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Abstract. In this paper, we derive L̃r−biharmonic equations for null hypersurfaces M in

Generalized Robertson-Walker (GRW) spacetimes using linearized operators L̃r (0 ≤ r ≤

dim(M)) built uniquely from the rigged structure given by a timelike closed and conformal

rigging vector field ζ. After providing a characterization for L̃r−harmonic null hypersur-

faces we study L̃r−biharmonic null hypersurfaces for r = 0 and r = 1 in low dimensions:

null surfaces and 3−dimensional null hypersurfaces.

Keywords:Null hypersurface, L̃r−biharmonic, GRW spacetimes, Rigging vector field.

2020 Mathematics Subject Classification: Primary: 53C40, Secondary: 53C42, 53C50.

1. Introduction

Consider an isometric immersion ψ :Mn → Em from a Riemannian manifold Mn into the

Euclidean space Em. Denote by H and ∆ the mean curvature vector field of Mn and the

Laplace operator of Mn with respect to the induced Riemannian metric of Em. From the

Beltrami’s formula ∆ψ = nH we see that M is minimal in Em if and only if its coordinate

functions are harmonic. Observe that ∆2ψ = n∆H. Manifolds with ∆H = 0, or equivalently

∆2ψ = 0 are called biharmonic. Obviously, minimal submanifolds (i.eH = 0) are biharmonic.

The question that arises is whether the class of biharmonic submanifolds is reduced to that

of minimal submanifolds. Several authors have proved it in some cases (cf. [1, 16, 18, 20, 22]

and notes in the report [14]).
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A well-known Bang-Yen Chen’s conjecture says : Any biharmonic submanifold in pseudo-

Euclidean space En+ps is minimal. But in contrast to the Euclidean case (s = 0, where the

conjecture is not entirely solved), the conjecture generally fails for submanifolds in a pseudo-

Euclidean space. B.-Y. Chen and S. Ishikawa [13] gave examples of nonminimal biharmonic

(also called proper biharmonic) space-like surfaces with constant mean curvature in pseudo-

Euclidean spaces E4
s (s = 1, 2) and proper biharmonic surfaces of signature (1, 1) in E4

s

(s = 1, 2, 3) in [15]. Furthermore, in case of hypersurfaces, Chen has found a good relation

between the finite type hypersurfaces and biharmonic ones [17, Chapter 11].

The Laplacian operator ∆ involved in the biharmonicity can be seen as the first one of a

sequence of n operators L0 = ∆, L1, . . . , Ln−1, where Lr stands for the linearized operator

of the first variation of the (r + 1)−th mean curvature arising from normal variations of the

hypersurface. They act on smooth functions by Lr(f) = tr(Tr ◦ ∇2f), where Tr is the r−th

Newton transformation associated with the shape operator of the hypersurface, and ∇2f is

the self-adjoint linear operator metrically equivalent to the Hessian of f . With this extension

of the Laplace operator ∆ = L0 and inspired by the Chen’s conjecture, it appears natural

to generalize the definition of biharmonic hypersurfaces replacing ∆ by the Lr. Along these

lines, the Lr−conjecture has been formulated (cf. [5]) as follows:

Lr−Conjecture 1.1 : Every Euclidean hypersurface ψ : Mn → Rn+1 satisfying the condi-

tion L2
rψ = 0 for some r, 0 ≤ r ≤ n − 1 has zero (r + 1)−th mean curvature (equivalently,

(r + 1)−minimal).

This Lr−conjecture has been generalized (cf. [6]) for hypersurfaces of simply connected

space forms as follows :

Lr−Conjecture 1.2 : Let ψ : Mn → Qn+1(c) be a hypersurface immersed into a simply

connected space form Qn+1(c). If M is Lr−biharmonic then Hr+1 is zero.

Recently, Lr−biharmonic hypersurfaces have been considered when the target space is

pseudo-Riemannian and scrutinized by several authors [3, 19, 27, 28, 26] and references

therein. In particular, it is shown in [27, Theorem 1.1] that on any Lk−biharmonic spacelike

hypersurfaces in E4
1 with mutually distinct principal curvatures, if the k−th mean curvature

Hk is constant then the same is for Hk+1. It is worth mentioning that all the hypersurfaces

involved in the above quoted works are either spacelike or timelike, hence nondegenerate.

To fill the gap, the present work focuses on Lr−biharmonic null (degenerate) hypersurfaces

in generalized Robertson-Walker (GRW) spacetimes. As it is predictible due to the extra

difficulties presented by the singularities of null hypersurfaces, our following results provide
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(partial) characterizations of such Lr−biharmonic null hypersurfaces, involving sometimes

auxilliary screen foliations.

Theorem 1.1. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a connected isometric immersion of a null hypersurface in a GRW spacetime M
n+2
1 (c)

where m = n+ 2 + c2, t = c(c− 1)/2 with c = 1, 0,−1, furnished with a timelike closed and

conformal rigging vector field ζ. Then M is L̃r−harmonic for some 0 ≤ r < n if and only if

one of the following holds :

(a) M is r−maximal;

(b) M is (r + 1)−maximal and ζ is parallele along M ⊂ Rn+2
1 .

Theorem 1.2. Let n ∈ {1, 2} be integer,

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a connected isometric immersion of a null hypersurface in a GRW spacetime M
n+2
1 (c)

where m = n + 2 + c2, t = c(c − 1)/2 with c = 1, 0,−1, furnished with a non unit timelike

closed and conformal rigging vector field ζ.

(1) For c = 0, M is biharmonic (i.e L̃0−biharmonic) if and only if it is totally geodesic,

i.e null hyperplane. In particular the null mean curvature H vanishes.

(2) For c ̸= 0, if M is biharmonic then the null mean curvature H is leafwise constant

along the screen foliation induced by ζ, but not on the whole M .

The following is a null version of the result in [27, Theorem 1.1] for r = 1 in generalized

Robertson-Walker spaces.

Theorem 1.3. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a connected isometric immersion of a null hypersurface in a GRW spacetime M
n+2
1 (c)

where m = n + 2 + c2, t = c(c − 1)/2 with c = 1, 0,−1, furnished with a non unit timelike

closed and conformal rigging vector field ζ. Then,

(1) For n = 1, ψ :M2 −→M
3
1(c) ⊆ R3+c2

1+t is L̃1−biharmonic.

(2) For n = 2, if M3 is L̃1−biharmonic and the null mean curvature function H :=
⋆
H1

is leafwise constant in the screen foliation F induced by ζ then the same is for the



720 C.C. ATINDOGBÉ

second order mean curvature
⋆
H2. Moreover, if

⋆
H2 is constant on the whole null

hypersurface M3 then this constant is zero and M is 2−maximal.

Throughout the paper, all geometric objects (manifolds, metrics, connections, maps,. . . )

are smooth. The Lie algebra of vector fields on a manifold N is denoted by X(N).

2. Null hypersurfaces and rigged structures

A hypersurfaceM of a Lorentzian manifold (M, g) is null if the metric tensor is degenerate

on it, i.e the induced structure from the Lorentzian ambient manifold is degenerate.

A rigging for a null hypersurfaceM is a vector field ζ defined in some open neighbourhood

ofM such that ζp ̸∈ TpM for all p ∈M . If ζ is defined only overM , then we call it a restricted

rigging. If a rigging exists, then we can take the unique null vector field ξ ∈ X(M) such that

g(ζ, ξ) = 1 (called rigged vector field) and the (screen) distribution given by Sp = ζ⊥p ∩ TpM

for all p ∈M . We can also define the rigged metric as the Riemannian metric on M given by

g̃ = g+ω⊗ω, where ω = i∗α, α is the g-metrically equivalent one-form to ζ and i :M →M

is the canonical inclusion map. The rigged vector field ξ is unitary and orthogonal to S with

respect to g̃. Moreover, ω is g̃-metrically equivalent to ξ, and is called the rigged one-form.

The vector field N = ζ − 1
2g(ζ, ζ)ξ is the unique null vector field defined on M , orthogonal

to the screen distribution S and such that g(N, ξ) = 1.

Moreover, we have the following decompositions :

TpM = TpM ⊕ span(Np), TpM = span{ξp} ⊕ Sp (2.1)

for all p ∈M .

The rigging technique presents two main advantages. The first one is that all the geomet-

ric objects defined above from the rigging are tuned together in a way that allows linking

properties of the null hypersurface with properties of the ambient space. The second one is

the presence of the Riemannian rigged metric g̃, which geometry is reasonably well coupled

with the ambient geometry in most cases and it allows us to use Riemannian tools for the

study of the null hypersurface [23].

We get from decompositions (2.1)

∇UV = ∇UV +B(U, V )N, ∇UN = −A(U) + τ(U)N (2.2)
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where ∇, ∇ are the Levi-Civita connection of M and the induced (projected) connection

on M , respectively. The induced connection ∇ is torsion free but, in general, is not metric,

which makes it less useful in the theory. The second fundamental form B, the one-form τ

(also called rotation one form) and the screen second fundamental form C are given by

B(U, V ) = −g(∇Uξ, V ), τ(U) = −g(∇Uξ, ζ),

C(U, V ) = −g(∇UN,P (V )) = −g(∇Uζ, P (V )),

for all U, V ∈ X(M), where P : TM → S is the canonical projection associated to the second

decomposition in (2.1). The vector field ∇Uξ = ∇Uξ is tangent to the null hypersurface M

and can be decomposed as

∇Uξ = −τ(U)ξ−
⋆
A (U),

where
⋆
A (U) ∈ S. The endomorphism

⋆
A is the shape operator of S and satisfies

B(U, V ) = g(
⋆
A (U), V ) = g(U,

⋆
A (V )), B(ξ, U) = 0.

Some useful identities in the theory are the following:

−2C(U,X) = dω(U,X) + (Lζg) (U,X) + g(ζ, ζ)B(U,X), (2.3)

the Gauss-Codazzi equation

g(RUVW, ξ) = g(
(
∇U

⋆
A
)
(V ),W )− g(

(
∇V

⋆
A
)
(U),W ) (2.4)

+ τ(U)g(
⋆
A (V ),W )− τ(V )g(

⋆
A (U),W ),

(Lξ g̃)(X,Y ) = −2B(X,Y ) (2.5)

for all U, V,W ∈ X(M),X,Y ∈ S, and the Raychaudhuri equation[9] :

Ric(ξ, ξ) = ξ(H) + τ(ξ)H − ∥
⋆
A ∥2,

where H denotes the (non-normalized) null mean curvature of the null hypersurface given by

Hp =
n∑
i=1

B(ei, ei),

with {e1, . . . , en} an orthonormal basis in Sp. In particular, H = −d̃ivξ.

If B = 0, then it is said that M is totally geodesic and if B = ρg for certain ρ ∈ C∞(M),

then M is totally umbilical. Observe that these definitions do not depend on the chosen
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rigging, although the tensors B, τ and C do depend. Throughout, the Levi-Civita connection

on the normalized rigged structure (M, g̃) will be denoted ∇̃ and we have for all X,Y, Z ∈ S

C(ξ,X) = −τ(X)− g̃(∇̃ξξ,X), ∇̃XY =
⋆
∇X Y − g̃(∇̃Xξ, Y )ξ,

being
⋆
∇ the connection on the screen bundle S. In particular

g̃(∇̃XY,Z) = g(∇XY,Z) = g(∇XY,Z) ∀X,Y, Z ∈ S.

From now on, we assume M to be a generalized Robertson-Walker (GRW) spacetime of

constant sectional curvature c ∈ {−1, 0, 1}, which will be denoted M
n+2
1 (c) throughout. It

is known that such spacetime admits timelike closed and conformal vector field, say ζ. We

have

M
n+2
1 (c) = (I ×f F, g) , g = −dt2 + f2(t)gF

where f (the warping function) is a smooth positive function on I, and the fiber (F, gF ) is an

(n + 1)−dimensional Riemannian manifold of constant sectional curvature cF [29]. So, the

target spaceM
n+2
1 (c) of immersion is locally isometric to one of the modele spaces : a de Sitter

spacetime Sn+2
1 of curvature c = 1, the Lorentz-Minkowski spacetime Rn+2

1 when c = 0 or the

anti de Sitter spacetime Hn+2
1 (actually the universal covering of this pseudohyperbolic space

Hn+2
1 ) of curvature c = −1. Hence, we consider the following orientable isometric immersion

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

of the null hypersurface inM
n+2
1 (c) where m = n+2+c2 and t = c(c−1)/2 with c = 1, 0,−1.

Due to the causal character (spacelike or null) of tangent vectors to a null hypersurface in

Lorentzian space, the induced singular metric on the null hypersurface has signature (0, n).

So the timelike concircular vector field ζ can act as rigging vector field forM . The closed and

conformal vector field ζ has the outstanding property that there exists a smooth function

σ ∈ C∞(M) (the conformal factor) such that ∇Uζ = σU for all U ∈ X(M). In particular

Lζg = 2σg. For a closed and conformal rigging, the rotation 1−form vanishes identically

(τ = 0) and ξ is g−geodesic. Moreover, due to the closedness of ζ, ∇̃Uξ = −
⋆
A (U) and

∇̃UV = ∇UV + [B(U, V )− C(U,PV )] ξ, (2.6)
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for all U, V ∈ X(M). Also, using (2.3) we derive the following useful relation linking the

shape operators A and
⋆
A.

A = −1

2
λ

⋆
A −σP, (2.7)

where λ = g(ζ, ζ) denotes the length function of ζ.

For the closed rigging ζ, the screen distribution Sp = ζ⊥p ∩TpM is integrable and gives rise

to a foliation F on the null hypersurface. Moreover, we have shown in [11, Lemma 7] that

the conformal factor σ and the length function λ are constant through the (screen) leaves

Fp, p ∈M . In other words,

X · σ = 0 and X · λ = 0

for all X ∈ S.

3. Rigged linearized operators L̃r and technical lemmas

The shape operator
⋆
A is self-adjoint and satisfies

⋆
A ξ = 0. Its n+1 real valued eigenfunc-

tions
⋆
k0= 0,

⋆
k1, . . . ,

⋆
kn are the screen principal curvatures and we let (X0 = ξ,X1, . . . , Xn)

denote a g̃−orthonormal basis of eigenvector fields of
⋆
A, with span(X1, . . . , Xn) = S. For

0 ≤ r ≤ n, the r − th null mean curvature
⋆
Hr of the null hypersurface with respect to the

shape operator
⋆
A is given by(

n+ 1

r

)
⋆
Hr =

∑
0≤i1<···<ir≤n

⋆
ki1 · · ·

⋆
kir and

⋆
H0= 1,

and the null hypersurface is said to be r−maximal if
⋆
Hr= 0 identically on M . The following

notations will be in use :

⋆
Sr=

∑
0≤i1<···<ir≤n

⋆
ki1 · · ·

⋆
kir ,

⋆
S
α

r=
∑

0≤i1<···<ir≤n
i1,··· ,ir ̸=α

⋆
ki1 · · ·

⋆
kir .

In particular
⋆
S0= 1 and

⋆
S1= H (the null mean curvature).

For 0 ≤ r ≤ n+1, the r− th Newton transformation
⋆
T r with respect to the shape operator

⋆
A is the End(Γ(TM)) element given by

⋆
T r=

r∑
a=0

(−1)a
⋆
Sa

⋆
A
r−a

.

Inductively,
⋆
T 0= I and

⋆
T r = (−1)r

⋆
SrI+

⋆
A ◦

⋆
T r−1,
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where I denotes the identity of Γ(TM) and
⋆
Tn+1= 0 ( follows Cayley-Hamilton’s theorem).

By algebraic computations, one shows the following.

Proposition 3.1 ([9]).

(1)
⋆
T r is self-adjoint and commute with

⋆
A for any r;

(2)
⋆
T rXα = (−1)r

⋆
S
α

r Xα (for a fixed α);

(3) tr(
⋆
T r) = (−1)r(n+ 1− r)

⋆
Sr;

(4) tr
( ⋆
A ◦

⋆
T r−1

)
= (−1)r−1r

⋆
Sr;

(5) tr

(
⋆
A

2

◦
⋆
T r−1

)
= (−1)r−1

( ⋆
S1

⋆
Sr −(r + 1)

⋆
Sr+1

)
;

(6) tr(
⋆
T r−1 ◦∇X

⋆
A) = (−1)r−1X·

⋆
Sr .

Also, for the last item in Proposition 3.1, replacing ∇ by ∇̃, it is easy to show by a

straightforward computation that

tr(
⋆
T r−1 ◦∇̃X

⋆
A) = (−1)r−1X·

⋆
Sr . (3.8)

We recall the following from [9, Remark 3, Page 68].

Theorem 3.1. Let (Mn+1, ζ) be a normalized null hypersurface of a Lorentzian space form

(M
n+2
1 (c), ḡ) with rigged vector field ξ and τ = 0. Then,

ξ·
⋆
Sr= (−1)r−1tr

(
⋆
A

2

◦
⋆
T r−1

)
Prop. 3.1 (5)

=
( ⋆
S1

⋆
Sr −(r + 1)

⋆
Sr+1

)
. (3.9)

Consequently, if
⋆
Sr= 0 for some r = 1, ..., n, then

⋆
Sk= 0 for all k ≥ r.

For each 0 ≤ r ≤ n, the divergence of the operator
⋆
T r: X(M) −→ X(M) with respect to

the rigged connection ∇̃ is the vector field div∇̃(
⋆
Tr) ∈ X(M) defined as the trace of ∇̃

⋆
T r,

that is

div∇̃(
⋆
Tr) =

(
∇̃ξ

⋆
Tr

)
(ξ) +

n∑
i=1

(
∇̃Xi

⋆
Tr

)
(Xi).

Using the iterative formula
⋆
T r= (−1)r

⋆
SrI+

⋆
A ◦

⋆
T r−1, we have

div∇̃
⋆
Tr= (−1)rdiv∇̃

(⋆
Sr I
)
+ div∇̃

( ⋆
A ◦

⋆
Tr−1

)
.

But

div∇̃
(⋆
Sr I
)

=

n∑
α=0

(
∇̃Xα

⋆
Sr I

)
Xα =

∑
α

[
∇̃Xα(

⋆
Sr Xα)−

⋆
Sr

(
∇̃XαXα

)]
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=
∑
α

(Xα·
⋆
Sr)Xα = ∇̃

⋆
Sr .

On the other side,

div∇̃
( ⋆
A ◦

⋆
Tr−1

)
=

∑
α

(
∇̃Xα

( ⋆
A ◦

⋆
T r−1

)
Xα

)
=

∑
α

[
∇̃Xα

( ⋆
A ◦

⋆
T r−1 (Xα)

)
−
( ⋆
A ◦

⋆
T r−1

)(
∇̃XαXα

)]
=

∑
α

(
∇̃Xα

⋆
A
)( ⋆

T r−1 Xα

)
+

⋆
A
(
div∇̃

⋆
Tr−1

)
.

So, for all U ∈ X(M),

g̃
(
div∇̃

⋆
Tr,U

)
= g̃

(
div∇̃

⋆
Tr−1,

⋆
AU

)
+
∑
α

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

+(−1)rU ·
⋆
Sr . (3.10)

We compute
∑
α

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)
using curvature relations. Before proceeding we

note the following covariant derivative identity which is established by a direct computation.

For all linear operator T : X(M) → X(M) and U, V ∈ X(M),(
∇̃UT

)
(V ) = (∇UT ) (V ) + [B(U, TV )ξ −B(U, V )Tξ]

−1

2

(
[⟨AU, TV ⟩+ ⟨U,A(TV )⟩] ξ − [⟨AU, V ⟩+ ⟨U,AV ⟩]Tξ

)
. (3.11)

Applying (3.11) with T =
⋆
A and using the fact that

⋆
Aξ = 0 and ∇ζ = σ ⊗ I we get :(

∇̃U

⋆
A
)
(V ) =

(
∇U

⋆
A
)
(V ) +

[
⟨
⋆
AU,

⋆
A V ⟩ − ⟨AU,

⋆
A V ⟩

]
ξ. (3.12)

So, for each 0 ≤ α ≤ n,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

= g̃
( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)

+
[
g(

⋆
A Xα,

⋆
AU)− g(AXα,

⋆
AU)

]
× g̃(XXα ,

⋆
T r−1 ξ).

Using item (ii) in Proposition 3.1 and (2.7) we see that the last term in above equality

vanishes. Hence, in closed and conformal setting,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

= g̃
( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)

= g
( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)
+ ω

( ⋆
T r−1 Xα

)
ω
((

∇Xα

⋆
A
)
U
)
.
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We show that the last term vanishes. Indeed,

ω
( ⋆
T r−1 Xα

)
= g̃

( ⋆
T r−1 Xα, ξ

)
= (−1)r−1

⋆
S
α

r−1 g̃(Xα, ξ)

=

 0 if α ̸= 0

(−1)r−1
⋆
S
0

r−1= (−1)r−1
⋆
Sr−1 if α = 0,

(3.13)

where we use the fact that
⋆
S
0

r−1=
⋆
Sr−1 due to

⋆
k0= 0. From (3.13) we need to compute the

second factor just for α = 0.

ω
((

∇Xα

⋆
A
)
U
)

= g̃
(
(∇ξ

⋆
A)(U), ξ

)
= g̃

(
∇ξ(

⋆
AU)−

⋆
A (∇ξU), ξ

)
= g̃

(
∇ξ(

⋆
AU), ξ

)
= g̃

( ⋆
∇ξ (

⋆
AU) + C(ξ,

⋆
AU)ξ, ξ

)
= C(ξ,

⋆
AU)

(2.7)
= 0.

Hence, for 0 ≤ α ≤ n,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)
= g

( ⋆
T r−1 Xα,

(
∇Xα

⋆
A
)
U
)
. (3.14)

Now, Gauss-Codazzi equation (2.4) with τ = 0 provides

g
(
R(U, V )W, ξ

)
= g

(
(∇U

⋆
A)V,W

)
− g

(
(∇V

⋆
A)U,W

)
,

for all U, V, V ∈ X(M), where we make use of the identity

(∇UB) (V,W ) = g
(
(∇U

⋆
A)V,W

)
+ ω(W )g(

⋆
AU,

⋆
A V ).

Hence, (3.14) becomes

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)

= g
(
R(Xα, U)

⋆
T r−1 Xα, ξ

)
+g
( ⋆
T r−1 Xα,

(
∇U

⋆
A
)
(Xα)

)
.

From (3.12), the following equation holds(
∇U

⋆
A
)
(Xα) =

(
∇̃U

⋆
A
)
(Xα)−

[
g(

⋆
AU,

⋆
A Xα)− g(AU,

⋆
A Xα)

]
ξ

and we get

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
U
)
= g

(
R(Xα, U)

⋆
T r−1 Xα, ξ

)
+ g

( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
.
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But

g
( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
= g̃

( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
−ω(

⋆
T r−1 Xα)ω

((
∇̃U

⋆
A
)
(Xα)

)
. (3.15)

Due to the relation
⋆
T r−1 Xα = (−1)r−1

⋆
S
α

r−1 Xα, we see that for α ̸= 0, ω(
⋆
T r−1 Xα) = 0.

Also, for α = 0,

ω
((

∇̃U

⋆
A
)
(ξ)
)

= g̃
((

∇̃U

⋆
A
)
(ξ), ξ

)
= g̃

(
∇̃U (

⋆
A ξ)−

⋆
A (∇̃Uξ), ξ

)
= −g̃

( ⋆
A (∇̃Uξ), ξ

)
= 0,

hence the product ω(
⋆
T r−1 Xα)ω

((
∇̃U

⋆
A
)
(Xα)

)
in (3.15)vanishes identically and we get

g
( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
= g̃

( ⋆
T r−1 Xα,

(
∇̃U

⋆
A
)
(Xα)

)
.

Therefore, for 0 ≤ α ≤ n,

g̃
( ⋆
T r−1 Xα,

(
∇̃Xα

⋆
A
)
(U)
)

= g
(
R (Xα, U)

⋆
T r−1 Xα, ξ

)
+g̃
(
Xα,

( ⋆
T r−1 ◦

(
∇̃U

⋆
A
))

(Xα)
)
.

Returning back to (3.10) we have

g̃
(
div∇̃

⋆
Tr,U

)
= g̃

(
div∇̃

⋆
Tr−1,

⋆
AU

)
+
∑
α

g
(
R(Xα, U)

⋆
T r−1 Xα, ξ

)
+
∑
α

g̃
(( ⋆
T r−1 ◦(∇̃U

⋆
A)
)
Xα, Xα

)
+ (−1)rU ·

⋆
Sr

= g̃
(
div∇̃

⋆
Tr−1,

⋆
AU

)
+
∑
α

g
(
R(Xα, ξ)

⋆
T r−2 Xα,

⋆
AU

)
+g
(
R(Xα, ξ)

⋆
T r−1 Xα, U

)
.

By iterating this process, we get the following.

Lemma 3.1.

g̃
(
div∇̃

⋆
Tr,U

)
=

r−1∑
i=0

n∑
α=0

g

(
R(Xα, ξ)

⋆
T i Xα,

⋆
A
r−1−i

U

)
(3.16)

Corollary 3.1. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rn+2+c2

1+t

be a isometric immersion of a null hypersurface in M
n+2
1 (c) where t = c(c − 1)/2 with

c = 1, 0,−1, furnished with a closed and conformal rigging vector field ζ. Then, for all

f ∈ C∞(M).

div∇̃
⋆
Tr= 0 and div∇̃

( ⋆
Tr ∇̃f

)
= tr

( ⋆
Tr ◦∇̃2f

)
. (3.17)



728 C.C. ATINDOGBÉ

Proof. When the ambient Lorentzian manifold M
n+2

has constant sectional curvature c, we

have for a fixed r, each i = 0 . . . r− 1 and α = 0, . . . , n the term g

(
R(Xα, ξ)

⋆
T i Xα,

⋆
A
r−1−i
U

)
in (3.16) vanishes identically. So div∇̃

⋆
Tr= 0. By definition,

div∇̃
( ⋆
Tr ∇̃f

)
= tr

(
∇̃

⋆
Tr ∇̃f

)
=

n∑
α=0

g̃
(
∇̃Xα(

⋆
Tr ∇̃f),Xα

)
,

and

∇̃Xα(
⋆
T r ∇̃f) =

(
∇̃Xα

⋆
T r

)
∇̃f+

⋆
T r

(
∇̃Xα∇̃f

)
.

So,

div∇̃
( ⋆
Tr ∇̃f

)
=

n∑
α=0

g̃
(
∇̃f,

(
∇̃Xα

⋆
T r

)
(Xα)

)
+

n∑
α=0

g̃
( ⋆
T r

(
∇̃Xα∇̃f

)
, Xα

)
= g̃

(
∇̃f, div∇̃(

⋆
Tr)
)
+ tr

( ⋆
T r ◦∇̃2f

)
and the second claim in (3.17) follows from div∇̃(

⋆
Tr) = 0. □

For the sake of comparison, note that in [9] using the projected (induced) connection ∇

we established the following.

Proposition 3.2. [9, Proposition 3] ∀X ∈ X(M),

g(div∇
⋆
T r, U) =

r−1∑
a=0

n∑
i=1

ḡ

(
R̄(Xi, ξ)

⋆
T a Xi,

⋆
A
r−1−a
ξ U

)

+

r−1∑
a=0

(
τ(

⋆
A
r−1−a
ξ U)tr(

⋆
Aξ ◦

⋆
T a)− τ(P (

⋆
Aξ ◦

⋆
T a U))

)

+(−1)rω(U)

(
n∑
i=1

⋆
S
i

r−1

⋆
k
2

i −ξ(
⋆
Sr)

)
. (3.18)

Taking r = 2 and U = ξ in (3.18) leads to

0 = g(div∇
⋆
T 2, ξ) =

n∑
i=1

g
(
R(Xi, ξ)

⋆
T iXi, ξ

)
+ τ(ξ)tr(

⋆
A ◦

⋆
T 1)

−τ(
⋆
A ◦

⋆
T 1 ξ) +

n∑
i=1

⋆
S
i

1

⋆
k
2

i −ξ·
⋆
S2

=

n∑
i=1

⋆
S
i

1 Kξ(Πi) + τ(ξ)tr(
⋆
A ◦

⋆
T 1)

−τ(
⋆
A ◦

⋆
T 1 ξ) +

n∑
i=1

⋆
S
i

1

⋆
k
2

i −ξ·
⋆
S2
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where Kξ(Πi) =
g(R(ξ,Xi)Xi, ξ)

g(Xi, Xi)
= g(R(ξ,Xi)Xi, ξ) stands for the null sectional curvature

of the null plane Πi = span(Xi, ξ). But
⋆
A ◦

⋆
T 1 ξ = 0 and tr(

⋆
A ◦

⋆
T 1) = −2

⋆
S2, so

n∑
i=1

⋆
S
i

1 Kξ(Πi) = ξ·
⋆
S2 +2τ(ξ)

⋆
S2 −

n∑
i=1

⋆
S
i

1

⋆
k
2

i . (3.19)

Therefore, we can state the following.

Lemma 3.2. Let

ψ :Mn+1 −→M
n+2
1 (c)

be a isometric immersion of a null hypersurface in a space M
n+2
1 (c) of constant curvature c,

furnished with a conformal rigging vector field ζ. Then

ξ·
⋆
S2=

n∑
i=1

⋆
S
i

1

⋆
k
2

i . (3.20)

In particular, for n = 2

ξ·
⋆
S2=

⋆
S1

⋆
S2 . (3.21)

Proof. For constant sectional curvature, Kξ(Πi) = 0, i = 1, . . . , n and since τ(ξ) = 0, we

obtain (3.20) from (3.19). □

Now, for n = 2,

2∑
i=1

⋆
S
i

1

⋆
k
2

i=
⋆
k2

⋆
k
2

1 +
⋆
k1

⋆
k
2

2=
⋆
k1

⋆
k2 (

⋆
k1 +

⋆
k2) =

⋆
S1

⋆
S2 .

For each Newton transformation
⋆
T r, we can consider the second-order linear differential

operator L̃r : C
∞(M) → C∞(M) given by

L̃r(f) = tr
( ⋆
T r ◦∇̃2f

)
(3.22)

where ∇̃2f := ∇̃∇̃f stands for the g̃−dual of the Hessian H̃ess f of f with respect to g̃ onM .

Observe that when r = 0, L̃0 = ∆̃ is nothing but the Laplacian operator on the Riemannian

rigged structure (M, g̃). Also, the second-order linear differential operator L̃r defined here

in (3.22) is different from Lr(f) = tr
( ⋆
T r ◦∇(∇̃f)

)
as defined in [25] where a hybrid use of

the (projected) induced connection ∇ and the rigged Levi-Civita connection ∇̃ on (M, g̃) is

made. But these two connections do not coincide in general. Indeed, the equality ∇̃ = ∇

holds if and only if B = C and τ = 0 (cf. [10, Theorem 4.1]).

From (3.22) and (3.17) and using divergence properties, we get
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Lemma 3.3. For all f, h ∈ C∞(M),

L̃r(fh) = fL̃r(h) + hL̃r(f) + 2g̃
(
∇̃f,

⋆
T r ∇̃h

)
. (3.23)

For the following orientable isometric immersion

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

of the null hypersurface inM
n+2
1 (c) where m = n+2+c2 and t = c(c−1)/2 with c = 1, 0,−1,

we will calculate L̃r acting on the coordinate components of the immersion ψ, i.e a function

given by
〈
ψ, a

〉
where a ∈ Rm1+t is an arbitrary fixed vector. We let

0
∇ and ∇ denote the

Levi-Civita connections on Rn+2+c2

1+t and M
n+2
1 (c), respectively. For all U, V ∈ X(M),

0
∇U V = ∇UV − cg(U, V )ψ

which, by use of (2.6) gives

0
∇U V = ∇̃UV +B(U, V )(N − ξ) + g(AU, V )ξ − cg(U, V )ψ. (3.24)

In particular, for all U ∈ X(M),

0
∇Uξ = ∇Uξ = ∇̃Uξ = −

⋆
AU,

Lemma 3.4. Set h =
〈
ψ, a

〉
, a ∈ Rn+2+c2

1+t with c = −1, 0, 1 and λ = ⟨ζ, ζ⟩. Then,

∇̃h = aT − ⟨a,N − ξ⟩ξ = a− ⟨a,N − ξ⟩ξ − ⟨a, ξ⟩N − c⟨a, ψ⟩ψ; (3.25)

L̃rh = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
⟨ξ, a⟩+ (−1)r(r + 1)

⋆
Sr+1 ⟨ζ, a⟩

+(−1)r+1(n− r)c
⋆
Sr ⟨ψ, a⟩, (3.26)

and

L̃rψ = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
ξ + (−1)r(r + 1)

⋆
Sr+1 ζ

+(−1)r+1(n− r)c
⋆
Sr ψ. (3.27)

Proof. The function h is smooth on M and for all X ∈ X(M),

g̃(X, ∇̃h) = X · h = X · ⟨ψ, a⟩ =
〈

0
∇X ψ, a

〉
= ⟨X, a⟩.



INT. J. MAPS MATH. (2025) 8(2):717-750 / L̃r−BIHARMONIC NULL HYPERSURFACES 731

But

a = aT + ⟨ξ, a⟩N + c⟨ψ, a⟩ψ, (3.28)

where aT ∈ X(M) is the tangential component of the vector a projected onM in the direction

span(N,ψ). So, noting that ω(aT ) = ⟨a,N⟩,

g̃(X, ∇̃h) =
〈
X, aT + ⟨ξ, a⟩N + c⟨ψ, a⟩ψ

〉
= g(X, aT ) + ⟨ξ, a⟩g̃(ξ,X)

= g̃(X, aT )− ω(X)ω(aT ) + ⟨ξ, a⟩g̃(ξ,X) = g̃
(
X, aT − ⟨a,N − ξ⟩ξ

)
,

and we get ∇̃h = aT − ⟨a,N − ξ⟩ξ and the last equality in (3.25) follows from (3.28).

Further, note that

0
∇U N = −AU − cω(U)ψ

0
∇U ξ = −

⋆
AU and

0
∇U ψ = U,

hence, a straightforward computation using (3.25) leads to

0
∇U ∇̃h = −c⟨ψ, a⟩PU + ⟨AU−

⋆
AU, a⟩ξ + ⟨N − ξ, a⟩

⋆
AU

+⟨
⋆
AU, a⟩N + ⟨ξ, a⟩AU − c⟨PU, a⟩ψ. (3.29)

On the other hand, applying (3.24) with V = ∇̃h leads to

0
∇U ∇̃h = ∇̃U∇̃h+ ⟨a,

⋆
AU⟩(N − ξ) + ⟨a,AU⟩ξ − c⟨PU, a⟩ψ. (3.30)

Therefore, using (3.29), (3.30) and (2.7) we get

∇̃U∇̃h =
〈
N − 1

2
(2 + λ)ξ, a

〉 ⋆
AU − ⟨σξ + cψ, a⟩PU, (3.31)

which in terms of ζ reads

∇̃U∇̃h =
〈
ζ − (1 + λ)ξ, a

〉 ⋆
AU − ⟨σξ + cψ, a⟩PU. (3.32)

It follows from (3.32) that

L̃rh = tr
( ⋆
T r ◦∇̃2h

)
=
∑
α

g̃
( ⋆
T r

(
∇̃Xα∇̃h

)
, Xα

)
=

∑
α

[
⟨ζ − (1 + λ)ξ, a⟩ g̃(

⋆
T r

⋆
A Xα, Xα)− ⟨σξ + cψ, a⟩g̃(

⋆
T r PXα, Xα)

]
= ⟨ζ − (1 + λ)ξ, a⟩ tr(

⋆
A ◦

⋆
T r)− ⟨σξ + cψ, a⟩

(
tr(

⋆
T r)− (−1)r

⋆
Sr

)
= (−1)r(r + 1) ⟨ζ − (1 + λ)ξ, a⟩

⋆
Sr+1 +(−1)r(n− r)⟨σξ + cψ, a⟩

⋆
Sr .
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Therefore,

L̃rh = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
⟨ξ, a⟩+ (−1)r(r + 1)

⋆
Sr+1 ⟨ζ, a⟩

+(−1)r+1(n− r)c
⋆
Sr ⟨ψ, a⟩,

which is (3.26). Extend L̃r to the Rmt −valued function ψ by setting

L̃rψ =
(
L̃rψ1, . . . , L̃rψm

)
where ψi = εi⟨ψ, ei⟩ and (e1, . . . , em) stands for an orthonormal basis of Rm1+t with m =

n+ 2 + c2, t = c(c− 1)/2 and εi = ⟨ei, ei⟩ = ±1. We have

L̃rψ =

m∑
i=1

εiL̃r⟨ψ, ei⟩ei

= (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

] m∑
i=1

εi⟨ξ, ei⟩ei

+(−1)r(r + 1)
⋆
Sr+1

m∑
i=1

εi⟨ζ, ei⟩ei + (−1)r+1(n− r)c
⋆
Sr

m∑
i=1

εi⟨ψ, ei⟩ei,

= (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)(λ+ 1)

⋆
Sr+1

]
ξ

+(−1)r(r + 1)
⋆
Sr+1 ζ + (−1)r+1(n− r)c

⋆
Sr ψ,

which completes the proof. □

Remark 3.1. Due to
⋆
Sn+1= 0, we see from above expression (3.27) that L̃nψ = 0 and that

(M, ζ) is (trivially) L̃n−harmonic.

Lemma 3.5. Let a ∈ Rmt be a fixed constant vector and U ∈ X(M). Then,

∇̃⟨ξ, a⟩ = −
⋆
A aT , (3.33)

where aT = a− ⟨a, ξ⟩N − c⟨ψ, a⟩ψ.

∇̃U∇̃⟨ξ, a⟩ = −
(
∇̃aT

⋆
A
)
U −

[
⟨
⋆
A

2

U, aT ⟩+ ⟨1
2

⋆
A

2

U + σ
⋆
AU, a

T ⟩
]
ξ

+⟨ξ, a⟩
(
1

2

⋆
A

2

U + σ
⋆
AU

)
+ c⟨ψ, a⟩

⋆
AU ; (3.34)

L̃r⟨ξ, a⟩ = (−1)r+1⟨∇̃
⋆
Sr+1, a⟩+ (−1)r(r + 1)c

⋆
Sr+1 ⟨ψ, a⟩

+(−1)r+1

([
1

2
λ

⋆
S1 −(r + 1)σ

]
⋆
Sr+1 +

1

2
(r + 2)λ

⋆
Sr+2 −ξ·

⋆
Sr+1

)
⟨ξ, a⟩;(3.35)
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and

L̃rξ = (−1)r+1∇̃
⋆
Sr+1 +(−1)r(r + 1)c

⋆
Sr+1 ψ

+(−1)r+1

([
1

2
λ

⋆
S1 −(r + 1)σ

]
⋆
Sr+1 +

1

2
(r + 2)λ

⋆
Sr+2 −ξ·

⋆
Sr+1

)
ξ. (3.36)

Proof. Set ν = ⟨ξ, a⟩. For U ∈ X(M),

g̃
(
∇̃ν, U

)
= U · ν = U · ⟨ξ, a⟩ = ⟨

0
∇U ξ, a⟩ = ⟨−

⋆
AU, a⟩

= ⟨−
⋆
AU, a

T ⟩ = ⟨U,−
⋆
A aT ⟩ = g̃(U,−

⋆
A aT ).

Therefore, ∇̃⟨ξ, a⟩ = −
⋆
A aT . Using this expression, we get by direct computation that for

all U , W ∈ X(M),

⟨
0
∇U ∇̃ν,W ⟩ = −

〈
aT + ⟨a, ξ⟩N,

(
∇U

⋆
A
)
W
〉

−⟨
⋆
A

2

U,W ⟩ω(aT ) + c⟨
⋆
AU,W ⟩⟨ψ, a⟩

It is easy to check that if T ∈ End(TM) is a self-adjoint operator with respect to g then〈
(∇UT )V,W

〉
=

〈
V, (∇UT )W

〉
+ ω(V )B(U, TW )

−ω(TV )B(U,W )− ω(W )B(U, TV ) + ω(TW )B(U, V ).

Applying this for T =
⋆
A leads to

⟨
0
∇U ∇̃ν,W ⟩ = −

(〈(
∇U

⋆
A
)
aT ,W

〉
+ ω(W )B(U

⋆
A aT )− ω(aT )B(U,

⋆
AW )

+⟨a, ξ⟩
〈(

∇U

⋆
A
)
W,N

〉)
− ⟨

⋆
A

2

U,W ⟩ω(aT ) + c⟨ψ, a⟩⟨
⋆
AU,W ⟩.

But
〈(

∇U

⋆
A
)
W,N

〉
= ⟨

⋆
AAU,W ⟩ and due to (2.7), we get

〈(
∇U

⋆
A
)
W,N

〉
=
〈
− 1

2
λ

⋆
A

2

U − σ
⋆
A U,W

〉
where λ = ⟨ζ, ζ⟩. Also, by Gauss-Codazzi equation with τ = 0, the following equation holds,

⟨R(U, V )ξ,W ⟩ = −⟨R(U, V )W, ξ⟩ = ⟨(∇V

⋆
A)U − (∇U

⋆
A)V,W ⟩,

and since the ambient space has constant sectional curvature c, the left hand side van-

ishes, which leads to ⟨(∇V

⋆
A)U,W ⟩ = ⟨(∇U

⋆
A)V,W ⟩. Therefore,

〈(
∇U

⋆
A
)
aT ,W

〉
=
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∇aT

⋆
A
)
U,W

〉
and

⟨
0
∇U ∇̃ν,W ⟩ =

〈
−
(
∇aT

⋆
A
)
U −

〈 ⋆
A

2

U, aT
〉
N +

(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
⟨ξ, a⟩+ c⟨ψ, a⟩

⋆
AU,W

〉
.

and this leads to

0
∇U ∇̃ν = −

(
∇aT

⋆
A
)
U −

〈 ⋆
A

2

U, aT
〉
N + ⟨ξ, a⟩

(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
+c⟨ψ, a⟩

⋆
AU + β(U)ξ + γ(U)ψ. (3.37)

Taking respectively ξ and ψ components both side leads to β(U) = 0 and γ(U) = c
〈 ⋆
AU, aT

〉
.

Hence,

0
∇U ∇̃ν = −

(
∇aT

⋆
A
)
U −

〈 ⋆
A

2

U, aT
〉
N + ⟨ξ, a⟩

(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
+c⟨ψ, a⟩

⋆
AU + c

〈 ⋆
AU, a

T
〉
ψ. (3.38)

Computing the same term
0
∇U ∇̃ν using the right hand side of (3.24), we get

0
∇U ∇̃ν = ∇̃U∇̃ν −

〈
⋆
A

2

U, aT
〉
(N − ξ)

−
〈
−1

2
λ

⋆
A

2

U − σ
⋆
A U, aT

〉
ξ + c

〈 ⋆
AU, a

T
〉
ψ. (3.39)

By comparing (3.38)‘and (3.39) and using (2.7) we get,

∇̃U∇̃ν = −(∇aT
⋆
A)U −

[〈
⋆
A

2

U, aT
〉
+

〈
1

2
λ
⋆
A

2

U + σ
⋆
A U, aT

〉]
ξ

+⟨ξ, a⟩
(
1

2
λ

⋆
A

2

U + σ
⋆
A U

)
+ c⟨ψ, a⟩

⋆
AU. (3.40)

Finally, taking into account that

(∇aT
⋆
A)U = (∇̃aT

⋆
A)U − [⟨

⋆
A

2

U−
⋆
A AU, aT ⟩⟩]ξ,

we get the desired relation (3.34). Now,

L̃r⟨ξ, a⟩ = tr(
⋆
T r ∇̃2ν)

3.34
= −tr

( ⋆
T r ◦∇̃aT

⋆
A
)
− 0 + ⟨ξ, a⟩

(
1

2
λtr(

⋆
T r ◦

⋆
A

2

) + σtr(
⋆
T r ◦

⋆
A)

)
+

c⟨ψ, a⟩tr
( ⋆
T r ◦

⋆
A
)
,
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and (3.35) is straightforward from Proposition 3.1. The last claim (3.36) follows from

L̃rξ =
m∑
i=1

εi

(
L̃r⟨ξ, ei⟩

)
ei

where we use (3.35) componentwise. □

Before the next statement, we recall the following from [11, Lemma 4 (4)], where ζ is a

closed and conformal vector field.

Ric(U, ζ) = −(n+ 1)U · σ, (3.41)

forall U ∈ X(M). Since our ambient space M
n+2

(c) has constant sectional curvature c, it

follows from (3.42) that

U · σ = −cω(U) for all U ∈ X(M). (3.42)

Taking U = ξ provides

ξ · σ = −c. (3.43)

It turns out that

∇̃σ = (ξ · σ)ξ = −cξ. (3.44)

Furthermore, for U ∈ X(M),

∇̃U∇̃σ = ∇̃U (−cξ) = c
⋆
AU, (3.45)

and we get

L̃rσ = tr
( ⋆
T r (∇̃U∇̃σ)

)
= (−1)r(r + 1)c

⋆
Sr+1 . (3.46)

As for σ, the function λ = ⟨ζ, ζ⟩ is (screen) leafwise constant and ∇λ = 2σζ. Therefore,

∇̃λ = 2σξ. (3.47)

Hence, for all U ∈ X(M),

∇̃U∇̃λ = −2cω(U)ξ − 2σ
⋆
A U, (3.48)

and

L̃rλ = tr
( ⋆
T r (∇̃U∇̃λ)

)
= (−1)r+1

(
2c

⋆
Sr +2(r + 1)σ

⋆
Sr+1

)
. (3.49)

Following the same steps as above for the function ν = ⟨ξ, a⟩, we establish the following.
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Lemma 3.6. Let a ∈ Rmt be a fixed constant vector and U ∈ X(M). Then,

∇̃⟨ζ, a⟩ = σaT + ⟨σ(ξ −N)− cψ, a⟩ ξ, (3.50)

or equivalently

∇̃⟨ζ, a⟩ = σa+ ⟨σ(ξ −N)− cψ, a⟩ ξ − σ⟨ξ, a⟩N − cσ⟨a, ψ⟩ψ; (3.51)

∇̃U∇̃⟨ζ, a⟩ = −cω(U)aT − σ (σ⟨a, ξ⟩+ c⟨a, ψ⟩)PU

− [(λ+ 1)σ⟨a, ξ⟩ − σ⟨a, ζ⟩ − c⟨a, ψ⟩]
⋆
A U

−c
〈
1

2
(2 + λ)ω(U)ξ − ω(U)ζ + U, a

〉
ξ;

L̃r⟨ζ, a⟩ = (−1)r+1
[(
(n− r)σ2 + 2c

) ⋆
Sr +(r + 1)(λ+ 1)σ

⋆
Sr+1

]
⟨ξ, a⟩

+(−1)r+1
[
(n− r)cσ

⋆
Sr −(r + 1)c

⋆
Sr+1

]
⟨ψ, a⟩

+(−1)r(r + 1)σ
⋆
Sr+1 ⟨ζ, a⟩;

and

L̃rζ = (−1)r+1
[(
(n− r)σ2 + 2c

) ⋆
Sr +(r + 1)(λ+ 1)σ

⋆
Sr+1

]
ξ

+(−1)r+1
[
(n− r)cσ

⋆
Sr −(r + 1)c

⋆
Sr+1

]
ψ

+(−1)r(r + 1)σ
⋆
Sr+1 ζ. (3.52)

Now, we compute L̃2
rψ. Starting from (3.26),

L̃2
r⟨ψ, a⟩ = (−1)r(r + 1)L̃r

( ⋆
Sr+1 ⟨ζ, a⟩

)
+ (−1)r+1c(n− r)L̃r

( ⋆
Sr ⟨ψ, a⟩

)
+(−1)r+1(r + 1)L̃r

(
(λ+ 1)

⋆
Sr+1 ⟨ξ, a⟩

)
+ (−1)r+1(n− r)L̃r

(
σ

⋆
Sr ⟨ξ, a⟩

)
.

We compute each term using Lemma 3.3, (3.33) (3.36), (3.50), (3.52), (3.44), (3.46), (3.47)

and (3.49):

(−1)r(r + 1)L̃r

( ⋆
Sr+1 ⟨ζ, a⟩

)
= 2(−1)r(r + 1)σ

〈 ⋆
T r ∇̃

⋆
Sr+1, a

〉
+(r + 1)

[
(−1)rL̃r

⋆
Sr+1 +(r + 1)σ

⋆
S
2

r+1

]
⟨ζ, a⟩

−(r + 1)
[ (

(n− r)σ2 + 2c
) ⋆
Sr

⋆
Sr+1

+(r + 1)(λ+ 1)σ
⋆
S
2

r+1

]
⟨ξ, a⟩

−(r + 1)
[
(n− r)cσ

⋆
Sr

⋆
Sr+1 −(r + 1)c

⋆
S
2

r+1
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+2c
⋆
Sr (ξ·

⋆
Sr+1)

]
⟨ψ, a⟩;

(−1)r+1c(n− r)L̃r

( ⋆
Sr ⟨ψ, a⟩

)
= (−1)r+1(n− r)c

[
L̃r

⋆
Sr +(−1)r+1(n− r)c

⋆
S
2

r

]
⟨ψ, a⟩

+(n− r)c
[
(n− r)σ

⋆
S
2

r +(r + 1)(λ+ 1)
⋆
Sr

⋆
Sr+1

]
⟨ξ, a⟩

−(n− r)(r + 1)c
⋆
Sr

⋆
Sr+1 ⟨ζ, a⟩

+2(−1)r+1(n− r)c
〈 ⋆
T r ∇̃

⋆
Sr, a

〉
;

(−1)r+1(r + 1)L̃r

(
(λ+ 1)

⋆
Sr+1 ⟨ξ, a⟩

)
= (r + 1)(λ+ 1)

⋆
Sr+1

〈
∇̃

⋆
Sr+1, a

〉
+2(−1)r(r + 1)(λ+ 1)

〈 ⋆
T r ◦

⋆
A∇̃

⋆
Sr+1, a

〉
−(r + 1)2(λ+ 1)c

⋆
S
2

r+1 ⟨ψ, a⟩

+
[(1

2
λ(λ+ 1)(r + 1)

⋆
S1

−(r + 1)2(λ+ 1)σ
) ⋆
S
2

r+1

+
1

2
λ(λ+ 1)(r + 1)(r + 2)

⋆
Sr+1

⋆
Sr+1

−(r + 1)(λ+ 1)
⋆
Sr+1 (ξ·

⋆
Sr+1)

+(−1)r+1(r + 1)(λ+ 1)L̃r
⋆
Sr+1

+2(r + 1)c
⋆
Sr

⋆
Sr+1 +2(r + 1)2σ

⋆
S
2

r+1

−4(r + 1)σ
⋆
Sr (ξ·

⋆
Sr+1)

]
⟨ξ, a⟩;

(−1)r+1(n− r)L̃r

(
σ

⋆
Sr ⟨ξ, a⟩

)
= (n− r)σ

⋆
Sr

〈
∇̃

⋆
Sr+1, a

〉
+2(−1)r(n− r)σ

〈 ⋆
T r◦

⋆
A ∇̃

⋆
Sr, a

〉
−(n− r)(r + 1)σc

⋆
Sr

⋆
Sr+1 ⟨ψ, a⟩

+(n− r)
[
(−1)r+1σL̃r

⋆
Sr

+(n− r)
(1
2
λσ

⋆
S1 −(r + 1)(c+ σ2)

) ⋆
Sr

⋆
Sr+1

+2(n− r)c
⋆
Sr (ξ·

⋆
Sr) +

1

2
λ(n− r)(r + 2)σ

⋆
Sr

⋆
Sr+2

−(n− r)σ
⋆
Sr (ξ·

⋆
Sr+1)

]
⟨ξ, a⟩.

Putting all the above together, we get the following.

Proposition 3.3. Let

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rm1+t

be a isometric immersion of a null hypersurface in the Robertson-Walker space M
n+2
1 (c)

where m = n+ 2 + c2, t = c(c− 1)/2 with c = 1, 0,−1, furnished with a timelike closed and
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conformal rigging vector field ζ. If λ = ⟨ζ, ζ⟩ denotes the squared length function of ζ and σ

its conformal factor, Then,

L̃2
r⟨ψ, a⟩ =

[
(r + 1)(λ+ 1)

⋆
Sr+1 +(n− r)σ

] 〈
∇̃

⋆
Sr+1, a

〉
+2(−1)r(r + 1)(λ+ 1)

〈
(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr+1, a

〉
+2(−1)r(n− r)σ

〈
(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr, a

〉
+2(−1)r(r + 1)σ

〈 ⋆
T r ∇̃

⋆
Sr+1, a

〉
+2(−1)r+1(n− r)c

〈 ⋆
T r ∇̃

⋆
Sr, a

〉
+Λξr⟨ξ, a⟩+ Λζr⟨ζ, a⟩+ Λψr ⟨ψ, a⟩ (3.53)

for a fixed a ∈ Rm1+t; and

L̃2
rψ =

[
(r + 1)(λ+ 1)

⋆
Sr+1 +(n− r)σ

]
∇̃

⋆
Sr+1

+2(−1)r(r + 1)(λ+ 1)(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr+1

+2(−1)r(n− r)σ(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr

+2(−1)r(r + 1)σ
⋆
T r ∇̃

⋆
Sr+1

+2(−1)r+1(n− r)c
⋆
T r ∇̃

⋆
Sr

+Λξrξ + Λζrζ + Λψr ψ; (3.54)

with Λξr, Λ
ζ
r and Λψr as follows :

Λξr = (−1)r+1(r + 1)(λ+ 1)L̃r
⋆
Sr+1 +(−1)r+1σ(n− r)L̃r

⋆
Sr

+(r + 1)λ

(
1

2
(λ+ 1)

⋆
S1 −2(r + 1)σ

)
⋆
S
2

r+1 +c(n− r)2σ
⋆
S
2

r

+(n− r)

(
1

2
λσ

⋆
S1 +(r + 1)(cλ− 2σ2)

)
⋆
Sr

⋆
Sr+1

+
1

2
(r + 1)(r + 2)λ(λ+ 1)

⋆
Sr+1

⋆
Sr+2

+
1

2
(r + 2)(n− r)λσ

⋆
Sr

⋆
Sr+2 +2(n− r)c

⋆
Sr (ξ·

⋆
Sr)

−
[
(r + 1)(λ+ 1)

⋆
Sr+1 +σ(n+ 3r + 4)

⋆
Sr

]
(ξ·

⋆
Sr+1); (3.55)

Λζr = (r + 1)

[
(−1)rL̃r

⋆
Sr+1 +(r + 1)σ

⋆
S
2

r+1 −(n− r)c
⋆
Sr

⋆
Sr+1

]
(3.56)

and

Λψr = c
[
(−1)r+1(n− r)L̃r

⋆
Sr +(n− r)2c

⋆
S
2

r −(r + 1)2λ
⋆
S
2

r+1

−2(r + 1)(n− r)σ
⋆
Sr

⋆
Sr+1 −2(r + 1)

⋆
Sr (ξ·

⋆
Sr+1)

]
. (3.57)
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Remark 3.2. Observe that

∇̃
⋆
Sr= P ∇̃

⋆
Sr +(ξ·

⋆
Sr)ξ,

⋆
T r ∇̃

⋆
Sr= P

[ ⋆
T r ∇̃

⋆
Sr

]
+ (−1)r

⋆
Sr (ξ·

⋆
Sr)ξ

and similar formulas for ∇̃
⋆
Sr+1 and

⋆
T r ∇̃

⋆
Sr+1. So we get the following useful equivalent

formula for (3.54)

L̃2
rψ =

[
(r + 1)(λ+ 1)

⋆
Sr+1 +(n− r)σ

]
P ∇̃

⋆
Sr+1

+2(−1)r(r + 1)(λ+ 1)(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr+1

+2(−1)r(n− r)σ(
⋆
T r ◦

⋆
A)∇̃

⋆
Sr

+2(−1)r(r + 1)σP
⋆
T r ∇̃

⋆
Sr+1

+2(−1)r+1(n− r)cP
⋆
T r ∇̃

⋆
Sr

+
⋆

Λξr ξ + Λζrζ + Λψr ψ; (3.58)

with

⋆

Λξr = (−1)r+1(r + 1)(λ+ 1)L̃r
⋆
Sr+1 +(−1)r+1σ(n− r)L̃r

⋆
Sr

+(r + 1)λ

(
1

2
(λ+ 1)

⋆
S1 −2(r + 1)σ

)
⋆
S
2

r+1 +c(n− r)2σ
⋆
S
2

r

+(n− r)

(
1

2
λσ

⋆
S1 +(r + 1)(cλ− 2σ2)

)
⋆
Sr

⋆
Sr+1

+
1

2
(r + 1)(r + 2)λ(λ+ 1)

⋆
Sr+1

⋆
Sr+2

+
1

2
(r + 2)(n− r)λσ

⋆
Sr

⋆
Sr+2 −2(r + 1)σ

⋆
Sr (ξ·

⋆
Sr+1). (3.59)

Definition 3.1. A connected isometric immersion

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rmq

of a null hypersurface in M
n+2
1 (c) furnished with a rigging vector field ζ is said to be

L̃r−biharmonic if the position vector field ψ satisfies the condition L̃2
rψ = 0.

Remark 3.3. Based on (3.58),(3.59), (3.56), (3.57) and Theorem 3.1, a r−maximal null

hypersurface

ψ :Mn+1 −→M
n+2
1 (c) ⊆ Rmq

is biharmonic. For this, we fix that proper L̃r−biharmonic null hypersurfaces are L̃r− bihar-

monic, but not r−maximal.



740 C.C. ATINDOGBÉ

4. Examples

Example 4.1 (Null cone torus). Let n ≥ m ≥ 2 be integers. Consider

M = {x ∈ Ln+3 | − x20 + x21 + · · ·+ x2m+1 = 0, x2m+2 + · · ·+ x2n+2 = 1} ∩ {x0 > 0}.

It is easy to see that M = Λm+1
0 × Sn−m is a null hypersurface of the De Sitter spacetime

Sn+2
1 given by the product of the lightcone Λm+1

0 of dimension m+1 with the n−m standard

sphere Sn−m (a null cone torus). A timelike closed and conformal rigging for M is given by

ζ = ∂0 + x0x,

with (null) rigged vector field

ξ = − 1

x0
·
(
x0, x1, . . . , xm+1, 0, . . . , 0

)
.

Then the shape operator is

⋆
A ≃


0 · · · · · · 0
... 1

x0
Im 0

... 0 0n−m

0


,

and we get that

⋆
Hr=



(
n+ 1

r

)−1(m
r

)
· 1

(x0)r
if 0 ≤ r ≤ m

0 if m+ 1 ≤ r ≤ n+ 1

(4.60)

Based on Remark 3.3, we see thatM = Λm+1
0 ×Sn−m is L̃k−biharmonic for m+1 ≤ k ≤ n+1.

Example 4.2 (Null cone cylinder). Let 1 ≤ m ≤ n− 1 be integers, and

M = {x ∈ Ln+2 | − x20 + x21 + · · ·+ x2m+1 = 0, x0 > 0}.

This null cone cylinder Λm+1
0 × Rn−m is a null hypersurface in Ln+2, for which a natural

timelike closed and conformal rigging is given by the constant vector field

ζ = ∂1
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with corresponding rigged vector field

ξ = − 1

x0
·
(
x0, x1, . . . , xm+1, 0, . . . , 0

)
.

Similar computations as in above Example 4.1, show that the hight order mean curvatures

are given as in (4.60) and Λm+1
0 × Rn−m is L̃k−biharmonic for m+ 1 ≤ k ≤ n+ 1.

5. Proofs of main results

5.1. Proof of Theorem 1.1. The Lr−harmonicity condition reads

0 = L̃rψ = (−1)r+1
[
(n− r)σ

⋆
Sr +(r + 1)λ

⋆
Sr+1

]
ξ +

[
(−1)r(r + 1)

⋆
Sr+1

]
ζ

+(−1)r+1
[
c(n− r)

⋆
Sr

]
ψ.

This is equivalent to
⋆
Sr+1= 0, σ

⋆
Sr= 0 and c

⋆
Sr= 0.

Obviously, due to Theorem 3.1, if
⋆
Sr= 0 the above system is satisfied. Assume

⋆
Sr ̸= 0. Then,

⋆
Sr+1= 0 and σ = 0 and the latter implies c = 0 due to (3.43). □

5.2. Proof of Theorem 1.2. We prove cases n = 1 and n = 2 separately.

• Case n = 1.

From (3.54) with n = 1 and r = 0,

L̃2
0ψ =

[
(λ+ 1)

⋆
S1 +3σ

]
P ∇̃

⋆
S1 +2(λ+ 1)

⋆
A∇̃

⋆
S1 +

⋆
Λ
ξ

0 ξ + Λζ0ζ + Λψ0ψ,

with

⋆
Λ
ξ

0 = −(λ+ 1)∆̃
⋆
S1 +

λ

2

[
(λ+ 1)

⋆
S1 −3σ

] ⋆
S
2

1

+(cλ− 2σ2)
⋆
S1 −2σ(ξ·

⋆
S1) + cσ, (5.61)

Λζ0 = ∆̃
⋆
S1 +σ

⋆
S
2

1 −c
⋆
S1 (5.62)

and

Λψ0 = c
[
c− λ

⋆
S
2

1 −2σ
⋆
S1 −2(ξ·

⋆
S1)
]

(5.63)
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where we used
⋆
S2= 0. Therefore, the condition L̃2

0ψ = 0 is equivalent to

⋆
AP ∇̃

⋆
S1= −(λ+ 1)

⋆
S1 +3σ

2(λ+ 1)
P ∇̃

⋆
S1 (5.64)

∆̃
⋆
S1 +σ

⋆
S
2

1 −c
⋆
S1= 0 (5.65)

c
[
c− λ

⋆
S
2

1 −2σ
⋆
S1 −2(ξ·

⋆
S1)
]
= 0 (5.66)

−(λ+ 1)∆̃
⋆
S1 +

λ

2

[
(λ+ 1)

⋆
S1 −3σ

] ⋆
S
2

1 +(cλ− 2σ2)
⋆
S1 −2σ(ξ·

⋆
S1) + cσ = 0. (5.67)

Assume P ∇̃
⋆
S1 ̸= 0. Then, we see that P ∇̃

⋆
S1 is an eigenvector field of

⋆
A with

eigenfunction (a screen principal curvature)

⋆
k= −(λ+ 1)

⋆
S1 +3σ

2(λ+ 1)
.

Since the null surface M is 2−dimensional, it follows that
⋆
k= 0 or

⋆
k=

⋆
S1. But each

of the two cases implies
⋆
S1=

⋆
S1 (σ, λ) which leads to a condradiction since σ and

λ are leafwise constant. We conclude that P ∇̃
⋆
S1= 0 and

⋆
S1 is leafwise constant.

Observe that by the Raychaudhuri equation (2), if
⋆
S1 is constant on the whole M ,

this constant is zero. But the case c ̸= 0 implies
⋆
S1 ̸= 0. Indeed,

⋆
S1= 0 in (5.67) leads

to σ = 0 on M and c = −ξ · σ = 0 which is a contradiction. Hence, for c ̸= 0,
⋆
S1

is not constant on the whole M . To go further, let (ξ,X) be a local g̃−orthonormal

basis of M . Since ∇̃
⋆
S1= (ξ·

⋆
S1)ξ =

⋆
S
2

1 ξ we get

∆̃
⋆
S1= g̃(∇̃ξ∇̃

⋆
S1, ξ) + g̃(∇̃X∇̃

⋆
S1, X = g̃(∇̃ξ(

⋆
S
2

1 ξ), ξ) + g̃(∇̃X(
⋆
S
2

1 ξ), X) =
⋆
S
3

1 . (5.68)

Consider the case where c = 0 and assume
⋆
S1 ̸= 0. From (5.65) and (5.68) we get

(
⋆
S1 +σ)

⋆
S
2

1= 0. Therefore
⋆
S1= −σ. Then we get

σ2 =
⋆
S
2

1= ξ·
⋆
S1= −ξ · σ = c = 0.

Therefore, σ = 0 on M and
⋆
S1= −σ = 0 which is a contradiction.

• Case n = 2.

With r = 0, equation (3.54) reads

L̃2
0ψ =

[
(λ+ 1)

⋆
S1 +4σ

]
P ∇̃

⋆
S1 +2(λ+ 1)

⋆
A∇̃

⋆
S1 +

⋆
Λ
ξ

0 ξ + Λζ0ζ + Λψ0ψ, (5.69)
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with

⋆
Λ
ξ

0 = −(λ+ 1)∆̃
⋆
S1 +λ

[1
2
(λ+ 1)

⋆
S1 −2σ

] ⋆
S
2

1 +2
[1
2
λσ

⋆
S1 +cλ− 2σ2

] ⋆
S1

+λ(λ+ 1)
⋆
S1

⋆
S2 +2λσ

⋆
S2 +4cσ − 2σ(ξ·

⋆
S1). (5.70)

Λζ0 = ∆̃
⋆
S1 +σ

⋆
S
2

1 −2c
⋆
S1, (5.71)

and

Λψ0 = c
[
4c− λ

⋆
S
2

1 −4σ
⋆
S1 −2(ξ·

⋆
S1)
]
. (5.72)

Therefore, the biharmonicity condition amounts to

⋆
AP ∇̃

⋆
S1= −(λ+ 1)

⋆
S1 +4σ

2(λ+ 1)
P ∇̃

⋆
S1,

⋆
Λ
ξ

0= 0, Λζ0 = 0 and Λψ0 = 0. (5.73)

Assume P ∇̃
⋆
S1 ̸= 0. Then we see from the first equation in (5.73) that

⋆
k1= −(λ+ 1)

⋆
S1 +4σ

2(λ+ 1)

is a screen principal curvature. Also, it is easy to see that the screen shape operator

is (with
⋆
k0= 0),

⋆
A=


0 0 0

0
⋆
k1 0

0 0
⋆
k2

 =



0 0 0

0 −(λ+ 1)
⋆
S1 +4σ

2(λ+ 1)
0

0 0
3(λ+ 1)

⋆
S1 +4σ

2(λ+ 1)


.

From Raychaudury equation (2) and due to τ(ξ) = 0 and Ric(ξ, ξ) = 0, we have

ξ·
⋆
S1=

1

2(λ+ 1)2

[
5(λ+ 1)2

⋆
S
2

1 +16(λ+ 1)σ
⋆
S1 +16σ2

]
. (5.74)

Now, we treat the cases c = 0 and c ̸= 0 separately.

Assume c ̸= 0. Eq. (5.74) in the last equation in (5.73) yields
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(λ+ 5)
⋆
S
2

1 +
4σ(λ+ 5)

λ+ 1

⋆
S1 +

16σ2

(λ+ 1)2
− 4c = 0.

But, λ+5 ̸≡ 0, otherwise we get c = 0 from (3.43) and (3.47) which is a contradiction.

So,
⋆
S1=

⋆
S1(λ, σ). Therefore, since λ and σ are (screen) leafwise constant, the same is

for
⋆
S1 and we get P ∇̃

⋆
S1= 0 which is a contradiction.

Assume now that c = 0. It follows from the third equation in (5.73) that

∆̃
⋆
S1= −σ

⋆
S
2

1 . (5.75)

Also,
⋆
S2=

1

2

( ⋆
S
2

1 −ξ·
⋆
S1

)
(5.74)
= −3

4

⋆
S
2

1 −
4σ

λ+ 1

⋆
S1 −

4σ2

(λ+ 1)2
. (5.76)

Therefore, by replacing the expressions (5.75), (5.76) and (5.74) in the second equa-

tion in (5.73) we get

1

4
λ(λ+ 1)

⋆
S
3

1 +
1

2
(11λ+ 8)σ

⋆
S
2

1 +
4σ2

λ+ 1
(4λ+ 5)

⋆
S1 +

8σ3

(λ+ 1)2
(λ2 + 2λ+ 2) = 0

which is polynomial in
⋆
S1 with degree 3 since λ(λ+ 1) ̸= 0. Therefore,

⋆
S1=

⋆
S1(λ, σ)

which implies again a contradiction P ∇̃
⋆
S1= 0 since λ and σ are (screen) leafwise

constant. Finally, we conclude that P ∇̃
⋆
S1= 0 and

⋆
S1 is (screen) leafwise constant.

Now we are interested in knowing whether
⋆
S1 can be globally constant over the

whole hypersurface M , in which case this constant would necessarily be zero. For

this, observe that due to (5.72) and the last equation in (5.73), c ̸= 0 implies ∥
⋆
A∥2 =

ξ·
⋆
S1 ̸= 0 and the answer is negative. It remains to analyze the case where c = 0. Use

(5.71) and the third equation in (5.73) to get

∆̃
⋆
S1= −σ

⋆
S
2

1 . (5.77)

Also, 0 = c = −ξ ·σ and being leafwise constant, we see that σ restricts to a constant

over the whole M . Assume this constant to be zero. From the second equation in

(5.73) and (5.70) we get
⋆
S1(

⋆
S
2

1 +2
⋆
S2) = 0. (5.78)

In this relation, assume
⋆
S2 ̸= 0, then by Theorem 3.1,

⋆
S1 ̸= 0 and we get

1

2

(
⋆
S
2

1 −ξ·
⋆
S1

)
=
⋆
S2= −1

2

⋆
S
2

1,
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i.e ξ·
⋆
S1= 2

⋆
S
2

1. Before we go further, we note the following. Choose a local

g̃−orthonormal frame (X0, X1, X2) consisting of eigenvectors of
⋆
A such that X0 = ξ

andX1, X2 ∈ Γ(S). Then, by a straightforward computation, ∆̃
⋆
S1= ξ ·(ξ·

⋆
S1)−(ξ·

⋆
S1

)
⋆
S1. Therefore, 0 = ∆̃

⋆
S1= 4

⋆
S
3

1 −2
⋆
S
3

1, thus,
⋆
S1= 0 : a contradiction. So, in (5.78),

we have
⋆
S2= 0 and consequently

⋆
S1= 0. Now, assume that σ restricts on M to a non

zero constant. Substituting (5.77) and
⋆
S2 in the second equation in (5.73) yields

λ(λ+ 1)
⋆
S
3

1 +(λ+ 1)σ
⋆
S
2

1 −4σ2
⋆
S1 −

[
λ(λ+ 1)

⋆
S1 +(λ+ 2)σ

]
(ξ·

⋆
S1) = 0.

Taking again derivative with respect to ξ both side leads to

λ(λ+ 1)(ξ·
⋆
S1)

2 +

[
−2λ(λ+ 1)

⋆
S
2

1 +(3λ+ 2)σ
⋆
S1 +6σ2

]
(ξ·

⋆
S1)

−
[
(5λ+ 2)

⋆
S1 +λ

2 + σλ+ 4σ
]
σ

⋆
S
2

1= 0 (5.79)

Observe that since ξ·
⋆
S1= 0 implies

⋆
S1= 0, we infer that ξ·

⋆
S1 is solution of Eq.

(5.79). Consequently, we have

ξ·
⋆
S1= 0 or


ξ·

⋆
S1=

2λ(λ+ 1)
⋆
S
2

1 −(3λ+ 2)σ
⋆
S1 −6σ2

λ(λ+ 1)[
(5λ+ 2)

⋆
S1 +λ

2 + σλ+ 4σ
]
σ

⋆
S
2

1= 0

. (5.80)

Observe that
⋆
S1= 0 is incompatible with the second system in (5.80) as it implies

σ = 0 which is a contradiction. So, for this system,
⋆
S1 ̸= 0 and we get

(5λ+ 2)
⋆
S1 +λ

2 + σλ+ 4σ = 0.

But 5λ+ 2 ̸≡ 0, otherwise 2σ = ξ · λ = 0 and σ = 0, a contradiction. Therefore,

⋆
S1= −λ

2 + σλ+ 4σ

5λ+ 2
, (5.81)

from which we get

ξ·
⋆
S1=

−2σ

(5λ+ 2)2
[
5λ2 + 4λ− 18σ

]
. (5.82)

Replacing (5.81) in the first equation of the system in (5.80) yields

ξ·
⋆
S1= 2

(
λ2 + σλ+ 4σ

5λ+ 2

)2

+
3λ+ 2

λ(λ+ 1)

λ2 + σλ+ 4σ

5λ+ 2
σ − 6σ2

λ(λ+ 1)
. (5.83)
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From (5.82) and (5.83) we see that λ = λ(σ) = const i.e 0 = ξ · λ = 2σ i.e σ = 0 and

this is a contradiction. So the second expression of ξ·
⋆
S1 is not admissible and we

conclude that ξ·
⋆
S1= 0 is the only one solution, and this implies

⋆
S1= 0 and the proof

is complete. □

5.3. Proof of Theorem 1.3. From (3.54) with n = 1 and r = 1,

L̃2
1ψ = 2(λ+1)

⋆
S2 P ∇̃

⋆
S2 −4(λ+1)(

⋆
T 1 ◦

⋆
A)∇̃

⋆
S2 −4σP

⋆
T 1 ∇̃

⋆
S2 +

⋆
Λ
ξ

1 ξ+Λζ1ζ+Λψ1ψ, (5.84)

with

⋆
Λ
ξ

1= 2(λ+ 1)L̃1

⋆
S2 +2λ

(1
2
(λ+ 1)

⋆
S1 −4σ

) ⋆
S
2

2 +3λ(λ+ 1)
⋆
S2

⋆
S3 −4σ

⋆
S1 (ξ·

⋆
S2)

Λζ1 = 2
[
− L̃1

⋆
S2 +2σ

⋆
S2

]
, and Λψ1 = −4c

[
λ

⋆
S
2

2 +
⋆
S1 (ξ·

⋆
S2)
]
.

But for the null surfaceM2, we have
⋆
S2=

⋆
k0

⋆
k1= 0. So, L̃2

1ψ = 0 andM2 is L̃1−biharmonic

and item (1) is proved.

Let n = 2 and r = 1 in (3.54). We treat separately the cases σ = 0 and σ ̸= 0.

• For σ = 0 we see that c = 0 and λ = cste. So,

L̃2
1ψ = 2(λ+ 1)

⋆
S2 P∇̃

⋆
S2 −4(λ+ 1)(−

⋆
S1

⋆
A +

⋆
A

2

)P ∇̃
⋆
S2 +

⋆
Λ
ξ

1 ξ + Λζ1ζ + Λψ1ψ, (5.85)

with
⋆
Λ
ξ

1= λ(λ+ 1)
⋆
S1

⋆
S2, Λζ1 = L̃1

⋆
S2 and Λψ1 = 0, (5.86)

where we used
⋆
S3= 0. From the L̃1−biharmonicity condition, the first equality in

(5.86) yields
⋆
S1

⋆
S2= 0 which implies

⋆
S2= 0. Indeed, if

⋆
S1 ̸= 0 then

⋆
S2= 0. Now, by

Theorem 3.1
⋆
S1= 0 implies

⋆
S2= 0.

• For σ ̸= 0,

L̃2
1ψ =

[
2(λ+ 1)

⋆
S2 +4σ

⋆
S1 +σ

]
P∇̃

⋆
S2 +4(λ+ 1)

[(
⋆
S1 −

σ

λ+ 1

)
⋆
A −

⋆
A

2
]
P∇̃

⋆
S2

−2c
⋆
S1 P∇̃

⋆
S1 +2σ

[( ⋆
S1 +

c

σ

) ⋆
A −

⋆
A

2
]
P∇̃

⋆
S1 +

⋆
Λ
ξ

1 ξ + Λζ1ζ + Λψ1ψ.

Assume
⋆
S1 is F−leafwise constant. Set

⋆
D=

(
⋆
S1 −

σ

λ+ 1

)
⋆
A −

⋆
A

2

.
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The L̃1−bihamonicity condition implies

⋆
D P∇̃

⋆
S2= −

[
1

2

⋆
S2 +

σ

4(λ+ 1)
(4

⋆
S1 +1)

]
P∇̃

⋆
S2 . (5.87)

Observe that ξ is also an eigenvector field of
⋆
D associated to the eigenvalue

⋆
λ0= 0.

Also,
⋆
D is diagonalizable and

trace(
⋆
D) = 2

⋆
S2 −

σ

λ+ 1

⋆
S1 .

Assume P∇̃
⋆
S2 ̸= 0. It follows from (5.87) that

⋆
λ1= −

[
1

2

⋆
S2 +

σ

4(λ+ 1)
(4

⋆
S1 +1)

]

is an eigenfunction for
⋆
D. Observe that

⋆
λ1 ̸= 0. Otherwise,

⋆
S2=

−σ
2(λ+ 1)

(4
⋆
S1

+1) which implies P∇̃
⋆
S2= 0 and this is a contradiction. We find that the third

eigenfunction of
⋆
D is

⋆
λ2= trace(

⋆
D)−

⋆
λ1=

5

2

⋆
S2 +

σ

4(λ+ 1)
.

Without losing generality we can choose a local g̃−orthonormal frame field consisting of

eigenvector fields of
⋆
D such that

X0 = ξ, X1 =
P ∇̃

⋆
S2∥∥∥P ∇̃⋆
S2

∥∥∥ ∈ Γ(S) and X2 ∈ Γ(S).

In this local frame,
⋆
D takes the form

⋆
D=



⋆
λ0 0 0

0
⋆
λ1 0

0 0
⋆
λ3


=



0 0 0

0 −
[
1
2

⋆
S2 +

σ

4(λ+ 1)
(4

⋆
S1 +1)

]
0

0 0 5
2

⋆
S2 +

σ

4(λ+ 1)


Taking into account the ξ, ζ and ψ components we also derive the following equations :

⋆
Λ
ξ

1 = 2(λ+ 1)L̃1

⋆
S2 +σL̃1

⋆
S1 +2λ

[
1

2
(λ+ 1)

⋆
S1 −4σ

]
⋆
S2 +cσ

⋆
S
2

1

+

[
1

2
λσ

⋆
S1 +2c(cλ− 2σ2)

]
⋆
S1

⋆
S2 −4σ

⋆
S1 (ξ·

⋆
S2) = 0; (5.88)
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2Λζ1 = −L̃1

⋆
S2 +2σ

⋆
S
2

2 −c
⋆
S1

⋆
S2= 0; (5.89)

Λψ1 = c

[
L̃1

⋆
S1 +c

⋆
S1 +c

⋆
S1 −4λ

⋆
S
2

2 −4σ
⋆
S1

⋆
S2 −4

⋆
S1 (ξ·

⋆
S2)

]
= 0. (5.90)

Observe that since
⋆
S3= 0, we have ξ·

⋆
S2=

⋆
S1

⋆
S2. Let us compute L̃1

⋆
S1.

L̃1

⋆
S1= g̃

( ⋆
T 1 ◦∇̃ξ∇̃

⋆
S1, ξ

)
+ g̃

( ⋆
T 1 ◦∇̃X1∇̃

⋆
S1, X1

)
+ g̃

( ⋆
T 1 ◦∇̃X2∇̃

⋆
S1, X2

)
where ∇̃

⋆
S1= (ξ·

⋆
S1)ξ = (

⋆
S
2

1 −2
⋆
S2)ξ. Computing each term leads to

g̃
( ⋆
T 1 ◦∇̃ξ∇̃

⋆
S1, ξ

)
= −2

⋆
S
4

1 +6
⋆
S
2

1

⋆
S2;

g̃
( ⋆
T 1 ◦∇̃X1∇̃

⋆
S1, X1

)
= g̃

( ⋆
T 1 ◦∇̃X2∇̃

⋆
S1, X2

)
=
⋆
S2 (

⋆
S
2

1 −2
⋆
S2).

So,

L̃1

⋆
S1= 8

⋆
S
2

1

⋆
S2 −2

⋆
S
4

1 −4
⋆
S
2

2 . (5.91)

Assume c ̸= 0. From (5.90) and (5.91),

−4(λ+ 1)
⋆
S
2

2 +[4
⋆
S
2

1 −4σ
⋆
S1]

⋆
S2 −2

⋆
S
4

1 +c
⋆
S1= 0.

Hence, since λ + 1 ̸= 0 we see that
⋆
S2=

⋆
S2 (

⋆
S1, λ, σ) and this implies P∇̃

⋆
S2= 0 which is a

contradiction.

Assume c = 0. We get from (5.89), L̃1

⋆
S2= 2σ

⋆
S
2

2 with σ constant on M . Using (5.88), we

derive

4λ
⋆
S
2

2 +

[
(4 +

1

2
λ)σ

⋆
S
2

1 +(λ2 + λ− 4σ2)
⋆
S1 −4σλ

]
⋆
S2 −2σ

⋆
S
4

1= 0.

But λ < 0 since ζ is timelike. So,
⋆
S2=

⋆
S2 (

⋆
S1, λ, σ) and this implies P∇̃

⋆
S2= 0 which is again

a contradiction.

Finally, we conclude that P∇̃
⋆
S2= 0 i.e

⋆
S2 is leafwise constant in the screen foliation F .

Assume that
⋆
S2 and hence

⋆
H2 is constant on the whole null hypersurface M3. Then

0 = ξ·
⋆
S2=

⋆
S1

⋆
S2 and this implies again

⋆
S2= 0 as shown in previous argument above. □

Discussion. Consider the case where the rigging is a unit timelike vector field, i.e λ =

⟨ζ, ζ⟩ = −1. Due to ∇̃λ = 2σξ and ξ · σ = −c, we get σ = 0 on the null hypersurface M

and c = 0. Hence, when the rigging ζ is a timelike unit closed and conformal vector field,



INT. J. MAPS MATH. (2025) 8(2):717-750 / L̃r−BIHARMONIC NULL HYPERSURFACES 749

the target space of immersion is necessarily Minkowskian, and ζ is a Killing vector field in a

neighbourhood of the null hypersurface. Moreover,

L̃2
rψ =

[
(−1)r(r + 1)L̃r

⋆
Sr+1

]
ζ.

Consequently, the null hypersurface connected isometric immersion ψ : Mn+1 −→ Rn+2
1

furnished with a timelike unit closed and conformal vecor field (a Killing rigging ) ζ is

r−biharmonic if and only if L̃r
⋆
Sr+1= 0.

Acknowledgments. The author would like to thank the referee for some useful comments and

their helpful suggestions that have improved the quality of this paper.

References

[1] Akutagawa, K., & Maeta, S. (2013). Biharmonic properly immersed submanifolds in Euclidean spaces.

Geometriae Dedicata, 164, 351–355.

[2] Aminian, M. (2020). Lk-biharmonic hypersurfaces in space forms with three distinct principal curvatures.

Communications of the Korean Mathematical Society, 35(4), 1221–1244.

[3] Aminian, M., & Namjoo, M. (2021). Proper Lk-biharmonic hypersurfaces in the Euclidean sphere with

two principal curvatures. Journal of Mahani Mathematical Research Center, 10(1), 69–78.

[4] Aminian, M., & Kashani, S. M. B. (2014). Lk-biharmonic hypersurfaces in the Euclidean space. Taiwanese

Journal of Mathematics. https://doi.org/10.11650/tjm.18.2014.4830

[5] Aminian, M., & Kashani, S. M. B. (2015). Lk-biharmonic hypersurfaces in the Euclidean space. Taiwanese

Journal of Mathematics, 19, 861–874.

[6] Aminian, M., & Kashani, S. M. B. (2017). Lk-biharmonic hypersurfaces in space forms. Acta Mathematica

Vietnamica, 42, 471–490.

[7] Atindogbe, C., Gutiérrez, M., & Hounnonkpe, R. (2018). New properties on normalized null hypersur-

faces. Mediterranean Journal of Mathematics, 15, 166.

[8] Atindogbe, C., Gutiérrez, M., & Hounnonkpe, R. (2021). Compact null hypersurfaces in Lorentzian

manifolds. Advances in Geometry, 21(2), 251–263.

[9] Atindogbe, C., & Fosting, H. T. (2015). Newton transformations on null hypersurfaces. Communications

in Mathematics, 23, 57–83.

[10] Atindogbe, C., Ezin, J. P., & Tossa, T. (2003). Pseudo-inversion of degenerate metrics. International

Journal of Mathematics and Mathematical Sciences, 55, 3479–3501.

[11] Atindogbe, C., & Olea, B. (2022). Conformal vector fields and null hypersurfaces. Results in Mathematics,

77, 129.

[12] Chen, B.-Y. (1991). Some open problems and conjectures on submanifolds of finite type. Soochow Journal

of Mathematics, 17(2), 169–188.



750 C.C. ATINDOGBÉ
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