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CONFORMAL SOLITONS IN RELATIVISTIC MAGNETO-FLUID

SPACETIMES WITH ANTI-TORQUED VECTOR FIELDS

PRAVEENA M. M. ID ∗ AND SIDDESHA M. S. ID

Abstract. The kinematic and dynamic properties of relativistic spacetime in the context

of relativity can be modelled by three distinct classes: shrinking, steady, and expanding.

This physical framework bears a resemblance to conformal Ricci flow, where solitons serve

as fixed points. Notably, within the solar system, the gravitational effects predicted by Ricci

flow align with those of Einstein’s gravity, ensuring consistency with all classical tests. In this

article, we investigate conformal solitons, which extend the concept of Ricci solitons, within

the framework of a magnetized spacetime manifold equipped with an anti-torqued vector

field ζ. An anti-torqued vector field is defined as one that resists rotational deformation

within the fluid-spacetime structure, effectively encoding a type of constrained rotational

symmetry relevant in magneto-fluid dynamics. We demonstrate that whether these confor-

mal solitons are steady, expanding, or shrinking depends on intricate relationships among

key physical parameters, including magnetic permeability, magneto-fluid density, isotropic

pressure, magnetic flux, and the strength of the magnetic field.

Keywords: Soliton, Spacetime, Energy momentum tensor.

2020 Mathematics Subject Classification: 53B30, 53C50, 53C80.

1. Introduction

In modern physics, space and time are inseparable, at least in the process of represent-

ing physical things through ourselves, where these two dimensions play an important role

in imagining and conceptualizing the connections of all physical things. In 1915, Einstein
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developed the theory of gravity known as general relativity, which exposes the fundamental

role of the physics and geometry of spacetime. It plays an important role in Engineering

when applied to day to day life. If we consider general relativity, then the space-time in the

four-dimensional pseudo-Riemannian manifold with Lorentzian metric (M4, g), where g is

considered to be perfectly liquid space-time. Perfect fluids are used in cosmology to model

the idealized distributions of matter. It is defined by various thermodynamical variables

(variables are: particle number density, energy density, pressure, temperature, and entropy

per particle). These variables are spacetime scalar fields whose values represent measure-

ments made in the rest frame of the isotropic or star.

On the other hand, the Ricci flow was first introduced by Hamilton [9]. Over the last decades,

many differential geometers progressively studied Ricci flow [3, 14]. Fischer [8] proposed a

modified version known as conformal Ricci flow, which differs from the classical Ricci flow

in its constraints. While the original Ricci flow preserves unit volume, the conformal Ricci

flow instead imposes a scalar curvature constraint. Interestingly, the conformal Ricci flow

equations exhibit structural similarities to the Navier-Stokes equations in fluid dynamics. In

this analogy, the time-dependent scalar field p acts as a conformal pressure—unlike physical

pressure, which ensures fluid incompressibility, conformal pressure influences the deforma-

tion of the metric under the flow. The fixed points of this system correspond to Einstein

metrics with a specific constant −1
n . Building on these concepts, Catino and Mazzieri [6]

introduced Einstein solitons, which provide self-similar solutions to the Einstein flow. Ex-

tending this framework, Roy et al. [18] developed the notion of conformal Einstein solitons.

Both conformal Ricci and conformal Einstein solitons generate self-similar solutions, offering

a deeper understanding of geometric flows in mathematical physics. The conformal Ricci

and conformal Einstein flow respectively are given by:

∂g

∂t
= −2(S +

g

n
)− ϕg and r = −1 and

∂g

∂t
= −2(S − r

2
g). (1.1)

A matter is assumed to be fluid, having pressure, density, and kinematic and dynamical quan-

tities like verticity, shear, velocity, acceleration, and expansion [25, 1]. The energy-momentum

tensor acts a big role in the matter content of spacetime (universe). The energy-momentum

tensor applications are cosmology and stellar structure, and examples are electromagnetism

and scalar field theory. The study of the kinematic and dynamic nature of relativistic space-

time application in relativity has a physical model of three classes, namely: shrinking, steady,
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and expanding. Such a physical model are similar to conformal flow. Also, for the solar sys-

tem, conformal flow gravity effects are not different from Einstein’s gravity, and hence it

obeys all the classical tests.

Over the last decades, many differential geometers [19, 17] progressively studied the various

geometric flows in Relativistic perfect fluid spacetime (briefly RPFS). The study of Ricci

solitons and their geometric properties in RPFS was first explored by Ali and Ahsan [2].

Subsequently, Blaga [5] investigated the geometric characteristics of RPFS in the context

of Ricci solitons, Einstein solitons, and their extensions—namely, π-Ricci solitons and π-

Einstein solitons. Further contributions were made in [26], where the authors examined

Ricci soliton structures in RPFS with a torse-forming timelike velocity vector field ζ. D.

Siddiqi and A. Siddiqui [23] later analyzed the geometric structure of RPFS using conformal

Ricci solitons. Siddiqi and De [24] extended these investigations to relativistic magneto-fluid

spacetimes (RMFS). More recently, Praveena et al. [16, 15] studied Ricci, Einstein, and con-

formal Ricci solitons in almost pseudo-symmetric Kählerian and Kähler-Norden spacetimes,

incorporating various curvature tensors. Additionally, Bhattacharyya et al. [18] examined

conformal Einstein solitons in para-Kähler manifolds.

Inspired by these developments, the present work explores the geometric behavior of confor-

mal Ricci and Einstein flows in RMFS with an anti-torqued vector field.

2. Relativistic magneto fluid spacetime

A relativistic magneto-fluid (RMF) is a continuum medium whose physical state can be

fully described by several key parameters: the fluid’s rest frame, mass density, isotropic pres-

sure, magnetic flux, and magnetic field strength. In general relativity, such magneto-fluids

serve as fundamental models for idealized matter distributions, including stellar interiors and

homogeneous cosmological models.

The RMF framework makes several simplifying assumptions - the medium exhibits zero

shear stress, negligible viscosity, and no thermal conduction. Mathematically, its behavior is

governed by a magnetic energy-momentum tensor T with specific symmetric properties that

capture these physical characteristics. This formulation provides a valuable theoretical tool

for analyzing relativistic plasma systems where electromagnetic and gravitational interactions

play equally important roles. T is in the form [13, 12]:

T = ρg + (σ + ρ)A⊗A+ ν{H
(
A⊗A+

1

2
g

)
− B ⊗ B}, (2.2)
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where ν, σ, ρ,B,H are the magnetic permeability, magneto-fluid density, isotopic pressure,

magnetic flux, strength of the magnetic field, respectively and A(·) = g(·, ζ), g(·, ξ) = B(·)

are two non-zero 1-forms. Also, ζ and ξ, are unit timelike vector field ζ such that g(ζ, ζ) = −1

and spacelike magnetic flux vector field ξ such that g(ξ, ξ) = 1. Therefore, ζ and ξ are

orthogonal vector fields generate the magneto-fluid spacetime.

Einstein’s gravitational equation with cosmological constant is given as [12]

kT = S +
(
λ− r

2

)
g, (2.3)

for any E,F ∈ χ(M), where λ, k are the cosmological constant and gravitational constant,

respectively.

In view of (2.2), equation (2.3) takes the form

S =

[
−λ+

r

2
+ k

(
νH
2

+ ρ

)]
g

+k(νH+ σ + ρ)A⊗A− kνB ⊗ B. (2.4)

3. Characteristics of relativistic magneto fluid spacetime with anti-torqued

vector field

Let (M4, g) be a relativistic magneto fluid spacetime (briefly RMFS) satisfying (2.4).

Contracting the equation (2.4) provides

r = 4λ− k[ν(H− 1) + 3ρ− σ]. (3.5)

Using the above equation in (2.4), we have

S(E,F ) =

(
λ+

k

2
(ν + σ − ρ)

)
g(E,F ) + k(νH+ σ + ρ)A(E)A(F )

−kνB(E)B(F ), (3.6)

which also implies

QE = aE + bA(E)ζ + cB(E)ξ, (3.7)

where a = λ+ k
2 (ν + σ − ρ), b = k(νH+ σ + ρ), c = −kν.

We consider the special case when ζ is an anti-torqued vector field [7] of the form:

∇Eζ = f(E −A(E)ζ), (3.8)

for a vector field E on M4, where A is one form dual to unit anti-torqued vector field and f

is a non-zero smooth function.
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Theorem 3.1. On a RMFS with an anti-torqued vector field ζ, the following relations hold:

(∇XA)(E) = f [g(E,F )−A(E)A(F )], (3.9)

A(∇ζζ) = 2, ∇ζζ = 2ζ, (3.10)

R(E,F )ζ = f2[A(E)F −A(F )E] + E(f)[F −A(F )ζ]− F (f)[E −A(E)ζ],(3.11)

R(E, ζ)ζ = f2[E +A(E)ζ] + 2E(f)ζ − ζ(f)[E −A(E)ζ], (3.12)

A(R(E,F )D) = f2[A(F )g(X,D)−A(E)g(F,D)]− E(f)[g(F,D)−A(F )A(D)]

+F (f)[g(E,D)−A(E)A(D)], (3.13)

(£ζg)(E,F ) = 2f [g(E,F )−A(E)A(F )]. (3.14)

Proof. Compute (∇EA)(F ) = E(A(F ))−A(∇EF ) = E(g(F, ζ))−g(∇EF, ζ) = g(F,∇Eζ) =

f [g(E,F ) − A(E)A(F )]. Specifically, (∇ζA)E = 0. The relation (3.9) can be obtained by

(3.8).

Now, utilizing (3.8) in R(E,F )ζ = ∇E∇F ζ−∇F∇Eζ−∇[E,F ]ζ and from direct computation

we obtain the relation (3.11). Additionally (3.12) and (3.13) follows from (3.11). Now

differentiating g along ζ, then by simple calculation we get (3.14). □

4. Conformal Ricci soliton in a RMFS

This section is devoted to studying the conformal Ricci soliton in the context of RMFS.

Conformal Ricci solitons, which are defined as [4]:

£V g + 2S +

[
2Λ−

(
π +

2

n

)]
g = 0, (4.15)

where S, π,Λ are the Ricci tensor, the conformal pressure, a constant respectively and £V

is the Lie-derivative operator along the vector field V on spacetime. The conformal Ricci

soliton becomes shrinking (resp. steady, expanding) for Λ < 0 (resp. Λ = 0, Λ > 0).

Taking ζ instead of V in (4.15) and then using (3.14) yields

S(E,F ) = −
[
Λ− 1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).

Making use of (2.4) in the above equation, we obtain[
−λ+

r

2
+ k

(
νH
2

+ ρ

)]
g(E,F ) + k(νH+ σ + ρ)A(E)A(F )

−kνB(E)B(F ) = −
[
Λ− 1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).
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Setting E = F = ζ in the foregoing equation and then making use of (3.5) yields

Λ = −λ+ kν

(
H− 1

2

)
+

3

2
kρ+

kσ

2
+

π

2
− 2f +

1

4
. (4.16)

Theorem 4.1. A RMFS with anti-torqued vector field ζ admitting a conformal Ricci soliton

is shrinking, steady, or expanding accordingly cosmological constant λ≤
>kν

(
H− 1

2

)
+ 3

2kρ+

kσ
2 + π

2 − 2f + 1
4 respectively.

Let us consider a spacetime in the absence of a cosmological constant i.e. λ = 0. Then it

yields S(ζ, ζ) = k
2 [ν(2H− 1) + σ + 3ρ]. If the characteristic vector field is timelike then in a

spacetime S(ζ, ζ) > 0, which implies ν(2H−1)+σ+3ρ > 0, the spacetime obeys the cosmic

strong force condition.

In view of the above converse and Eq. (4.16), we can state the following theorem.

Theorem 4.2. A RMFS with anti-torqued vector field ζ admitting a conformal Ricci soliton

which satisfies timelike convergence condition in the absence of a cosmological constant is

expanding.

5. Conformal A-Ricci Soliton in a RMFS

Consider the equation

£V g + 2S +

[
2Λ−

(
π +

2

n

)]
g + 2ΩA⊗A = 0, (5.17)

where Λ, Ω are real constants and π, S are same as defined in (4.15). The quadruple

(g, ζ,Λ,Ω) which satisfy the equation (5.17) is said to be a conformal A-Ricci soliton in

M [21]. In particular if Ω = 0, then it reduces to a conformal Ricci soliton [4] and it becomes

shrinking (resp. steady, expanding) for Λ < 0 (resp. Λ = 0, Λ > 0) [9].

Writing the Lie derivative £ζg explicitly, we have £ζg = g(∇Eζ, F ) + g(E,∇F ζ). Then

(5.17) takes the form

S(E,F ) = −
[
Λ− 1

2

(
π +

1

2

)]
g(E,F )−ΩA(E)A(F )− 1

2
[g(∇Eζ, F ) + g(E,∇F ζ)], (5.18)

for any E,F ∈ χ(M4).

From (2.4) and (5.18), we have[
λ+

k

2
(ν + σ − ρ) + Λ− 1

2

(
π +

1

2

)]
g(E,F ) + [k(νH+ σ + ρ) + Ω]A(E)A(F )

−kνB(E)B(F ) +
1

2
[g(∇Eζ, F ) + g(E,∇F ζ)] = 0. (5.19)
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Consider {ei}1≤i≤4 an orthonormal frame field and ζ =
∑4

i=1 ζ
iei. We have

∑4
i=1 ϵii(ζ

i)2 =

−1 and multiplying (5.19) by ϵii and summing over i for E = F = ei, we obtain

4Λ− Ω = −4λ+ k[ν(H− 1)− σ + 3ρ) + 2π + 1− divζ. (5.20)

Plugging E = F = ζ in (5.19), we obtain

Λ− Ω = −λ+
k

2
[ν(2H− 1) + σ + 3ρ] +

1

2

(
π +

1

2

)
. (5.21)

On solving (5.20) and (5.21), we have

Λ = −λ− k

2

(ν
3
+ σ − ρ

)
+

π

2
+

1

4
− divζ

3
,

Ω = −k

[
ν

(
H− 1

3

)
+ σ + ρ

]
− divζ

3
.

Thus, we have the following theorem:

Theorem 5.1. Let (M4, g) be a 4-dimensional pseudo-Riemannaian manifold and let A be

the g-dual 1-form of the gradient vector field ζ = grad(ϕ) with g(ζ, ζ) = −1. If (5.17) define

a conformal A-Ricci soliton in M4, then the Laplacian equation satisfied by ϕ becomes

∆(ϕ) = −3Ω− k

[
ν

(
H− 1

3

)
+ σ + ρ

]
.

Remark 5.1. If Ω = 0 in (5.17), then we obtain the conformal Ricci soliton with

Λ = −λ+ k
[
ν
(
H+ 1

6

)
+ σ+ρ

2

]
+ 1

2

(
π + 1

2

)
, which is expanding, steady, or shrinking accord-

ingly

λ
≤
>
k

[
ν

(
H+

1

6

)
+

σ + ρ

2

]
+

1

2

(
π +

1

2

)
respectively.

6. Conformal Einstein Soliton in a RMFS

Consider the equation

£V g + 2S +

[
2Λ− r +

(
π +

2

n

)]
g = 0, (6.22)

where g, ξ,Λ, S, r,A are same as defined in (4.15) and π is a scalar non-dynamical field. The

triplet (g, ζ,Λ) which satisfy the equation (6.22) is said to be a conformal Einstein soliton in

M [18]. It is called shrinking (resp. steady or expanding) for Λ < 0 (resp. Λ = 0 or Λ > 0).

Taking ζ instead of V in (6.22) and then making use of (3.14) yields

S(E,F ) = −
[
Λ− r

2
+

1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).
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Utilizing (2.4) in the foregoing equation, one can easily obtain[
−λ+

r

2
+ k

(
νH
2

+ ρ

)]
g(E,F ) + k(νH+ σ + ρ)A(E)A(F )− kνB(E)B(F )

= −
[
Λ− r

2
+

1

2

(
π +

1

2

)
+ f

]
g(E,F ) + fA(E)A(F ).

Setting E = F = ζ in the above equation provides

Λ = λ+ k

(
νH
2

+ σ

)
− π

2
− 2f − 1

4
.

Theorem 6.1. A RMFS with anti-torqued vector field ζ admitting a conformal Einstein

soliton is shrinking, steady, or expanding accordingly cosmological constant λ≥
< + π

2 + 2f +

1
4 − k

(
νH
2 + σ

)
respectively.

7. Conformal A-Einstein Soliton in a RMFS

Consider the equation

£V g + 2S +

[
2Λ− r +

(
π +

2

n

)]
g + 2ΩA⊗A = 0, (7.23)

where Λ, Ω are real constants and r, π, S are same as defined in (6.22). The quadruple

(g, ζ,Λ,Ω) which satisfy the equation (7.23) is said to be a conformal A-Einstein soliton

in M . In particular if Ω = 0, (g, ζ,Λ) is a conformal Einstein soliton [18] and it becomes

shrinking (resp. steady, expanding) for Λ < 0 (resp. Λ = 0, Λ > 0) [9].

Writing the Lie derivative £ζg explicitly, we have £ζg = g(∇Eζ, F ) + g(E,∇F ζ) and from

(7.23) we obtain:

S(E,F ) = −
[
Λ− r

2
+

1

2

(
π +

1

2

)]
g(E,F )− ΩA(E)A(F )− 1

2
[g(∇Eζ, F ) + g(E,∇F ζ)],

(7.24)

for any E,F ∈ χ(M4).

From (2.4) and (7.24), we have[
−λ+ k

(
νH
2

+ ρ

)
+ Λ− 1

2

(
π +

1

2

)]
g(E,F ) + [k(νH+ σ + ρ) + Ω]A(E)A(F )

−kνB(E)B(F ) +
1

2
[g(∇Eζ, F ) + g(E,∇F ζ)] = 0. (7.25)

Consider {ei}1≤i≤4 an orthonormal frame field and ζ =
∑4

i=1 ζ
iei. We have

∑4
i=1 ϵii(ζ

i)2 =

−1 and multiplying (7.25) by ϵii and summing over i for X = Y = ei, we obtain

4Λ− Ω = 4λ+ k(νH+ 3ρ+ ν + σ) + 2π + 1− divζ. (7.26)
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Plugging E = F = ζ in (7.25), we obtain

Λ− Ω = λ+ k(
νH
2

+ σ) +

(
π

2
+

1

4

)
. (7.27)

On solving (7.26) and (7.27), we have

Λ = λ+ k

[
νH
6

+ ρ+
ν

3

]
+

π

2
+

1

4
− divζ

3
,

Ω = −k

(
νH
3

− σ + ρ− ν

3

)
− divζ

3
.

Thus, we have the following theorem:

Theorem 7.1. Let (M4, g) be a 4-dimensional pseudo-Riemannaian manifold and let A be

the g-dual 1-form of the gradient vector field ζ = grad(ϕ) with g(ζ, ζ) = −1. If (7.23) define

a conformal A-Einstein soliton in M4, then the Laplacian equation satisfied by ϕ becomes

∆(ϕ) = −3

[
Ω+ k

(
νH
3

− σ + ρ− ν

3

)]
.

Remark 7.1. If Ω = 0 in (7.23), then we obtain the conformal Ricci soliton with

Λ = λ+ k
[
νH
2 − σ + 2ρ

]
+ π

2 + 1
4 , which is expanding, steady or shrinking accordingly

λ
≥
<

− k

[
νH
2

− σ + 2ρ

]
− π

2
− 1

4

respectively.

8. Conclusion

In the framework of general relativity, the energy-momentum tensor T fundamentally

characterizes the matter distribution within spacetime. Conventional cosmological models

typically represent the universe’s matter content as a perfect fluid within a 4-dimensional

Lorentzian manifold. Within this paradigm, Einstein’s field equations serve as the founda-

tional tool for constructing viable cosmological models.

Relativistic magneto-fluid spacetime (RMFS) models hold particular significance across

multiple disciplines, including astrophysics, nuclear physics, and plasma physics. Recent

investigations have revealed that geometric flows provide powerful tools for characterizing

the intrinsic structures of RMFS. Of special interest are soliton solutions - those metric

configurations evolving through dilations and diffeomorphisms, which emerge naturally in

the singularity analysis of these flows. These self-similar solutions find applications not only

in physics but also in chemistry, biology, and economics (see [20], [27], [28]).
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This work systematically examines various classes of solitons in RMFS endowed with an

anti-torqued vector field. We establish precise conditions under which these solitons exhibit

expanding, steady, or shrinking behavior. Furthermore, we derive the Laplace equation for

such RMFS configurations admitting conformal A-Ricci and A-Einstein solitons.

The investigation of conformal solitons gains additional importance from the remarkable

similarity between conformal Ricci flow equations and the Navier-Stokes equations of fluid

dynamics. In this correspondence, the time-dependent scalar field p functions as a conformal

pressure - distinct from conventional fluid pressure that preserves incompressibility, as it

directly influences metric deformation under the flow.
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