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Abstract. In this study, we focus on (2n+ 1)-dimensionalK-paracontact manifolds admit-

ting η-Ricci-Bourguignon solitons and gradient η-Ricci-Bourguignon solitons. We then com-

pletely present the classification of a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-

manifold that admits a gradient η-Ricci-Bourguignon soliton. Finally, we construct examples

that provide our results.
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1. Introduction and Motivations

Geometric flows represent a powerful tool for the topological classification of manifolds,

providing profound insights into their structural intricacies through the study of metric evo-

lution over time. In this process, questions concerning the short- and long-term behavior

of metrics such as whether they smooth out or develop singularities come to the forefront.

Moreover, geometric flows have significant applications in physical theories, including general

relativity and quantum gravity, particularly in modeling the dynamics of the universe’s geo-

metric structure. In this context, self-similar solutions to the flow, known as solitons (e.g.,

Ricci solitons), play a critical role in understanding the long-term behavior of the flow and

Received: 2025.03.20 Revised: 2025.05.28 Accepted: 2025.06.30

∗ Corresponding author
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contribute to the identification of stable or special geometric structures. This is particularly

evident in the case of the Poincaré conjecture, a century-old problem that was resolved in

the early 2000’s by Perelman through the use of Ricci flows, [18], [19], [20]. Ricci solitons

were instrumental in resolving the Poincaré conjecture, a problem that had been debated for

more than a hundred years. Thus, given a geometric flow, it is natural to study the solitons

associated to that flow. As a result of this, in 1981, Hamilton [11] introduced Ricci flow by

∂

∂t
g (t) = −2Rc (t) ,

where Rc represents Ricci tensor of type (0, 2) and g is the time dependent metric of the

space evolving under the flow.

Hamilton [12] also defined Yamabe flow as follows.

∂

∂t
g (t) = −r (t) g (t) ,

where r(t) represents the scalar curvature of the metric g (t) .

In 1981, a new geometric flow, named Ricci-Bourguignon flow, was introduced and ex-

tended the Ricci flow notation by Bourguignon [3] as follows:

∂

∂t
g (t) = −2 (Rc (t)− ρr (t) g (t)) , (1.1)

where ρ ∈ R.

Einstein flow [6] is given by

∂

∂t
g (t) = −2(Rc (t)− r (t)

2
g (t)).

Moreover, Ricci-Bourguignon flow is known as a generalization of Einstein flow. Depending

on the choice of ρ, the Ricci-Bourguignon flow may turn to certain geometric flows, namely,

for ρ = 1
2 this flow turn to be Einstein flow, for ρ = 1

2(n − 1) it will turn to the Schouten

flow and for ρ = 0 it will turn to the famous Ricci flow.

The solutions of (1.1) are called Ricci-Bourguignon solitons (RB-solitons) or ρ-Einstein

solitons which are given in [9] by the following

LWg + 2 (Rc− ρrg) = 2λg, (1.2)

where λ is a constant and L denotes the Lie derivative. λ and W are called soliton con-

stant and potential vector field, respectively. If λ is a smooth function, then it is called

almost Ricci-Bourguignon soliton [9]. The Ricci-Bourguignon soliton, a prominent concept

in Riemannian geometry, arises as a solution to the Einstein field equations in the context
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of general relativity. These solitons, which have garnered considerable attention in recent

years, play a crucial role in Riemannian geometry. Interestingly, Ricci Bourguignon solitons

are critical points of the Ricci flow, and studying the flow’s behavior near a soliton provides

important insights into the global geometry of the manifold. Ricci-Bourguignon soliton is

called trivial if W is zero or a Killing vector field (i.e. LWg = 0). If ρ = 0 in (1.2), a

Ricci soliton (a solution of the Ricci flow) is obtained. Theoretical physicists are fascinated

by Ricci solitons because of their link to string theory and the fact that the soliton equa-

tion represents a particular instance of the Einstein field equations. A Ricci soliton extends

the concept of an Einstein metric when there is a smooth, non-zero vector field W and a

constant λ. Recently, numerous researchers have examined Ricci solitons and gradient Ricci

solitons on certain types of three-dimensional almost contact metric manifolds. For instance,

the study of Ricci solitons and gradient Ricci solitons on three-dimensional normal almost

contact metric manifolds is investigated in [8]. Additionally, a comprehensive classification

of Ricci solitons on three-dimensional Kenmotsu manifolds is provided in [7] and [10].

The solutions of the Einstein flow are Einstein solitons and Einstein solitons are given by

LWg + 2(Rc− 1

2
rg) = 2λg.

A generalization of Einstein soliton is RB soliton (or ρ-Einstein soliton). Also a general-

ization of Ricci-Bourguignon flow is η-Ricci-Bourguignon flow which is given by

∂

∂t
g (t) = −2 (Rc (t)− ρr (t) g (t)− ση (t)⊗ η (t)) , (1.3)

where σ and ρ are real numbers.

An essential aspect of studying any geometric flow is analyzing its associated solitons,

which produce self-similar solutions to the flow and frequently serve as models for singulari-

ties. Motivated by the concept of Ricci solitons, it is intriguing to explore special solutions

of the flow (1.3) which is known as a generalization of Ricci-Bourguignon soliton is η-Ricci-

Bourguignon soliton ( η-RB soliton) and is given by

LWg + 2 (Rc− ρrg − ση ⊗ η) = 2λg, (1.4)

where σ and ρ are real numbers, if λ and σ are smooth functions, it is called an almost

η-Ricci-Bourguignon soliton [2]. For ρ = 1
2 , the soliton reduces to η-Einstein soliton and for

ρ = 0, it is η-Ricci-soliton.

The soliton is shrinking, steady or expanding according as λ > 0, λ = 0 and λ < 0,

respectively.
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If the potential vector field W is the gradient of a smooth function f , denoted by ∇f , then

(1.4) can be written

Hessf + (Rc− ρrg − ση ⊗ η) = λg, (1.5)

where Hessf is the Hessian of f . (1.5) is called a gradient η-Ricci-Bourguignon soliton.

A significant amount of work has been contributed by various researchers to explore the

geometric properties of Ricci-Bourguignon solitons. For instance, in [5], Catino et al. inves-

tigated the Ricci-Bourguignon solitons, where they discussed important rigidity results. In

recent year, in [22] Shaikh et al. demonstrated that a compact gradient Ricci-Bourguignon

soliton with constant scalar curvature is isometric to the Euclidean sphere. A similar result

was established for a gradient Ricci-Bourguignon soliton with a vector field of bounded norm,

subject to additional conditions. [21].

Recently, it is worth to mention that in [15] Mandal et al. studied η-Ricci-Bourguignon

solitons on K-contact and contact (κ, µ)-manifolds. Also, in [16], Mandal et al. investigated

η-Ricci-Bourguignon solitons on three-dimensional almost coKaehler manifolds. Blaga and

Ozgur [1] worked on submanifolds as almost η-Ricci Bourguignon solitons.

As far as our knowledge goes, η-Ricci-Bourguignon solitons and gradient η-Ricci-Bourguignon

solitons on K-paracontact manifolds and paracontact (κ ̸= −1, µ)-manifolds are not studied

by the researchers. This manuscript will fill these gaps.

This paper is structured as follows: In Section 2, we review some concepts essential for the

discussion. Section 3 focuses on (2n+ 1)-dimensional K-paracontact manifolds which admit

η-Ricci-Bourguignon solitons and gradient η-Ricci-Bourguignon solitons. We proved that if a

(2n+ 1)-dimensional K-paracontact manifold admits an η-Ricci-Bourguignon soliton whose

potential vector field being collinear with ξ, we showed that the manifold is η-Einstein and

then the scalar curvature r = −2n (2n+ 1 + σ) is constant. Also we proved that if a (2n+ 1)-

dimensionalK-paracontact manifold admits a gradient η-Ricci-Bourguignon soliton, then the

scalar curvature is constant and the manifold is η-Einstein. In Section 4, we completely give

the classification of a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-manifold that

admits a gradient η-Ricci-Bourguignon soliton.

Finally, we construct examples which verifies our results.

2. Preliminaries

In this section, we review various concepts and results that will be essential for the rest of

the paper.
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A smooth manifold M2n+1has an almost paracontact structure (ϕ, ξ, η) if it possesses a

tensor field ϕ of type (1, 1), a vector field ξ, and a 1-form η that satisfy the compatibility

conditions listed below.

i)ϕ (ξ) = 0, η ◦ ϕ = 0,

ii)η (ξ) = 1, ϕ2 = id− η ⊗ ξ,

iii)the tensor field ϕ gives rise to an almost paracomplex structure on each fibre of the

horizontal distribution D = Kerη [13]

A differentiable manifoldM 2n+1 equipped with an almost paracontact structure is referred

to as an almost paracontact manifold.

A direct implication of the definition of an almost paracontact structure is that the endo-

morphism ϕ has rank 2n.

If a manifold M 2n+1 endowed with (ϕ, ξ, η)-structure possesses a pseudo-Riemannian

metric g such that

g (ϕζ1, ϕζ2) = −g (ζ1, ζ2) + η (ζ1) η (ζ2) , (2.6)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1), then we say that M 2n+1 has an almost paracontact

metric structure and g is called compatible metric. The differentiable manifold M 2n+1 given

by the almost paracontact metric structure is called an almost paracontact metric manifold.

Any metric g that is compatible with a given almost paracontact structure must have a

signature of (n+ 1, n).

Within the framework of almost paracontact manifolds, the tensor N (1) of type (1, 2) can

be introduced by

N (1)(ζ1, ζ2) = [ϕ, ϕ](ζ1, ζ2)− 2dη(ζ1, ζ2)ξ

where

[ϕ, ϕ](ζ1, ζ2) = ϕ2[ζ1, ζ2] + [ϕζ1, ϕζ2]− ϕ[ϕζ1, ζ2]− ϕ[ζ1, ϕζ2]

is the Nijenhuis torsion of ϕ. The almost paracontact manifold is designated as normal, when

N (1) = 0 [23].

Setting ζ2 = ξ , we have g (ζ1, ξ) = η (ζ1). From here and (2.6) follows

g (ϕζ1, ζ2) = −g (ζ1, ϕζ2) .

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1). In an almost paracontact metric manifold, an orthog-

onal basis always exists. {ζ11, ..., ζ1n, ζ21, ..., ζ2n, ξ}, namely ϕ-basis, such that g(ζ1i, ζ1j) =

−g(ζ2i, ζ2j) = δij and ϕζ1i = ζ2i, for any i, j ∈ {1, ..., n}.
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The fundamental 2-form is defined by

Φ (ζ1, ζ2) = g (ζ1, ϕζ2) ,

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

If dη (ζ1, ζ2) = g (ζ1, ϕζ2) (where dη (ζ1, ζ2) = 1
2(ζ1η(ζ2) − ζ2η(ζ1) − η[ζ1, ζ2])), then η is

a paracontact form and the almost paracontact metric manifold is said to be paracontact

metric manifold.

Lemma 2.1. [23]On a paracontact metric manifold M2n+1, h = 1
2Lξϕ is a symmetric oper-

ator and satisfy the followings:

trh = trϕh = 0, hξ = 0, hϕ+ ϕh = 0,

∇ζ1ξ = −ϕζ1 + ϕhζ1, (2.7)

Rc (ξ, ξ) = −2n+ trh2,

for all vector field ζ1 ∈ Γ(M2n+1), tr is the trace operator.

It is important to note that h is equal to zero if and only if the vector field ξ is Killing.

When ξ is Killing, the paracontact metric manifold is referred to as aK-paracontact manifold.

A normal almost paracontact metric manifold is said to be para-Sasakian manifold if Φ = dη.

Furthermore, a para-Sasakian manifold is also K-paracontact, with the reverse holding true

solely in a three-dimensional [23].

An almost paracontact metric manifold is called η-Einstein if its Ricci tensor Rc takes the

form of

Rc = ag + bη ⊗ η

where a and b are smooth functions on the manifold.

For a K-paracontact manifold M2n+1, we have the following relations [23]

∇ζ1ξ = −ϕζ1, (2.8)

R (ξ, ζ1) ζ2 = −g (ζ1, ζ2) ξ + η (ζ2) ζ1, (2.9)

Rc (ζ1, ξ) = −2nη (ζ1) , (2.10)

R (ξ, ζ1) ζ2 = (∇ζ1ϕ) ζ2, (2.11)

R (ζ1, ξ) ξ = −ζ1 + η (ζ1) ξ, (2.12)

(∇ϕζ1ϕ)ϕζ2 − (∇ζ1ϕ) ζ2 = 2g (ζ1, ζ2) ξ − (ζ1 + η (ζ1) ξ) η (ζ2) , (2.13)
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for all vector fields ζ1, ζ2 ∈ Γ(M2n+1), where Q is the Ricci operator defined by g (Qζ1, ζ2) =

Rc (ζ1, ζ2).

Also followings hold on a (2n+ 1)-dimensional K-paracontact manifold [17],

(∇ζ1Q) ξ = Qϕζ1 + 2nϕζ1 (2.14)

and

(∇ξQ) ζ1 = Qϕζ1 − ϕQζ1 (2.15)

for all vector field ζ1 ∈ Γ(M2n+1).

On a (2n+ 1)-dimensional paracontact metric manifold, the notion of (κ, µ)-nullity distri-

bution is given by

N(κ, µ) : p → Np(κ, µ) =

 ζ3 ∈ TpM : R (ζ1, ζ2) ζ3 = κ (g (ζ2, ζ3) ζ1 − g (ζ1, ζ3) ζ2)

+µ (g (ζ2, ζ3)hζ1 − g (ζ1, ζ3)hζ2) ,


for every vector fields ζ1, ζ2, ζ3 ∈ Γ(M2n+1) and κ, µ ∈ R. If ξ belongs to above distribution,

namely,

R (ζ1, ζ2) ξ = κ (η (ζ2) ζ1 − η (ζ1) ζ2) + µ (η (ζ2)hζ1 − η (ζ1)hζ2) , (2.16)

then the paracontact metric manifold is called a paracontact metric (κ, µ)-manifold. When

µ = 0, a paracontact metric (κ, µ)-manifold reduces to N(κ)-paracontact metric manifold

[4].

Lemma 2.2. [4]Let M2n+1 be a paracontact metric (κ, µ)-manifold, then the following iden-

tities hold:

h2ζ1 = (1 + κ)ϕ2ζ1, (2.17)

R (ξ, ζ1) ζ2 = κ [g (ζ1, ζ2) ξ − η (ζ2) ζ1]

+µ [g (hζ1, ζ2) ξ − η (ζ2)hζ1] , (2.18)

(∇ζ1η) ζ2 = g (ζ1 − hζ1, ϕζ2) , (2.19)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

Lemma 2.3. [4]Let M2n+1 be a paracontact metric (κ ̸= −1, µ)-manifold, then the following

identities hold:

(∇ζ1ϕ) ζ2 = −g (ζ1 − hζ1, ζ2) ξ + η (ζ2) (ζ1 − hζ1) , (2.20)

Rc (ζ1, ξ) = 2nκη (ζ1) , (2.21)
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Rc (ζ1, ζ2) = [2 (1− n) + nµ] g (ζ1, ζ2) + [2 (n− 1) + µ] g (hζ1, ζ2)

+ [2 (n− 1) + n (2κ− µ)] η (ζ1) η (ζ2) , (2.22)

(∇ζ1h) ζ2 = − [(1 + κ) g (ζ1, ϕζ2) + g (ζ1, ϕhζ2)] ξ

+η (ζ2) [(1 + κ)ϕζ1 − ϕhζ1]− µη (ζ1)ϕhζ2, (2.23)

Qξ = 2nκξ, (2.24)

r = 2n [2 (1− n) + κ+ nµ] , (2.25)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

Theorem 2.1. [24] Let M2n+1be a paracontact metric manifold and suppose that R (ζ1, ζ2) ξ =

0 for all vector fields ζ1 and ζ2. Then locally M2n+1is the product of a flat (n+ 1)-dimensional

manifold and n-dimensional manifold of negative constant curvature equal to −4, for n > 1

and its locally flat for n = 1.

Lemma 2.4. On a paracontact metric (κ, µ)-manifold M2n+1, we have

(∇ξh) ζ1 = µhϕζ1, (2.26)

(∇ξQ) ζ1 = µ [2 (n− 1) + µ]hϕζ1, (2.27)

(∇ζ1Q) ξ = Q (ϕζ1 − ϕhζ1)− 2nκ (ϕζ1 − ϕhζ1) , κ ̸= −1 (2.28)

for all vector field ζ1 ∈ Γ(M2n+1).

Proof. If we write ζ1 = ξ in (2.23), we obtain (2.26).

From (2.22), we get

Qζ1 = [2 (1− n) + nµ] ζ1 + [2 (n− 1) + µ]hζ1 + [2 (n− 1) + n (2κ− µ)] η (ζ1) ξ. (2.29)

If we take the covariant derivative of (2.29) along ξ and use (2.26), we have (2.27). If we

take the covariant derivative of (2.24) along ζ1 and use (2.7), we obtain (2.28). □
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3. η-Ricci-Bourguignon and Gradient η-Ricci-Bourguignon Solitons on

K-Paracontact Manifolds

In this section, we will investigate η-Ricci-Bourguignon and Gradient η-Ricci-Bourguignon

solitons on K-paracontact manifolds.

Theorem 3.1. Let M 2n+1be a K-paracontact manifold. If M 2n+1 admits an η-Ricci-

Bourguignon soliton whose potential vector field being collinear with ξ, the manifold is η-

Einstein and the scalar curvature r = −2n (2n+ 1 + σ) is constant.

Proof. Now assume that W=fξ, where f is a smooth function. Letting W by fξ and using

(2.8) in (1.4), we get

Rc (ζ1, ζ2) +
1

2
(ζ1(f)η(ζ2) + ζ2(f)η(ζ1)) = (λ+ ρr) g (ζ1, ζ2) + ση (ζ1) η (ζ2) . (3.30)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

Putting ζ2 by ξ in (3.30), we have

Rc (ζ1, ξ) +
1

2
(ζ1(f) + ξ(f)η(ζ1)) = (λ+ ρr) η (ζ1) + ση (ζ1) . (3.31)

Using (2.10) in (3.31), we get

gradf = (2 (λ+ ρr) + 2σ − ξ(f) + 4n) ξ. (3.32)

On the other hand putting ζ1 = ζ2 = ξ and using again (2.10) in (3.30), we have

−2n+ ξ(f) = λ+ ρr + σ. (3.33)

If we use (3.33) in (3.32), we obtain

gradf = ξ(f)ξ. (3.34)

If we take the covariant derivative of (3.34) along ζ1 and using (2.8), we get

g (∇ζ1gradf, ζ2) = ξ(f)g (∇ζ1ξ, ζ2) + ζ1(ξ(f))η (ζ2) (3.35)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

By using g (∇ζ1gradf, ζ2) = g (∇ζ2gradf, ζ1) we have

ζ1(ξ(f))η (ζ2)− ζ2(ξ(f))η (ζ1) = −2ξ(f)dη (ζ1, ζ2) (3.36)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1). Putting ζ1 by ϕζ1 and ζ2 by ϕζ2 in (3.36), we obtain

ξ(f) = 0, because of dη ̸= 0. So from (3.34), we have gradf = 0, namely f is constant and

so the manifold is η-Einstein.
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Let {wi} (1 ≤ i ≤ 2n + 1) be an orthonormal basis. Taking the summation over i for ζ1

= ζ2 = wi in (3.30), we obtain

r = (λ+ ρr) (2n+ 1) + σ. (3.37)

Using (3.33) in (3.37), we get

r = −2n (2n+ 1 + σ)

which completes the proof. □

Theorem 3.2. If a (2n+ 1)-dimensional K-paracontact manifold admits a gradient η-Ricci-

Bourguignon soliton, then the scalar curvature is constant and the manifold is η-Einstein.

Proof. By virtue of (1.5), we have

∇ζ1gradf = −Qζ1 + (λ+ ρr) ζ1 + ση (ζ1) ξ. (3.38)

Taking the covariant derivative of (3.38) with ζ2 and using (2.8), we get

∇ζ2∇ζ1gradf = −∇ζ2Qζ1 + (λ+ ρr)∇ζ2ζ1 + ρζ2 (r) ζ1 + σ (∇ζ2η (ζ1) ξ − η (ζ1)ϕζ2) . (3.39)

Interchanging ζ1 and ζ2 in the last equation, we derive

∇ζ1∇ζ2gradf = −∇ζ1Qζ2 + (λ+ ρr)∇ζ1ζ2 + ρζ1 (r) ζ2 + σ (∇ζ1η (ζ2) ξ − η (ζ2)ϕζ1) . (3.40)

From (3.38), we obtain

∇[ζ1,ζ2]gradf = −Q [ζ1, ζ2] + (λ+ ρr) [ζ1, ζ2] + ση ([ζ1, ζ2]) ξ. (3.41)

In the view of (3.39), (3.40) and (3.41), we can compute

R (ζ1, ζ2) gradf = − (∇ζ1Q) ζ2 + (∇ζ2Q) ζ1 + ρ (ζ1 (r) ζ2 − ζ2 (r) ζ1) (3.42)

+σ (−2g (ϕζ1, ζ2) ξ + η (ζ1)ϕζ2 − η (ζ2)ϕζ1) .

Contracting the last equation over ζ1 and using

divQζ2 =
2n+1∑
i=1

εig((∇wiQ)ζ2, wi) =
1

2
ζ2(r).

We conclude that

Rc (ζ2, gradf) =

(
1

2
− 2nρ

)
ζ2 (r) . (3.43)

By (2.10), we have

Rc (gradf, ξ) = −2nξ(f). (3.44)

Since ξ is Killing, ξ(r) = 0. Putting ζ2 = ξ in (3.43) and using (3.44), we get ξ(f) = 0.
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Taking the inner product of (3.42) with ξ and using equation (2.14) , we obtain

g (R (gradf, ξ) ζ1, ζ2) = g (Qϕζ2, ζ1)− g (Qϕζ1, ζ2)− 2 (2n+ σ) g (ϕζ1, ζ2) (3.45)

+ρ [ζ1 (r) η (ζ2)− ζ2 (r) η (ζ1)] .

Replacing ζ1 by ξ in (3.45) and using the fact that ξ(r) = 0 and ξ(f) = 0, equations (2.9)

and (2.10), we have

ζ2 (f − ρr) = 0,

this leads to the conclusion that f − ρr is a constant.

Substituting ζ2 = ξ in (3.42) and taking the inner product with ζ2 and using (2.11), (2.14)

and (2.15) we get

g((∇ζ1ϕ) ζ2, gradf) = − (2n+ σ) g (ϕζ1, ζ2)− g (ϕQζ1, ζ2) + ρζ1 (r) η (ζ2) . (3.46)

First, if we replace ζ1 by ϕζ1 and ζ2 by ϕζ2 in (3.46) and then subtract (3.46) from the

obtained equation, we obtain following equation

Qϕζ1 + ϕQζ1 = −2 (2n+ σ)ϕζ1, (3.47)

by using (2.13) and ξ(f) = 0.

Let {wi} (1 ≤ i ≤ 2n + 1) be an orthonormal basis, after writing ζ1 = wi in (3.47), we

have

Qϕwi + ϕQwi = −2 (2n+ σ)ϕwi. (3.48)

Moreover, we can calculate following

g (ϕQwi, ϕwi) = −g
(
Qwi, ϕ

2wi

)
= −g (Qwi, wi) . (3.49)

By virtue of (3.48) and (3.49), we get

r = Rc (ξ, ξ) +

n∑
i=1

{Rc (wi, wi)−Rc (ϕwi, ϕwi)}

= −2n+

n∑
i=1

{−g (ϕQwi +Qϕwi, ϕwi)}

= −2n (2n+ 1)− 2nσ.

constant, so from f − ρr is constant, we have f is constant. Hence from W=gradf, W=0.

By (1.5), the manifold is η-Einstein. This concludes the proof. □
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4. Gradient η-Ricci-Bourguignon Solitons on Paracontact (κ ̸= −1, µ)-

Manifolds

In this section, we will investigate gradient η-Ricci-Bourguignon solitons on paracontact

metric (κ ̸= −1, µ)-manifolds.

Lemma 4.1. If a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-manifold admits a

gradient η-Ricci-Bourguignon soliton, then we have

κ (2− µ) = µ (n+ 1) + σ. (4.50)

Proof. By virtue of (1.5), we have

∇ζ1gradf +Qζ1 = (λ+ ρr) ζ1 + ση (ζ1) ξ. (4.51)

Taking the covariant derivative of (4.51) with ζ2 and using (2.7), we get

∇ζ2∇ζ1gradf +∇ζ2Qζ1 = (λ+ ρr)∇ζ2ζ1 + σ (∇ζ2η (ζ1) ξ − η (ζ1)ϕζ2 + η (ζ1)ϕhζ2) . (4.52)

Interchanging ζ1 and ζ2 in the last equation, we obtain

∇ζ1∇ζ2gradf +∇ζ1Qζ2 = (λ+ ρr)∇ζ1ζ2 + σ (∇ζ1η (ζ2) ξ − η (ζ2)ϕζ1 + η (ζ2)ϕhζ1) . (4.53)

From (4.51), we have

∇[ζ1,ζ2]gradf +Q [ζ1, ζ2] = (λ+ ρr) [ζ1, ζ2] + ση ([ζ1, ζ2]) ξ. (4.54)

In the view of (4.52), (4.53) and (4.54), we can compute

R (ζ1, ζ2) gradf = − (∇ζ1Q) ζ2 + (∇ζ2Q) ζ1

+σ (2g (ζ1, ϕζ2) ξ + η (ζ1)ϕζ2 − η (ζ1)ϕhζ2 − η (ζ2)ϕζ1 + η (ζ2)ϕhζ1) .(4.55)

Using (2.28) in (4.55), we obtain

g (R (ζ1, ζ2) gradf, ξ) = g ((Qϕ+ ϕQ) ζ2, ζ1)− g ((Qϕh+ hϕQ) ζ2, ζ1)

−4nκg (ϕζ2, ζ1) + 2σg (ζ1, ϕζ2) . (4.56)

Putting ζ1 by ϕζ1 and ζ2 by ϕζ2 in (4.56) and using the fact that R (ϕζ1, ϕζ2) ξ = 0 from

(2.16), we get

0 = ϕ (− (Qϕ+ ϕQ)ϕζ1 + (Qϕh+ hϕQ)ϕζ1 + 4nκζ1 − 2σζ1) . (4.57)
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From (2.29), we can compute

ϕ (Qϕ+ ϕQ)ϕζ1 = 2 (2 (1− n) + nµ)ϕζ1. (4.58)

ϕ (Qϕh+ hϕQ)ϕζ1 = −2 (κ+ 1) (2 (n− 1) + µ)ϕζ1. (4.59)

If we use (4.58) and (4.59) in (4.57), we get (4.50). □

Theorem 4.1. If a (2n+ 1)-dimensional paracontact metric (κ ̸= −1, µ)-manifold admits a

gradient η-Ricci-Bourguignon soliton, then either

i) The manifold is η-Einstein, κ = 0, µ = 2(1− n), r = 4n(1− n2), or

ii) The manifold is the product of a flat (n+ 1)-dimensional manifold and n-dimensional

manifold of negative constant curvature equal to −4 for n > 1 and its locally flat for n = 1,

or

iii) The manifold is η-Einstein, κ = 1−n2

n + σ
2n , µ = 2(1− n), r = 2(1− n2)(1 + 2n) + σ,

or

iv) The manifold is paracontact metric
(
κ > −1, µ = ± κ√

κ+1

)
-manifold.

Proof. Substituting ζ1 = ξ in (4.55) and then using (2.27) and (2.28), we get

R (ξ, ζ2) gradf = −µ [2 (n− 1) + µ]hϕζ2+Q (ϕζ2 − ϕhζ2)−2nκ (ϕζ2 − ϕhζ2)+σ (ϕζ2 − ϕhζ2) .

(4.60)

Putting ζ1 = ζ2, ζ2 = gradf in (2.18), we obtain

R (ξ, ζ2) gradf = κ [ζ2 (f) ξ − ξ (f) ζ2] + µ [(hζ2) (f) ξ − ξ (f)hζ2] . (4.61)

By equating the right-hand sides of equations (4.60) and (4.61) and subsequently taking the

inner product of the resulting equation with ξ, we obtain

κ [ζ2 (f)− ξ (f) η (ζ2)] + µ [(hζ2) (f)] = 0. (4.62)

If we substitute ζ2 by hζ2 in (4.62) and use (2.17), we get

κ (hζ2) (f) + µ (κ+ 1) [ζ2 (f)− η (ζ2) ξ (f)] = 0. (4.63)

Combining (4.62) and (4.63), we obtain

[ζ2 (f)− ξ (f) η (ζ2)]
[
κ2 − µ2 (κ+ 1)

]
= 0. (4.64)

Contracting (4.55) over ζ1 and using

divQζ2 =

2n+1∑
i=1

εig((∇wiQ)ζ2, wi) =
1

2
ζ2(r).
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We conclude that

Rc (ζ2, gradf) = 0. (4.65)

In the view of (2.22) and (4.65), we get

0 = [2 (1− n) + nµ] g (ζ1, gradf) + [2 (n− 1) + µ] g (hζ1, gradf)

+ [2 (n− 1) + n (2κ− µ)] η (ζ1) η (gradf) . (4.66)

Substituting ζ1 = ξ in (4.66), we have

2nκξ (f) = 0.

This gives either κ = 0, or ξ (f) = 0.

Case 1: Let κ = 0. From (4.64), we have

[gradf − ξ (f) ξ]µ2 = 0. (4.67)

By (4.67), we have followings:

Case 1a: Let µ ̸= 0. So we obtain

gradf = ξ (f) ξ. (4.68)

If we take the covariant derivative of (4.68) along ζ1 and using (2.7), we get

g (∇ζ1gradf, ζ2) = ξ(f)g (∇ζ1ξ, ζ2) + ζ1(ξ(f))η (ζ2) (4.69)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1).

By using g (∇ζ1gradf, ζ2) = g (∇ζ2gradf, ζ1) we have

ζ1(ξ(f))η (ζ2)− ζ2(ξ(f))η (ζ1) = −2ξ(f)dη (ζ1, ζ2) (4.70)

for all vector fields ζ1, ζ2 ∈ Γ(M2n+1). Putting ζ1 by ϕζ1 and ζ2 by ϕζ2 in (4.70), we obtain

ξ(f) = 0, because of dη ̸= 0. So from (4.68), we have gradf = 0, namely f is constant and so

the manifold is η-Einstein. So from (2.29), we obtain µ = 2(1−n). Let {wi} (1 ≤ i ≤ 2n+1)

be an orthonormal basis. Taking the summation over i for ζ1 = ζ2 = wi in (2.29), we obtain

r = 4n
(
1− n2

)
. Note that in this subcase the scalar curvature can not be positive.

Case 1b: Let µ = 0. So we can use Theorem 2.1.

Case 2: Let ξ (f) = 0. By (4.64) we have

gradf
(
κ2 − µ2 (κ+ 1)

)
= 0. (4.71)

By (4.71), we have followings:
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Case 2a: Let gradf = 0. Namely f is constant. So the manifold is η-Einstein. So from

(2.29), we obtain µ = 2(1 − n). Using this in (4.50), we get κ = 1−n2

n + σ
2n . Let {wi}

(1 ≤ i ≤ 2n+ 1) be an orthonormal basis. Taking the summation over i for ζ1 = ζ2 = wi in

(2.29), we obtain r = 2(1− n2)(1 + 2n) + σ.

Case 2b: Let κ2−µ2 (κ+ 1) = 0. We want to remind that κ ̸= −1. It means that κ > −1

or κ < −1. Firstly let us suppose that κ < −1. In this case we say that κ = 0 and µ = 0.

But this case is contradiction with the assumption that κ < −1. Therefore, κ must be bigger

than −1. Now, from κ2 − µ2 (κ+ 1) = 0, we obtain µ = ± κ√
κ+1

Namely the manifold is

paracontact metric
(
κ > −1, µ = ± κ√

κ+1

)
-manifold. This concludes the proof. □

5. Examples

Example 5.1. We consider the three-dimensional manifold M . Define the almost paracon-

tact structure (ϕ, ξ, η) on M by

ϕξ = 0, ϕw1 = w2, ϕw2 = w1, ξ = w3.

We have

[w1, w3] = 0, [w2, w3] = 0, [w1, w2] = −2ξ.

Let g be the semi-Riemannian metric defined by

g (w2, w2) = −1, g (w1, w1) = g (ξ, ξ) = 1, g(wi, wj) = 0, i ̸= j

where i, j = 1, 2, 3. Let ∇ be the Levi-Civita connection with respect to g. Then by Koszul

formula

∇w1w1 = 0, ∇w2w1 = ξ, ∇w3w1 = −w2,

∇w1w2 = −ξ, ∇ww2w2 = 0, ∇w3w2 = −w1,

∇w1w3 = −w2, ∇w2w3 = −w1,∇w3w3 = 0.

It is easy to see that M is a K-paracontact manifold. The components of the curvature tensor

are

R(w1, w2)w2 = −3w1, R(w1, w2)w3 = 0, R(w3, w2)w2 = ξ,

R(w1, w3)w3 = −w1, R(w2, w3)w3 = −w2, R(w1, w3)w2 = 0,

R(w2, w1)w1 = 3w2, R(w3, w1)w1 = −ξ, R(w2, w3)w1 = 0.
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Using the components of the curvature tensor, we obtain

Rc(w1, w1) = 2, Rc(w2, w2) = −2, Rc(ξ, ξ) = −2

In view of above relations, we have r = S(w1, w1)− S(w2, w2) + S(ξ, ξ) = 2. Using (1.4), we

have

Rc(w1, w1) = λ+ρr = 2, Rc(w2, w2) = −(λ+ρr) = −2, Rc(ξ, ξ) = λ+ρr+σ = −2. (5.72)

From (5.72), we get λ + 2ρ = 2 and σ = −4. Hence we see that M admits an η-Ricci-

Bourguignon soliton with σ = −4, for W=fξ, f constant. M is also η-Einstein manifold

and verifies Theorem 3.1. Also the soliton is shrinking, steady or expanding according as

2(1− ρ) > 0 , 2(1− ρ) = 0 and 2(1− ρ) < 0, respectively.

We used [14] while constructing following examples.

Example 5.2. Let M be a three-dimensional manifold. w1 = w, w2 = ϕw and w3 = ξ are

vector fields such that

[w, ξ] = (λ̃− 1)ϕw, [ϕw, ξ] = −(λ̃+ 1)w, [w, ϕw] = 2ξ.

The semi-Riemannian metric g is defined by

g (w,w) = −1, g (ϕw, ϕw) = g (ξ, ξ) = 1, g(wi, wj) = 0, i ̸= j

where i, j = 1, 2, 3. The 1-form η is defined by

η (ζ1) = g(ζ1, ξ)

for all ζ1 on M . Let ϕ be the (1, 1)-tensor field defined by

ϕξ = 0, ϕw1 = w2, ϕw2 = w1.

Then,

η (ξ) = 1, ϕ2 (ζ1) = ζ1 − η (ζ1) ξ

g (ϕζ1, ϕζ2) = −g (ζ1, ζ2) + η (ζ1) η (ζ2) , dη (ζ1, ζ2) = g (ζ1, ϕζ2) ,
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for any vector fields ζ1, ζ2 on M . Hence (ϕ, ξ, η, g) defines a paracontact structure. Let ∇ be

the Levi-Civita connection on M , then by Koszul’s formula, we obtain

∇ww = 0, ∇ϕww = −(λ̃+ 1)ξ, ∇ξw = 0,

∇wϕw = (1− λ̃)ξ, ∇ϕwϕw = 0, ∇ξϕw = 0,

∇wξ = (λ̃− 1)ϕw, ∇ϕwξ = −(λ̃+ 1)w, ∇ξξ = 0.

Using the covariant derivatives, we compute the components of the Riemannian curvature

tensor:

R (w, ϕw)ϕw = (1− λ̃2)w, R (ϕw, ξ) ξ = (λ̃2 − 1)ϕw, R (w, ϕw) ξ = 0,

R (w, ξ) ξ = (λ̃2 − 1)w, R (ξ, w)w = (1− λ̃2)ξ, R (w, ξ)ϕw = 0,

R (ϕw,w)w = (λ̃2 − 1)ϕe, R (ξ, ϕw)ϕw = (λ̃2 − 1)ξ , R (ϕw, ξ)w = 0.

Also, the followings are valid:

hw = λ̃w, hϕw = −λ̃ϕw, hξ = 0.

Qw = (1− λ̃2 +
r

2
)w,

Qϕw = (1− λ̃2 +
r

2
)ϕw,

Qξ = 2(λ̃2 − 1)ξ. (5.73)

Thus, the manifold is a (κ ̸= −1,0)-paracontact metric manifold with κ = λ̃2 − 1 > −1.

From the components of the Riemannian curvature tensor, we derive Rc (w,w) = 0,

Rc (ϕw, ϕw) = 0, Rc (ξ, ξ) = 2λ̃2 − 2. Hence, the scalar curvature r = 2(λ̃2 − 1) = 2κ.

Then, using this, (1.5) and (5.73) we get

(−1+λ̃2− r

2
+λ+ρr)w = 0, (−1+λ̃2− r

2
+λ+ρr)ϕw = 0, (−2λ̃2+2+λ+ρr+σ)ξ = 0. (5.74)

By (5.74), we get λ+ρr = 1− λ̃2+ r
2 and r = σ. If we use r = 2(λ̃2−1) in the last equation

we have λ+ ρr = 0. Hence we see that M admits gradient η-Ricci-Bourguignon soliton with

σ = 2(λ̃2 − 1) = r and constant f . M is also η-Einstein manifold and verifies Theorem 4.1.

Example 5.3. Let M be a three-dimensional manifold. w1 = w, w2 = ϕw and w3 = ξ are

vector fields such that

[w, ξ] = 2w − ϕw, [ϕw, ξ] = −w − 2ϕw, [w, ϕw] = 2ξ.
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The semi-Riemannian metric g is defined by

g (w,w) = −1, g (ϕw, ϕw) = g (ξ, ξ) = 1, g(wi, wj) = 0, i ̸= j

where i, j = 1, 2, 3. The 1-form η is defined by

η (ζ1) = g(ζ1, ξ)

for all ζ1 on M . Let ϕ be the (1, 1)-tensor field defined by

ϕξ = 0, ϕw1 = w2, ϕw2 = w1.

Then,

η (ξ) = 1, ϕ2 (ζ1) = ζ1 − η (ζ1) ξ

g (ϕζ1, ϕζ2) = −g (ζ1, ζ2) + η (ζ1) η (ζ2) , dη (ζ1, ζ2) = g (ζ1, ϕζ2) ,

for any vector fields ζ1, ζ2 on M . Hence (ϕ, ξ, η, g) defines a paracontact structure. Let ∇ be

the Levi-Civita connection on M , then by Koszul’s formula, we obtain

∇ww = 2ξ, ∇ϕww = −ξ, ∇ξw = 0,

∇wϕw = ξ, ∇ϕwϕw = 2ξ, ∇ξϕw = 0,

∇wξ = −ϕw + 2w, ∇ϕwξ = −w − 2ϕw, ∇ξξ = 0.

Using the covariant derivatives, we compute the components of the Riemannian curvature

tensor:

R (w, ϕw)ϕw = 5w, R (ϕw, ξ) ξ = −5ϕw, R (w, ϕw) ξ = 0,

R (w, ξ) ξ = −5w, R (ξ, w)w = 5ξ, R (w, ξ)ϕw = 0,

R (ϕw,w)w = −5ϕw, R (ξ, ϕw)ϕw = −5ξ, R (ϕw, ξ)w = 0.

Also, the followings are valid:

hw = λ̃ϕw, hϕw = −λ̃w, hξ = 0.

Qw = (5 +
r

2
)w,

Qϕw = (5 +
r

2
)ϕw,

Qξ = −10ξ. (5.75)



640 I. KÜPELI ERKEN AND S. N. EMETLI

Thus, the manifold is a (κ ̸= −1,0)-paracontact metric manifold with κ = −5 < −1.

From the components of the Riemannian curvature tensor, we derive Rc (w,w) = 0,

Rc (ϕw, ϕw) = 0, Rc (ξ, ξ) = −10. Hence, the scalar curvature r = −10 = 2κ. Then,

using this, (1.5) and (5.75) we get

(λ− 10ρ)w = 0, (λ− 10ρ)ϕw = 0, (10 + λ− 10ρ+ σ)ξ = 0. (5.76)

By (5.76), we get λ − 10ρ = 0 and r = σ = −10. Hence we see that M admits a gradient

η-Ricci-Bourguignon soliton with σ = −10 and constant f . M is also η-Einstein manifold

and verifies Theorem 4.1.
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