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ON GEOMETRY OF THE PARALLEL SURFACE OF THE TUBE

SURFACE GIVEN BY THE FLC FRAME IN EUCLIDEAN 3-SPACE
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Abstract. In this study, first, the parallel surfaces of the tube surfaces given with the

Flc frame are defined. By calculating the Gaussian and mean curvatures of these parallel

surfaces, it was found the conditions developable and minimal. Afterwards, the conditions

for parameter curves on the parallel surface to be asymptotic, geodesic and curvature lines

were investigated. It has been proven that the tube and parallel tube surface preserve the

Gaussian transform. Finally, examples of these surfaces are given.
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1. Introduction

It is known that two surfaces with a common normal are called parallel surfaces. Parallel

surfaces have various uses in the design field and in the modeling of forging casting molds

[25]. It has been one of the surfaces that has been the focus of attention of many mathe-

maticians from past to present,[22, 8, 9, 10, 1, 11]. A large number of papers and books have

been published in the literature which deal with parallel surfaces in both Minkowski space

and Euclidean space. Kılıç showed that if a parallel transformation on En is a connection-

preserving transformation, the fundamental curvatures of the underlying surface are constant

[14]. Taleshian used Euler’s theorem to examine the orthogonal curvatures of parallel hyper-

surfaces and stated that if the parallel transformation preserves the second fundamental form,
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the fundamental hypersurface defines a hyperplane [23]. Fukui and Hasegawa studied the

singularities of parallel surfaces [12]. Önder and Kızıltuğ gave the relations between Bertrand

and Mannheim partner D-curves on parallel surfaces in 3-dimensional Minkowski space [19].

Dede, Ekici and Çöken first defined parallel surfaces in Galilean space and examined the rela-

tionship between them, and then obtained the first, second fundamental forms and Gaussian,

mean curvatures of the parallel surface depending on the first, second fundamental forms and

Gaussian, mean curvatures of the main surface [5]. Savcı studied the relationship between the

Darboux frame, geodesic curvatures, normal curvatures, and geodesic torsions of the curves

lying on the parallel surface pair, showed that the parallel surface of a non-developable ruled

surface is not a ruled surface, and obtained that the parallel surface of a Weingarten ruled

surface is also a ruled Weingarten surface [20].

Craig worked on parallel surfaces of the ellipsoid [2]. Eisenhart wrote a section on parallel

surfaces in his work “A treatise on the differential geometry of curves and surfaces” [7].

Nizamoğlu stated that the parallel ruled surface is a curve that depends on a parameter and

gave some geometrical properties of such a surface [18]. Hacısalihoğlu and Tarakcı defined

surfaces with constant ridge distance and showed that a parallel surface is a special case of a

surface with constant ridge distance [24]. Again, Hacısalihoğlu and Yaşar studied the parallel

surface of a hypersurface in Lorentz space and obtained new characterizations [27]. Çöken,

Çiftçi and Ekici worked on parallel surfaces of timelike ruled surfaces [3]. Dae Won Yoon

studied parallel Weingarten surfaces in Euclidean space and showed that for a surface to be a

Weingarten surface, it is necessary and sufficient that its parallel surface is also a Weingarten

surface [28]. In recent years, Kızıltuğ has taken a curve on a surface and obtained the image

of this curve on a parallel surface and examined the characteristic features of this curve on

the parallel surface [15, 16, 17]. Ünlütürk and Özüsağlam showed that the image of a curve

that is geodesic on M by normal transformation in Minkowski 3-space on the parallel surface

Mr is also a geodesic [26].

Given any curve in three-dimensional Euclidean space, an orthonormal vector system called

the Frenet frame can be established at every point of this curve. The Frenet frame defines

the curvature and torsion functions of the curve that characterize the curve. However, the

disadvantage of this frame is that the Frenet frame cannot be established at points where

the second derivative of the curve is zero. With the Flc frame defined by Dede in 2019, the

singular points occurring in the second derivative of the curve were eliminated and a new

frame was established. This shows that the Flc frame can be established along the curve,
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including the points where the Frenet frame cannot be established. Thus, the deformation

on the surfaces created by taking this frame as a reference was also minimized, [4].

In this study, the parallel surfaces of tube surfaces defined using the Flc frame are first

introduced. The Gaussian and mean curvatures of these parallel surfaces are calculated to

determine the conditions under which they are developable or minimal. Next, the criteria for

the parameter curves on the parallel surfaces to be asymptotic, geodesic, or curvature lines

are analyzed. It is also demonstrated that both the tube surface and its parallel surfaces

preserve the Gaussian transform. Finally, examples of these surfaces are provided.

2. Preliminaries

In this section, we remind some basic concepts that will be used throughout the paper.

Let λ = λ(t) be a regular space curve satisfying non-degenerate condition λ
′
(t) ∧ λ

′′
(t) ̸= 0.

Then, the orthonormal vector system called Frenet frame is defined by

T (t) =
λ

′
(t)

∥λ′(t)∥
, B(t) =

λ
′
(t) ∧ λ

′′
(t)

∥λ′(t) ∧ λ′′(t)∥
, N(t) = B(t) ∧ T (t)

where T is tangent, N is principal normal, and B is binormal vector field. The Frenet

formulas are given by

T ′ = κηN, N ′ = −κηT + τηB, B′ = −τηN ,
∥∥λ′∥∥ = η

where the curvature κ and torsion τ of the curve are, [4]

κ =

∥∥∥λ′
(t) ∧ λ

′′
(t)

∥∥∥
∥λ′(t)∥3

, τ =

〈
λ

′
(t) ∧ λ

′′
(t), λ

′′′
(t)

〉
∥λ′(t) ∧ λ′′(t)∥2

.

The nth degree polynomial with parameter t is defined as

P (t) = λnt
n + λn−1t

n−1 + ...+ λ1t
1 + λ0, λn ̸= 0

where n ∈ N0, λi ∈ R, (0 ≤ i ≤ n), [4]. Now let us define a curve such that, λ : [a, b] →

En, λ(t) = (λ1(t), λ2(t), ..., λn(t)). If each λi(t) are polynomials for 1 ≤ i ≤ n, then

λt ∈ R [s] is defined to be an n−dimensional polynomial curve [4]. The degree of such a

polynomial curve as λ(t) is given by

deg λ(t) = max {deg (λ1(t)) ,deg (λ2(t)) , ..., deg (λn(t))} .
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The definition of the Flc frame of a polynomial space curve λ = λ(t) given by Dede in [4] is

as follows

T (t) =
λ

′
(t)

∥λ′(t)∥
, D1(t) =

λ
′
(t) ∧ λ(n)(t)∥∥λ′(t) ∧ λ(n)(t)

∥∥ , D2(t) = D1(t) ∧ T (t)

where the prime ′ indicates the differentiation with respect to s and (n) stands for the nth

derivative. The new vectorsD1 andD2 are called binormal-like vector and normal-like vector,

respectively. The curvatures of the Flc-frame d1, d2, and d3 are given by

d1 =
⟨T ′, D2⟩

η
, d2=

⟨T ′, D1⟩
η

, d3 =
⟨D2

′, D1⟩
η

where ∥λ′∥ = η. The local rate of change of the Flc-frame called as the Frenet-like formulas

can be expressed in the following form
T ′

D2
′

D1
′

 = η


0

−d1

−d2

d1

0

−d3

d2

d3

0




T

D2

D1

 .

The relationship between the Frenet and Frenet like frame (Flc) is given by
T

D2

D1

 =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ




T

N

B


and the relations between the curvatures of two frames are

d1 = κcosθ, d2 = −κsinθ, θ = arctan

(
−d2
d1

)
, d3 =

dθ

η
+ τ

where θ = ∢(N,D2). Let E3 be a 3-dimensional Euclidean space provided with the metric

given by

< X,X >= dx21 + dx22 + dx23

where (x1, x2, x3) is a rectangular coordinate system of E3. Recall that, the norm of an

arbitrary vector X ∈ E3 is given by ∥X∥ =
√
< X,X >, [13]. The parametric equation of a

parallel surface is given as: Let M1 and M2 be two surfaces in 3-dimensional Euclidean space

and the unit normal vector field of M1 be Z. If there is a function f defined as

f : M1 −→ M2, f(P ) = P + rZp
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where r is a constant number, then the surfaces M1 and M2 are called parallel surfaces.

Given the surface M ,

Mr = {P + rZp : P ∈ M, r ∈ R and r=constant }

the set Mr given by the equation is a surface parallel to M . The normal vector field of the

surface Mr is computed as

NMr(t, θ) =
Mrt ∧Mrθ

∥Mrt ∧Mrθ∥
.

In addition, the first and second fundamental forms of the surface Mr are given by

I = Edt2 + 2Fdtdθ +Gdθ2,

II = Ldt2 + 2Mdtdθ +Ndθ2

while the Gaussian and mean curvatures are

K =
LN −M2

EG− F 2
, H =

EN − 2FM +GL

2(EG− F 2)

where the coefficients are found by following:

E =< Mrt ,Mrt >, F =< Mrt ,Mrθ >, G =< Mrθ ,Mrθ >,

L =< Mrtt , NMr >, N =< Mrtθ , NMr >, M =< Mrθθ , NMr > .

Concerning the Gaussian and mean curvatures, the following definitions exist

• A surface is said to be developable and has parabolic points if the Gaussian curvature

vanishes,

• A surface is said to have hyperbolic (resp. elliptic) points, if it has a negative (resp.

positive) Gaussian curvature,

• A surface is said to be minimal if the mean curvature vanishes, [6].

3. On geometry of the parallel surface of the tube surface given by the Flc

frame in Euclidean 3-space

Let M(t) be a polynomial space curve of degree n. We can parametrize a tubular surface

generated by an Flc-frame as follows

K(t, θ) = M (t) + r [cos θD2 (t) + sin θD1 (t)] (3.1)
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where θ ∈ [0, 2π), r ∈ R is the radius of the tubular surface and the curve M(t) is the center

curve of the tubular surface, [4]. The derivatives according to parameters t and θ of the

tubular surface K(t, θ) are, respectively,

Kt = ν(1− r (cos θd1 + sin θd2 ))T − νr sin θd3D2 + νr cos θd3D1,

Kθ = −r sin θD2 + r cos θD1 .

The normal vector field of the tubular surface K(t, θ) is obtained as

N(t, θ) = cosθD2 + sinθD1. (3.2)

If the parallel surface of the tube surface K(t, θ) is represented by KP (t, θ), the equation of

this surface is defined as

KP (t, θ) = K(t, θ) + εN(t, θ).

If the expressions (3.1) and (3.2) are written here, the expression of the parallel surface

KP (t, θ) with respect to the Flc frame becomes,

Kp(t, θ) = K(t, θ) + εN(t, θ)

= M (t) + (r + ε) [cos θD2 (t) + sin θD1 (t)] .

If the first order partial derivatives of the surface Kp(t, θ) are taken with respect to the

parameters t and θ

Kpt =ν(1− (r + ε) (cos θd1 + sin θd2 ))T − ν(r + ε) sin θd3D2

+ ν(r + ε) cos θd3D1,

Kpθ =− (r + ε) sin θD2 + (r + ε) cos θD1 ,

is found. Here the unit normal vector of the surface is

Np(t, θ) =
Kpt ∧Kpθ

∥Kpt ∧Kpθ∥
= cosθD2 + sinθD1.

The coefficients of the first fundamental form of the surface are as follows

Ep =< Kpt ,Kpt >= ν2 [1− (r + ε) (cos θd1 + sin θd2 )]
2 + ν2(r + ε)2d3

2,

Fp < Kpt ,Kpθ >= ν(r + ε)2d3 , (3.3)

Gp =< Kpθ ,Kpθ >= (r + ε)2.
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The second-order partial derivatives of the surface Kp(t, θ) are as follows:

Kptt =[ν2(r + ε)d3(sinθd1 − cosθd2)− ν(r + ε)(cosθd′1 + sinθd′2) (3.4)

− ν ′(r + ε)(cosθd1 + sinθd2) + ν ′]T

− [ν2(r + ε)cosθ(d21 + d23) + ν2(r + ε)d1d2sinθ + (r + ε)sinθ(vd3)
′ − ν2d1]D2

− [ν2(r + ε)sinθ(d22 + d23) + ν2(r + ε)d1d2cosθ + (r + ε)cosθ(vd3)
′ − ν2d2]D1,

Kptθ =ν(r + ε)(sinθd1 − cosθd2)T − ν(r + ε)cosθd3D2 − ν(r + ε)sinθd3D1,

Kpθθ =− (r + ε)cosθD2 − (r + ε)sinθD1. (3.5)

The coefficients of the first fundamental form of the surface are written as follows

ep =< Kptt , Np > = ν2(d1cosθ + d2sinθ)− ν2(r + ε)(d1cosθ + d2sinθ)
2 (3.6)

− ν2(r + ε)d23,

fp =< Kptθ , Np >= −ν(r + ε)d3, (3.7)

gp =< Kpθθ , Np >= −(r + ε). (3.8)

With the help of these expressions, the Gaussian curvature Kp and the mean curvature Hp

of the parallel surface Kp(t, θ) are written as follows, respectively:

Kp =
−cosθd1 − sinθd2

(r + ε)[1− (r + ε)(cosθd1 + sinθd2)]
,

Hp =
1− 2(r + ε)(cosθd1 + sinθd2)

2(r + ε)[1− (r + ε)(cosθd1 + sinθd2)]
.

Theorem 3.1. Singular points of the parallel surface Kp(t, θ) satisfy the equation

cosθ0d1 + sinθ0d2 =
1

r + ε
.

Proof. For the parallel surface Kp(t, θ) to have singular points at the point (t0, θ0) ,

∥Kpt ∧Kpθ∥(t0, θ0) = 0.
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If the necessary operations are carried out from here, the following is obtained:

∥Kpt ∧Kpθ∥ (t0, θ0) = 0 ⇒ ν(r + ε) (cos θd1 (r + ε) + sin θd2 (r + ε)− 1) = 0

⇒ (r + ε)cosθ0d1 + (r + ε)sinθ0d2 = 1

⇒ cosθ0d1 + sinθ0d2 =
1

r + ε
.

□

Corollary 3.1. In particular, if θ0 = 0 is taken, then d1 = 1
r+ε . In this case, the locus of

singular points of the surface is a curve of the form

Kp(t, 0) = M(t) + (r + ε)D2(t).

Corollary 3.2. If θ0 = π
2 or θ0 = 3π

2 is taken, then d2 = 1
r+ε . In this case, the geometric

locus of the singular points of the surface is a curve of the form

Kp(t,
π

2
) = M(t) + (r + ε)D1(t),

Kp(t,
3π

2
) = M(t)− (r + ε)D1(t).

Theorem 3.2. For Kp(t, θ) parallel surface:

(i) t parametric curves are asymptotic if and only if

(r + ε)d23 + (r + ε)(cosθd1 + sinθd2)
2 = cosθd1 + sinθd2.

(ii) The parameter curves θ are not asymptotic curves.

Proof. (i) For the parameter curves of the parallel surface Kp(t, θ) to be asymptotic

curves, it is necessary and sufficient that ep = 0. From the equation (3.6) we find:

ep = 0 ⇒ ν2(d1cosθ + d2sinθ)− ν2(r + ε)(d1cosθ + d2sinθ)
2 − ν2(r + ε)d23 = 0

⇒ (r + ε)d23 + (r + ε)(d1cosθ + d2sinθ)
2 = d1cosθ + d2sinθ.

(ii) For the θ parameter curves of the parallel surface Kp(t, θ) to be asymptotic curves,

the necessary and sufficient condition is that gp = 0. From the equation (3.8), since

gp = −r − ε and r, ε ̸= 0, the θ parameter curves cannot be asymptotic.

□

Theorem 3.3. For Kp(t, θ) parallel surface:
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(i) t parametric curves are geodesic if and only if

v2d1d2(r + ε)cos2θ − v2cosθsinθ(r + ε)(d21 − d22)

− v2(cosθd2 − sinθd1)− (r + ε)(vd3)
′ = 0,(

cosθ + sinθ
)(

v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
= 0.

(ii) The θ parameter curves are always geodesic.

Proof. (i) The necessary and sufficient condition for the parameter curves t of the parallel

surface Kp(t, θ) to be geodesic curves is that Np∧Kptt = 0. From the equations (3.2)

and (3.4), the vector Np ∧Kptt is given by

Np ∧Kptt =
(
v2d1d2(r + ε)cos2θ − v2cosθsinθ(r + ε)(d21 − d22)

− v2(cosθd2 − sinθd1)− (r + ε)(vd3)
′
)
T (t)

+ sinθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
D2(t)

− cosθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
D1(t).

For Np ∧Kptt = 0 the coefficients must be zero. Therefore,

v2d1d2(r + ε)cos2θ − v2cosθsinθ(r + ε)(d21 − d22)

− v2(cosθd2 − sinθd1)− (r + ε)(vd3)
′ = 0,

sinθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
= 0,

cosθ
(
v2(r + ε)d3(cosθd2 − sinθd1) + v(r + ε)(cosθd′1 + sinθd′2)

+ (r + ε)v′(cosθd1 + sinθd2)− v′
)
= 0.

If these equations are arranged, the desired result is obtained.

(ii) The necessary and sufficient condition for the parameter curves of the parallel surface

Kp(t, θ) to be geodesic curves is that Np ∧Kpθθ = 0. Using the equations (3.2) and

(3.5), Np ∧Kpθθ = 0 means that the θ parameter curves are always geodesic.

□
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Theorem 3.4. Let the parallel surface Kp(t, θ) be given. In order for the parameter curves

on the surface to be lines of curvature, the necessary and sufficient condition is that d3 = 0 .

Proof. For the parameter curves of the parallel surface Kp(t, θ) to be lines of curvature, it is

necessary and sufficient that Fp = fp = 0. From the equations (3.3) and (3.7) we write

ν(r + ε)2d3 = 0 and − ν(r + ε)d3 = 0.

Here d3 = 0 since ν, r ̸= 0. □

In this case, the following result can be given:

Corollary 3.3. If the parameter curves t and θ on the parallel surface Kp(t, θ) are planar,

these curves are the curvature lines of the surface.

Theorem 3.5. Let (K,Kp) be the pair of parallel surfaces in E3. There is a relation between

the Gaussian transformations,

η = ηp

where the unit normal vectors of the surfaces K and Kp are N and Np, respectively.

Proof. Let the coordinates of the unit normal vectors K and Kp be αi = (α1, α2, α3) and

ξi = (ξ1, ξ2, ξ3), respectively.

η :K −→ S2

X −→ η(X) =

3∑
i=1

αi(X)
∂

∂Yi|X
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is the Gaussian transform of the surface K. On the other hand, the Gaussian transform of

the surface Kp is as follows, where f : K −→ Kp is the parallel transform:

ηp : Kp −→ S2

f(X) −→ ηp(f(X)) =

n∑
i=1

ξi(f(X))
∂

∂Yi
|f(X)

=

n∑
i=1

(ξi ◦ f(X))
∂

∂Yi
|f(X)

=
n∑

i=1

αi(X)
∂

∂Yi
|f(X)

= ηp(X)

Since the Gaussian transformation will be provided for ∀X ∈ K, η = ηp is obtained. □

Example 3.1. Let M : I −→ R3 be a polynomial curve with center curve M(t) = (t, t8, t9).

If the derivatives of the curve M(t) are calculated, it is as follows:

M ′(t) = (1, 8t7, 9t8),

M ′′(t) = (0, 56t6, 72t7),

M (9)(t) = (0, 0, 362880).

The Flc frame vectors of the polynomial curve M(t) are found as follows, respectively:

T (t) =
M ′(t)

∥M ′(t)∥
=

( 1√
81t16 + 64t14 + 1

,
8t7√

81t16 + 64t14 + 1
,

9t8√
81t16 + 64t14 + 1

)
,

D1(t) =
M ′(t)×M (9)(t)

∥M ′(t)×M (9)(t)∥
=

( 8t7√
64t14 + 1

,− 1√
64t14 + 1

, 0
)
,

D2(t) = T (t)×D1(t)

=
(
− 9t8√

64t14 + 1
√
81t16 + 64t14 + 1

,− 72t15√
64t14 + 1

√
81t16 + 64t14 + 1

,

√
64t14 + 1√

81t16 + 64t14 + 1

)
.
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On the other hand, Flc curvatures are as follows:

d1(t) =
⟨T ′(t), D2(t)⟩

∥M ′(t)∥
=

72t7
(
8t14 + 1

)
√
64 s14 + 1 (81t16 + 64t14 + 1)3/2

,

d2(t) =
⟨T ′(t), D1(t)⟩

∥M ′(t)∥
= − 56t6√

64 t14 + 1 (81 t16 + 64 t14 + 1)
,

d3(t) =

〈
D2(t)

′, D1(t)
〉

∥M ′(t)∥
=

504t14

(64 t14 + 1) (81 t16 + 64 t14 + 1)
.

If the radius r = 0.25 is taken, the parametric equation of the tube surface K(t, θ) is as

follows:(−1 ≤ t ≤ 1, −π ≤ θ ≤ π)

K(t, θ) =
(
t− 9t8 cos θ

4
√
64t14 + 1

√
81t16 + 64t14 + 1

+
2t7 sin θ√
64t14 + 1

,

t8 − 18t15 cos θ√
64t14 + 1

√
81t16 + 64t14 + 1

− sin θ

4
√
64t14 + 1

,

t9 +
cos θ

√
64t14 + 1

4
√
81t16 + 64t14 + 1

)
.

If ϵ = 0.5 is taken, the equation of the parallel surface Kp(t, θ) is as follows: (−1 ≤ t ≤

1, −π ≤ θ ≤ π)

Kp(t, θ) =
(
t− 27t8 cos θ

4
√
64t14 + 1

√
81t16 + 64t14 + 1

+
6t7 sin θ√
64t14 + 1

,

t8 − 54t15 cos θ√
64t14 + 1

√
81t16 + 64t14 + 1

− 3 sin θ

4
√
64t14 + 1

,

t9 +
3 cos θ

√
64t14 + 1

4
√
81t16 + 64t14 + 1

)
.
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(a) K(t, θ) tube surface (b) Kp(t, θ) parallel surface

4. Conclusion

In this study, first of all, the parallel surfaces of the tube surface given with the Flc frame

were defined. It was seen that the surface created by investigating the geometric features

of this parallel surface was developable and minimal. The parameter curves of the parallel

surface were examine. Subsequently, the tube surface and parallel surface were shown to

preserve the Gaussian transform. Finally, the tube surface, which accepts a polynomial curve

as its center curve, and the parallel surface of this tube surface, are given as an example,

and are shown. This work can be studied in various spaces such as Minkowski space and

Galilean space, and can also be repeated for higher-dimensional curves.
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Ankara.
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