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Abstract. The aim of this paper is two-fold. First, we will provide clarity on a result

concerning the strong connectivity, a concept whose usefulness is readily apparent in several

fields of study including social networking and transport networks, of a bridgeless connected

graph achieved through the depth-first search (DFS) technique. To this end, we will demon-

strate two rigorous mathematical proofs of this robust and well-known result. One proof

takes the approach of seeking a contradiction by investigating the relationship between di-

rected paths and maximal strongly connected subgraphs after the application of DFS. The

other proof features a direct approach that demonstrates that for each tree edge {U, V },

there is a directed path from V to U by utilizing the fact that each edge in a connected

multigraph on at least two vertices is either a bridge or is included in some cycle. Second, for

a multigraph without a bridge, we provide two different proofs ensuring the existence of an

assignment of edge directions that induces strong connectivity. One of these proofs utilizes

the previous fact, whereas the second proof is independent of it and features a technique

that focuses on collapsing entire connected multigraphs into a single vertex.
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1. Introduction

Graph theory has rich history dating back to 1736, when Leonhard Euler published a pa-

per using this versatile branch of mathematics to approach a problem concerning the seven

bridges of Königsberg [8, 17]. Today, graph theory has garnered interest and found appli-

cations in other branches of mathematics as well as in several disciplines within academia.

Specifically, some applications of graph theory include additive number theory [1], cryptogra-

phy [28], molecular topology [5], Alzheimer’s Disease [12], algebra [29], the study of DNA and

biological networks [27], spectroscopy and quantum chemistry [7], chemistry [6, 16], social

media and social networking [10, 24, 2, 4], blockchain technologies [22], social trust models

[31], maze solving [18, 23, 25] and GPS networks [19]. In particular, we would like to examine

the applications of graph theory in computer science as well as the inherent mathematical

beauty therein.

In the realm of graph theory and the computational sciences, various algorithms, such as

Depth-First Search (DFS), Breadth-First Search, Dijkstra’s Algorithm, and Floyd-Warshall’s

Algorithm [11, 17, 15] play important roles in understanding graph structures. Each of

these algorithms have a variety of applications. For more information pertaining to some

applications of these algorithms, see [11, 21] and the references therein. Particularly, the

Depth-First Search Algorithm serves as a means of graph traversal for the sake of identifying

vertices and their relationships to underlying structures embedded within a given graph

and an associated directed graph. This algorithm commences its journey from the root, an

arbitrarily selected vertex from the given graph, and thoroughly explores each and every

vertex as far as possible before traversing its moves backward.

Ever since a version of DFS was introduced as a means of solving mazes [18], it has been

widely regarded as a versatile tool for approaching problems in both theory and practice

pertaining to, for example, finding strongly connected components in a directed graph [11]

and topological sorting [11]. With regard to applications in the computational sciences, DFS

sees use in various areas including, but not limited to, image recognition [3] and computing

search trees [30]. For further information concerning the implementation and execution of

DFS in the computational sciences and the associated data structures, see [18]. Before we

continue, we will revisit some graph theoretic definitions that will assist us in this article.

Additionally, we will provide some motivating examples for some of the concepts introduced.
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In this paper, a graph is a simple graph G = (V, E) where V ̸= ∅ is a nonempty set of

vertices and E is a set of edges. A multigraph is a graph that can have parallel edges as

well as loops, neither of which are possessed by (simple) graphs. Two vertices U and V are

said to be adjacent if there is an edge between them. The degree of a vertex V ∈ V is the

number of vertices to which V is adjacent and is denoted deg(V ). Sometimes, we wish to

assign directions to the edges of a graph. To see an example of this, let us recall the Collatz

Conjecture. That is, let us define the function C : N → N given by

C(n) =


3n+ 1, if n is odd

n/2, if n is even.

The Collatz Conjecture states that for any n ∈ N, repeated applications of C will eventually

result in 1. For example, let n = 6. Observe that

C8(6) = C7(3) = C6(10) = C5(5) = C4(16) = C3(8) = C2(4) = C(2) = 1.

Now, observe that we can represent this repeated application of C as a graph whose edges

represent the notion that adjacent numbers have the property that one of the numbers is the

result of applying C to the other. To indicate which number is obtained from applying C to

another number, we can use arrows as is done in Figure 1

6 3 10 5 16

8421

Figure 1. A graphical visualization of applying C to n = 6.

Above is an example of a directed graph. A directed graph (or digraph) is a graph whose

edges are each assigned a direction. A graph G1 = (V1, E1) is called a subgraph of another

graph G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. If this is the case, then we can write G1 ⊆ G2.

If we have a graph G along with a nonempty set X ⊆ V(G), then the subgraph of G induced

by X is the graph with vertex set X and edge set consisting of all edges {U, V } with both U

and V elements of X.

Let us again consider the graph depicted in Figure 1. Suppose that each number denotes

a particular building in a city. Suppose further that if two buildings are joined by an edge,

then there exists a one-way, road, whose direction is dictated by the direction of the edge,

connecting these buildings. For example, one could travel from building 10 to building 4
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through the roads creating the sequence 10 → 5 → 16 → 8 → 4. However, in the way that

these roads are directed, one would be unable to travel from building 4 to building 10. Let

us make the graph-theoretic phenomenon in this example more precise.

The connectivity of an undirected graph depends on its vertices’ capacity to reach one

another along the edges of the graph. A walk is a sequence of adjacent vertices and can be

thought of as moving between the vertices of a graph along the edges. A closed walk is a

walk that begins and ends on the same vertex. A path is a walk that does not repeat vertices.

A cycle is a closed path of the form {V1, . . . , Vk, Vk+1 = V1}. A chord is an edge that is not

contained within a cycle, but joins two vertices within said cycle. It is said that two vertices

are connected if there exists a path between them. It is said that a graph G is connected

if for any two vertices u, v ∈ V(G), u and v are connected. Furthermore, a graph is called

disconnected if it is not connected. For a connected graph G, an edge e ∈ E(G) is called a

bridge if the graph obtained by removing the edge e from the graph G is disconnected. On the

other hand, the concept of strong connectivity is applicable solely to directed graphs. In the

context of a directed graph, a graph G is strongly connected if and only if there is a directed

path from a vertex V to a vertex U , as well as a directed path from U to V , for each pair of

vertices U and V in V(G). The study of strongly connected graphs has various applications

as well as additional routes for further inquiry in, for example, disciplines concerned with the

reduction of complexity in certain problems [9, 11, 13]. A strongly connected component of a

directed graph is a subgraph that is maximal with respect to the property of being strongly

connected [14]. For an example of the study of strongly connected graphs and how it pertains

to social networking, see [14]. For an example of how the study of strongly connected graphs

can be considered in the study of public transport networks as well as their efficiency, see

[26].

Recalling the Collatz Conjecture, let us consider a directed graph whose vertices consist

of all elements of N and whose edges are constructed in the following way. Suppose m,n ∈ N

are such that C(m) = n. Then we construct a directed edge from m to n. Let us refer to this

graph as the Collatz Graph. Then observe that disproving the Collatz Conjecture could be

simplified to locating a directed cycle in the Collatz Graph other than the cycle {4, 2, 1, 4}.

Using our new terminology, we can again consider the graph in Figure 1 as a network of

buildings in a city. Recall that there exists a path from 10 to 4 but that there does not exist

a path from 4 to 10. From this, we can conclude that this graph is not strongly connected.

Why is this? In fact, there is a direct relationship between the existence of bridges in a graph
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and the existence of an edge direction assignment that makes the resulting directed graph

strongly connected. Observe that in the graph in Figure 1, every edge is a bridge other than

the edges of the cycle {4, 2, 1, 4}. However, if we simply add the directed edge {1, 6}, we

obtain the following graph.

6 3 10 5 16

8421

Figure 2. The graph in Figure 1 along with the directed edge {1, 6}.

Notice that in this graph, for each pair of vertices, there exists a directed path from one to

the other. As such, we can conclude that this graph is strongly connected. Observe further

that there does not exist a bridge in this graph. That is, the removal of any edge will not

leave the resulting graph disconnected. It may, however, leave the resulting directed graph

no longer strongly connected. In this paper, we will further explore the connection between

the lack of bridges in a connected graph, and that graph’s potential to have a strongly

connected edge direction assignment. Thus, notice that if we think of the graph in Figure

2 as a transportation network with the directed edges representing one-way roads and the

vertices representing buildings, one could travel between any two buildings. Let us wrap up

our discussion of graph-theoretic terminology with a brief discussion about trees.

A tree is a connected graph containing no cycles. It can be observed that the number of

vertices in a tree is one more than the number of edges. The converse is not necessarily true.

For j = i, . . . , k − 1, Vj is called the parent of Vj+1 in the DFS tree, and the edge (Vk, Vi)

is called a back-edge. See [17, 20] for the properties of trees and rooted trees. Observe that

every edge of a tree is a bridge. As an example, referring back to Figure 1, if we think of the

cycle {4, 2, 1, 4} as a single vertex 4 . Then the resulting graph would be as follows.

6 3 10 5 16

84

Figure 3. A graphical visualization of collapsing the cycle {4, 2, 1, 4} into

a single vertex 4 .
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Observe that this graph is a tree, and that, indeed, each edge of this graph is a bridge and

that this graph is not strongly connected. We will utilize this concept of collapsing subgraphs

into a single vertex in a later proof. For this, see our second proof of Theorem 6.1.

This paper is organized in the following manner. In Section 2, we provide a motivating

example demonstrating the usefulness of strong connectivity in network survivability and

how it relates to trust networks. In Section 3, after recalling the Depth-First Search Algo-

rithm, we discuss Theorem 3.1, concerning a technique for constructing a strongly connected

edge direction assignment in a connected bridgeless graph, by presenting an example demon-

strating its applicability. In Section 4, after presenting important facts concerning strong

connectivity and cycles, we provide a proof of Theorem 3.1 by contradiction. In Section 5,

we provide a second proof of Theorem 3.1 after proving Lemma 5.1, which states that each

edge in a connected multigraph on at least two vertices is either a bridge or is included in a

cycle. In Section 6, we provide two proofs of Theorem 6.1, which states that in a connected,

bridgeless multigraph, there exists an edge direction assignment that makes the resulting

directed graph strongly connected. One of these proofs invokes Lemma 5.1 and the other

does not. Finally, we present concluding remarks in Section 7.

2. A Motivating Example of Strong Connectivity

The study of graph and multigraph connectivity can be used in a variety of real-world

applications including the study of network survivability [20]. Let G be a simple, undirected,

connected graph. Let κv(G) denote the vertex connectivity of G, or the smallest number

of vertices whose removal from G can disconnect G or turn it into the trivial graph on a

single vertex [20]. Similarly, let κe(G) denote the edge connectivity of G, or the smallest

number of edges whose removal from G can disconnect G [20]. Both κv(G) and κe(G) are

used to assess the network survivability of a network, or ”the capacity of a network to retain

connections among its nodes after some edges or nodes are removed” [20]. To further explore

the applications of graph and multigraph connectivity, we can consider the concept of a fault-

tolerant communications network, which is a communications network that ”has at least two

alternative paths between each pair of vertices” [20]. For additional details regarding network

survivability and fault-tolerant communications networks, see Chapter 5 of [20].

Let us consider the following motivating example for the sake of demonstrating the appli-

cability of network survivability.
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Example 2.1. Suppose we have a simple, undirected, connected graph G whose vertices

represent people and whose edges represent a friendship between two people. It would be

reasonable to infer, that if two vertices are connected, then the two corresponding people can

have information transferred between them. Suppose G is the graph represented in Figure 4.

A B C D

Figure 4. A group of people and their corresponding friendships as a graph G.

Observe that this is a quite fragile network, as removing B or C from the group would

preclude A and D from sharing information. That is, κv(G) = 1. Similarly, if any two people

choose to end their friendship with one another, then the graph will become disconnected, and

thus, there will be at least two people who cannot share information. As such, κe(G) = 1.

However, if the people in this group acknowledge this fact about their network survivability,

they can act to strengthen their friend group’s ability to share information by suggesting that

the people represented by vertices A and D form a friendship, as shown in Figure 5.

A B C D

Figure 5. A stronger friendship network than in Figure 4.

In this graph, which we will call G′, there is no vertex, nor edge, that can be removed to

cause the resulting graph to be disconnected. Removing two vertices or edges, however, will

cause the graph to be disconnected. As such, κv(G′) = κe(G′) = 2. We can further observe

that the network represented by the graph in Figure 5 is fault-tolerant. Since there is no

single edge in G′ that disconnects the graph upon removal, we acknowledge that G′ (and the

friendship network represented therein) has stronger network survivability than G since no

bridge exists in G′. In fact, we observe that for a simple, undirected, connected graph G, if

κe(G) > 1, then G does not contain a bridge.

Continuing with our supposition that the vertices of a graph G represent people and edges

of G represent a friendship between two people, let us further assume that the friend group

represented by G has a method of communication dependent on the trust one person has

in another. That is, suppose that for any two vertices v1, v2 ∈ V(G), either the person

represented by v1 can receive information given by the person represented by v2 or they

can give information to the person represented by v2. In this case, the graph becomes a
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directed graph. Now, the friend group may be inclined to ponder whether or not they can

share information throughout the network if they were to impose the trust-dependent structure

described above. Asking this question would be equivalent to determining whether the graph

representing the network could be made strongly connected. If κe(G) > 1, then the answer to

this question is ”yes.”

3. DFS and its Relation to Strong Connectivity

One purpose of this paper is to provide two different mathematically rigorous proofs of

Theorem 3.1, a well-known result, which appears in [17]. Although the result is fairly intu-

itive, the demonstration of this fact is quite intricate. Moving forward, we will include several

figures to supplement the reader’s understanding of the theorems, proofs, and applications

discussed.

Before we begin, let us recall the Depth-First Search Algorithm which inductively operates

on a graph with n vertices in the following manner.

(1) Start by picking any vertex from the graph. Label that vertex as V1.

(2) Visit an adjacent vertex of the vertex labeled V1 and label it V2.

(3) Visit an adjacent unlabeled vertex of the vertex labeled V2 and label it V3.

(4) Continue this process until vertices have been labeled V1, V2, . . . , Vr and the vertex

labeled Vr is not adjacent to an unlabeled vertex for 1 ≤ r ≤ n.

(5) If r < n, select the largest i, 1 ≤ i ≤ r, such that Vi is adjacent to an unlabeled

vertex. Assign the label Vr+1 to that vertex and return to step (4). Otherwise, if

r = n, we are done.

Now, we can state the theorem, as referenced in [17], Theorem 5.8 on page 259.

Theorem 3.1. [17] Suppose we apply depth-first search to a connected, bridgeless graph. If

we assign directions to tree edges from lower depth-first search label to higher and to back

edges from higher label to the lower, then the resulting directed graph is strongly connected.

In order to comprehend this result, let us commence by examining an illustrative example

that highlights the potency of Theorem 3.1.

Example 3.1. Let us consider the connected graph G depicted in Figure 6, which does not

possess a bridge.
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A B

C D E

FG

H

Figure 6. A connected graph G without a bridge.

Let us demonstrate the flexibility and versatility of DFS by exemplifying three distinct

applications and the resulting strongly connected graphs. In any application of DFS, the des-

ignation of the root is arbitrary. As such, we could begin the algorithm on vertex A,B,C,D,

or any other vertex. For the sake of simplicity and readability, we will start with A as our root

in the following applications of DFS. Let us again consider the friendship and trust network

as in Example 2.1. We see that through this application of DFS, we can determine a trust

structure that would allow for strong connectivity, or in the example, a flow of information

between all members of the friend group.

V1 V2

V3 V4 V5

V6V7

V8

V1 V8

V2 V4 V5

V7V6

V3

V1 V3

V6 V4 V8

V2V7

V5

Figure 7. Three applications of DFS to G in Figure 6 with dashed back-edges.

Having applied DFS to G, we can display the resulting strongly connected graphs using the

directions assigned in Figure 7.

V1 V2

V3 V4 V5

V6V7

V8

V1 V8

V2 V4 V5

V7V6

V3

V1 V3

V6 V4 V8

V2V7

V5

Figure 8. Three distinct strongly connected directed representations of G

as in Figure 6.

We encourage the reader to ensure the strong connectivity of each graph presented in Figure

8 by confirming the existence of closed walks containing all of the vertices of G therein.
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4. First Proof: A Contradiction

Prior to commencing our proof, we shall first revisit certain preliminary and relatively-

easy-to-verify facts about strong connectivity of finite directed graphs. These simple facts

are crucial for understanding the proofs we present in this article; therefore, we provide

statements and straightforward examples for each fact for the sake of completeness. We

encourage the reader to verify these facts for themself.

(I) A directed cycle is strongly connected.

A

B

C

D

Figure 9. An illustration of Fact (I).

(II) A graph consisting solely of two directed cycles that share a common vertex (an “8”

or “∞” shape) is strongly connected.

A

B

C

D

E

F

G

Figure 10. An illustration of Fact (II) with common vertex C.

(III) A graph consisting solely of two directed cycles that share a common directed edge

is strongly connected.

A B C

DEF

Figure 11. An illustration of Fact (III) with common directed edge {B,E}.

(IV) A graph containing two strongly connected directed subgraphs with some common

vertex, or some common directed edge, is strongly connected.
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A

B

C

D

E

F

G

or

A B C

DEF

Figure 12. Two illustrations of Fact (IV).

Now that we have equipped ourselves with the appropriate mathematical instruments, let

us discuss our first proof of Theorem 3.1.

Proof of Theorem 3.1. Let V1, V2, . . . , Vn be the labels of the depth-first search tree T where

i designates the label number of vertex Vi.

Now, we will follow these steps to execute the proof.

(1) {V1, V2} is a tree edge, i.e., a directed path from V1 to V2.

(2) Let {V1, V2, . . . , Vn1−1, Vn1} be a longest directed path with consecutive labels starting

from V1 in T as in Figure 13.

V1 V2 · · · Vn1−1 Vn1

Figure 13. A longest directed path in a depth-first search.

Then, we first make the following observations:

(a) deg(Vn1) = 1 in T . Indeed, if deg(Vn1) > 1 in T , then

{V1, V2, . . . , Vn1−1, Vn1}

would not be a longest directed path in a depth-first search. Consequently, Vn1

is not adjacent to any vertex in {Vn1+1, Vn1+2, . . . , Vn−1, Vn} according to the

depth-first search.

(b) deg(Vn1) > 1 in G. This must be the case because otherwise, {Vn1−1, Vn1} would

be a bridge.

(c) Hence, by (a) and (b), there is a vertex Vb1 in {V1, V2, . . . , Vn1−1} such that

{Vn1 , Vb1} is a back edge, and so {Vb1 , Vb1+1, . . . , Vn1−1, Vn1} is a directed cycle

as in Figure 14. Therefore, the directed cycle

{Vb1 , Vb1+1, . . . , Vn1−1, Vn1}
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is a strongly connected subgraph of G.

Vb1 Vb1+1 · · · Vn1−1 Vn1

Figure 14. A directed cycle of G.

(d) Let s1 be the smallest number less than or equal to b1 and m1 be the maximum

number greater than or equal to n1 such that

(i) {V1, V2, . . . , Vs1−1, Vs1} is a directed path in T and

(ii) G1 = {Vs1 , Vs1+1, . . . , Vm1−1, Vm1} is a strongly connected subgraph of G.

V1 V2 · · · Vs1−1 {Vs1 , Vs1+1, . . . , Vm1−1, Vm1} = G1

Figure 15. A directed path to a maximal strongly connected subgraph G1 of G.

(3) We shall prove that s1 = 1 and m1 = n, and so the graph induced by the vertices

{V1, V2, . . . , Vn} is strongly connected.

Suppose that m1 < n. Then there is an integer, denoted as i1, which represents

the largest label less than or equal to m1, such that {Vi1 , Vm1+1} is a tree edge. By

the depth-first search, there is no vertex in {Vi1+1, Vi1+2, . . . , Vm1} adjacent to any

vertex in {Vm1+1, Vm1+2, . . . , Vn}.

First, we will demonstrate that i1 ≥ s1. That is to say, Vi1 ∈ G1. In fact, if i1 < s1,

then no vertex in G1 is adjacent to any vertex in {Vm1+1, Vm1+2, . . . , Vn}. Hence there

is a vertex Vm in G1 which is adjacent to a vertex Vs in {V1, V2, . . . Vs1−2}. This must

be the case because otherwise, {Vs1−1, Vs1} would be a bridge. Using this back edge

{Vm, Vs}, we have a directed path {Vm, Vs, Vs+1, . . . , Vs1−1, Vs1}.

· · · Vs Vs+1 · · · Vs1−1 Vs1 · · · Vm · · · Vm1 · · ·

Figure 16. A larger directed cycle of G when i1 < s1.

Since G1, induced by {Vs1 , Vs1+1, Vs1+2, . . . , Vm1}, is a strongly connected subgraph

of G, there is a directed path from Vs1 to Vm, and so we have a directed cycle from

Vm to Vs to Vs1 to Vm as shown in Figure 16. Therefore, if we had i1 < s1, then
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the subgraph induced by {Vs, Vs+1, . . . , Vs1−1, Vs1 , Vs1+1, . . . , Vm1} would be strongly

connected by Fact (IV). This contradicts the selection of the minimum value s1 and

the maximum value m1 in (2d). Therefore, we know that i1 ≥ s1. Let

{Vi1 , Vm1+1, Vm1+2, . . . , Vn2}

be a longest directed path beginning with the tree edge {Vi1 , Vm1+1} and with con-

secutive labels m1 + 1,m1 + 2, . . . , n2 in T .

V1 V2 · · · Vs1−1 {Vs1 , . . . , Vi1 , . . . , Vm1}

Vm1+1Vm1+2· · ·Vn2

Figure 17. A directed path from Vi1 to the vertex Vn2 .

Then

(a) deg(Vn2) = 1 in T by the longest property. Hence, Vn2 is not adjacent to any

vertex in {Vn2+1, Vn2+2, . . . , Vn} by the depth-first search.

(b) deg(Vn2) > 1 in G. This must be the case because otherwise, {Vn2−1, Vn2} would

be a bridge.

(c) Hence, there is a vertex Vb2 in {V1, V2, . . . Vn2−1} such that {Vn2 , Vb2} is a back

edge.

Now we consider 3 cases: b2 < s1, s1 ≤ b2 ≤ m1, and b2 > m1.

Case 1: b2 < s1. If this is the case, then

{Vi1 , Vm1+1, Vm1+2, . . . Vn2 , Vb2 , Vb2+1, . . . , Vs1}

is a directed path. Since G1, the graph induced by

{Vs1 , Vs1+1, Vs1+2, . . . , Vm1}

is a strongly connected subgraph, there is a directed path from Vs1 to Vi1 , and

so we have a directed cycle from Vi1 to Vn2 to Vb2 to Vs1 to Vi1 . Hence, the graph

induced by

{Vb2 , Vb2+1, . . . , Vs1 , . . . , Vii , . . . , Vm1 , Vm1+1, Vm1+2, . . . , Vn2}

is a strongly connected subgraph of G by Fact (IV). This contradicts the selection

of s1 and m1.
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V1 · · · Vb2 · · · {Vs1 , . . . , Vi1 , . . . , Vm1}

Vm1+1Vm1+2· · ·Vn2

Figure 18. A directed path from Vi1 through Vm1+1, Vn2 , Vb2 to Vs1 .

Case 2: s1 ≤ b2 ≤ m1. If this is the case, then similar to Case 1, we will have a

directed cycle from Vi1 to Vn2 to Vb2 to Vi1 . Hence, the graph induced by

{Vs1 , Vs1+1, Vs1+2, . . . , Vm1 , Vm1+1, Vm1+2, . . . , Vn2}

is a strongly connected subgraph of G by Fact (IV). This contradicts the selection

of s1 and m1.

V1 · · · Vs1−1 {Vs1 , . . . , Vb2 , . . . , Vi1 , . . . , Vm1}

Vm1+1Vm1+2· · ·Vn2

Figure 19. A directed cycle from Vi1 through Vm1+1, Vn2 , Vb2 to Vi1 .

Case 3: b2 > m1. In this case, {Vb2 , Vb2+1, . . . , Vn2 , Vb2} becomes a directed cycle.

Let s2 be the smallest number less than or equal to b2 and m2 be the maximum

number greater than or equal to n2 such that G2, the graph induced by

{Vs2 , Vs2+1, . . . , Vb2 , Vb2+1, . . . , Vn2 , . . . , Vm2},

is a strongly connected subgraph with consecutive labels. Note that, by the

selection of G1, m1 < s2. Also,

{Vi1 , Vm1+1, Vm1+2, . . . , Vs2}

is a directed path from G1 to G2. Moreover, there is no back edge from a vertex

in G2 to any vertex with label less than s2 by the “maximum” property. By re-

peating this finitely many, say r, times, we will have disjoint “maximal” strongly

connected subgraphs Gj , induced by

{Vsj , Vsj+1, Vsj+2, . . . , Vij , . . . , Vmj},

for 1 ≤ j ≤ r, such that {V1, V2, . . . , Vs1} is a directed path in the DFS tree T ,

{Vij , Vmj+1, Vmj+2, . . . , Vsj+1
} is a directed path from Gj to Gj+1, and Vmr = Vn.
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V1 V2 · · · Vs1−1 {Vs1 , . . . , Vi1 , . . . , Vm1} = G1

Vm1+1Vm1+2· · ·Vs2−1

{Vs2 , . . . , Vi2 , . . . , Vm2} = G2

Vm2+1 • • • {Vsr−2 , . . . , Vir−2 , . . . , Vmr−2}= Gr−2

Vmr−2+1Vmr−2+2· · ·Vsr−1−1

{Vsr−1,, . . . , Vir−1 , . . . , Vmr−1} = Gr−1

Vmr−1+1 Vmr−1+2 · · · Vsr−1

{Vsr , . . . , Vn} = Gr

Figure 20. A structure of disjoint, maximal, and strongly connected subgraphs.

Now, if no vertex in {V1, V2, . . . , Vmr−1} is adjacent to any vertex in Gr, then

the first edge {Vir−1 , Vmr−1+1} in the directed path from Gr−1 to Gr would be

a bridge, which is a contradiction. If there is a vertex Vs in {V1, V2, . . . , Vmr−1}

which is adjacent to a vertex Vm in Gr, then {Vs, Vm} is a back edge, which

would contradict the “maximal” property of Gis. Hence r must be equal to 1

and m1 = n.

Furthermore, we will prove (by contradiction) that s1 must be equal to 1. In

fact, if s1 > 1, then there is a vertex Vs in {V1, V2, . . . , Vs1−1} and a vertex Vm

in

G1 = {Vs1 , Vs1+1, . . . , Vn}

such that {Vm, Vs} is a back edge. This must be the case because otherwise,

{Vs1−1, Vs1} would be a bridge.

{V1, V2, . . . , Vs, . . . , Vs1−1, Vs1 , . . . , Vmr−1} · · · {Vsr , . . . , Vm, . . . , Vn} = Gr

Figure 21. A critical back edge {Vm, Vs}.
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Hence, the graph induced by

{Vs, Vs+1, . . . , Vs1 , Vs1+1, . . . , Vn}

is a strongly connected subgraph of G by Fact (IV). This contradicts the selection

of s1. Therefore, s1 must be equal to 1.

This completes the proof. □

5. Second Proof: A Direct Method

We will now focus our efforts on proving the following lemma, which will assist us in our

second proof of Theorem 3.1.

Lemma 5.1. Let G be a connected multigraph with n > 1 vertices. Then each edge in G is

either a bridge or is included in a cycle.

Proof. Let {U, V } be an edge in G. Now, we perform a DFS algorithm beginning with

U = V1 and V = V2 and let V1, V2, . . . , Vn be the labels in the resulting tree T . By assigning

a direction for each edge in T from lower label to higher label, T becomes a rooted tree with

vertex V1 as its root and there is a (unique) directed path Pi from V1 to any vertex Vi. Now,

we divide all the Vis into two parts:

PU = {Vi | Pi does not include V2} and PV = {Vj | Pj includes V2}. (5.1)

Then PU and PV are disjoint and {U, V } is the only edge in T joining PU and PV . If there

is no other edge in G connecting PU and PV , then {U, V } is a bridge. If there is some edge

{Vi, Vj} in G where Vi ∈ PU and Vj ∈ PV , then {U, V } is included in the (undirected) cycle

{Vi, . . . , V1 = U, V2 = V, . . . , Vj , Vi}.

Thus, we can conclude that each edge in G is either a bridge or is included in a cycle. □

For an illustration of the sets PU and PV as used in Equation (5.1) within Lemma 5.1 as

well as the cases contemplated in the Lemma, let us consider the following examples.

Example 5.1. (a) Let G1 be the graph on the left depicted in Figure 22. To its right is an

application of DFS to G1.
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A

V U

C

B D

V3

V2 V1

V5

V4 V6

Figure 22. An illustration of Lemma 5.1 with {U, V } as a bridge.

In this case, we observe that PU = {V1, V5, V6} and PV = {V2, V3, V4} and thus, we have

that PU ∩PV = ∅. Furthermore, we observe that {U, V } is the only edge of G1 connecting PU

and PV . Hence, {U, V } is a bridge of G1.

(b) Let G2 be the graph on the left depicted in Figure 23. To its right is an application of

DFS.

A

V U

C

B D

V3

V2 V1

V5

V4 V6

Figure 23. An illustration of Lemma 5.1 with {U, V } as an edge of a cycle.

In this case, we observe that PU = {V1} and PV = {V2, V3, V4, V5, V6} and thus, we have

that PU ∩ PV = ∅. In this case, {U, V }, {U,C}, and {U,D} all join PU with PV in G2, and

as such, {U, V } is not the only edge connecting the sets. Moreover, we see that {U, V } is not

a bridge of G2, and thus, is included in a cycle of G2.

We will now provide another proof of Theorem 3.1 using the machinery we have established

in Lemma 5.1.

Proof of Theorem 3.1. Suppose depth-first search is applied to a connected graph G without

a bridge. Let us assign a tree edge from lower to higher depth-first search number and assign

a back edge from higher to lower depth-first search number.

We will prove that the resulting directed graph is strongly connected. To this end, let us

assign V1, V2, . . . , Vn as the labels of the depth-first search tree T with i the label number of

Vi. Then T is a rooted tree with V1 as the root and there is a directed path from V1 to any

vertex Vi by DFS.

We shall prove that for any vertex Vi, there is a directed path from Vi to V1. Doing so will

ensure that G is strongly connected. To this end, it suffices to show that there is a directed

path from V to U for each tree edge {U, V }.
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Let {U, V } be an arbitrary tree edge. Then, by Lemma 5.1, since G is bridgeless, the edge

{U, V } is included in some cycle C. Let m be the lowest label among the vertices in C and

TVm be the subtree of T formed by Vm and its descendants. To illustrate this, consider the

graph on the left of Figure 24, and the designation of TVm after the application of DFS.

V1

V2

V3

Vm Vm+1 U

VVr

V1

V2

V3

Vm Vm+1 U

VVr

Figure 24. An example graph G and the corresponding TVm identified.

Then we have that Vm is the root of TVm . If we denote the (undirected) cycle C by

{U1 = Vm, U2, . . . , Us, U1} such that U = Ui and V = Ui+1 for some i, then {U1, U2, . . . , Us}

is a directed path in TVm and (Us, U1) is a back edge. As such, {U1, U2, . . . , Us, U1} becomes

a directed cycle. Moreover, (U, V ) is included in the directed cycle C = {U1, U2, . . . , Us, U1}.

Hence, there is a directed path from V to U . To further illustrate this, included in Figure 25

is the graph from Figure 24 with the cycle in question highlighted in red on the left as well

as assigned directions such that there exists both a directed path from U = Ui to V = Ui+1

and from V = Ui+1 to U = Ui on the right.

V1

V2

V3

U1 U2 Ui

Ui+1Us

V1

V2

V3

U1 U2 Ui

Ui+1Us

Figure 25. An undirected cycle C and directed paths from U = Ui to

V = Ui+1 and from V = Ui+1 to U = Ui.

Since {U, V } was selected arbitrarily, this process guarantees that performing DFS in the

way provided will ensure the existence of a directed path from V to U for every tree edge

{U, V }. Thus, G becomes strongly connected. □
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6. Strong Connectivity of a Bridgeless Multigraph

Let us consider and acknowledge the fact that given a bridgeless multigraph on at least

two vertices, we can ensure the existence of a strongly connected graph as a result of some

assignment of directions to the edges of said graph.

Theorem 6.1. Let G be a connected multigraph with n > 1 vertices without a bridge. Then

we can make G a strongly connected multigraph by assigning a direction to each edge in G.

We will prove this theorem in two ways. One of these ways will rely on Lemma 5.1, whereas

the other will not.

Proof of Theorem 6.1 (Using Lemma 5.1). Pick up an edge {U, V } in G. Then by Lemma

5.1, {U, V } is contained in some cycle C1. We can assign a direction to each edge in the cycle

C1 to make it a directed cycle.

If C1 contains all the vertices in G, then G is strongly connected regardless of the directions

of edges not in the cycle C1.

If C1 does not contain all the vertices in G. Let G1 be the subgraph induced by C1. Then

there is an edge {V1, V2} such that V1 is in G1 and V2 is not in G1. By Lemma 5.1, {V1, V2}

is contained in some cycle C2. This leads us to contemplate the two following cases.

(a) If V1 is the only common vertex of G1 and C2, then we can assign a direction to each

edge in the cycle C2 to make it a directed cycle, and so the subgraph G2 induced by

G1 ∪ C2 is strongly connected regardless the directions of edges not in G1 and C2.

(b) If there is more than one common vertex between G1 and C2, then let V ′
1 be the first

other common vertex in the portion of C2 formed by the directed path {V1, V2, . . . , V
′
1}.

Then along the directed path from V ′
1 to V1 in G1, we can assign a direction to each

edge in V1, V2, . . . , V
′
1 to form a directed cycle C ′

2, and so G2, the graph induced by

the vertices of C1 ∪C ′
2, is strongly connected regardless of the directions of edges not

in the cycles C1 and C ′
2. Since G has finitely many vertices, after r iterations of this

procedure, we will have Gr, the graph induced by the vertices of C1 ∪ C ′
2 ∪ · · · ∪ C ′

r,

which contains all the n vertices in G, and so Gr = G is strongly connected.

This concludes the proof. □

Below is a simple illustration of the central concepts of the above proof.
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Example 6.1. First, let us consider Case (a). That is, below are two cycles that share

exactly one common vertex. Here, we consider the cycles

C1 = {V1, U, V, V1} and C2 = {V1, V2, V3, V4, V1}.

Observe that, in Figure 26, the graph induced by C1 ∪ C2 is strongly connected, since it

contains the closed walk

W := {V1, U, V, V1, V2, V3, V4, V1}.

U
V1

V2

V V4

V3

Figure 26. Case (a) with C1 and C2.

Furthermore, below are simple illustrations of an instance where Case (b) is in effect. Let

G be the graph in Figure 27 on the left. First, we acknowledge G1, the graph induced by

C1 = {U, V, V1, V5, V
′
1 , U},

and assign directions to the edges.

U

V1

V2

V

V3

V ′
1

V4

V5

U

V1

V2

V

V3

V ′
1

V4

V5

Figure 27. An example of Case (b) with C1 designated.

Notice that G1 is strongly connected. Now, we observe that the vertices V1, V2, V
′
1 , V3, and

V4 induce another cycle. We will call this cycle C2. Then, we identify the path {V1, V2, V
′
1}

as the portion of C2 that shares two common vertices with C1 and construct the cycle

C ′
2 = {V1, V2, V

′
1 , U, V, V1}. Thus, we have assigned directions to the edges in G2, the graph

induced by the vertices in C1 ∪ C ′
2. Observe that G2 is strongly connected. Now, we observe

the cycle

C3 = {V1, V4, V3, V
′
1 , U, V, V1}.

Next, we identify the path {V1, V4, V3, V
′
1} as the portion of C3 that shares two common

vertices with G2 and construct the cycle C ′
3 = {V1, V4, V3, V

′
1 , U, V, V1}.
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U

V1

V2

V

V3

V ′
1

V4

V5

U

V1

V2

V

V3

V ′
1

V4

V5

Figure 28. An example of Case (b) with C1 ∪ C ′
2 ∪ C ′

3 designated.

Now, after appending C ′
3, we have that each edge of the graph has been assigned a direction.

Moreover, G3, the graph induced by C1 ∪C ′
2 ∪C ′

3, contains all of the vertices and edges of G.

Furthermore, we have that G3 is strongly connected and that G3 = G. Therefore, G is strongly

connected with the assigned directions.

Proof of Theorem 6.1 (Without using Lemma 5.1). First, we know that since G has no bridges,

G is not a tree. Hence G contains a cycle C1 = {V1, V2, . . . , Vk, V1}. Assigning directions

(V1, V2), . . . , (Vk−1, Vk), (Vk, V1),

we obtain a directed cycle C1 and consequently achieve a strongly connected subgraph of

G. If there are any chords in C1, we arbitrarily assign a direction to the chords in question.

Moving forward, we have a strongly connected submultigraph C∗
1 of G consisting of all vertices

in C1 and all the edges of G which have both end vertices in C1. Now, we will employ C∗
1 to

construct a new connected multigraph G1 without a bridge. To this end, we will consider C∗
1

as a single vertex, say V , and all the vertices in G but not in C∗
1 as the other vertices in a new

graph G1, with vertex set V ∪ (V (G) − V (C∗
1)), and keep all the edges in G while collapsing

all the edges in C∗
1 into the vertex V . Then, we are left with the following cases.

(a) If G1 contains only one vertex V , then C∗
1 = G, and so we are done.

(b) If G1 contains more than one vertex, then G1 is a connected multigraph with n1 > 1

vertices without a bridge and n1 < n. Since n is a finite number, after finitely many,

say r, steps, we will have that Gr contains a single vertex. As a result, the entire

graph G becomes a strongly connected multigraph.

This concludes our proof. □

Let us illustrate the above proof.

Example 6.2. First, we will consider Case (a). Observe that the graph in Figure 29 is a

cycle with a single chord, and so we can assign directions to the edges of the graph in such a
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way that the resulting graph is strongly connected. Furthermore, this allows us to immediately

collapse the entire directed graph into V , thus completing our procedure.

A B

CD

−→
A B

CD

−→ •V

Figure 29. An example of Case (a).

Note that we could have assigned the cycle to be counter-clockwise and the chord in the

other direction.

Now, we will contemplate an instance of Case (b). Consider the graph in Figure 30.

A B

CD

E

F

G

H

Figure 30. An example of a graph satisfying Case (b).

Next, we will identify cycles, direct each corresponding cycle, and collapse them one by one

until we are left with a single ”vertex” representing the entire graph as a strongly connected

portion. First, we consider C1.

A B

CD

E

F

G

H

A B

CD

E

F

G

H

A B

CV 1

G

H

−→ −→

Figure 31. The identification of C1, direction of C∗
1 , and collapse of C∗

1 into V 1.

Next, we turn our attention to C2.

A B

CV 1

G

H

A B

CV 1

G

H

A V 2

CV 1

−→ −→

Figure 32. The identification of C2, direction of C∗
2 , and collapse of C∗

2 into V 2.

Finally, we will acknowledge C3.
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A V 2

CV 1

−→
A V 2

CV 1

−→ •V 3

Figure 33. The identification of C3, direction of C∗
3 , and collapse of C∗

3 into V 3.

Now, since each V i is strongly connected and we have simplified the given graph to V 3, we

are done and have a strongly connected graph.

7. Conclusion

As mentioned in the introduction, studying strong connectivity in graphs is instrumental in

various real-world applications of graph theory, including social networks and transportation

systems. The ability to determine whether a graph’s edges can be oriented to produce a

strongly connected directed graph is particularly valuable for analyzing graph structures and

the relationships they model. Furthermore, understanding exactly how to construct such an

edge direction assignment could also prove to be a very useful endeavor. Within our paper,

we have presented two proofs of a known result regarding the ability of the Depth-First

Search Algorithm to generate a strongly connected graph from a bridgeless graph as well

as two proofs of the existence of a strongly connected assignment of edge directions for a

bridgeless multigraph.

For a potential application of the content of this manuscript, note that the algorithms

that we provided in the proofs can be implemented into software for the purpose of uti-

lizing computers to extrapolate information concerning computationally complex strongly

connected graphs, multigraphs, and components that could potentially pertain to real-world

applications.

Acknowledgments. The authors would like to thank the referee for some useful com-

ments and their helpful suggestions that have improved the quality of this paper.
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