\mathcal{H}_1, \mathcal{F}_2)\widetilde{R}(\mathcal{F}_1, \zeta)\mathcal{H}_3
+ \widetilde{S}(\zeta, \mathcal{H}_3)\widetilde{R}(\mathcal{F}_1, \mathcal{F}_2)\mathcal{H}_1 - \widetilde{S}(\mathcal{H}_1, \mathcal{H}_3)\widetilde{R}(\mathcal{F}_1, \mathcal{F}_2)\zeta = 0.$$
(5.53)

Taking inner product of (5.53) with ζ , we have

$$\widetilde{S}(\zeta, \widetilde{R}(\mathcal{F}_{1}, \mathcal{F}_{2})\mathcal{H}_{3})\eta(\mathcal{H}_{1}) + \widetilde{S}(\mathcal{H}_{1}, \widetilde{R}(\mathcal{F}_{1}, \mathcal{F}_{2})\mathcal{H}_{3}) + \widetilde{S}(\zeta, \mathcal{F}_{1})\eta(\widetilde{R}(\mathcal{H}_{1}, \mathcal{F}_{2})\mathcal{H}_{3})$$

$$-\widetilde{S}(\mathcal{H}_{1}, \mathcal{F}_{1})\eta(\widetilde{R}(\zeta, \mathcal{F}_{2})\mathcal{H}_{3}) + \widetilde{S}(\zeta, \mathcal{F}_{2})\eta(\widetilde{R}(\mathcal{F}_{1}, \mathcal{H}_{1})\mathcal{H}_{3}) - \widetilde{S}(\mathcal{H}_{1}, \mathcal{F}_{2})\eta(\widetilde{R}(\mathcal{F}_{1}, \zeta)\mathcal{H}_{3})$$

$$+\widetilde{S}(\zeta, \mathcal{H}_{3})\eta(\widetilde{R}(\mathcal{F}_{1}, \mathcal{F}_{2})\mathcal{H}_{1}) - \widetilde{S}(\mathcal{H}_{1}, \mathcal{H}_{3})\eta(\widetilde{R}(\mathcal{F}_{1}, \mathcal{F}_{2})\zeta) = 0.$$
 (5.54)

Setting $\mathcal{F}_1 = \mathcal{H}_3 = \zeta$ in (5.54) and on simplification, we have

$$(2\beta^{2} - \rho)[\widetilde{S}(\mathcal{H}_{1}, \mathcal{F}_{2}) + \eta(\mathcal{F}_{2})\widetilde{S}(\mathcal{H}_{1}, \zeta)] + 2n(2\beta^{2} - \rho)^{2}[g(\mathcal{H}_{1}, \mathcal{F}_{2}) + \eta(\mathcal{H}_{1})\eta(\mathcal{F}_{2})] -4n\beta(2\beta^{2} - \rho)\Phi(\mathcal{H}_{1}, \mathcal{F}_{2}) = 0.$$
 (5.55)

From (3.32), we have

$$\widetilde{S}(\mathcal{H}_1,\zeta) = 2n(2\beta^2 - \rho)\eta(\mathcal{H}_1). \tag{5.56}$$

Using (5.56) in (5.55), we obtain

$$\widetilde{S}(\mathcal{H}_1, \mathcal{F}_2) = -2n(2\beta^2 - \rho)g(\mathcal{H}_1, \mathcal{F}_2) - 4n(2\beta^2 - \rho)\eta(\mathcal{H}_1)\eta(\mathcal{F}_2) + 4n\beta\Phi(\mathcal{H}_1, \mathcal{F}_2).$$
 (5.57)

Contracting above, we have

$$\widetilde{r} = -2n(2n-1)(2\beta^2 - \rho) + 4n\beta\psi,$$
(5.58)

where $\psi = trace(\phi)$.

Furthermore, using (3.32) in (5.57), we obtain

$$S(\mathcal{H}_1, \mathcal{F}_2) = [(2n+1)\rho - 10n\beta^2]g(\mathcal{H}_1, \mathcal{F}_2) + [(2n+1)\rho - 8n\beta^2]\eta(\mathcal{H}_1)\eta(\mathcal{F}_2)$$
$$+ 2(2n+1)\beta\Phi(\mathcal{H}_1, \mathcal{F}_2). \tag{5.59}$$

Contracting above, we have

$$r = 2n(2n+1)\rho - 2n(10n+1)\beta^2 + 2(2n+1)\beta\psi.$$
 (5.60)

Thus, based on the discussion above, we can present the following theorem:

Theorem 5.1 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$ satisfying $\widetilde{S} \cdot \widetilde{R} = 0$ condition. Then we have the following:

- (i) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to $\widetilde{\nabla}$ whose Ricci tensor is of the form (5.57) and having scalar curvature \widetilde{r} of the form (5.58), and
- (ii) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (5.59) and having scalar curvature r of the form (5.60).

6. Conformally flat Lorentzian β -Kenmotsu manifold admitting g-TW connection

In this section, we examine conformally flat Lorentzian β -Kenmotsu manifold admitting g-TW connection $\widetilde{\nabla}$.

Definition 6.1 A $L\beta K$ manifold is said to be conformally flat with respect to g-TW connection $\widetilde{\nabla}$ if it satisfies

$$\widetilde{\mathcal{C}}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = 0, \tag{6.61}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ and \mathcal{H}_3 on \mathcal{M}_{β} .

By virtue of (6.61) in (3.39), we obtain

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3 = \frac{1}{(2n-1)} \Big[\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 - \widetilde{S}(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2 + g(\mathcal{H}_2, \mathcal{H}_3)\widetilde{Q}\mathcal{H}_1 - g(\mathcal{H}_1, \mathcal{H}_3)\widetilde{Q}\mathcal{H}_2 \Big] \\
- \frac{\widetilde{r}}{2n(2n-1)} \Big[g(\mathcal{H}_2, \mathcal{H}_3)\mathcal{H}_1 - g(\mathcal{H}_1, \mathcal{H}_3)\mathcal{H}_2 \Big].$$
(6.62)

Taking inner product of (6.62) with ζ and on further simplification, we have

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \zeta) = \frac{1}{(2n-1)} \left[\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3) \eta(\mathcal{H}_1) - \widetilde{S}(\mathcal{H}_1, \mathcal{H}_3) \eta(\mathcal{H}_2) \right]$$

$$+ \left[\frac{4n^2 (2\beta^2 - \rho) - \widetilde{r}}{(2n-1)} \right] \left[g(\mathcal{H}_2, \mathcal{H}_3) \eta(\mathcal{H}_1) - g(\mathcal{H}_1, \mathcal{H}_3) \eta(\mathcal{H}_2) \right].$$
 (6.63)

Further, on substituting $\mathcal{H}_4 = \zeta$ in (3.31) and using (2.12), we obtain

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \zeta) = (2\beta^2 - \rho) \left[g(\mathcal{H}_2, \mathcal{H}_3) \eta(\mathcal{H}_1) - g(\mathcal{H}_1, \mathcal{H}_3) \eta(\mathcal{H}_2) \right]$$

$$+ 2\beta \left[\eta(\mathcal{H}_2) g(\mathcal{H}_1, \phi \mathcal{H}_3) - \eta(\mathcal{H}_1) g(\mathcal{H}_2, \phi \mathcal{H}_3) \right].$$

$$(6.64)$$

Using (6.64) in (6.63), we infer

$$\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3)\eta(\mathcal{H}_1) - \widetilde{S}(\mathcal{H}_1, \mathcal{H}_3)\eta(\mathcal{H}_2) = \left[\frac{\widetilde{r} - 2n(2\beta^2 - \rho)}{2n}\right] \left[g(\mathcal{H}_2, \mathcal{H}_3)\eta(\mathcal{H}_1) - g(\mathcal{H}_1, \mathcal{H}_3)\eta(\mathcal{H}_2)\right] + 2(2n - 1)\beta \left[\eta(\mathcal{H}_2)g(\mathcal{H}_1, \phi\mathcal{H}_3) - \eta(\mathcal{H}_1)g(\mathcal{H}_2, \phi\mathcal{H}_3)\right].$$
(6.65)

Assuming $\mathcal{H}_1 = \zeta$ in (6.65) and on further simplification, we have

$$\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3) = \left[\frac{\widetilde{r} - 2n(2\beta^2 - \rho)}{2n}\right] g(\mathcal{H}_2, \mathcal{H}_3) + \left[\frac{\widetilde{r} - 2n(2n+1)(2\beta^2 - \rho)}{2n}\right] \eta(\mathcal{H}_2) \eta(\mathcal{H}_3)$$

$$-2(2n-1)\beta\Phi(\mathcal{H}_2, \mathcal{H}_3), \tag{6.66}$$

where $\Phi(\mathcal{H}_2, \mathcal{H}_3) = g(\mathcal{H}_2, \phi \mathcal{H}_3)$. Using (3.32) in (6.66), we obtain

$$S(\mathcal{H}_2, \mathcal{H}_3) = \left[\frac{r + 2n\beta^2 - 2\beta\psi}{2n}\right] g(\mathcal{H}_2, \mathcal{H}_3) + \left[\frac{r + 2n(2n+1)\beta^2 - 2\beta\psi}{2n}\right] \eta(\mathcal{H}_2)\eta(\mathcal{H}_3)$$
$$-4(n-1)\beta\Phi(\mathcal{H}_2, \mathcal{H}_3). \tag{6.67}$$

Thus, based on the discussion above, we can present the following theorem:

Theorem 6.1 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$ satisfying conformally flat condition. Then we have the following:

- (i) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to $\widetilde{\nabla}$ whose Ricci tensor is of the form (6.66), and
- (ii) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (6.67).

7. ζ -conformally flat Lorentzian β -Kenmotsu manifold admitting g-TW connection

In this section, we examine ζ -conformally flat Lorentzian β -Kenmotsu manifold admitting g-TW connection $\widetilde{\nabla}$.

Definition 7.1 A $L\beta K$ manifold is said to be ζ -conformally flat with respect to g-TW connection $\widetilde{\nabla}$ if it satisfies

$$\widetilde{\mathcal{C}}(\mathcal{H}_1, \mathcal{H}_2)\zeta = 0, \tag{7.68}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2$ on \mathcal{M}_{β} .

Setting $\mathcal{H}_3 = \zeta$ in (3.39) and using (7.68), we obtain

$$\widetilde{R}(\mathcal{H}_1, \mathcal{H}_2)\zeta = \frac{1}{(2n-1)} \left[\widetilde{S}(\mathcal{H}_2, \zeta) \mathcal{H}_1 - \widetilde{S}(\mathcal{H}_1, \zeta) \mathcal{H}_2 + \eta(\mathcal{H}_2) \widetilde{Q} \mathcal{H}_1 - \eta(\mathcal{H}_1) \widetilde{Q} \mathcal{H}_2 \right] - \frac{\widetilde{r}}{2n(2n-1)} \left[\eta(\mathcal{H}_2) \mathcal{H}_1 - \eta(\mathcal{H}_1) \mathcal{H}_2 \right].$$
(7.69)

On further simplification, we have

$$\eta(\mathcal{H}_2)\widetilde{Q}\mathcal{H}_1 - \eta(\mathcal{H}_1)\widetilde{Q}\mathcal{H}_2 = \left[\frac{\widetilde{r} - 2n(2\beta^2 - \rho)}{2n}\right] \left[\eta(\mathcal{H}_2)\mathcal{H}_1 - \eta(\mathcal{H}_1)\mathcal{H}_2\right]. \tag{7.70}$$

Taking inner product of (7.70) with \mathcal{H}_3 , we have

$$\eta(\mathcal{H}_2)\widetilde{S}(\mathcal{H}_1,\mathcal{H}_3) - \eta(\mathcal{H}_1)\widetilde{S}(\mathcal{H}_2,\mathcal{H}_3) = \left[\frac{\widetilde{r} - 2n(2\beta^2 - \rho)}{2n}\right] \left[\eta(\mathcal{H}_2)g(\mathcal{H}_1,\mathcal{H}_3) - \eta(\mathcal{H}_1)g(\mathcal{H}_2,\mathcal{H}_3)\right].$$
(7.71)

Substituting $\mathcal{H}_1 = \zeta$ in (7.71), we obtain

$$\widetilde{S}(\mathcal{H}_2, \mathcal{H}_3) = \left[\frac{\widetilde{r} - 2n(2\beta^2 - \rho)}{2n}\right] g(\mathcal{H}_2, \mathcal{H}_3) + \left[\frac{\widetilde{r} - 2n(2n+1)(2\beta^2 - \rho)}{2n}\right] \eta(\mathcal{H}_2)\eta(\mathcal{H}_3).$$
(7.72)

Using (3.32) in (7.72), we have

$$S(\mathcal{H}_2, \mathcal{H}_3) = \left[\frac{r + 2n\beta^2 - 2\beta\psi}{2n}\right] g(\mathcal{H}_2, \mathcal{H}_3) + \left[\frac{r + 2n(2n+1)\beta^2 - 2\beta\psi}{2n}\right] \eta(\mathcal{H}_2)\eta(\mathcal{H}_3)$$
$$+ 2\beta\Phi(\mathcal{H}_2, \mathcal{H}_3), \tag{7.73}$$

where $\Phi(\mathcal{H}_2, \mathcal{H}_3) = g(\mathcal{H}_2, \phi \mathcal{H}_3)$.

Thus, based on the discussion above, we can present the following theorem:

Theorem 7.1 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$ satisfying ζ -conformally flat condition. Then we have the following:

- (i) \mathcal{M}_{β} is an η -Einstein manifold with respect to $\widetilde{\nabla}$ whose Ricci tensor is of the form (7.72), and
- (ii) \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (7.73).

8. Pseudo-conformally flat Lorentzian β -Kenmotsu manifold admitting G-TW connection

In this section, we examine pseudo-conformally flat Lorentzian β -Kenmotsu manifold admitting g-TW connection $\widetilde{\nabla}$.

Definition 8.1 A $L\beta K$ manifold is said to be pseudo-conformally flat with respect to g-TW connection $\widetilde{\nabla}$ if it satisfies

$$g(\widetilde{\mathcal{C}}(\phi \mathcal{H}_1, \mathcal{H}_2)\mathcal{H}_3, \phi \mathcal{H}_4) = 0, \tag{8.74}$$

for any vector fields $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ and \mathcal{H}_4 on \mathcal{M}_{β} .

By virtue of (3.39) and (8.74), we have

$$\widetilde{R}(\phi \mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3}, \phi \mathcal{H}_{4}) = \frac{1}{(2n-1)} \left[\widetilde{S}(\mathcal{H}_{2}, \mathcal{H}_{3}) g(\phi \mathcal{H}_{1}, \phi \mathcal{H}_{4}) - \widetilde{S}(\phi \mathcal{H}_{1}, \mathcal{H}_{3}) g(\mathcal{H}_{2}, \phi \mathcal{H}_{4}) \right. \\
+ g(\mathcal{H}_{2}, \mathcal{H}_{3}) \widetilde{S}(\phi \mathcal{H}_{1}, \phi \mathcal{H}_{4}) - g(\phi \mathcal{H}_{1}, \mathcal{H}_{3}) \widetilde{S}(\mathcal{H}_{2}, \phi \mathcal{H}_{4}) \right] \\
- \frac{\widetilde{r}}{2n(2n-1)} \left[g(\mathcal{H}_{2}, \mathcal{H}_{3}) g(\phi \mathcal{H}_{1}, \phi \mathcal{H}_{4}) - g(\phi \mathcal{H}_{1}, \mathcal{H}_{3}) g(\mathcal{H}_{2}, \phi \mathcal{H}_{4}) \right]. \tag{8.75}$$

Let $\{e_1, e_2, e_3, \dots, e_{2n+1}\}$ be a local orthonormal basis of the tangent space at any point of the manifold \mathcal{M}_{β} . By setting $\mathcal{H}_2 = \mathcal{H}_3 = e_i$ in (8.75) and summing over i for $1 \leq i \leq (2n+1)$, we obtain

$$(2n+1)\widetilde{r}g(\phi\mathcal{H}_1,\phi\mathcal{H}_4) = 0. \tag{8.76}$$

Since $(2n+1) \neq 0$, therefore

$$\widetilde{r}g(\phi \mathcal{H}_1, \phi \mathcal{H}_4) = 0. \tag{8.77}$$

By virtue of (2.6), we have

$$\widetilde{r}\left[g(\mathcal{H}_1, \mathcal{H}_4) + \eta(\mathcal{H}_1)\eta(\mathcal{H}_4)\right] = 0. \tag{8.78}$$

Replacing \mathcal{H}_1 by $\widetilde{Q}\mathcal{H}_1$ in (8.78), we have

$$\widetilde{r}\left[\widetilde{S}(\mathcal{H}_1, \mathcal{H}_4) + 2n(2\beta^2 - \rho)\eta(\mathcal{H}_1)\eta(\mathcal{H}_4)\right] = 0.$$
(8.79)

From above, we infer following cases:

Case I: If $\tilde{r} = 0$. Then from (3.34), we obtain

$$r = -6n(2n+1)\beta^2 + 4n\rho + 2\beta\psi, \tag{8.80}$$

where $\psi = trace(\phi)$.

Case II: If $\tilde{r} \neq 0$. Then from (8.79), we have

$$\widetilde{S}(\mathcal{H}_1, \mathcal{H}_4) = -2n(2\beta^2 - \rho)\eta(\mathcal{H}_1)\eta(\mathcal{H}_4). \tag{8.81}$$

Contracting above, we infer

$$\widetilde{r} = 2n(2\beta^2 - \rho). \tag{8.82}$$

Using (3.32) in (8.81), we obtain

$$S(\mathcal{H}_1, \mathcal{H}_4) = -(6n\beta^2 - \rho)g(\mathcal{H}_1, \mathcal{H}_4) - (4n\beta^2 - \rho)\eta(\mathcal{H}_1)\eta(\mathcal{H}_4) + 2\beta\Phi(\mathcal{H}_1, \mathcal{H}_4), \tag{8.83}$$

where $\Phi(\mathcal{H}_1, \mathcal{H}_4) = g(\mathcal{H}_1, \phi \mathcal{H}_4)$.

Contracting above, we have

$$r = -2n(6n+1)\beta^2 + 2n\rho + 2\beta\psi. \tag{8.84}$$

Thus, based on the discussion above, we can present the following theorem:

Theorem 8.1 Let \mathcal{M}_{β} be a (2n+1)-dimensional $L\beta K$ manifold admitting g-TW connection $\widetilde{\nabla}$ satisfying pseudo-conformally flat condition. Then we have the following:

- (i) The scalar curvature \widetilde{r} with respect to $\widetilde{\nabla}$ vanishes. Moreover, the scalar curvature r with respect to Levi-Civita connection ∇ is of the form (8.80), or
- (ii) \mathcal{M}_{β} is an η -Einstein manifold with respect to $\widetilde{\nabla}$ whose Ricci tensor is of the form (8.81) and having scalar curvature \widetilde{r} of the form (8.82). Moreover, \mathcal{M}_{β} is a generalized η -Einstein manifold with respect to Levi-Civita connection ∇ whose Ricci tensor is of the form (8.83) and having scalar curvature of the form (8.84).
 - 9. Example of a three-dimensional Lorentzian β -Kenmotsu manifold admitting g-TW connection

In this section, we illustrate an example of a three-dimensional Lorentzian β -Kenmotsu manifold. Consider the three-dimensional manifold

$$\mathcal{M}^3 = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}$$

where (x, y, z) are the standard coordinates in \mathbb{R}^3 . We define the vector fields

$$\vartheta_1 = e^{-z} \frac{\partial}{\partial x}, \quad \vartheta_2 = e^{-z} \frac{\partial}{\partial y}, \quad \vartheta_3 = e^{-z} \frac{\partial}{\partial z} = \zeta,$$

which remain linearly independent at each point in M.

The Lorentzian metric g is given by

$$g(\vartheta_1, \vartheta_1) = 1$$
, $g(\vartheta_2, \vartheta_2) = 1$, $g(\vartheta_3, \vartheta_3) = -1$,

$$g(\vartheta_1, \vartheta_2) = g(\vartheta_2, \vartheta_3) = g(\vartheta_3, \vartheta_1) = 0,$$

which can be expressed as

$$g = e^{2z} (dx \otimes dx + dy \otimes dy - dz \otimes dz).$$

Let the 1-form η satisfy

$$\eta(\mathcal{H}_1) = g(\mathcal{H}_1, \vartheta_3)$$

The (1,1)-tensor field ϕ is defined as

$$\phi(\vartheta_1) = -\vartheta_2, \quad \phi(\vartheta_2) = -\vartheta_1, \quad \phi(\vartheta_3) = 0.$$

For any vector fields $\mathcal{H}_1, \mathcal{H}_2$ on \mathcal{M}^3 , the following conditions hold:

$$\phi^2(\mathcal{H}_1) = \mathcal{H}_1 + n(\mathcal{H}_1)\vartheta_3,$$

$$q(\phi \mathcal{H}_1, \phi \mathcal{H}_2) = q(\mathcal{H}_1, \mathcal{H}_2) + \eta(\mathcal{H}_1)\eta(\mathcal{H}_2).$$

Thus, the structure $\mathcal{M}^3(\phi, \zeta, \eta, g)$ forms an almost contact metric structure on \mathcal{M}^3 , where we set $\vartheta_3 = \zeta$.

The Lie brackets of the vector fields are computed as follows:

$$[\vartheta_1, \vartheta_3] = e^{-z}\vartheta_1, \quad [\vartheta_1, \vartheta_2] = 0, \quad [\vartheta_2, \vartheta_3] = e^{-z}\vartheta_2.$$

Using Koszul's formula, the Levi-Civita connection ∇ is obtained as

$$\begin{cases} \nabla_{\vartheta_1}\vartheta_1 = e^{-z}\vartheta_3, & \nabla_{\vartheta_2}\vartheta_1 = 0, & \nabla_{\vartheta_3}\vartheta_1 = 0, \\ \nabla_{\vartheta_1}\vartheta_2 = 0, & \nabla_{\vartheta_2}\vartheta_2 = e^{-z}\vartheta_3, & \nabla_{\vartheta_3}\vartheta_2 = 0, \\ \nabla_{\vartheta_1}\vartheta_3 = 0, & \nabla_{\vartheta_2}\vartheta_3 = 0, & \nabla_{\vartheta_3}\vartheta_3 = 0. \end{cases}$$
(9.85)

From the above results, setting $\beta = e^{-z}$, we conclude that $\mathcal{M}^3(\phi, \zeta, \eta, g)$ defines a \mathcal{M}_{β} structure in dimension three. From (3.27) and (9.85), we obtain

$$\begin{cases}
\widetilde{\nabla}_{\vartheta_1}\vartheta_1 = 2e^{-z}\vartheta_3, & \widetilde{\nabla}_{\vartheta_2}\vartheta_1 = 0, \quad \widetilde{\nabla}_{\vartheta_3}\vartheta_1 = -\vartheta_2, \\
\widetilde{\nabla}_{\vartheta_1}\vartheta_2 = 0, & \widetilde{\nabla}_{\vartheta_2}\vartheta_2 = 2e^{-z}\vartheta_3, \quad \widetilde{\nabla}_{\vartheta_3}\vartheta_2 = -\vartheta_1, \\
\widetilde{\nabla}_{\vartheta_1}\vartheta_3 = e^{-z}\vartheta_1, & \widetilde{\nabla}_{\vartheta_2}\vartheta_3 = e^{-z}\vartheta_2, \quad \widetilde{\nabla}_{\vartheta_3}\vartheta_3 = 0.
\end{cases}$$
(9.86)

The components of the curvature tensor with respect to the Levi-Civita connection ∇ are given by:

$$\begin{cases} R(\vartheta_1, \vartheta_2)\vartheta_1 = e^{-2z}\vartheta_2, & R(\vartheta_2, \vartheta_3)\vartheta_1 = 0, & R(\vartheta_1, \vartheta_3)\vartheta_1 = e^{-2z}\vartheta_3, \\ R(\vartheta_1, \vartheta_2)\vartheta_2 = -e^{-2z}\vartheta_1, & R(\vartheta_2, \vartheta_3)\vartheta_2 = e^{-2z}\vartheta_3, & R(\vartheta_1, \vartheta_3)\vartheta_2 = 0, \\ R(\vartheta_1, \vartheta_2)\vartheta_3 = 0, & R(\vartheta_2, \vartheta_3)\vartheta_3 = e^{-2z}\vartheta_2, & R(\vartheta_1, \vartheta_3)\vartheta_3 = e^{-2z}\vartheta_1. \end{cases}$$
(9.87)

The components of the curvature tensor with respect to the g-TW connection $\widetilde{\nabla}$ are given by:

$$\begin{cases} \widetilde{R}(\vartheta_1,\vartheta_2)\vartheta_1 &= -2e^{-2z}\vartheta_2, \quad \widetilde{R}(\vartheta_2,\vartheta_3)\vartheta_1 = -2e^{-z}\vartheta_3, \quad \widetilde{R}(\vartheta_1,\vartheta_3)\vartheta_1 = -2e^{-2z}\vartheta_3 + \rho\vartheta_3, \\ \widetilde{R}(\vartheta_1,\vartheta_2)\vartheta_2 &= 2e^{-2z}\vartheta_1, \quad \widetilde{R}(\vartheta_2,\vartheta_3)\vartheta_2 = -2e^{-2z}\vartheta_3 + \rho\vartheta_3, \quad \widetilde{R}(\vartheta_1,\vartheta_3)\vartheta_2 = -2e^{-z}\vartheta_3, \\ \widetilde{R}(\vartheta_1,\vartheta_2)\vartheta_3 &= 0, \quad \widetilde{R}(\vartheta_2,\vartheta_3)\vartheta_3 = -2e^{-2z}\vartheta_2 + \rho\vartheta_2, \quad \widetilde{R}(\vartheta_1,\vartheta_3)\vartheta_3 = -2e^{-2z}\vartheta_1 + \rho\vartheta_1. \end{cases}$$

$$(9.88)$$

From (9.87), the non-vanishing components of Ricci tensor with respect to Levi-Civita connection ∇ is as follows

$$S(\vartheta_1, \vartheta_1) = -2e^{-2z}, \quad S(\vartheta_2, \vartheta_2) = -2e^{-2z}, \quad S(\vartheta_3, \vartheta_3) = 2e^{-2z},$$
 (9.89)

which implies that the scalar curvature r with respect to ∇ can be evaluated by

$$r = \sum_{i=1}^{3} \varepsilon_i S(e_i, e_i) = -6e^{-2z}.$$
 (9.90)

Furthermore, from (9.88), the non-vanishing components of Ricci tensor with respect to the g-TW connection $\widetilde{\nabla}$ are given as

$$\widetilde{S}(\vartheta_1,\vartheta_1) = 4e^{-2z} - \rho, \quad \widetilde{S}(\vartheta_2,\vartheta_2) = 4e^{-2z} - \rho, \quad \widetilde{S}(\vartheta_3,\vartheta_3) = -4e^{-2z} + 2\rho, \tag{9.91}$$

which implies that the scalar curvature \widetilde{r} with respect to $\widetilde{\nabla}$ can be evaluated by

$$\widetilde{r} = \sum_{i=1}^{3} \varepsilon_i \widetilde{S}(e_i, e_i) = 12e^{-2z} - 4\rho.$$
 (9.92)

which can also be verified from (3.34) where ψ can be evaluated as

$$\psi = trace(\phi) = \sum_{i=1}^{3} \varepsilon_i \Phi(e_i, e_i) = 0.$$
 (9.93)

10. Conclusion

In this paper, we conducted a comprehensive study of Lorentzian β -Kenmotsu $(L\beta K)$ manifolds equipped with the generalized Tanaka-Webster (g-TW) connection. Beginning with fundamental definitions and preliminary results, we established the essential structure equations and derived explicit expressions for the curvature tensor \tilde{R} and the Ricci tensor \tilde{S} in this setting. Our analysis revealed several significant geometric properties, including the conditions under which an $L\beta K$ manifold admitting the g-TW connection becomes a generalized η -Einstein manifold.

We demonstrated that a $L\beta K$ manifold satisfies crucial curvature identities, such as the symmetry and skew-symmetry of the curvature tensor, and explored conditions like $\widetilde{R} \cdot \widetilde{S} = 0$ and $\widetilde{S} \cdot \widetilde{R} = 0$, under which the manifold naturally admits a generalized η -Einstein structure. Further, we investigated the geometric implications of conformally flat and ζ -conformally flat conditions, showing that such manifolds inherently exhibit the generalized η -Einstein property with respect to the g-TW connection. Additionally, we examined the notion of pseudo-conformal flatness in $L\beta K$ manifolds, establishing key results regarding scalar curvature and the structure of the Ricci tensor.

To solidify our theoretical findings, we provided an explicit example of a three-dimensional $L\beta K$ manifold equipped with the g-TW connection and verified that it satisfies the curvature conditions discussed throughout the paper. This study offers new insights into the geometric nature of Lorentzian β -Kenmotsu manifolds and their curvature properties under different structural constraints. The results presented here open pathways for further research, including extensions to higher-dimensional cases, the study of additional curvature conditions, and potential applications in mathematical physics and relativity.

Acknowledgments. The authors would like to thank the referee for some useful comments and their helpful suggestions that have improved the quality of this paper.

References

 [1] Ahmad, M., Haseeb, A., & Jun, J.B. (2019). *Quasi-concircular curvature tensor on a Lorentzian β-Kenmotsu manifold*. Journal of Chungcheong Mathematical Society, 32(3), 281–293. https://doi.org/10.14403/jcms.2019.32.3.281

- [2] Boeckx, E., Kowalski, O., & Vanhecke, L. (1996). Riemannian manifolds of conullity two. World Scientific Publishing, Singapore.
- [3] Cho, J.T. (1999). CR-structures on real hypersurfaces of a complex space form. Publications Mathematicae, 54, 473–487. https://doi.org/10.5486/pmd.1999.2081
- [4] Cho, J.T. (2008). Pseudo-Einstein CR-structures on real hypersurfaces in a complex space form. Hokkaido Mathematical Journal, 37, 1–17. https://doi.org/10.14492/hokmj/1253539581
- [5] Ghosh, G., & De, U.C. (2017). Kenmotsu manifolds with generalized Tanaka-Webster connection. Publications de l'Institut Mathématique-Beograd, 102, 221–230. https://doi.org/10.2298/PIM1716221G
- [6] Kowalski, O. (1996). An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. Czechoslovak Mathematical Journal, 46(121), 427–474. https://doi.org/10.21136/CMJ.1996.127308
- [7] Mishra, A.K., Prajapati, P., Rajan, & Singh, G.P. (2024). On M-projective curvature tensor of Lorentzian β-Kenmotsu manifold. Bulletin of the Transilvania University of Brasov, 4(66), 201–214. https://doi.org/10.31926/but.mif.2024.4.66.2.12
- [8] Prakasha, D.G., Bagewadi, C.S., & Basavarajappa, N.S. (2008). On Lorentzian β -Kenmotsu manifolds. International Journal of Mathematical Analysis, 2(19), 919–927.
- [9] Singh, A., Ahmad, M., Yadav, S. K., & Patel, S. (2024). Some results on β-Kenmotsu manifolds with a non-symmetric non-metric connection. *International Journal of Maps in Mathematics*, 7(1), 20–32.
- [10] Singh, A., Das, L. S., Pankaj, P., & Patel, S. (2024). Hyperbolic Kenmotsu manifolds admitting a semisymmetric non-metric connection. Facta Universitatis (Niš), Series: Mathematics and Informatics, 39(1), 123–139.
- [11] Singh, A., Kishor, S., & Kumar, L. (2025). Ricci soliton in an (ε) -para-Sasakian manifold admitting conharmonic curvature tensor. *Filomat*, 39(1), 83–96.
- [12] Singh, A., Prasad, R., & Kumar, L. (2025). Lorentzian β-Kenmotsu manifold admitting generalized Tanaka-Webster connection. *International Journal of Maps in Mathematics*, 8(1), 227–246.
- [13] Singh, G.P., Prajapati, P., Mishra, A.K., & Rajan. (2024). Generalized B-curvature tensor within the framework of Lorentzian β-Kenmotsu manifold. International Journal of Geometric Methods in Modern Physics, 21(2), 2450125 (14 pages). https://doi.org/10.1142/S0219887824501251
- [14] Szabó, Z.I. (1982). Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, the local version. Journal of Differential Geometry, 17, 531–582.
- [15] Tanaka, N. (1976). On non-degenerate real hypersurface, graded Lie algebra and Cartan connections. Japanese Journal of Mathematics, New Series 2, 131–190. https://doi.org/10.4099/math1924.2.131
- [16] Tanno, S. (1969). The automorphism groups of almost contact Riemannian manifold. Tohoku Mathematical Journal, 21, 21–38. https://doi.org/10.2748/tmj/1178243031
- [17] Takagi, R. (1975). Real hypersurfaces in complex projective space with constant principal curvatures. Journal of the Mathematical Society of Japan, 27, 45–53. https://doi.org/10.2969/jmsj/02710043
- [18] Verheyen, P., & Verstraelen, L. (1985). A new intrinsic characterization of hypercylinders in Euclidean spaces. Kyungpook Mathematical Journal, 25, 1–4.
- [19] Webster, S.M. (1978). Pseudohermitian structures on a real hypersurface. Journal of Differential Geometry, 13, 25–41. https://doi.org/10.4310/jdg/1214434345

[20] Yano, K., & Kon, M. (1984). Structures on manifolds. Series in Mathematics, Vol. 3. World Scientific Publishing, Singapore.

DEPARTMENT OF MATHEMATICS AND STATISTICS, DEEN DAYAL UPADHYAYA GORAKHPUR UNIVERSITY, GORAKHPUR-273009, UTTAR PRADESH, INDIA

DEPARTMENT OF MATHEMATICS AND STATISTICS, DEEN DAYAL UPADHYAYA GORAKHPUR UNIVERSITY, GORAKHPUR-273009, UTTAR PRADESH, INDIA

DEPARTMENT OF MATHEMATICS AND STATISTICS, DEEN DAYAL UPADHYAYA GORAKHPUR UNIVERSITY, GORAKHPUR-273009, UTTAR PRADESH, INDIA