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AN OPTIMUM PARAMETER METHOD TO OBTAIN NUMERICAL

SOLUTIONS OF THE FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS

RAHMAT DARZI AND BAHRAM AGHELI∗

Abstract. The main purpose of this article is to use a method with a free parameter

which is named optimum asymptotic homotopy method (OHAM ) in order to obtain the

solution of differential equations, partial differential equations and the system of coupled

partial differential equations featuring fractional derivative. This method is preferable to

others since it has faster convergence toward homotopy perturbation method as well as

the convergence rate can be set as controlled area. Various examples are given to better

understand the use of this method. The approximate solutions are compared with exact

solutions as well.

1. Introduction

Fractional arithmetic and fractional differential equations appeared in many disciplines,

including medicine [1], economics [2], dynamical problems [3, 4], chemistry [5], mathematical

physics [6], traffic model [7] and fluid flow [8] and so on.

Scholars and researchers are invited to study books that have been written to better

understand the concept of fractional arithmetic [9, 10, 11].
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In order to find the approximate solution for partial differential equations with fractional

derivative that we explored in this paper is presented as follows:

Dα
t u(x, t) + A

(
x, t, u(x, t), ux(x, t), uxx(x, t), . . .

)
= g(x, t), (1.1)

in which A is the partial differential operator, Dαu(x, t) is the fractional Caputo derivative,

k − 1 < α ≤ k and k ∈ N.

A number of articles that can be found to express modeling, deploying and extent of differ-

ential equation (DEs), partial differential equation (PDEs) and fractional partial differential

equations (FPDEs) are in [12, 13].

It is necessary to announce that there are no accurate analytical solutions for most DEs,

PDEs and FPDEs thus; a relatively large number of approximate solution expressed by

the scholars are not possible if they find the accurate analytical solutions with the existing

procedures for the DEs, PDPs and FPDEs. Accordingly, for such differential equations, we

have to employ some direct and iterative methods. Some of these techniques which can be

used by scholars include discrete element method and finite difference method [14, 15, 16,

17, 18], homotopy perturbation method (HPM) [19], differential transform method (DTM)

[20], Adomian’s decomposition method (ADM) [21], optimal homotopy asymptotic method

(OHAM) [22], homotopy analysis method (HAM) [23], variational iteration method (VIM)

[19], new homotopy asymptotic method (NHPM) [24] and so on [25, 26, 27].

The OHAM was presented and developed by Marinca et al. [28, 29, 30] and it can be

shown that HPM is a special case of OHAM. The goal is achieved here by using auxiliary

functions, auxiliary convergence controlling parameters, and a homotopy in a particular way

to make OHAM simple and effective. The accuracy is also improved with increase in the

number of auxiliary parameters in the auxiliary function. Several authors have proved the

effectiveness, generalization and reliability of this method. The advantage of OHAM is built

in convergence criteria, which is controllable. In OHAM, the control and adjustment of the

convergence region are provided in a convenient way. Numerical results show that OHAM

is found the best in giving better and more accurate results. It consists of few steps and

converges to almost exact solution. The applied method is simple in learning and easy to

apply.

This paper is organized as follows: in Section 2, definition and some proposition of the

Caputo fractional derivative are introduced. In Section 3, description of OHAM is given.

In Section 4, we have expressed the convergence of OHAM. In Section 5, the application
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of OHAM to the Eq. 1.1 are illustrated, and some numerical examples are presented. And

conclusions are drawn in Section 6.

2. Fractional calculus

Definition 2.1. A real function f(x), x > 0, is considered to be in the space Cν , (ν ∈ R), if

there exists a real number n(> ν), so that f(x) = xnf1(x), where f1(x) ∈ C[0,∞), it is said

to be in the space Ckν if and only if f (k) ∈ Cν , k ∈ N [10, 11].

Definition 2.2. [10, 11] The Riemann-Liouville fractional integral operator of order of α > 0,

of a function f ∈ Cν , ν ≥ −1, is given by

Iαa f(x) =
1

Γ(α)

∫ x

a
(x− r)α−1f(r)dr.

Iαf(x) = Iα0 f(x), I0f(x) = f(x).

Definition 2.3. [10, 11] The Caputo’s fractional derivative of f is defined as

Dαf(x) = Ik−αDkf(x) =
1

Γ(k − α)

∫ x

0
(x− r)k−α−1f (k)(r)dr, x > 0.

where, f ∈ Ck−1, k − 1 < α ≤ k and k ∈ N.

Proposition 2.1. For k − 1 < α ≤ k, k ∈ N, f ∈ Ckν , ν ≥ −1 and x > 0, the following

properties satisfy

i) Dα
a I

α
a f(x) = f(x)

ii) IαaD
α
a f(x) = f(x)−

k−1∑
j=0

f (j)(a+) (x−a)j

j! .

The Caputo fractional derivative of order α for u(x, t) is defined as:

Dα
t u(x, t) =

1

Γ(k + 1− α)

∫ t

0
(t− s)k−αu(k+1)(x, s)ds, k < α ≤ k + 1, k ∈ Z+. (2.2)

3. Description of OHAM

The overall dimensions of the proposed approach [31] in this section is given and repre-

sented in the following differential equation

L
(
u (x, t)

)
+N

(
u (x, t) , u

(
η0(x), ς0(t)

)
, ux
(
η1(x), ς1(t)

)
, · · · , ux · · ·x︸ ︷︷ ︸

n order

(
ηn(x), ςn(t)

))
+

g (x, t) = 0, x ∈ Ω ⊆ Rn, t > 0

(3.3)
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featuring the boundary condition

B

(
u,
∂u

∂t

)
= 0, t ∈ Γ, (3.4)

in which L = Dα
t is linear operator and N is nonlinear operator may consist of the space

derivatives of integer order with respect to x along with delay functions, u(x, t) is unknown

function, g(x, t) is a known analytic function, B is a boundary operator, Γ is the boundary

of the domain Ω. Also, ηj(x) and ςj(t) are delay functions. In this work, we consider

ηj(x) = pj x and ςj(t) = qj t, for j = 0, 1, · · · , n.

According to OHAM, we concoct structural homotopy v(x, t; p) : Ω × [0, 1] → R which

fulfills the conditions in the following equation

(1− p) L (v(x, t; p)− u0(x, t)) =

H(p)

(
L
(
v(x, t; p)

)
+ g(x, t)+ (3.5)

N
(
u (x, t) , u

(
η0(x), ς0(t)

)
, ux
(
η1(x), ς1(t)

)
, · · · , ux · · ·x︸ ︷︷ ︸

n order

(
ηn(x), ςn(t)

))
,

where p ∈ [0, 1] is an embedding parameter, H(p) is a non zero auxiliary function for p 6= 0

and H(0) = 0. When p = 0 and p = 1, we have v(x, t; 0) = u0(x, t) and v(x, t; 1) = u(x, t)

respectively.

Thus, when p provides from 0 to 1, the solution v(x, t; p) approaches from the initial guess

u0(x, t) to exact solution u(x, t). In which u0(x, t) obtained from 3.4 to 3.5 with p = 0 giving

L
(
u0(x, t; 0)

)
+ g(x, t) = 0. (3.6)

The auxiliary function H(p) is elected in the following display:

H(p) = pc1 + p2c2 + p3c3 + . . . , (3.7)

in which c1, c2, c3, . . . are convergence control parameters which are unfamiliar and can be

calculated. Another demonstration form H(p) offered by Herişanu and his associate in [31].

To compute the approximate solution, we expand v(x, t; p, ci), in Taylor series around p which

is as follows:

v(x, t; p, ci) = u0(x, t) +
∞∑
k=1

uk(x, t; ci) p
k, i = 1, 2, . . . . (3.8)

Defining the vectors

~cl = {c1, c2, . . . , cl} , (3.9)
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and

~us =
{
u0(x, t), u1(x, t;~c1), . . . , us(x, t;~cs),

(u0)x
(
η1(x), ς1(t)

)
, (u1)x

(
η1(x), ς1(t);~c1

)
, . . . , (us)x

(
η1(x), ς1(t);~cs

)
...

(u0)x · · ·x︸ ︷︷ ︸
n order

(
ηn(x), ςn(t)

)
, (u1)x · · ·x︸ ︷︷ ︸

n order

(
ηn(x), ςn(t);~c1

)
, . . . , (us)x · · ·x︸ ︷︷ ︸

n order

(
ηn(x), ςn(t);~cs

)}
.

The Zero-order problem by (3.6), and the first-order equation by

L
(
u1(x, t)

)
= c1N0(~u0) + g(x, t) (3.10)

and second-order equation by

L
(
u2(x, t)

)
− L

(
u1(x, t)

)
= c2N0(~u0) + c1

(
L (u1(x, t)) +N1 (~u1)

)
. (3.11)

are considered. The equations in the general case uk(x, t), are

L
(
uk(x, t)

)
−L
(
uk−1(x, t)

)
= (3.12)

ckN0

(
u0(x, t)

)
+

k−1∑
m=1

cm

(
L (uk−m(x, t)) +Nk−m (~uk−1)

)
,

in which k = 2, 3, . . . and Nm is the coefficient of ”pm”, in the development of N
(
v(x, t; p)

)
,

about the embedding parameter ”p” and we have

N
(
v(x, t; p, ci)

)
= N0

(
u0(x, t)

)
+

∞∑
m=1

Nm (~um) pm. (3.13)

It can be seen that, convergence series (3.8) is dependent on the constants c1, c2, . . .. If it is

convergent at p = 1 , one has

ṽ(x, t; ci) = u0(x, t) +
m∑
k=1

uk(x, t; ci), i = 1, 2, . . . ,m. (3.14)

The following residual is the result obtained as a result of embedding (3.14) in (3.3):

R(x, t; ci) =L
(
ṽ(x, t; p, ci)

)
+

g(x, t) +N
(
ṽ(x, t; p, ci)

)
, i = 1, 2, . . . ,m. (3.15)

If R = 0, then ṽ will be the exact solution 3.3.
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Using the method of least squares and knowing the exact solution of the problem, we can

minimize the L2-norm of the error E vm(c1, c2, c3, . . . , cm). The L2-norm of the error is

signified as

‖E ṽm(c1, . . . , cm)‖2 =

(∫
Ω

∫
Γ
ṽ2
m(x, t) dt dx

) 1
2

,

in which E ṽm(x, t) = |ṽexact(x, t)− ṽm(x, t; c1, . . . , cm)|.

4. Convergence of OHAM

Topics in this section are provided for convergence of the OHAM.

Theorem 4.1. [32] Let the solution components u0, u1, u2, . . ., be defined as given in Eqs.(3.10)-

(3.12). The series solution
m−1∑
k=0

uk(x, t) defined in 3.14 converges, if ∃ 0 < ρ < 1 such that

‖uk+1‖ ≤ ρ‖uk‖ ∀k ≥ k0 for some k0 ∈ N.

Proof. Under consideration

T0 = u0

T1 = u0 + u1

T2 = u0 + u1 + u2

. . .

Tn = u0 + u1 + u2 + . . .+ un,

as the sequence {Tn}∞n=0. Evidence is sufficient to show that the sequence {Tn}∞n=0 in the

Hilbert space R is a Cauchy sequence. To achieve this, consider

‖Tn+1 − Tn‖ = ‖un+1‖

≤ ρ‖un‖

≤ ρ2‖un−1‖

...

≤ ρn−k0+1‖uk0‖.



AN OPTIMUM PARAMETER METHOD ... 165

Assuming that n ≥ m > k0 and for every n,m ∈ N, we have

‖Tn − Tm‖ = ‖(Tn − Tn−1) + (Tn−1 − Tn−2) + . . .+ (Tm − Tm−1)‖

≤ ‖(Tn − Tn−1)‖+ ‖(Tn−1 − Tn−2)‖+ . . .+ ‖(Tm − Tm−1)‖

≤ ρn−k0‖uk0‖+ ρn−k0−1‖uk0‖+ . . .+ ρm−k0+1‖uk0‖

=
(1− ρn−m

1− ρ
)
ρm−k0+1‖uk0‖.

According to the 0 < ρ < 1, it results that lim
n→∞
m→∞

‖Tn − Tm‖ = 0. Thereupon, in the

Hilbert space R, sequence {Tn}∞n=0 is a Cauchy sequence and this implies that series solution

converges to series
∞∑
k=0

uk(x, t).

5. Test examples

Now that it is easier to understand OHAM, various examples will be described in this

section and then will be calculated. These examples include solutions of nonlinear partial

differential equation featuring fractional derivative. In all these examples, mathematical

software Mathematica is used for calculations and graphs.

Example 5.1. For the first example, we propose the time-fractional advection differential

equation:

Dα
t u(x, t) + u(x, t) ux(x, t) = x(1 + t2), t > 0, x ∈ R, 0 < α ≤ 1, (5.16)

with the precise solution u(x, t) = x t for α = 1 and the primary condition:

u(x, 0) = 0. (5.17)
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Following the OHAM, according to what was formulated and presented in Section 3 for

Eqs.(5.16)-(5.17), we get:

u0(x, t) =
xtα

(
α2 + 3α+ 2t2 + 2

)
α (α2 + 3α+ 2) Γ(α)

,

u1(x, t) = − 2c1xt
α+2

α (α2 + 3α+ 2) Γ(α)
+

2c1xt
α+2

(α3 + 3α2 + 2α) Γ(α)
+

2c1xΓ(2α+ 1)t3α

(α2 + 3α+ 2)2 Γ(α)2Γ(3α)
+

8c1xΓ(2α)t3α

(α2 + 3α+ 2) Γ(α)Γ(α+ 3)Γ(3α+ 1)
+

13c1xΓ(2α+ 1)t3α

(α2 + 3α+ 2)2 Γ(α)2Γ(3α+ 1)
+

12c1xΓ(2α+ 1)t3α

α (α2 + 3α+ 2)2 Γ(α)2Γ(3α+ 1)
+

α2c1xΓ(2α+ 1)t3α

(α2 + 3α+ 2)2 Γ(α)2Γ(3α+ 1)
+

24c1xΓ(2α+ 2)t3α+2

(α+ 2)2Γ(α)2Γ(3α+ 4)
+

36c1xΓ(2α+ 3)t3α+2

(α+ 2)2Γ(α)Γ(α+ 2)Γ(3α+ 4)
+

24c1xΓ(2α+ 3)t3α+2

α(α+ 2)2Γ(α)Γ(α+ 2)Γ(3α+ 4)
+

8c1xΓ(2α+ 4)t3α+4

α(α+ 1)Γ(α)Γ(α+ 3)Γ(3α+ 5)

. . . .

Thereupon, considering the first two sentences as estimates of solution for Eq.(5.16):

Table 1. A comparison between approximate solutions with some methods

for test example 5.1.

t x uV IM vADM uHPM uV HPIM uOq−HAM uOHAM uExact

0.2 0.25 0.050309 0.050000 0.0499876 0.0499876 050318 0.050214 0.050000

0.50 0.100619 0.100000 0.099978 0.0999746 0.091040 0.100428 0.100000

0.75 0.150928 0.150001 0.149968 0.149962 0.150025 0.150642 0.150000

1.0 0.201237 0.200001 0.199957 0.199951 0.20100 0.150642 0.200000

0.4 0.25 0.101894 0.100023 0.099645 0.0995290 0.09609 0.101537 0.100000

0.50 0.203787 0.200046 0.199290 0.199059 0.20370 0.203074 0.200000

0.75 0.305681 0.300069 0.298935 0.298588 0.300009 0.304611 0.300000

1.0 0.407575 0.400092 0.398580 0.398118 0.400001 0.304611 0.400000

0.6 0.25 0.153094 0.150411 0.147158 0.145690 0.153001 0.154166 0.150000

0.50 0.306188 0.300823 0.294317 0.291380 0.300088 0.308331 0.300000

0.75 0.459282 0.451234 0.441475 0.437070 0.450207 0.462497 0.450000

1.0 0.612376 0.601646 0.588634 0.582759 0.600633 0.462497 0.600000
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(a) (b)

Figure 1. (a) The accurate solution (b) The estimate solution in the case

α = 1.0.

u(x, t) ≈
xtα

(
α2 + 3α+ 2t2 + 2

)
α (α2 + 3α+ 2) Γ(α)

− 2c1xt
α+2

α (α2 + 3α+ 2) Γ(α)
+

2c1xt
α+2

(α3 + 3α2 + 2α) Γ(α)
+

2c1xΓ(2α+ 1)t3α

(α2 + 3α+ 2)2 Γ(α)2Γ(3α)
+

8c1xΓ(2α)t3α

(α2 + 3α+ 2) Γ(α)Γ(α+ 3)Γ(3α+ 1)
+

13c1xΓ(2α+ 1)t3α

(α2 + 3α+ 2)2 Γ(α)2Γ(3α+ 1)
+

12c1xΓ(2α+ 1)t3α

α (α2 + 3α+ 2)2 Γ(α)2Γ(3α+ 1)
+ (5.18)

α2c1xΓ(2α+ 1)t3α

(α2 + 3α+ 2)2 Γ(α)2Γ(3α+ 1)
+

24c1xΓ(2α+ 2)t3α+2

(α+ 2)2Γ(α)2Γ(3α+ 4)
+

36c1xΓ(2α+ 3)t3α+2

(α+ 2)2Γ(α)Γ(α+ 2)Γ(3α+ 4)
+

24c1xΓ(2α+ 3)t3α+2

α(α+ 2)2Γ(α)Γ(α+ 2)Γ(3α+ 4)
+

8c1xΓ(2α+ 4)t3α+4

α(α+ 1)Γ(α)Γ(α+ 3)Γ(3α+ 5)
.

According to least square method for the calculations of the constants c1 and c2, we can gain

c1 = 0, c2 = −0.668223.

In Table 1, we can see the estimated solutions toward α = 1, which is derived for various

values of x applying OHAM and a comparison between ADM, VIM, HPM, VHPIM and

Oq-HAM [7].

In figure 1, we can view the precise and approximate answers featuring α = 1.

Table 2 shows comparison between the exact and the approximation solution (5.16) with

OHAM of test example 5.1 for different values of α, x and t.

Comparison of exact and approximate solution can be seen for test example 5.1 with different

values of α, x and t, in Figure 2.



168 RAHMAT DARZI AND BAHRAM AGHELI∗

Table 2. The exact and approximate result of test example 5.1 featuring various

values of α.

x t α = 0.5 α = 0.7 α = 1.0 uExact

0.25 0.2 0.114114 0.079887 0.050214 0.05

0.4 0.148258 0.131658 0.101537 0.1

0.6 0.164999 0.173966 0.154166 0.15

0.8 0.162959 0.205729 0.206301 0.2

0.50 0.2 0.228229 0.159774 0.100428 0.1

0.4 0.296516 0.263317 0.203074 0.2

0.6 0.329999 0.347933 0.308331 0.3

0.8 0.325918 0.411458 0.412602 0.4

Figure 2. Comparison between the exact and the approximation solution

with OHAM of test example 5.1 for different values of α, x and t.

Example 5.2. For the second example, we propound the time-fractional Klein-Gordon dif-

ferential equation:

Dα
t u(x, t)− uxx(x, t) + u(x, t) = t2 + x2, t > 0, x ∈ R, 1 < α ≤ 2, (5.19)

given that the primary condition

u(x, 0) = x2 − exp(x), ut(x, 0) = 0. (5.20)
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With the help of the OHAM, according to what was formulated and presented in section 3

for Eqs. (5.19)-(5.20), we get:

u0(x, t) = x2 − ex +
2tα+2

α (α2 + 3α+ 2) Γ(α)
+

x2tα

αΓ(α)
,

u1(x, t) = − 2tα+2

α (α2 + 3α+ 2) Γ(α)
− x2tα

(1− α)Γ(α)
− x2tα

αΓ(α)
− x2tα

(α− 1)αΓ(α)
−

2tα+2

(α− 1)α (α2 + 3α+ 2) Γ(α)
− 2tα+2

(−α3 − 2α2 + α+ 2) Γ(α)
− c1x

2tα

(1− α)Γ(α)
−

c1x
2tα

(α− 1)αΓ(α)
− 2c1t

α+2

α (α2 + 3α+ 2) Γ(α)
− 2c1t

α+2

(α− 1)α (α2 + 3α+ 2) Γ(α)
−

2c1t
α

αΓ(α)
− 2c1t

α+2

(−α3 − 2α2 + α+ 2) Γ(α)
−
√
π21−2αc1t

2α

αΓ(α)Γ
(
α+ 1

2

)+

2c1t
2α+2

Γ(2α+ 3)
+

√
π4−αc1x

2t2α

αΓ(α)Γ
(
α+ 1

2

) ,
. . . .

Then, assuming the first two sentences as estimates of solution for Eq.(5.19)

u(x, t) ≈ x2 − ex +
2tα+2

α (α2 + 3α+ 2) Γ(α)
+

x2tα

αΓ(α)
− x2tα

(1− α)Γ(α)
− x2tα

αΓ(α)
− x2tα

(α− 1)αΓ(α)
−

2tα+2

α (α2 + 3α+ 2) Γ(α)
− 2tα+2

(α− 1)α (α2 + 3α+ 2) Γ(α)
− 2tα+2

(−α3 − 2α2 + α+ 2) Γ(α)
−

c1x
2tα

(1− α)Γ(α)
− 2c1t

α

αΓ(α)
− c1x

2tα

(α− 1)αΓ(α)
− 2c1t

α+2

α (α2 + 3α+ 2) Γ(α)
− 2c1t

2α+2

Γ(2α+ 3)
+

(5.21)

2c1t
α+2

(α− 1)α (α2 + 3α+ 2) Γ(α)
− 2c1t

α+2

(−α3 − 2α2 + α+ 2) Γ(α)
−
√
π21−2αc1t

2α

αΓ(α)Γ
(
α+ 1

2

)+

√
π4−αc1x

2t2α

αΓ(α)Γ
(
α+ 1

2

) .
For the calculations of the constants c1, c2 using the method of least squares, we have com-

puted that

c1 = −0.942868, c2 = 0.00777353.

In Table 3 and in figure 3, we can view the precise and approximate answers featuring α = 2

through applying OHAM. With the knowledge that α = 2, the approximate solution obtained

by the proposed method corresponds to the precise solution u(x, t) = t2 + x2 − ex.

Example 5.3. For the third example, we offer the time-fractional partial differential equa-

tion:

Dα
t u(x, t)− uxx(x, t)− u(x, t) = 3t, t > 0, x ∈ R, 2 < α ≤ 3, (5.22)
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Table 3. Approximate result of test example 5.2.

t x uOHAM Exact Absolute error

0.0 0.0 -1. -1. 0.0

0.1 0.5 -0.84694 -0.845171 0.00176917

0.2 0.4 -1.02272 -1.0214 0.00131616

0.3 0.3 -1.17067 -1.16986 0.000814838

0.4 0.2 -1.2922 -1.29182 0.000379601

0.5 0.1 -1.38882 -1.38872 0.0000949325

(a) (b)

Figure 3. (a) The accurate solution (b) The estimate solution in the case

α = 2.0.

including the primary condition

u(x, 0) = 0, ut(x, 0) = sin(x)− 3, utt(x, 0) = 0. (5.23)

With due attention to the OHAM, according to section 3 for Eqs.(5.22)-(5.23), we get:

u0(x, t) =
3tα+1

(α2 + α) Γ(α)
+ t(sin(x)− 3),

u1(x, t) =
3c1t

α+1

(α2 + α) Γ(α)
− 6c1Γ(α+ 2)t2α+1

αΓ(α)Γ(2α+ 3)
,

u2(x, t) =
3c1t

α+1

(α2 + α) Γ(α)
− 3c1t

2α+1

Γ(2α+ 2)
+

3c2
1t
α+1

(α2 + α) Γ(α)
− 3c2

1t
2α+1

Γ(2α+ 2)
−

3c2t
α+1

(α2 + α) Γ(α)
+

6c2
1Γ(α+ 2)t2α+1

αΓ(α)Γ(2α+ 3)
− 6c2Γ(α+ 2)t2α+1

αΓ(α)Γ(2α+ 3)
+

3c2
1t

3α+1

Γ(3α+ 2)
.

. . . .
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Hence, supposing the first two sentences as estimates of solution for Eq.(5.22):

u(x, t) ≈ 3tα+1

(α2 + α) Γ(α)
+ t(sin(x)− 3) +

6c1t
α+1

(α2 + α) Γ(α)
− 3c1t

2α+1

Γ(2α+ 2)
−

6c1Γ(α+ 2)t2α+1

αΓ(α)Γ(2α+ 3)
+

3c2
1t
α+1

(α2 + α) Γ(α)
− 3c2

1t
2α+1

Γ(2α+ 2)
− 6c2

1Γ(α+ 2)t2α+1

αΓ(α)Γ(2α+ 3)
+ (5.24)

3c2t
α+1

(α2 + α) Γ(α)
− 6c2Γ(α+ 2)t2α+1

αΓ(α)Γ(2α+ 3)
+

3c2
1t

3α+1

Γ(3α+ 2)
.

Using the method of least squares, to obtain the constants c1 and c2, we will have

c1 = 0, c2 = 1.02134.

It can be seen in Table 4 and Figure 4 that solving equations with approximate expression

is calculated and displayed for α = 3 and various values of x and t. Toward α = 3, the

Table 4. Approximate result of test example 5.3.

t x uOHAM Exact Absolute error

0.0 0.0 0.0 0.0 0.0

0.1 0.5 -1.45008 -1.45008 0.000161988

0.2 0.4 -1.1206 -1.12053 0.0000672998

0.3 0.3 -0.811365 -0.811344 0.0000214763

0.4 0.2 -0.522121 -0.522116 4.26071×10−6

0.5 0.1 -0.252058 -0.252057 2.6672×10−7

(a) (b)

Figure 4. (a) The accurate solution (b) The estimate solution in the case

α = 3.0.

solution that we have gained is in accordance with the precise solution u(x, t) = t sin(x)− 3t.
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6. Conclusion

We have successfully applied OHAM to obtain approximate solution of the non linear

partial differential equations featuring fractional derivative. The result indicate that a few

iteration of OHAM will results in some useful solutions.

Finally, it should be added that the suggested technique has the potentials to be prac-

tical in solving other similar nonlinear and linear problems in partial differential equations

featuring fractional derivative.
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[31] Herişanu, N., & Marinca, V. (2010). Explicit analytical approximation to large-amplitude non-linear oscil-

lations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica,

45(6), 847-855.

[32] Gupta, A. K., & Ray, S. S. (2014). Comparison between homotopy perturbation method and optimal ho-

motopy asymptotic method for the soliton solutions of Boussinesq-Burger equations. Computers & Fluids,

103, 34-41.

Department of Mathematics, Neka Branch, Islamic Azad University, Neka, Iran

Email address: r.darzi@iauneka.ac.ir

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

Email address: b.agheli@qaemshahriau.ac.ir


	1. Introduction
	2.  Fractional calculus
	3. Description of OHAM
	4. Convergence of OHAM
	5. Test examples
	6. Conclusion
	References

