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SEMI-SYMMETRIC STATISTICAL MANIFOLDS

FERDINAND NGAKEU ID , NICANOR TAKAM FOTSING ID , AND HANS FOTSING TETSING ID ∗

Abstract. This paper studies semi-symmetric statistical manifolds (3S-manifolds for short)

to generalise semi-Weyl manifolds. We prove that this class of manifolds is invariant un-

der the conformal change of metrics. We show that every 3S-structure (g, ω, ω∗,∇) on

a Riemannian manifold (M, g) induces a statistical structure (g, ∇̃) on M and we find

necessary and sufficient conditions for ∇ and ∇̃ to have the same sectional curvature.

In addition, the analogue of the statistical Curvature is defined for 3S structures and its

properties are investigated. We also give a method to construct 3S structures on a warped

product manifold from 3S structures on the fiber and base manifolds.

Keywords: Semi-symmetric connection, Semi-Weyl structure, Dual connection, Semi-

symmetric statistical manifold, 3S-manifold.
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1. Introduction

Statistical Manifolds were introduced by S.L. Lauritzen [14] and lie at the confluence of

some research areas such as Information Geometry, Affine Geometry and Hessian Geometry

(see [2, 11, 18] and references therein). Therefore, statistical manifolds have been intensively

studied in several contexts where they are also associated with additional structures and lead

to other concepts such as statistical holomorphic structures, statistical Sasakian structures,

statistical submanifolds etc. (See [10, 9, 8, 16] and references therein.)
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There have been several attempts to generalize statistical structures which have led for in-

stance to quasi-statistical structures, Weyl, semi-Weyl, quasi-semi-weyl structures and semi-

symmetric non-metric statistical structures (see [1, 15, 6] and references therein). But, all

these generalizations failed to satisfy some nice properties such as invariance under conformal

changing of the Riemannian metric.

In this paper, we introduce and study Semi-Symmetric statistical manifolds (3S-manifolds

for short), (M, g, ω, ω∗,∇) which form a subclass of quasi-semi-Weyl manifolds, such that

both ∇ and ∇∗ are semi-symmetric connections. It appears that unlike the other general-

izations of statistical manifolds [1, 15], the 3S-manifolds are invariant under the conformal

changing of the metric. Other good results are obtained and compared, when possible, to

the existing ones in a statistical setting.

The paper is organized as follows: The next Section is devoted to the preliminaries where

we recall basic definitions and properties of statistical structures that we need in the sequel of

the paper. Section 3 deals with 3S structures. We show that non-trivial statistical structures

can be generated from 3S structures and vice-versa. And when the so-called 3S-mean vector

field is torse-forming, the 3S connection is of constant sectional curvature if and only if its

associated statistical connection is of the same constant sectional curvature. In the setting

of this paper, α-connections associated to 3S-connections are introduced and studied and it

is shown that surprisingly, the curvatures relations obtained for α-3S-connections are similar

to those of the classical statistical setting. The section ends with the study of the analogue of

the statistical curvature for the 3S connections and the condition for the statistical sectional

curvature to be constant. In Section 4, we briefly show that a submanifold of a 3S-manifold

is also a 3S-manifold. Finally, Section 5 deals with the warped product of 3S-manifolds. We

give a way to construct a 3S structure on a warped product, starting with 3S structures on

fiber and the base manifolds.

2. Preliminaries

In the present section, we give some basic definitions and fundamental formulae useful in

the sequel.

In what follows, M denotes a smooth manifold, g a Riemannian metric on M , ∇g the

Levi-Civita connection of g, and ∇ an affine connection on M . Throughout the paper, we

shall denote the tangent bundle of M by TM , its cotangent bundle by T ∗M and the set of

smooth sections of TM (respectively, of T ∗M) by X(M) (respectively, by Ω1(M)). We will



INT. J. MAPS MATH. (2025) 8(2):589-621 / SEMI-SYMMETRIC STATISTICAL MANIFOLDS 591

also write T∇ to denote the torsion of ∇. From now on, for any ω ∈ Ω1(M), we denote by

Sω the tensor

Sω = ω ⊗ I − I ⊗ ω,

where I : X(M) → X(M) is the identity map.

The dual connection of ∇ with respect to g is the unique affine connection ∇∗ on M such

that:

Xg(Y,Z) = g(∇XY,Z) + g(∇∗
XZ, Y ), (2.1)

for all X,Y, Z ∈ X(M). In this case the triplet (g,∇,∇∗) is called a dualistic structure on

M .

Definition 2.1 ([12]). A connection ∇ is said to be semi-symmetric affine connection if

there exists a 1−form ω such that T∇ = Sw.

Definition 2.2 ([10, 6]). The pair (g,∇) is called a statistical structure on M (and (M, g,∇)

a statistical manifold) when ∇ and its dual ∇∗ are torsion-free affine connections. This is

equivalent to saying that ∇ is torsion-free and the cubic form C = ∇g is totally symmetric,

that is

(∇Xg)(Y, Z) = (∇Y g)(X,Z) (2.2)

for all X,Y, Z ∈ X(M).

Definition 2.3 ([17]). Let ∇ be a torsion-free affine connection and let ω a 1-form on M .

The triplet (g, ω,∇) is called a Weyl structure on M (and (M, g, ω,∇) a Weyl manifold) if

(∇Xg)(Y, Z) = −ω(X)g(Y,Z), (2.3)

for all X,Y, Z ∈ X(M).

Definition 2.4 ([1]). Let ∇ be a torsion-free affine connection and let ω be a 1-form on

M . Then, (g, ω,∇) is called a semi-Weyl structure on M (and (M, g, ω,∇) a semi-Weyl

manifold) if

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = −g(Sω(X,Y ), Z), (2.4)

for all X,Y, Z ∈ X(M).
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In (2.3) and (2.4) when ω = 0 one finds ∇ = ∇g. Hence statistical structure, Weyl

structure and semi-Weyl structure may be regarded as generalizations of the Levi-Civita

connection. A direct computation show that for any affine connection ∇ one has:

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = g(T∇∗
(X,Y )− T∇(X,Y ), Z). (2.5)

for all X,Y, Z ∈ X(M).

Remark 2.1. Observe that when (M, g, ω,∇) is a semi-Weyl manifold, the dual connection

∇∗ is rather semi-symmetric.

Definition 2.5 ([1]). Let ∇ be an affine connection on M with torsion tensor T∇ and let ω

be a 1-form. Then, (g, ω,∇) is called a quasi-semi- Weyl structure on M (and (M, g, ω,∇)

a quasi-semi-Weyl manifold) if

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = −g(T∇(X,Y ) + Sω(X,Y ), Z),

for all X,Y, Z ∈ X(M).

In the next section we are interested in quasi-semi-Weyl structures (g, ω,∇) such that ∇

is semi-symmetric.

3. Semi-symmetric statistical manifolds

Semi-symmetric metric connections on statistical manifolds have been introduced and

studied in [12, 13, 3]. Such a connection is also called statistical semi-symmetric connection in

[13]. In this mentioned papers, the dual connection of a statistical semi-symmetric connection

∇ has the same torsion as ∇. We keep the same terminology to define something more

general. In what follows, the torsion of the dual of ∇ may be different from the one of ∇.

Definition 3.1. The pair (g,∇) is called a semi-symmetric statistical structure on M (and

(M, g,∇) a semi-symmetric statistical manifold) if there are two 1-forms ω and ω∗ on M

such that

T∇ = Sω and T∇∗
= Sω∗ .

To be short, such a structure will be called a 3S-structure and the connection ∇ a 3S-

connection.
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Semi-symmetric statistical structure is a generalization of semi-symmetric metric connec-

tion studied in [12, 13]. When (g, ω, ω∗,∇) is a 3S-structure on M , we set

ωS =
1

2
(ω + ω∗), (3.6)

and we call it the 3S-mean 1-form (for short the mean 1-form). The vector field V , g-

associated to ωS is called the mean vector field. The 3S-structure (g, ω, ω∗,∇) is said to be

closed when ωS is closed.

Example 3.1. We have the following simple examples of 3S-structures:

1. A statistical structure (g,∇) is a 3S-structure and is called the trivial 3S-structure,

where ω = ω∗ = 0.

2. A semi-Weyl structure (g, ω,∇) is a 3S-structure.

3. If (g,∇) is a statistical structure then for all 1-form ω on M , (g, ω,−ω,∇ =: ∇+ω⊗I)

is a 3S-structure. Just observe that the dual connection ∇∗
of ∇ with respect to g is

given by ∇∗
= ∇∗ + ω∗ ⊗ I with ω∗ = −ω.

It is proven in [6] that, if f is a function on M and ω1, ω2 are 1-forms g-associated to the

vector fields ξ1, ξ2 on M respectively, then there exists a unique affine connection ∇ which

satisfies the following equations:

T∇(X,Y ) = ω1(X)Y − ω1(Y )X, (3.7)

(∇Xg)(Y, Z) = f
(
ω2(Y )g(X,Z) + ω2(Z)g(X,Y )

)
. (3.8)

Such a connection has been called semi-symmetric non-metric connection and is given by

∇XY = ∇g
XY + ω1(Y )X − g(X,Y )ξ1 − fg(X,Y )ξ2.

Remark 3.1. All semi-symmetric non-metric affine connection are 3S-connections. But a

3S-connection needs not to be semi-symmetric non-metric affine connection.

Indeed, let ∇ be an affine connection which satisfies (3.7) and (3.8). Since X,Y, Z are

arbitrary in (3.8), so we have

(∇Y g)(X,Z) = f
(
ω2(X)g(Y,Z) + ω2(Z)g(X,Y )

)
. (3.9)

Using (3.8) and (3.9) we get

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = g(fω2(Y )X − fω2(X)Y, Z). (3.10)
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Moreover, using (3.7), (3.8) and (3.10) we have

T∇∗
(X,Y ) = (fω2 − ω1)(Y )X − (fω2 − ω1)(X)Y.

Hence T∇ = Sω1 and T∇∗
= Sω1−fω2 .

Conversely, take h a function on M . Then (g, dh,−dh,∇g + dh⊗ I) is 3S-structure on M

but

(∇Xg)(Y, Z) = −2(dh)(X)g(Y,Z),

which shows that ∇ is not a semi-symmetric non-metric affine connection.

The following theorem shows that unlike statistical structures, 3S-structures are preserved

under conformal changing of g.

Theorem 3.1. Let g̃ be a conformal metric of g such that for a function h on M we have,

g̃ = ehg. Then, (g, ω, ω∗,∇) is 3S-structure on M if and only if (g̃, ω, ω∗ + dh,∇) is 3S-

structure on M .

Proof. Let X,Y, Z be three vector fields on M , ∇d the dual connection of ∇ with respect to

g̃ and ∇∗ the dual connection of ∇ with respect to g. From the duality condition of ∇ with

respect to g̃ we have

Xg̃(Y, Z) = g̃(∇XY, Z) + g̃(Y,∇d
XZ),

that is

Xg(Y,Z) +X(h)g(Y, Z) = g(∇XY, Z) + g(Y,∇d
XZ). (3.11)

As X,Y and Z are arbitrary, from (3.11) we have

Zg(X,Y ) + Z(h)g(X,Y ) = g(∇ZY,X) + g(Y,∇d
ZX). (3.12)

Take (3.11) and substract (3.12), then

Xg(Y,Z)− Z(h)g(X,Y ) +X(h)g(Y,Z)− Zg(X,Y )

= g(∇XY,Z)− g(∇ZY,X) + g(T∇d
(X,Z) + [X,Z], Y ).

That is

g(Y,∇∗
XZ)− g(Y,∇∗

ZX) + g(Y,X(h)Z − Z(h)X)

= g(T∇d
(X,Z) + [X,Z], Y ).

Therefore, we have

T∇d
(X,Z) = T∇∗

(X,Z) + Sdh(X,Z).
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Thus T∇d
= Sω∗+dh if and only if T∇∗

= Sω∗ . This ends the proof. □

One can easily prove the following:

Theorem 3.2. Let (g,M) be a Riemannian manifold, ∇ a connection on M , η, ω and ω∗

some 1-forms on M such that 2ωS = ω + ω∗. Set V and ζ vector fields g-associated to ωS

and η respectively, i.e., g(X,V ) = ωS(X) and g(X, ζ) = η(X). The pair (g, ∇̃) where

∇̃ = ∇− ω ⊗ I + η ⊗ I + I ⊗ η + g(., .)(ζ − 2V ), (3.13)

is a statistical structure on M if and only if (g, ω, ω∗,∇) is a 3S-structure on M . Moreover,

the dual of ∇̃ with respect to g is given by

(∇̃)∗ = ∇∗ + ω ⊗ I − η ⊗ I − I ⊗ η + 2I ⊗ ωS − g(., .)ζ, (3.14)

where ∇∗ is the dual of ∇ with respect to g.

Taking η = 0 in (3.13), one obtains

∇̃ = ∇− ω ⊗ I − 2g(., .)V, (3.15)

(∇̃)∗ = ∇∗ + ω ⊗ I + 2I ⊗ ωS . (3.16)

∇̃ is called the statistical connection with respect to ω and associated to ∇.

For a 3S-structure (g, ω, ω∗,∇) on M , the mean vector field V is called torse-forming with

respect to ω if

∇XV = ω(X)V,

for any X in X(M).

Example 3.2. We consider the manifold M = {(x, y) ∈ R2, x; y > 0} equipped with its

canonical metric g0 = dx2 + dy2 and we set the function h(x, y) = −1
2 ln(x+ y) on M . The

gradient ∇h of h with respect to g0 is given by

∇h = − 1

2(x+ y)
(⃗i+ j⃗),

where (⃗i, j⃗) = (∂x, ∂y) is the canonical basis of X(M). From Theorem 3.1, we see that

(M, g̃, ω, ω∗,∇g0) is a 3S-manifold, that is (M, g̃, ω∗, ω, (∇g0)∗) is a 3S-manifold, where g̃ =

e2hg0, ω = 0, ω∗ = 2dh, ∇g0 is a Levi-Civita connection with respect to g0 and the dual

(∇g0)∗ of ∇g0 with respect to g̃ is given by

(∇g0)∗ = ∇g0 + ω∗ ⊗ I. (3.17)
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Moreover, we have ωS = dh, that is (ωS)♯g̃ = V . From

g̃((ωS)♯g̃ , X) = X(h) = g0((dh)
♯g0 , X),

we get V = e−2h∇h. From (3.17), we have

(∇g0)∗XV = e−2h∇g0
X∇h, (3.18)

for any vector field X in M . Since (∇g0 )⃗ii⃗ = (∇g0 )⃗ij⃗ = (∇g0 )⃗j i⃗ = (∇g0 )⃗j j⃗ = 0⃗, we have

(∇g0 )⃗i∇h = − 1

x+ y
∇h and (∇g0 )⃗j∇h = − 1

x+ y
∇h. (3.19)

So, using (3.19), for any vector field X = X 1⃗i+X2j⃗ in M , we have

∇g0
X∇h = − 1

x+ y
[X1 +X2]∇h

= 2g0(∇h,X)∇h

= 2dh(X)∇h

= ω∗(X)∇h.

From (3.18), we get

(∇g0)∗XV = ω∗(X)V.

Thus, V is a torse-forming vector on the 3S-structure (M, g̃, ω∗, ω, (∇g0)∗) with respect to

ω∗.

Proposition 3.1. For a 3S-structure (g, ω, ω∗,∇) on M , for any 1-form η, we set ρ = η−ω

and Ω = ζ − 2V , where V and ζ are vector fields associated with ωS and η with respect to g

respectively. The relationship between the curvature R of (g, ω, ω∗,∇) and the curvature R̃

of the statistical structure (g, ∇̃) associated to (g, ω, ω∗,∇) is given by

R̃(X,Y )Z = R(X,Y )Z − (dω)(X,Y )Z + (dη)(X,Y )Z

+ g(Y,Z)∇XΩ− g(X,Z)∇Y Ω+ {g(Y,Z)ρ(X)− g(X,Z)ρ(Y )}Ω

+
{
Xη(Z)− η(X)η(Z) + ω(X)η(Z)− η(∇XZ)− η(Ω)g(X,Z)

}
Y

−
{
Y η(Z)− η(Y )η(Z) + ω(Y )η(Z)− η(∇Y Z)− η(Ω)g(Y, Z)

}
X,

for all X,Y, Z ∈ X(M).
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Proposition 3.2. Let (g, ω, ω∗,∇) be a 3S-structure on M . We assume that the sectional

curvatures of ∇ and ∇̃ defined as (3.15) are well-defined. Then, these sectional curvatures

are the same if and only if the mean vector field V is torse-forming with respect to ω.

Proof. Let X,Y be two linear independent vector fields on M . Let R̃ and R the curvature

of ∇̃ and ∇ respectively. From proposition 3.1, taking η = 0 we get

R̃(X,Y )Z = R(X,Y )Z − (dω)(X,Y )Z

+ 2g(Y,Z){ω(X)V −∇XV } − 2g(X,Z){ω(Y )V −∇Y V }.

Also we have

R̃(X,Y, Y,X) = R(X,Y, Y,X) + 2g(X,ω(X)V −∇XV ), (3.20)

where R̃(X,Y, Y,X) = g(R̃(X,Y )Y,X) and R(X,Y, Y,X) = g(R(X,Y )Y,X). Moreover,

from (3.20), R̃(X,Y, Y,X) = R(X,Y, Y,X) if and only if the vector field V is torse-forming

with respect ω. □

We define the tensor S by

S = ∇−∇g. (3.21)

Lemma 3.1. Let ∇ be an affine connection on M . Then, we have

g(X,S(Y, Z))− g(Y, S(X,Z)) = g(T∇∗
(X,Y ), Z), (3.22)

S(X,Y )− S(Y,X) = T∇(X,Y ), (3.23)

for all vectors fields X,Y, Z on M .

Proof. Let X,Y, Z be three vectors fields on M . From the duality condition of ∇g

Xg(Y,Z) = g(∇g
XY,Z) + g(Y,∇g

XZ),

and eq. (3.21), we get

g(∇∗
XY, Z) = g(∇g

XY, Z)− g(Y, S(X,Z)). (3.24)

Therefore, from (3.24) we obtain

g(X,S(Y,Z))− g(Y, S(X,Z)) = g(T∇∗
(X,Y ), Z).
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Moreover,

S(X,Y )− S(Y,X) = ∇XY −∇g
XY −∇Y X +∇g

Y X

= T∇(X,Y ).

□

Proposition 3.3. Let ∇ be an affine connection on M . Then, (g, ω, ω∗,∇) is 3S-structure

on M if and only if

S(X,Y )− S(Y,X) = Sω(X,Y ), (3.25)

g(X,S(Y,Z))− g(Y, S(X,Z)) = g(Sω∗(X,Y ), Z). (3.26)

Proof. This follows easily from lemma 3.1. □

If (g, ω, ω∗,∇) is 3S-structure on M , from Proposition 3.3 we give the Levi-Civita connec-

tion ∇g in terms of g, mean 1-form ωS , mean vector field V , ∇ and ∇∗. For this purpose,

we set

Kω,ω∗
(X,Y ) = ωS(Y )X − g(X,Y )V,

Proposition 3.4. If (g, ω, ω∗,∇) is a 3S-structure on M , then the Levi-Civita connection

∇g is given by:

∇g
XY =

1

2

(
∇XY +∇∗

XY
)
+Kω,ω∗

(X,Y ), (3.27)

for all vector fields X,Y on M .

Proof. Let X,Y , Z be vector fields on M , ξ and ξ∗ be vector fields g-associated to ω and ω∗

respectively. From the duality condition of ∇ and ∇g with respect to g we obtain

g(Z, S(X,Y )) = g(Y,∇g
XZ −∇∗

XZ). (3.28)

From (3.25) and (3.28) we get

g(Z, S(Y,X)) = g(Y,∇g
XZ −∇∗

XZ) + g(Y,−ω(X)Z + g(X,Z)ξ). (3.29)

As (3.26) is equivalent to

g(Z, S(Y,X)) = g(Y, S(Z,X)) + g(Y, ω∗(Z)X − g(Z,X)ξ∗), (3.30)
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then from (3.29) and (3.30) we have

g(Y, S(Z,X)) + g(Y, ω∗(Z)X − g(Z,X)ξ∗)

= g(Y,∇g
XZ −∇∗

XZ − ω(X)Z + g(X,Z)ξ),

that is

S(Z,X) = ∇g
XZ −∇∗

XZ − ω(X)Z − ω∗(Z)X + g(X,Z)(ξ + ξ∗). (3.31)

According to (3.25) and (3.31) we have

S(X,Z) + Sω(Z,X) = ∇g
XZ −∇∗

XZ − ω(X)Z − ω∗(Z)X + g(X,Z)(ξ + ξ∗),

that is

S(X,Z) = ∇g
XZ −∇∗

XZ − (ω + ω∗)(Z)X + g(X,Z)(ξ + ξ∗). (3.32)

Using (3.21) and (3.32), we get

2∇g
XZ = ∇XZ +∇∗

XZ + (ω + ω∗)(Z)X − g(X,Z)(ξ + ξ∗).

□

Corollary 3.1. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, the dual connection ∇∗ of

∇ is given by

S = ∇g −∇∗ − 2Kω,ω∗
=

1

2
(∇−∇∗)−Kω,ω∗

. (3.33)

For a given totally symmetric (0, 3)-tensor field, we can define mutually dual semi-

symmetric affine connections.

Proposition 3.5. Assume that (g,M) is a Riemannian manifold, C is a totally symmetric

(0, 3)-tensor field on M , ω and ω∗ two 1-forms on M such that 2ωS = ω + ω∗ and V the

vector field g-associated to ωS. We define the mapping ∇ and ∇∗ by

g(∇XY, Z) = g(∇g
XY, Z)− 1

2
C(X,Y, Z) + g(Z, ω(X)Y + 2g(X,Y )V ), (3.34)

g(∇∗
XY, Z) = g(∇g

XY, Z) +
1

2
C(X,Y, Z)− g(Z, ω(X)Y + 2ωS(Y )X). (3.35)

Then ∇ and ∇∗ are mutually dual connections. Moreover (g, ω, ω∗,∇) is 3S-structure on M .

Proposition 3.6. Let ∇ and ∇∗ be mutually dual connections on M with respect to g. Let

C be a (0, 3)-tensor field on M , 2ωS = ω+ω∗ where ω, ω∗ are two 1-forms on M and V the

vector field g-associated with ωS. We suppose that ∇ and C verify (3.34) and (g, ω, ω∗,∇)

is 3S-structure on M . Then C is totally symmetric.
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Proof. We set S = ∇−∇g and S̃ = ∇̃ −∇g such that ∇ and ∇̃ verify (3.15). Let X,Y, Z ∈

X(M). Since ∇ and C verify (3.34), so we get

C(X,Y, Z) = −2g(S(X,Y )− ω(X)Y − 2g(X,Y ), Z). (3.36)

From (3.36), we have

C(X,Y, Z) = −2g(S̃(X,Y ), Z).

(g, ∇̃) is statistical structure implies that C(X,Y, Z) = (∇̃Xg)(Y, Z), thus, C is totally

symmetric. □

3.1. Some results on the alpha-connections of a 3S-structure. For α ∈ R, we define

a family of connections ∇(α) by,

∇(α) =
1 + α

2
∇+

1− α

2
∇∗. (3.37)

∇(α) is called an α-connection of dualistic structure (∇,∇∗). The dual of ∇(α) with respect

to g is given by ∇(−α).

If (g, ω, ω∗,∇) is a 3S-structure on M , we set

ωα =
1 + α

2
ω +

1− α

2
ω∗ and ω∗

α = ω−α =
1− α

2
ω +

1 + α

2
ω∗. (3.38)

In particular,

ω0 = ωg, ω1 = ω and ω−1 = ω∗. (3.39)

We define the tensors K by

K = ∇∗ −∇. (3.40)

Proposition 3.7. If (g, ω, ω∗,∇) is a 3S-structure on M , then (g, ωα, ω
∗
α,∇(α)) is a 3S-

structure.

Proof. Using (3.37) and (3.38) we get

T∇(α)
= Sωα and T∇(−α)

= Sω∗
α
.

□

When (g, ω, ω∗,∇) is a 3S-structure on M we have the following equality,

∇(α) = ∇g − α

2
K −Kω,ω∗

. (3.41)
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In particular

∇ = ∇g − 1

2
K −Kω,ω∗

, (3.42)

∇∗ = ∇g +
1

2
K −Kω,ω∗

. (3.43)

From (3.40) we get

K(X,Y )−K(Y,X) = Sω∗(X,Y )− Sω(X,Y ). (3.44)

It was shown in [3] that for a pair of conjugate connections, their curvature tensors satisfy

g(R(X,Y )Z, T ) + g(Z,R∗(X,Y )T ) = 0, (3.45)

and more generally

g(R(α)(X,Y )Z, T ) + g(Z,R(−α)(X,Y )T ) = 0 (3.46)

where R(−α) = R∗(α).

Denote K(X,Y, Z) = (∇Xg)(Y, Z), where

(∇Xg)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ).

The 3-tensor K(., ., .) is called the cubic form and satisfies K(., Y, Z) = K(., Z, Y ) by its

definition.

Recall the difference tensor K(X,Y ) introduced in (3.40), which can be verified to be related

to K(X,Y, Z) via

g(K(X,Y ), Z) = K(X,Y, Z). (3.47)

Proposition 3.8. Let (g, ω, ω∗,∇) be a 3S-structure on M , the curvature tensor R(α) for

the α-connection ∇(α) satisfies

R(α)(X,Y )Z =
1 + α

2
R(X,Y )Z +

1− α

2
R∗(X,Y )Z

+
1− α2

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
. (3.48)

Proof. We assume that (g, ω, ω∗,∇) is a 3S-structure onM . By definition of the α-connection

and of curvature tensor
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R(α)(X,Y )Z =

(
1 + α

2

)2

R(X,Y )Z +

(
1− α

2

)2

R∗(X,Y )Z

+

(
1− α2

4

)(
∇X∇∗

Y Z +∇∗
X∇Y Z −∇Y ∇∗

XZ

−∇∗
Y ∇XZ −∇[X,Y ]Z −∇∗

[X,Y ]Z

)
. (3.49)

From (3.42) and (3.43) we have

∇X∇∗
Y Z = ∇g

X∇g
Y Z − 1

2
K(X,∇g

Y Z)−Kω,ω∗
(X,∇g

Y Z)

+
1

2
∇g

XK(Y, Z)− 1

4
K(X,K(Y, Z))− 1

2
Kω,ω∗

(X,K(Y,Z))

−∇g
XKω,ω∗

(Y,Z) +
1

2
K(X,Kω,ω∗

(Y,Z)) +Kω,ω∗
(X,Kω,ω∗

(Y, Z)),

−∇Y ∇∗
XZ = −∇g

Y ∇
g
XZ +

1

2
K(Y,∇g

XZ) +Kω,ω∗
(Y,∇g

XZ)

− 1

2
∇g

Y K(X,Z) +
1

4
K(Y,K(X,Z)) +

1

2
Kω,ω∗

(Y,K(X,Z))

+∇g
Y K

ω,ω∗
(X,Z)− 1

2
K(Y,Kω,ω∗

(X,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z)),

∇∗
X∇Y Z = ∇g

X∇g
Y Z +

1

2
K(X,∇g

Y Z)−Kω,ω∗
(X,∇g

Y Z)

− 1

2
∇g

XK(Y, Z)− 1

4
K(X,K(Y, Z)) +

1

2
Kω,ω∗

(X,K(Y,Z))

−∇g
XKω,ω∗

(Y,Z)− 1

2
K(X,Kω,ω∗

(Y,Z)) +Kω,ω∗
(X,Kω,ω∗

(Y, Z)),

−∇∗
Y ∇XZ = −∇g

Y ∇
g
XZ − 1

2
K(Y,∇g

XZ) +Kω,ω∗
(Y,∇g

XZ)

+
1

2
∇g

Y K(X,Z) +
1

4
K(Y,K(X,Z))− 1

2
Kω,ω∗

(Y,K(X,Z))

+∇g
Y K

ω,ω∗
(X,Z) +

1

2
K(Y,Kω,ω∗

(X,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))

and

−∇[X,Y ]Z −∇∗
[X,Y ]Z = 2Kω,ω∗

([X,Y ], Z)− 2∇g
[X,Y ]Z.
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Therefore, the last parentheses in (3.49) become

2Rg(X,Y )Z +
1

2

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+ 2

(
Kω,ω∗

(X,Kω,ω∗
(Y, Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
− 2Kω,ω∗

(X,∇g
Y Z)

+ 2Kω,ω∗
(Y,∇g

XZ)− 2∇g
XKω,ω∗

(Y,Z) + 2∇g
Y K

ω,ω∗
(X,Z) + 2Kω,ω∗

([X,Y ], Z),

where Rg is the Riemann curvature tensor, i.e, the curvature of the Levi–Civita connection

∇g. This last expression can simplify to

2Rg(X,Y )Z +
1

2

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+ 2

(
Kω,ω∗

(X,Kω,ω∗
(Y, Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
+ 2

(
(∇g

Y K
ω,ω∗

)(X,Z)− (∇g
XKω,ω∗

)(Y, Z)

)
.

Therefore, (3.49) becomes

R(α)(X,Y )Z =

(
1 + α

2

)2

R(X,Y )Z +

(
1− α

2

)2

R∗(X,Y )Z

+
1− α2

2

(
Rg(X,Y )Z +

1

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+

1− α2

2

(
Kω,ω∗

(X,Kω,ω∗
(Y, Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
+

1− α2

2

(
(∇g

Y K
ω,ω∗

)(X,Z)− (∇g
XKω,ω∗

)(Y, Z)

)
. (3.50)

Taking α = 0 and using (3.50) we get

R(0)(X,Y )Z =
1

4
R(X,Y )Z +

1

4
R∗(X,Y )Z +

1

8

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+

1

2
Rg(X,Y )Z +

1

2

(
Kω,ω∗

(X,Kω,ω∗
(Y,Z))−Kω,ω∗

(Y,Kω,ω∗
(X,Z))

)
+

1

2

(
(∇g

Y K
ω,ω∗

)(X,Z)− (∇g
XKω,ω∗

)(Y,Z)

)
. (3.51)

Taking α = 0 and using (3.41) we get

R(0)(X,Y )Z = Rg(X,Y )Z +Kω,ω∗
(X,Kω,ω∗

(Y, Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))

+Kω,ω∗
(Y,∇g

XZ)−Kω,ω∗
(X,∇g

Y Z) +∇g
Y K

ω,ω∗
(X,Z)

−∇g
XKω,ω∗

(Y,Z) +Kω,ω∗
([X,Y ], Z),
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that is

R(0)(X,Y )Z = Rg(X,Y )Z +Kω,ω∗
(X,Kω

g (Y,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))

+ (∇g
Y K

ω,ω∗
)(X,Z)− (∇g

XKω,ω∗
)(Y, Z). (3.52)

Using (3.51) and (3.52) we obtain

Rg(X,Y )Z =
1

2
R(X,Y )Z +

1

2
R∗(X,Y )Z +

1

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
+Kω,ω∗

(Y,Kω,ω∗
(X,Z))−Kω,ω∗

(X,Kω,ω∗
(Y,Z))

+ (∇g
XKω,ω∗

)(Y, Z)− (∇g
Y K

ω,ω∗
)(X,Z). (3.53)

Using (3.53) in (3.50) leads to :

R(α)(X,Y )Z =
1 + α

2
R(X,Y )Z +

1− α

2
R∗(X,Y )Z

+
1− α2

4

(
K(Y,K(X,Z))−K(X,K(Y,Z))

)
.

□

From (3.48)

R(α)(X,Y )Z −R(−α)(X,Y )Z = α(R(X,Y )Z −R∗(X,Y )Z). (3.54)

Remark 3.2. Surprisinely, the transformation R 7−→ R(α) from (3.48) is the same form for

3S-structure and statistical structure [21].

Remark 3.3. In the theory of Semi-Symmetric statistical manifold, from (3.52), we get

R(0) ̸= Rg.

3.2. Statistical curvature of semi-Symmetric statistical manifolds. In this section,

we firstly give symmetry properties of curvatures R, R∗ and give these properties for the

statistical curvature RS of semi-symmetric statistical manifolds.
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Lemma 3.2. For a 3S-structure (g, ω, ω∗,∇) on M , the following formulas hold for X,Y, Z, T ∈

X(M):

R(X,Y )Z = −R(Y,X)Z, (3.55)

g(R(X,Y )Z, T ) + g(R(Y,X)Z, T ) = 0, (3.56)

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = (dω(X,Y ))Z

+ (dω(Y,Z))X + (dω(Z,X))Y, (3.57)

g(R(X,Y )Z, T ) + g(R(X,Y )T,Z) = 2g

(
(∇g

XS)(Y, T )− (∇g
Y S)(X,T ), Z

)
+ 2g

(
(∇g

XKω,ω∗
)(Y, T )− (∇g

Y K
ω,ω∗

)(X,T ), Z

)
+ 4g

(
Kω,ω∗

(Y,Kω,ω∗
(X,T ))

−Kω,ω∗
(X,Kω,ω∗

(Y, T )), Z

)
+ 2g

(
Kω,ω∗

(Y, S(X,T ))−Kω,ω∗
(X,S(Y, T )), Z

)
+ 2g

(
S(Y,Kω,ω∗

(X,T ))− S(X,Kω,ω∗
(Y, T )), Z

)
, (3.58)

and

R∗(X,Y )Z = −R∗(Y,X)Z, (3.59)

g(R∗(X,Y )Z, T ) + g(R∗(Y,X)Z, T ) = 0, (3.60)

R∗(X,Y )Z +R∗(Y, Z)X +R∗(Z,X)Y = (dω∗(X,Y ))Z

+ (dω∗(Y, Z))X + (dω∗(Z,X))Y, (3.61)

g(R∗(X,Y )Z, T ) + g(R∗(X,Y )T,Z) = 2g

(
(∇g

Y S)(X,T )− (∇g
XS)(Y, T ), Z

)
+ 2g

(
(∇g

Y K
ω,ω∗

)(X,T )− (∇g
XKω,ω∗

)(Y, T ), Z

)
+ 4g

(
Kω,ω∗

(X,Kω,ω∗
(Y, T ))

−Kω,ω∗
(Y,Kω,ω∗

(X,T )), Z

)
+ 2g

(
Kω,ω∗

(X,S(Y, T ))−Kω,ω∗
(Y, S(X,T )), Z

)
+ 2g

(
S(X,Kω,ω∗

(Y, T ))− S(Y,Kω,ω∗
(X,T )), Z

)
. (3.62)

Proof. For the proof of (3.55), (3.56), (3.57), (3.59), (3.60) and (3.61) refer to [12]. We now,

prove (3.58) and (3.62) which depend on the tensor Kω,ω∗
.

Using (3.33) we get

∇∗
X∇∗

Y T = ∇X∇Y T − 2∇XS(Y, T )− 2∇XKω,ω∗
(Y, T )− 2S(X,∇Y T )

+ 4S(X,S(Y, T )) + 4S(X,Kω,ω∗
(Y, T ))− 2Kω,ω∗

(X,∇Y T )

+ 4Kω,ω∗
(X,S(Y, T )) + 4Kω,ω∗

(X,Kω,ω∗
(Y, T )).
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Using (3.21), the last equation becomes

∇∗
X∇∗

Y T = ∇X∇Y T − 2∇g
XS(Y, T )− 2∇g

XKω,ω∗
(Y, T )− 2S(X,∇g

Y T )

− 2Kω,ω∗
(X,∇g

Y T ) + 2S(X,Kω,ω∗
(Y, T )) + 2Kω,ω∗

(X,S(Y, T ))

+ 4Kω,ω∗
(X,Kω,ω∗

(Y, T )). (3.63)

Moreover,

−∇∗
Y ∇∗

XT = −∇Y ∇XT + 2∇g
Y S(X,T ) + 2∇g

Y K
ω,ω∗

(X,T ) + 2S(Y,∇g
XT )

+ 2Kω,ω∗
(Y,∇g

XT )− 2S(Y,Kω,ω∗
(X,T ))− 2Kω,ω∗

(Y, S(X,T ))

− 4Kω,ω∗
(Y,K(X,T )). (3.64)

Since [X,Y ] = ∇g
XY −∇g

Y X, we get

−∇∗
[X,Y ]T = −∇[X,Y ]T + 2S(∇g

XY, T )− 2S(Y,∇g
XT )

+ 2Kω,ω∗
(∇g

XY, T )− 2Kω,ω∗
(Y,∇g

XT ). (3.65)

Summing up (3.63), (3.64) and (3.65), we obtain

R∗(X,Y )T = R(X,Y )T − 2(∇g
XS)(Y, T ) + 2(∇g

Y S)(X,T )− 2(∇g
XKω,ω∗

)(Y, T )

+ (∇g
Y K

ω,ω∗
)(X,T )− 4Kω,ω∗

(Y,Kω,ω∗
(X,T )) + 4Kω,ω∗

(X,Kω,ω∗
(Y, T ))

− 2Kω,ω∗
(Y, S(X,T )) + 2Kω,ω∗

(X,S(Y, T ))− 2S(Y,Kω,ω∗
(X,T ))

+ 2S(X,Kω,ω∗
(Y, T )). (3.66)

Using (3.45) and (3.66) we get (3.58). Similarly, the proof can be done for Eq. (3.62). □

For a 3S-structure (g, ω, ω∗,∇) on M , we denote the curvature tensor of ∇ by R∇ or R

for short, and R∇∗
by R∗ in the similar fashion. We define

RS(X,Y )Z =
1

2
{R(X,Y )Z +R∗(X,Y )Z}, (3.67)

for all X,Y, Z ∈ X(M), and call RS the semi-symmetric statistical curvature tensor field of

(g, ω, ω∗,∇). We define the (0, 4) tensor R, R
∗
and R

S
by

R(X,Y, Z, T ) = g(R(X,Y )Z, T ), R
∗
(X,Y, Z, T ) = g(R∗(X,Y )Z, T ),

R
S
(X,Y, Z, T ) =

1

2
{R(X,Y, Z, T ) +R

∗
(X,Y, Z, T )}.

From Lemma 3.2, we can state the following.
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Proposition 3.9. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, we get

RS(X,Y )Z = Rg(X,Y )Z + S(X,S(Y, Z))− S(Y, S(X,Z))

+ S(X,Kω,ω∗
(Y,Z))− S(Y,Kω,ω∗

(X,Z))

+Kω,ω∗
(X,S(Y,Z))−Kω,ω∗

(Y, S(X,Z))

− (∇g
XKω,ω∗

)(Y, Z) + (∇g
Y K

ω,ω∗
)(X,Z)

+ 2{Kω,ω∗
(X,Kω,ω∗

(Y,Z))−Kω,ω∗
(Y, (X,Z))}.

Proof. Using (3.21) in R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, we get

R(X,Y )Z = Rg(X,Y )Z + (∇g
XS)(Y, Z)− (∇g

Y S)(X,Z)

+ S(X,S(Y,Z))− S(Y, S(X,Z)). (3.68)

Similarly, using (3.33) R∗(X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇∗

XZ −∇∗
[X,Y ]Z, we get

R∗(X,Y )Z = Rg(X,Y )Z − (∇g
XS)(Y, Z) + (∇g

Y S)(X,Z)

+ S(X,S(Y,Z))− S(Y, S(X,Z))

+ 2{Kω,ω∗
(X,S(Y,Z))−Kω,ω∗

(Y, S(X,Z))}

+ 2{(∇g
Y K

ω,ω∗
)(X,Z)− (∇g

XKω,ω∗
)(Y, Z)}

+ 4{Kω,ω∗
(X,Kω,ω∗

(Y,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))}. (3.69)

And finally, using (3.68) and (3.69) in (3.67), we reach that

RS(X,Y )Z = Rg(X,Y )Z + S(X,S(Y, Z))− S(Y, S(X,Z))

+ S(X,Kω,ω∗
(Y,Z))− S(Y,Kω,ω∗

(X,Z))

+Kω,ω∗
(X,S(Y,Z))−Kω,ω∗

(Y, S(X,Z))

− (∇g
XKω,ω∗

)(Y, Z) + (∇g
Y K

ω,ω∗
)(X,Z)

+ 2{Kω,ω∗
(X,Kω,ω∗

(Y,Z))−Kω,ω∗
(Y,Kω,ω∗

(X,Z))}.

□

Remark 3.4. If a 3S-structure (g, ω, ω∗,∇) is a statistical structure, that is, ω = ω∗ = 0,

then, the semi-symmetric statistical curvature tensor field RS is given by

RS(X,Y )Z = Rg(X,Y )Z + S(X,S(Y, Z))− S(Y, S(X,Z)),
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and coincides with the statistical curvature tensor. Thus, the semi-symmetric statistical

curvature tensor field RS is a generalization of the statistical curvature tensor field.

The following series of lemmas and theorem give the symmetrical properties of RS for a

3S-structure (g, ω, ω∗,∇).

Lemma 3.3. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, the semi-symmetric statistical

curvature field RS satisfies the following property.

RS(X,Y )Z +RS(Y, Z)X +RS(Z,X)Y

= (dωS(X,Y ))Z + (dωS(Y,Z))X + (dωS(Z,X))Y. (3.70)

Proof. It follows from Lemma 3.2. □

Hence, from Lemma 3.3 we can state the following lemma :

Lemma 3.4. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, we have

R
S
(Z,X, Y, T ) +R

S
(T, Y, Z,X) +R

S
(X,Z, T, Y )

+R
S
(Y, T,X,Z) = 2g(Z, T )(dωS)(X,Y ) + 2g(X,T )(dωS)(Y, Z)

+ 2g(X,Y )(dωS)(Z, T ) + 2g(Y, Z)(dωS)(T,X).

Proof. Using the Bianchi identity of R and R∗ given by the lemma 3.2 we get

g(R(X,Y )Z, T ) + g(R(Y, Z)X,T ) + g(R(Z,X)Y, T )

= g((dω)(X,Y )Z + (dω)(Y, Z)X + (dω)(Z,X)Y, T ),

g(R∗(X,Y )T,Z) + g(R∗(Y, T )X,Z) + g(R∗(T,X)Y, Z)

= g((dω∗)(X,Y )T + (dω∗)(Y, T )X + (dω∗)(T,X)Y,Z),

g(R(X,Z)T, Y ) + g(R(Z, T )X,Y ) + g(R(T,X)Z, Y )

= g((dω)(X,Z)T + (dω)(Z, T )X + (dω)(T,X)Z, Y ),

and

g(R∗(Y, Z)T,X) + g(R∗(Z, T )Y,X) + g(R∗(T, Y )Z,X)

= g((dω∗)(Y, Z)T + (dω∗)(Z, T )Y + (dω∗)(T, Y )Z,X).
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Using (3.45) and summing up these equations, we get

R(Z,X, Y, T ) +R
∗
(T, Y, Z,X) +R(X,Z, T, Y )

+R
∗
(Y, T,X,Z) = 2g(Z, T )(dωS)(X,Y ) + 2g(X,T )(dωS)(Y, Z)

+ 2g(X,Y )(dωS)(Z, T ) + 2g(Y, Z)(dωS)(T,X). (3.71)

Moreover, using similar reasoning as above, we have the following dual version of (3.71)

R
∗
(Z,X, Y, T ) +R(T, Y, Z,X) +R

∗
(X,Z, T, Y )

+R(Y, T,X,Z) = 2g(Z, T )(dωS)(X,Y ) + 2g(X,T )(dωS)(Y, Z)

+ 2g(X,Y )(dωS)(Z, T ) + 2g(Y, Z)(dωS)(T,X). (3.72)

Summing up (3.71) and (3.72) we get

2R
S
(Z,X, Y, T ) + 2R

S
(T, Y, Z,X) + 2R

S
(X,Z, T, Y )

+ 2R
S
(Y, T,X,Z) = 4g(Z, T )(dωS)(X,Y ) + 4g(X,T )(dωS)(Y, Z)

+ 4g(X,Y )(dωS)(Z, T ) + 4g(Y, Z)(dωS)(T,X).

We deduce the result.

□

Proposition 3.10. Let (g, ω, ω∗,∇) be a 3S-structure on M . Then, we have

R
S
(X,Z, T, Y )−R

S
(T, Y,X,Z) = g(Z, T )(dωS)(X,Y )

+ g(X,T )(dωS)(Y,Z) + g(X,Y )(dωS)(Z, T ) + g(Y, Z)(dωS)(T,X). (3.73)

Proof. Using (3.55), (3.59) and (3.77) we have

R
S
(Z,X, Y, T ) +R

S
(X,Z, T, Y ) = −R

S
(X,Z, Y, T ) +R

S
(X,Z, T, Y )

= R
S
(X,Z, T, Y ) +R

S
(X,Z, T, Y )

= 2R
S
(X,Z, T, Y ).

Therefore,

R
S
(Z,X, Y, T ) +R

S
(X,Z, T, Y ) = 2R

S
(X,Z, T, Y ), (3.74)

R
S
(T, Y, Z,X) +R

S
(Y, T,X,Z) = −2R

S
(T, Y,X,Z). (3.75)

Using the lemma 3.4, (3.74) and (3.75) we have the result. □
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Proposition 3.11. For a 3S-structure (g, ω, ω∗,∇) on M , we have following equations

g(RS(X,Y )Z, T ) + g(RS(Y,X)Z, T ) = 0, (3.76)

g(RS(X,Y )Z, T ) + g(RS(X,Y )T,Z) = 0. (3.77)

Moreover, if ωS is closed, we get

RS(X,Y )Z +RS(Y,Z)X +RS(Z,X)Y = 0, (3.78)

g(RS(X,Y )Z, T )− g(RS(Z, T )X,Y ) = 0. (3.79)

Proof. Summing up Eqs. (3.58) and (3.62) we get (3.77). □

Remark 3.5. Using the preceding properties of the statistical curvature RS, we easily check

that the statistical sectional curvature given as (3.83), is well defined.

Proposition 3.12. Let (g, ω, ω∗,∇) be a 3S-structure on M , V its mean vector field and ∇̃

its associated statistical connection with respect to ω. If V is torse-forming with respect to

ω, then the statistical sectional curvatures of ∇ and ∇̃ are the same if and only if

ω(X)ωS(X) + 4ωS(X)ωS(X)− 2XωS(X) + 2ωS(∇∗
XX) = 0,

for any unitary vector field X.

Proof. From (3.15) and (3.16) we get

R̃(X,Y )Z = R(X,Y )Z − (dω)(X,Y )Z

+ 2g(Y,Z){ω(X)V −∇XV } − 2g(X,Z){ω(Y )V −∇Y V },

and

(R̃)∗(X,Y )Z = R∗(X,Y )Z + (dω)(X,Y )Z + {−ω(X)ωS(Z)− 4ωS(X)ω∗(Z) + 2XωS(Z)

− 2ωS(∇∗
XZ)}Y + {ω(Y )ωS(Z) + 4ωS(Y )ω∗(Z)− 2Y ωS(Z) + 2ωS(∇∗

Y Z)}X.

After summing up these equations we get

2R̃S(X,Y )Z = 2RS(X,Y )Z + 2g(Y, Z){ω(X)V −∇XV } − 2g(X,Z){ω(Y )V −∇Y V }

+

{
− ω(X)ωS(Z)− 4ωS(X)ωS(Z) + 2XωS(Z)− 2ωS(∇S

XZ)

}
Y

+

{
ω(Y )ωS(Z) + 4ωS(Y )ωS(Z)− 2Y ωS(Z) + 2ωS(∇∗

Y Z)

}
X. (3.80)
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From (3.80), since the mean vector field V is torse-forming with respect to ω then we have

2R̃S(X,Y )Z = 2RS(X,Y )Z +

{
− ω(X)ωS(Z)− 4ωS(X)ωS(Z) + 2XωS(Z)− 2ωS(∇S

XZ)

}
Y

+

{
ω(Y )ωS(Z) + 4ωS(Y )ωS(Z)− 2Y ωS(Z) + 2ωS(∇∗

Y Z)

}
X. (3.81)

Taking {X,Y } an orthonormal basis on M . Then (3.81) becomes

2g(R̃S(X,Y )Y,X) = 2g(RS(X,Y )Y,X)+ω(Y )ωS(Y )+4ωS(Y )ωS(Y )−2Y ωS(Y )+2ωS(∇∗
Y Y ).

This ends the proof. □

A multilinear function F : Tp(M)4 −→ R is curvature-like provided F has the symmetries

stated in Proposition 3.11. Thus, F (X,Y, Y,X) = 0 for all X,Y ∈ Tp(M) spanning a

nondegenerate plane implies F vanishes on M [19].

Theorem 3.3. A 3S-structure (g, ω, ω∗,∇) on M is of constant semi-symmetric statistical

sectional curvature k ∈ R if and only if

RS(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }+ 1

2
{dωS(Y,Z)X − dωS(X,Z)Y }

+
1

2
{g(Y, Z)dωS(X, .)♯ − g(X,Z)dωS(Y, .)♯}, (3.82)

for X,Y, Z ∈ Γ(TM).

Proof. Let X,Y, Z and T be vector fields on M . We set

Ω(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }+ 1

2
{dωS(Y, Z)X − dωS(X,Z)Y }

+
1

2
{g(Y, Z)dωS(X, .)♯ − g(X,Z)dωS(Y, .)♯}.

It is easy to see that Ω verifies (3.70), (3.73), (3.76) and (3.77). We now set

F (X,Y, Z, T ) = g(RS(X,Y )Z, T )− g(Ω(X,Y )Z, T ).

Since RS and Ω verify (3.70), (3.73), (3.76) and (3.77) then F is also curvature-like. That

is, F verifies the symmetries properties given by proposition 3.11. Moreover, by hypothesis,

we have F (X,Y, Y,X) = 0. Thus, F vanishes on M , that is RS(X,Y )Z = Ω(X,Y )Z.

Conversely, if RS verify (3.82), it is easy to see that the semi-symmetric statistical sectional

curvature tensor field given by

K(π) =
g(RS(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
, (3.83)

is equal to k, where π is the 2-dimensional plane spanned by X and Y .
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□

The Ricci curvature tensor with respect to ∇, denoted by Ric∇ is defined by

Ric∇(X,Y ) = tr{Z 7−→ R∇(X,Z)Y }.

We denote Ric∇ by Ric, Ric∇
∗
by Ric∗ and Ric∇

g
by Ricg respectively, for short. For a

3S-structure (g, ω, ω∗,∇), we can also define the Ricci curvature tensor relative to the semi-

symmetric statistical curvature tensor field RS as follows.

Definition 3.2. Let (g, ω, ω∗,∇) be a 3S-structure on M and RS the semi-symmetric sta-

tistical curvature tensor field of ∇.

1. The 3S-Ricci curvature tensor, denoted by RicS, is defined as

RicS(X,Y ) = trg{Z 7−→ RS(X,Z)Y }.

2. The 3S-Ricci curvature tensor field RicS of (M, g, ω, ω∗,∇) is said to be 3S-Einstein

manifold if there exists λ ∈ R such that

RicS = λg.

3. The 3S-scalar curvature, denoted by ρS, is defined as

ρS = trgRicS =

n∑
i=1

RicS(ei, ei),

where {e1, e2, ..., en} is an orthonormal basis of TxM with respect to g, for x ∈ M .

Remark 3.6. For a 3S-structure (g, ω, ω∗,∇) on M , it is easy to see that ρS = ρ = ρ∗,

where

ρ = trgRic, ρ∗ = trgRic∗.

From proposition 3.10, we obtain the following corollary.

Corollary 3.2. Let (M, g) be a Riemannian manifold of dimension n, let (g, ω, ω∗,∇) be a

3S-structure on M . Then, the Ricci tensor RicS of (g, ω, ω∗,∇) verifies

RicS(X,Y )−RicS(Y,X) = (2− n)(dωS)(X,Y ).
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Proof. Let {e1, e2, ..., en} be an orthonormal basis of the tangent space at any point p of the

3S-structure manifold. Taking Z = Y = ei in (3.73), summing over i, 1 ≤ i ≤ n, we get

RicS(X,T )−RicS(T,X) =
n∑

i=1

(
R

S
(X, ei, T, ei)−R

S
(T, ei, X, ei)

)

=

n∑
i=1

(
g(ei, T )(dω

S)(X, ei) + g(X,T )(dωS)(ei, ei)

+ g(X, ei)(dω
S)(ei, T ) + g(ei, ei)(dω

S)(T,X)

)
=

n∑
i=1

(
(dωS)(X, g(ei, T )ei) + (dωS)(g(X, ei)ei, T )

+ g(ei, ei)(dω
S)(T,X)

)
= (dωS)(X,T ) + (dωS)(g(X,T ) + n(dωS)(T,X)

= (2− n)(dωS)(X,T ).

□

From Corollary 3.2, we obtain the following Corollaries :

Corollary 3.3. Let (M, g) be a Riemannian manifold of dimension 2. The semi-symmetric

statistical Ricci tensor of a 3S-structure on M is always symmetric.

Corollary 3.4. Let (M, g) be a Riemannian manifold of dimension n ≥ 3, let (g, ω, ω∗,∇) be

a 3S-structure on M . Then, the semi-symmetric statistical Ricci tensor RicS of (g, ω, ω∗,∇)

is symmetric if and only if ωS is closed. Thus, for a statistical manifold (M, g,∇), the

statistical Ricci tensor RicS is always symmetric.

Proposition 3.13. Let (M, g) be a Riemannian manifold of dimension n, let (g, ω, ω∗,∇)

be a 3S-structure on M such that the 3S-sectional curvature of RS is constant k ∈ R. Then,

we have

RicS(X,Y ) = k(1− n)g(X,Y ) + (1− n

2
)dωS(X,Y ),

for all X,Y ∈ X(M).
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Proof. Let X,Y ∈ X(M), we have

RicS(X,Y ) =

n∑
i=1

g(RS(X, ei)Y, ei)

=

n∑
i=1

g

(
k{g(ei, Y )X − g(X,Y )ei}+

1

2
{dωS(ei, Y )X − dωS(X,Y )ei}

+
1

2
{g(ei, Y )dωS(X, .)♯ − g(X,Y )dωS(ei, .)

♯}, ei
)

= k
n∑

i=1

{g(ei, Y )g(X, ei)− g(X,Y )g(ei, ei)}+
1

2

n∑
i=1

dωS(ei, Y )g(X, ei)

− 1

2

n∑
i=1

dωS(X,Y )g(ei, ei) +
1

2

n∑
i=1

g(ei, Y )dωS(X, ei).

That is:

RicS(X,Y ) = k

n∑
i=1

{g(X, g(ei, Y )ei)− g(X,Y )}+ 1

2

n∑
i=1

dωS(g(X, ei)ei, Y )

− n

2
dωS(X,Y ) +

1

2

n∑
i=1

dωS(X, g(ei, Y )ei)

= kg(X,Y )− nkg(X,Y ) +
1

2
dωS(X,Y )− n

2
dωS(X,Y ) +

1

2
dωS(X,Y )

= k(1− n)g(X,Y ) + (1− n

2
)dωS(X,Y ).

□

Corollary 3.5. Let (M, g, ω, ω∗,∇) be a 3S-manifold such that its 3S-sectional curvature is

constant. Then, M is 3S-Einstein if ωS is closed.

Definition 3.3. Let (M, g, ω, ω∗,∇) be a 3S-manifold and RicS its 3S-Ricci tensor. The

symmetrized R̃icS of RicS is given by

R̃icS(X,Y ) =
1

2
{RicS(X,Y ) +RicS(Y,X)},

for all vector fields X,Y on M .

Definition 3.4. Let (g, ω, ω∗,∇) be a 3S-structure on M , RicS the 3S-Ricci curvature tensor

field. (M, g, ω, ω∗,∇) is said to be symmetrically Einstein manifold if the symmetrized R̃icS

of RicS is of the form

R̃icS = λg,

where λ = ρS

n is a constant.
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Corollary 3.6. If a 3S-manifold (M, g, ω, ω∗,∇) of dimension n is of constant 3S-sectional

curvature, then (M, g, ω, ω∗,∇) is symmetrically Einstein manifold.

Proof. Let X,Y ∈ X(M), from the proposition 3.11 we get

R̃icS(X,Y ) = k(1− n)g(X,Y ).

We also said that (M, g, ω, ω∗,∇) is symmetrically Einstein manifold. □

4. Semi-symmetric statistical submanifolds

Let (M, g) be a Riemannian manifold, (M, g, ω, ω∗,∇) be a 3S-manifold, M be a subman-

ifold of M , g the induced metric g and two 1-forms ω, ω∗ such that

ω(X) = ω(X), ω∗(X) = ω∗(X),

for all vector field X on M .

Let TM⊥ be the normal bundle of M in M with respect to g. We define the second

fundamental form of M for ∇ and ∇∗
by

h(X,Y ) = (∇XY )⊥, (4.84)

h∗(X,Y ) = (∇∗
XY )⊥ (4.85)

respectively, where ()⊥ denotes the orthogonal projection on the normal bundle TM⊥.

Let consider the connections ∇ and ∇∗ given by

∇XY = (∇XY )⊤, (4.86)

∇∗
XY = (∇∗

XY )⊤. (4.87)

It is well known in the literature that ∇ and ∇∗ are dual connections with respect to g and

h, h∗ are bilinear and symmetric.

Proposition 4.1. When (M, g, ω, ω∗,∇) is a 3S-manifold, the induced structure (M, g, ω, ω∗,∇)

on a submanifold M is a 3S-manifold.

Proof. Let X,Y ∈ X(M). From (4.84) and (4.86) we have

∇XY = ∇XY + h(X,Y ). (4.88)
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Since ∇ has semi-symmetric connection, we can write

ω(X)Y − ω(Y )X = ∇XY −∇Y X − [X,Y ]

= ∇XY + h(X,Y )−∇Y X + h(Y,X)− [X,Y ]

= T∇(X,Y ) + h(X,Y )− h(Y,X). (4.89)

Grouping the normal and tangential components of (4.89), we have

T∇(X,Y ) = ω(X)Y − ω(Y )X. (4.90)

This equation show that ∇ has semi-symmetric. The proof for ∇∗ follows immediately by

substituting ∇∗ for ∇ in the preceding argument, and we obtain

T∇∗
(X,Y ) = ω∗(X)Y − ω∗(Y )X. (4.91)

□

From (4.90) and (4.91), (M, g, ω, ω∗,∇) is a 3S-manifold.

5. Semi-symmetric dualistic structures on warped product spaces

In this section, we give a method to construct 3S-structures on warped product manifolds,

starting from 3S-strutures on the fiber and base manifolds.

Let (M ; g) and (N ;h) be two Riemannian manifolds of dimension m and n respectively

and f ∈ C∞(M) a positive function on M . The warped product of (M ; g) and (N ;h), with

warping function f , is the (m + n)-dimensional manifold M × N endowed with the metric

Gf given by:

Gf = π∗g + (f ◦ π)2σ∗h,

where π∗ and σ∗ are the pull-backs of the projections π and σ of M × N on M and N

respectively.

This warped product is sometime denoted by M ×f N , but for simplicity we keep M ×N in

the sequel.

The tangent space T(p;q)(M ×N) at a point (p; q) ∈ M ×N is isomorph to the direct sum

TpM ⊕ TqN . Let LH(M) (resp. LV (N)) denote the set of the horizontal lifts (resp. the

vertical lifts) to T (M ×N) of all the tangent vectors on M . (resp. on N). Hence from [20],

we have the following:

Γ(T (M ×N)) ≃ LH(M)⊕ LV (N),
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and thus a vector field A on M ×N can be written as

A = X + U ; with X ∈ LH(M) and U ∈ LV (N).

For any vector field X ∈ LH(M) we denote π∗(X) by X, and for any vector field U ∈ LV (N)

we denote σ∗(U) by Ũ . Furthermore we denote the horizontal lift on M ×N of a vector field

X ∈ Γ(TM) by (X)H , and the vertical lift on M ×N of a vector field U ∈ Γ(TN) by (U)V .

Obviously

π∗(LH(M)) = Γ(TM) and σ∗(LV (N)) = Γ(TN).

Let (Gf ; D̃; D̃∗) be a dualistic structure on M × N . For X;Y,Z ∈ LH(M) and U ;V,W ∈

LV (N) we define the following four connections [20] :

M∇̃XY = π∗(D̃XY ) and M∇̃′
X
Y = π∗(D̃

∗
XY ),

and

N∇̃
Ũ
Ṽ = σ∗(D̃UV ) and N∇̃′

Ũ
Ṽ = σ∗(D̃

∗
UV ).

We also recall that[19] :

XGf (Y , Z) ◦ π = XGf (Y, Z) and ŨGf (Ṽ , W̃ ) ◦ σ = UGf (V,W ).

Hence we have the following result from [20]:

Proposition 5.1. The triplet (g;M ∇̃;M ∇̃′) is a dualistic structure on M and the triplet

(h;N ∇̃;N ∇̃′) is a dualistic structure on N ; that is

M∇̃′ =M ∇̃∗w.r.t.g and N∇̃′ =N ∇̃∗w.r.t.h.

Conversely, in [20], it has been given a method to construct statistical structure on the

warped product, starting from statistical structures on the fiber and the base manifolds as

it follows:

Let (g,M ∇̃,M ∇̃∗) and (h,N ∇̃,N ∇̃∗) be dualistic structures on M and N respectively. For

all X,Y ∈ LH(M) and U,W ∈ LV (N) we set:

i) D̃XY = (M∇̃XY )H

ii) D̃XU = D̃UX = X(f)
f U

iii) D̃UV = −<U,V >
f grad(f) + (N∇̃

Ũ
Ṽ )V

and

a) D̃∗
XY = (M∇̃∗

X
Y )H

b) D̃∗
XU = D̃∗

UX = X(f)
f U
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c) D̃∗
UW = −<U,W>

f grad(f) + (N∇̃∗
Ũ
W̃ )V ,

where we simplify the notation by writing f for f ◦ π and grad(f) for grad(f ◦ π), and we

denote by <,> the inner product w.r.t. Gf . Obviously D̃ and D̃∗ define affine connections

on T (M ×N) and the following proposition holds:

Proposition 5.2. The triplet (Gf , D̃, D̃∗) is a dualistic structure on M ×N .

We call (Gf , D̃, D̃∗) the dualistic structure on M ×N induced from (g,M ∇̃,M ∇̃∗) on M

and (h,N ∇̃,N ∇̃∗) on N .

Now, using [5, 7], and the fact that [X,U ] = 0, [X,Y ]H = [X,Y ], [Ũ , W̃ ]V = [U,W ] for

all X,Y ∈ LH(M) and U,W ∈ LV (N), one obtains the following result.

Corollary 5.1. If (g,M ∇̃,M ∇̃∗) and (h,N ∇̃,N ∇̃∗) are statistical structures on M and N

respectively, then (Gf , D̃, D̃∗) is statistical structure on M ×N .

Inspired by the reasoning from [5, 7, 20] we introduce here similar but different construction

for 3S-structures on the warped product. We first notice that a 3S-structure on M × N

projects to 3S-structures on M and N .

Let (Gf ; η, η∗, D) be a 3S-structure on M ×N , M∇ and N∇ the connections such that

M∇XY = π∗(DXY ) and N∇
Ũ
W̃ = σ∗(D

∗
UW ),

for all X,Y ∈ LH(M) and U,W ∈ LV (N), where D∗ is the dual connection of D with respect

to Gf . Let
M∇∗ and N∇∗ be defined by

M∇∗
X
Y = π∗(D

∗
XY ) and N∇∗

Ũ
W̃ = σ∗(D

∗
UW ),

The last two connections are dual connections of M∇ and N∇ respectively. We set

ω(X) = η(X), ω∗(X) = η∗(X), ω̃(Ũ) = η(U) and ω̃∗(Ũ) = η∗(U),

for all X ∈ LH(M) and U ∈ LV (N). Then the following holds:

Proposition 5.3. (M, g, ω, ω∗,M ∇) and (N,h, ω̃, ω̃∗,N ∇) are 3S-manifolds.

Proof. Direct computations give T
M∇(X,Y ) = η(X)Y − η(Y )X and

T
M∇∗

(X,Y ) = η∗(X)Y − η∗(Y )X. Thus, (M, g, ω, ω∗,M ∇) is a 3S-manifold. Similarly for

(N,h, ω̃, ω̃∗,N ∇). □
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We now give a converse of the preceding construction. Assume that (g, ω, ω∗,M ∇) and

(h, ω̃, ω̃∗,N ∇) are 3S-structures on M and N respectively and let M∇̃ and N∇̃ be the affine

connections on M and N respectively defined by

M∇̃XY =M ∇XY − ω(X)Y − 2g(X,Y )MV,

N∇̃
Ũ
W̃ =N ∇

Ũ
W̃ − ω̃(Ũ)W̃ − 2h(Ũ , W̃ )NV,

where MV and NV are the vector field g-associated and h-associated with ωS = 1
2(ω + ω∗)

and ω̃S = 1
2(ω̃ + ω̃∗) respectively. Let η and η∗ be the 1-forms defined by:

η = ω ⊕ ω̃ and η∗ = ω∗ ⊕ ω̃∗

namely, η(X +U) = ω(X) + ω̃(Ũ) and η∗(X +U) = ω∗(X) + ω̃∗(Ũ) for all X ∈ LH(M) and

U ∈ LV (N). We set V S to be the vector field Gf−associated with ΩS = 1
2(η + η∗).

It is easy to see from Theorem 3.2 that (M, g,M ∇̃) and (N,h,N ∇̃) are statistical manifolds.

Then, from corollary 5.1, define a connection D̃ on M ×N by the following formula:

i) D̃XY = (M∇̃XY )H

ii) D̃XU = D̃UX = X(f)
f U

iii) D̃UV = −<U,V >
f grad(f) + (N∇̃

Ũ
Ṽ )V

and

a) D̃∗
XY = (M∇̃∗

X
Y )H

b) D̃∗
XU = D̃∗

UX = X(f)
f U

c) D̃∗
UW = −<U,W>

f grad(f) + (N∇̃∗
Ũ
W̃ )V ,

Then, (Gf , D̃, D̃∗) is a statistical structure on M ×N .

From this, we deduce a 3S-structure as it follows:

Proposition 5.4. Let D be the connection defined by

D = D̃ + η ⊗ I + 2Gf (., .)V
S . (5.92)

Then, (Gf , η, η
∗, D) is 3S-structure on M ×N .

Proof. Let TD and TD∗
be the torsion tensors of D and D∗ respectively, where D∗ is the

dual connection of D with respect to Gf . From 3.2 we have

D∗ = D̃∗ − η ⊗ I − 2I ⊗ ΩS . (5.93)
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Let A = X + U and B = Y + W such that X,Y ∈ LH(M) and U,W ∈ LV (N). Since

Gf (X,W ) = 0 = Gf (U, Y ) and [X,W ] = 0, [U, Y ] = 0, [X,Y ]H = [X,Y ], [Ũ , W̃ ]V = [U,W ]

[4] and D̃ and D̃∗ are torsion-free connections on M ×N , we get:

TD(A,B) = η(A)B − η(B)A, TD∗
(A,B) = η∗(A)B − η∗(B)A.

Thus, (Gf , η, η
∗, D) is a 3S-structure on M ×N . □
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