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KENMOTSU MANIFOLDS COUPLED WITH η-ρ-EINSTEIN SOLITONS

ADMITTING AN EXTENDED M-PROJECTIVE CURVATURE TENSOR
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Abstract. The object of the present paper is to study some curvature conditions on Ken-

motsu manifolds. Initially, we analyze the condition ξ-Me projective flat and φ-Me semi-

symmetric on Kenmotsu manifolds coupled with an η-ρ-Einstein soliton. Subsequently, we

elaborate the conditions Me · R=0, Me ·Me=0 and Me · Q=0 on Kenmotsu manifolds in

view of an η-ρ-Einstein soliton, where Me is the extended M-projective curvature tensor.

In addition, we verify the results with a concrete example.
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1. Introduction

The product of an almost contact manifold M and the real line R carries a natural almost

complex structure. However if one takes M to be an almost contact metric manifold and

supposes that the product metric G on M × R is Kaehlerian, then the structure on M is

cosymplectic [15] and not Sasakian. On the other hand Oubina [18] pointed out that if

the conformally related metric e2tG, t being the coordinate on R, is Kaehlerian, then M

is Sasakian and conversely. In [22], S. Tanno classified connected almost contact metric

Received: 2024.11.23 Revised: 2025.02.08 Accepted: 2025.04.15

∗ Corresponding author

Abhishek Kushwaha ⋄ ab11sk1991@gmail.com ⋄ https://orcid.org/0000-0002-3045-4631

Sunil Kumar Yadav ⋄ prof sky16@yahoo.com ⋄ https://orcid.org/0000-0001-6930-3585

Bhanu Pratap Singh ⋄ bpsrathaur@gmail.com ⋄ https://orcid.org/0009-0002-2874-2682.

516

HTTPS://ORCID.ORG/0000-0002-3045-4631
HTTPS://ORCID.ORG/0000-0001-6930-3585
HTTPS://ORCID.ORG/0009-0002-2874-2682


INT. J. MAPS MATH. (2025) 8(2):516-533 / KENMOTSU MANIFOLDS 517

manifolds whose automorphism groups possess the maximum dimension. For such a manifold

M, the sectional curvature of plane sections containing ξ is a constant, say c. If c > 0, M is a

homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is the product

of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature. If

c < 0, M is a warped product space R×f Cn. In 1972, Kenmotsu studied a class of contact

Riemannian manifolds that satisfy specific conditions [17]. We call it Kenmotsu manifold. If

a Kenmotsu manifold satisfies the conditionR(X,Y )·R=0, it must have a constant curvature

of -1, where R denotes the Riemannian curvature tensor and R(X,Y ) refers to the tensor

algebra derivation at each point in the tangent vectors X,Y. Kenmotsu manifolds have been

studied by many authors such as (see, [3], [4], [20], [12], [19], [8], [9], [21], [13],[11],[10],[24],[31])

and many others. The metric g on (M, g) is called a ρ-Einstein soliton if there is a smooth

vector field V such that [2]:

S +
1

2
LVg = (γ1 + ρr)g, (1.1)

where LV and r denote the Lie derivative and Ricci scalar respectively, where ρ ̸= 0, γ1 ∈ R.

As usual ρ-Einstein soliton is steady for γ1=0, shrinking for γ1 > 0 and expanding for γ1 < 0.

A new type of soliton called η-ρ -Einstein soliton which is a generalization of ρ-Einstein soliton

given by

S +
1

2
LVg = (γ1 + ρr)g + γ2η ⊗ η, (1.2)

where γ1, γ2 ∈ R. Analogous to equation (1.2), we recall η-ρ-Einstein soliton and so equation

(1.2) takes the form

S +Hess(ψ) = (γ1 + ρr)g + γ2η ⊗ η. (1.3)

As η-ρ-Einstein soliton (or gradient η-ρ-Einstein soliton) can be classified as (i) ρ-Einstein

soliton (or gradient ρ-Einstein soliton) [2] if γ2=0, (ii) η-Einstein soliton (or gradient η-

Einstein soliton) [14] if ρ=1
2 , (iii) η-traceless Ricci soliton (or gradient η-traceless Ricci soli-

ton) if ρ= 1
2n+1 , (iv) η-Schouten soliton (or gradient η-Schouten soliton) [23] if ρ= 1

4n . In this

sequel many authors have been studied Kenmostu manifold with reference to different type

of solitons (see,[5], [6], [7], [27], [26], [29],[28],[32],[30]) and many others.

More specific, the Lie derivative (Lξg)(H1, H2) given by

(Lξg)(H1, H2) = g(∇H1ξ,H2) + g(H1,∇H2ξ). (1.4)

The work of the paper is organized as follows: After the introduction, in section 2, we

carried out the basic exposition on Kenmotsu manifold. In section 3, we analyze ξ-Me
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projectively flat Kenmotsu manifold and deduce the interesting result coupled with an η-

ρ-Einstein soliton. In section 4 we take up φ-Me semi-symmetric in Kenmotsu manifold

admitting an η-ρ-Einstein soliton. Again in section 5, 6 and 7 we discuss the some curvature

conditions namely, Me · R=0, Me · Me=0 and Me · Q=0 on such manifold and we verifies

the results by suitable example. The conclusion of the work is given in the last section 8.

2. Preliminaries

Let (M2n+1, φ, ξ, η, g) be an (2n + 1)-dimensional almost contact metric manifold, where

φ is a (1, 1)-tensor field, ξ is the structure vector field, η is a 1-form and g is the Riemannian

metric. It is well known that the (φ, ξ, η, g) structure satisfies the conditions [1]:

φ2H1 = −H1 + η(H1)ξ, η(ξ) = 1, φξ = 0, (2.5)

g(H1, ξ) = η(H1), η(φH1) = 0, (2.6)

g(φH1, φH2) = g(H1, H2)− η(H1)η(H2), (2.7)

g(φH1, H2) = −g(H1, φH2), (2.8)

for any H1, H2 ∈ χ(M). If moreover

(∇H1φ)H2 = g(φH1, H2)ξ − η(H2)φH1, (2.9)

∇H1ξ = H1 − η(H1)ξ, (2.10)

where ∇ denotes the Levi-Civita connection on (M2n+1, g), then (M2n+1, φ, ξ, η, g) is called

a Kenmotsu manifold. In this case, it is well known that [17]:

R(H1, H2)H3 = g(H1, H3)H2 − g(H2, H3)H1, (2.11)

R(H1, H2)ξ = η(H1)H2 − η(H2)H1, (2.12)

R(H1, ξ)H3 = g(H1, H3)ξ − η(H3)H1, (2.13)

R(ξ,H2)H3 = η(H3)H2 − g(H2, H3)ξ, (2.14)

S(φX,φY ) = S(X,Y ) + 2nη(X)η(Y ), (2.15)

S(H1, ξ) = −2nη(H1), (2.16)

S(ξ, ξ) = −2n, (2.17)

Qξ = −2nξ, (2.18)
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∀ H1, H1 ∈ χ(M). According to [25], the M-projective curvature tensor and the extended

M-projective curvature tensor Me on (M2n+1, g) are defined by

M(H1, H2)H3 = R(H1, H2)H3 −
1

4n
[S(H2, H3)H1 − S(H1, H3)H2

+ g(H2, H3)QH1 − g(H1, H3)QH2], (2.19)

Me(H1, H2)H3 = M(H1, H2)H3 − η(H1)M(ξ,H2)H3

− η(H2)M(H1, ξ)H3 − η(H3)M(H1, H2)ξ, (2.20)

for any H1, H2, H3 ∈ χ(M). Now using the Eq. (2.12), (2.13),(2.14),(2.16), (2.17) and (2.18)

we get from (2.19) that

M(H1, H2)ξ = η(H1)H2 − η(H2)H1

− 1

4n
[2nη(H1)H2 − 2nη(H2)H1 + η(H2)QH1

− η(H1)QH2], (2.21)

M(ξ,H2)H3 = η(H3)H2 − g(H2, H3)ξ

− 1

4n
[S(H2, H3)ξ + 2nη(H3)H2 − 2ng(H2, H3)ξ

− η(H3)QH2], (2.22)

M(H1, ξ)H3 = g(H1, H3)ξ − η(H3)H1

− 1

4n
[−2nη(H3)H1 − S(H1, H3)ξ + η(H3)QH1

+ 2ng(H1, H3)ξ]. (2.23)

Also, taking H3=ξ in (2.20) we yield

Me(H1, H2)ξ = −η(H1)M(ξ,H2)ξ − η(H2)M(H1, ξ)ξ. (2.24)

For fix H1=ξ in (2.21) along with (2.5) and (2.18), we get

M(ξ,H2)ξ =
1

2
H2 +

1

4n
QH2. (2.25)

Again by substituting H2=ξ in (2.21) and using (2.5) and (2.18), we have

M(H1, ξ)ξ = −1

2
H1 −

1

4n
QH1. (2.26)
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Using (2.25) and (2.26) in (2.24), we obtain

Me(H1, H2)ξ = −1

2
η(H1)H2 −

1

4n
η(H1)QH2 +

1

2
η(H2)H1 +

1

4n
η(H2)QH1. (2.27)

Taking H1=ξ in (2.27) and using (2.5) and (2.18), we get

Me(ξ,H2)ξ = −1

2
H2 −

1

4n
QH2. (2.28)

Again taking H1=ξ in (2.20) and using (2.5), we obtain

Me(ξ,H2)H3 = −η(H2)M(ξ, ξ)H3 − η(H3)M(ξ,H2)ξ. (2.29)

For fix, H2=ξ in (2.22) and using (2.6), (2.16) and (2.18), we yield

M(ξ, ξ)H3 = 0. (2.30)

With the help of (2.25) and (2.30), Eq.(2.29) reduces to

Me(ξ,H2)H3 = −1

2
η(H3)H2 −

1

4n
η(H3)QH2. (2.31)

Similarly, one can get

Me(H1, ξ)H3 =
1

2
η(H3)H1 +

1

4n
η(H3)QH1. (2.32)

Definition 2.1. An almost contact manifold (M2n+1, g) is said to be an η-Einstein if its

Ricci tensor S has the form

S = Ag + Bη ⊗ η, (2.33)

where A and B are constants. If B=0, then it is identified as Einstein and if A=0, it is know

as special type of η-Einstein.

3. ξ-Me-projectively flat Kenmotsu Manifolds

Definition 3.1. An (2n+ 1)-dimensional manifold is said to be ξ-Me projectively flat if it

fulfills the condition

Me(H1, H2)ξ = 0, (3.34)

for all H1, H2 ∈ χ(M).

Theorem 3.1. A ξ-Me projectively flat Kenmotsu manifold (M2n+1, g) is an Einstein man-

ifold.
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Proof. Let (M2n+1, g) be ξ-Me projectively flat. Then from (2.20), we have

η(H1)M(ξ,H2)ξ + η(H2)M(H1, ξ)ξ = 0. (3.35)

Using (2.23) and H3=ξ in (2.22), we obtain from (3.35) that

η(H1)[η(ξ)H2 − g(H2, ξ)ξ −
1

4n
{S(H2, ξ)ξ + 2nη(ξ)H2 − 2ng(H2, ξ)ξ − η(ξ)QH2}]

+ η(H2)[g(H1, ξ)ξ − η(ξ)H1 −
1

4n
{−S(H1, ξ)ξ

− 2nH1 + η(ξ)QH1 + 2ng(H1, ξ)ξ}] = 0. (3.36)

With the help of (2.5), (2.6) and (2.16), Eq. (3.36), reduces to

1

2
{η(H1)H2 − η(H2)H1} −

1

4n
{η(H2)QH1 − η(H1)QH2} = 0. (3.37)

Taking H2=ξ in (3.37) we yield

QH1 = −2nH1, (3.38)

which implies

S(H1, H4) = −2ng(H1, H4). (3.39)

□

Thus the Theorem 3.1 is completed.

Theorem 3.2. Let (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is expanding, steady, or shrinking as r < −2n
ρ , r = −2n

ρ ,

or r > −2n
ρ .

Proof. Also from (1.2), we have

S(H1, H2) +
1

2
(LVg)(H1, H2) = (γ1 + ρr)g(H1, H2) + γ2η(H1)η(H2). (3.40)

Taking trace after putting H1=H2=ei, 1 ≤ i ≤ 2n+ 1 in (3.40), we get

S(ei, ei) +
1

2
(LVg)(ei, ei) = (γ1 + ρr)g(ei, ei) + γ2η(ei)η(ei). (3.41)

Using (3.39) in (3.41), we obtain

divV = (2n+ γ1 + ρr)(2n+ 1) + γ2. (3.42)

If V is solenoidal, i.e., divV=0, then (3.42) implies that

γ1 = −[2n+
γ2

(2n+ 1)
+ ρr]. (3.43)

□
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So the proof of Theorem 3.2 is finished. Utilizing the Theorem 3.2, we state the following

Corollary.

Corollary 3.1. If a ξ-Me protectively flat Kenmotsu manifold admits an η-ρ-Einstein soliton

then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 3.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is expanding, steady, or shrinking as r < −4n, r = −4n,

or r > −4n.

Corollary 3.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g). Then V is

solenoidal if and only if it is expanding, steady, or reducing as r < −2n(2n + 1), r =

−2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 3.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is growing, steady, or shrinking as r < −8n2, r = −8n2,

or r > −8n2.

Again, if V=grad(f), where f is a smooth function on (M2n+1, g). Then from equation (3.42)

we yield the following result.

Theorem 3.3. If the metric g of a (M2n+1, g) satisfies an η-ρ-Einstein soliton (g,V, ρ, γ1, γ2),

where V is gradient of smooth function f , then the Laplace equation satisfied by f is as follows

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

4. φ-Me semi-symmetric on Kenmotsu manifold

Definition 4.1. An (2n+ 1)-dimensional manifold is said to be φ-Me semi-symmetric if it

fulfills the criterion

Me(H1, H2) · φ = 0, (4.44)

for all H1, H2 ∈ χ(M).

Theorem 4.1. A φ-Me semi-symmetric Kenmotsu manifold (M2n+1, g) is an Einstein man-

ifold.
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Proof. The condition Me(H1, H2) · φ=0 on (M2n+1, g) from (2.20) implies that

(Me(H1, H2) · φ)H3 = Me(H1, H2)φH3 − φMe(H1, H2)H3 = 0. (4.45)

for any vector fields H1, H2, H3 ∈ χ(M).

Since form (2.20) we have

Me(H1, H2)φH3 = M(H1, H2)φH3 − η(H1)M(ξ,H2)φH3

− η(H2)M(H1, ξ)φH3 − η(φH3)M(H1, H2)ξ. (4.46)

Using (2.6), (2.11), (2.19), (2.22), and (2.23) in (4.46), we get

Me(H1, H2)φH3 = g(H1, φH3)H2 − g(H2, φH3)H1

− 1

4n
{S(H2, φH3)H1 − S(H1, φH3)H2 + η(H2)QH1 − η(H1)QH2}

− η(H1)[−g(H2, φH3)ξ −
1

4n
{S(H2, φH3)ξ − 2ng(H2, φH3)ξ}]

− η(H2)[g(H1, φH3)ξ −
1

4n
{−S(H1, φH3)ξ + 2ng(H1, φH3)ξ}]. (4.47)

Again,

φMe(H1, H2)H3 = φM(H1, H2)H3 − η(H1)φM(ξ,H2)H3

− η(H2)φM(H1, ξ)H3 − η(H3)φM(H1, H2)ξ. (4.48)

Using (2.5), (2.11), (2.12), (2.19), (2.21), (2.22), and (2.23) in (4.48), we have

φMe(H1, H2)H3 = g(H1, H3)φH2 − g(H2, H3)φH1

− 1

4n
{S(H2, H3)φH1 − S(H1, H3)φH2 + g(H2, H3)QφH1 − g(H1, H3)QφH2}

− η(H1)[η(H3)φH2 −
1

4n
{2nη(H3)φH2 − η(H3)SφH2}]

− η(H2)[−η(H3)φH1 −
1

4n
{−2nη(H3)φH1 + η(H3)QφH1}]

− η(H3)[η(H1)φH2 − η(H2)φH1]

+
η(H3)

4n
{2nη(H1)φH2 − 2nη(H2)φH1 + η(H2)QφH1 − η(H1)QφH2}.

(4.49)
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Using (4.47) and (4.48) in (4.45), we get

g(H1, φH3)H2 − g(H2, φH3)H1

− 1

4n
{S(H2, φH3)H1 − S(H1, φH3)H2 + η(H2)QH1 − η(H1)QH2}

− η(H1)[−g(H2, φH3)ξ −
1

4n
{S(H2, φH3)ξ − 2ng(H2, φH3)ξ}]

− η(H2)[g(H1, φH3)ξ −
1

4n
{−S(H1, φH3)ξ + 2ng(H1, φH3)ξ}]

− [g(H1, H3)φH2 − g(H2, H3)φH1]

+
1

4n
[S(H2, H3)φH1 − S(H1, H3)φH2]

+
1

4n
[g(H2, H3)QφH1 − g(H1, H3)QφH2]

+ η(H1)[η(H3)φH2 −
1

4n
{2nη(H3)φH2 − η(H3)QφH2}]

+ η(H2)[−η(H3)φH1 −
1

4n
{−2nη(H3)φH1 + η(H3)QφH1}]

+ η(H3)[η(H1)φH2 − η(H2)φH1]

− η(H3)

4n
[2nη(H1)φH2 − 2nη(H2)φH1 + η(H2)QφH1 − η(H1)QφH2] = 0.

(4.50)

Taking H2=ξ in (4.50) and using (2.5), (2.6), (2.16), (2.18), we have

1

4n
{2S(H1, φH3)ξ − 2ng(H1, φH3)ξ − 2nη(H3)φH1 + η(H3)QφH1}

+ η(H3)φH1 = 0. (4.51)

For fix, H3 = ξ in (4.51) and using (2.5), we obtain

QφH1 = −2nφH1. (4.52)

Replacing H1 by φH1 in (4.52) and using (2.5), (2.18), one can get

QH1 = −2nH1, (4.53)

which implies that

S(H1, H4) = −2ng(H1, H4). (4.54)

□

Therefore, the Theorem 4.1 is completed.

Like wise section 3, we reflect the following result:
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Theorem 4.2. Let (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on (M2n+1, g). Then V is

solenoidal if and only if the soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ ,

or r > −2n
ρ .

Corollary 4.1. If a φ-Me semi-symmetric Kenmotsu manifold admits an η-ρ-Einstein soli-

ton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 4.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on φ-Me semi-symmetric Ken-

motsu manifold. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 4.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on φ-Me semi-symmetric Ken-

motsu manifold. Then V is solenoidal if and only if it is expanding, steady or shrinking as

r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 4.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on φ-Me semi-symmetric Ken-

motsu manifold. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 4.3. If the metric g of a (2n+ 1)-dimensional φ-Me semi-symmetric Kenmotsu

manifold admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of smooth function

f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

5. Kenmotsu manifold satisfying the condition Me · R=0

Theorem 5.1. If a (2n+ 1)-dimensional Kenmotsu manifold satisfying the condition Me ·

R=0, then (M2n+1, g) is an Einstein manifold.

Proof. Let (M2n+1, g) satisfies the condition Me · R=0. Then from [11], we have

Me(ξ, U)R(H1, H2)H3 − R(Me(ξ, U)H1, H2)H3

− R(H1,Me(ξ, U)H2)H3

− R(H1, H2)Me(ξ, U)H3 = 0. (5.55)

Taking H3=ξ in (5.55) and using (2.12), we get

η(Me(ξ, U)H1)H2 − η(Me(ξ, U)H2)H1 +R(H1, H2)Me(ξ, U)ξ = 0. (5.56)
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Using (2.28), (2.31) in (5.56) and then using (2.6), (2.11), (2.16), we obtain

1

2
{g(H1, U)H2 − g(H2, U)H1}+

1

4n
{S(H1, U)H2 − S(H2, U)H1} = 0. (5.57)

Replacing H2=ξ in (5.57), using (2.6) and (2.16), we yield

S(H1, U)ξ + 2ng(H1, U)ξ = 0. (5.58)

Taking the inner product of (5.58) with ξ and using (2.5), we obtain

S(H1, U) = −2ng(H1, U). (5.59)

□

So, the proof of the Theorem 5.1 is completed.

Therefore, as section 4, we state that

Theorem 5.2. If (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on a (2n+1)-dimensional Ken-

motsu manifold satisfying the condition Me · R=0. Then V is solenoidal if and only if the

soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ , or r > −2n
ρ .

Corollary 5.1. If a (2n+ 1)-dimensional Kenmotsu manifold satisfying the condition Me ·

R=0 admits an η-ρ-Einstein soliton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 5.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g) satisfying the

condition Me · R=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 5.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g) satisfying the

condition Me · R=0. Then V is solenoidal if and only if it is expanding, steady or shrinking

as r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 5.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g) satisfying the

condition Me · R=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 5.3. If the metric g of a (2n+ 1)-dimensional Kenmotsu manifold satisfying the

condition Me ·R=0 admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of smooth

function f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.
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6. Kenmotsu Manifold satisfying the condition Me · Me=0

Theorem 6.1. If a (2n + 1)-dimensional Kenmotsu manifold satisfies the condition Me ·

Me=0, then (M2n+1, g) is an Einstein manifold.

Proof. The condition Me · Me=0 on (M2n+1, g) implies that

Me(ξ, U)Me(H1, H2)H3 − Me(Me(ξ, U)H1, H2)H3

− Me(H1,Me(ξ, U)H2)H3

− Me(H1, H2)Me(ξ, U)H3 = 0. (6.60)

Taking H3=ξ in (6.60), we get

Me(ξ, U)Me(H1, H2)ξ − Me(Me(ξ, U)H1, H2)ξ

− Me(H1,Me(ξ, U)H2)ξ

− Me(H1, H2)Me(ξ, U)ξ = 0. (6.61)

Using (2.27), (2.28) and (2.31) in (6.61), we have

−1

2
η(H1)Me(ξ, U)H2 − 1

4n
η(H1)Me(ξ, U)QH2 +

1

2
η(H2)Me(ξ, U)H1

+
1

4n
η(H2)Me(ξ, U)QH1 +

1

2
η(H1)Me(U,H2)ξ

+
1

4n
η(H1)Me(QU,H2)ξ +

1

2
η(H2)Me(H1, U)ξ

+
1

4n
η(H2)Me(H1,QU)ξ +

1

2
Me(H1, H2)U

+
1

4n
Me(H1, H2)QU = 0. (6.62)

Taking H2=ξ in (6.62) and using (2.5), (2.18), (2.31) and (2.32), we get

− 1

8n
η(QH1)U − 1

16n2
η(QH1)QU +

1

4
η(H1)U +

1

8n
η(H1)QU

+
1

2
η(U)H1 +

1

4n
η(U)QH1 +

1

4n
η(QU)H1

+
1

8n2
η(QU)QH1 = 0, (6.63)

which implies that η(H1) ̸= 0, therefore equation (6.63) turns into

S(U,H4) = −2ng(U,H4). (6.64)

□
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Thus the proof of the Theorem 6.1 is completed.

As per section 5, we reflect the outcome

Theorem 6.2. If (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on a (2n+1)-dimensional Ken-

motsu manifold satisfying the condition Me ·Me=0. Then V is solenoidal if and only if the

soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ , or r > −2n
ρ .

Corollary 6.1. If an (2n+1)-dimensional Kenmotsu manifold satisfying the condition Me ·

Me=0 admits an η-ρ-Einstein soliton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 6.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g) satisfying the

condition Me ·Me=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 6.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g) satisfying the

condition Me ·Me=0. Then V is solenoidal if and only if it is expanding, steady or shrinking

as r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).

Corollary 6.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g) satisfying the

condition Me ·Me=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 6.3. If the metric g of a (2n+ 1)-dimensional Kenmotsu manifold satisfying the

condition Me · Me=0 admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of

smooth function f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

7. Kenmotsu manifold satisfying the condition Me · Q=0

Theorem 7.1. If a (2n+1) dimensional Kenmotsu manifold satisfies the condition Me·Q=0,

then (M2n+1, g) is an Einstein manifold.

Proof. The condition Me · Q=0 on (M2n+1, g) implies that

Me(H1, H2)QH3 −Q(Me(H1, H2)H3) = 0. (7.65)

Taking H2=ξ in (7.65), we get

Me(H1, ξ)QH3 −Q(Me(H1, ξ)H3) = 0. (7.66)
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Using (2.32) in (7.66), we have

1

2
η(QH3)H1 +

1

4n
η(QH3)QH1 −Q[

1

2
η(QH3)H1 +

1

4n
η(QH3)QH1] = 0. (7.67)

By virtue of (2.16), we get from (7.67) that

nη(H3)H1 + η(H3)QH1 +Q(
1

4n
η(H3)QH1) = 0, (7.68)

which implies that

nη(H3)H1 +
1

2
η(H3)QH1 = 0. (7.69)

Now, taking the inner product of (7.69) with H4, we obtain

nη(H3)g(H1, H4) +
1

2
η(H3)S(H1, H4) = 0, (7.70)

which implies that η(H3) ̸= 0, thus from (7.70) we yield

S(H1, H4) = −2ng(H1, H4). (7.71)

□

Thus the Theorem 7.1 is finished.

Following Section 6, we derive:

Theorem 7.2. If (g,V, ρ, γ1, γ2) be an η-ρ-Einstein soliton on a (2n+1)-dimensional Ken-

motsu manifold satisfying the condition Me · Q=0. Then V is solenoidal if and only if the

soliton is expanding, steady or shrinking as r < −2n
ρ , r = −2n

ρ , or r > −2n
ρ .

Corollary 7.1. If an (2n+1)-dimensional Kenmotsu manifold satisfying the condition Me ·

Q=0 admits an η-ρ-Einstein soliton then

γ1 =
1

2n+ 1
[divV− γ2]− (2n+ ρr).

Corollary 7.2. Let (g,V, ρ, γ1, γ2) be an η-Einstein soliton on (M2n+1, g) satisfying the

condition Me · Q=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −4n, r = −4n, or r > −4n.

Corollary 7.3. Let (g,V, ρ, γ1, γ2) be an η-traceless soliton on (M2n+1, g) satisfying the

condition Me · Q=0. Then V is solenoidal if and only if it is expanding, steady or shrinking

as r < −2n(2n+ 1), r = −2n(2n+ 1), or r > −2n(2n+ 1).



530 A. KUSHWAHA, S. K. YADAV, AND B. P.SINGH

Corollary 7.4. Let (g,V, ρ, γ1, γ2) be an η-Schouten soliton on (M2n+1, g) satisfying the

condition Me · Q=0. Then V is solenoidal if and only if the soliton is expanding, steady or

shrinking as r < −8n2, r = −8n2, or r > −8n2.

Theorem 7.3. If the metric g of a (2n+ 1)-dimensional Kenmotsu manifold satisfying the

condition Me ·Q=0 admits η-ρ-Einstein soliton (g,V, ρ, γ1, γ2), where V is gradient of smooth

function f , then the Laplace equation satisfied by f is as follows:

∇(f) = (2n+ γ1 + ρr)(2n+ 1) + γ2.

8. An Example

The notion of Ricci η-parallelity for Sasakian manifolds was introduced by M. Kon [16].

In [8] the authors proved that a three-dimensional Kenmotsu manifold has η-parallel Ricci

tensor if and only if it is of constant scalar curvature. So, we verify the theorem obtained in

[8] by a concrete example.

Let a 3-dimensional manifold M = {(h1, h2, h3) ∈ R3 : h3 ̸= 0}, where (h1, h2, h3) are the

standard coordinates and the linearly independent vector fields in R3 as follows

p1 = eh3
∂

∂h1
, p2 = eh3

∂

∂h2
, p3 = − ∂

∂h3
.

We defined the Riemannian metric g by

g(pi, pj) =


1 0 0

0 1 0

0 0 1

 .
Let φ be a (1, 1) tensor field defined by

φ(p1) = −p2, φ(p2) = p1, φ(p3) = 0.

If η denote the 1-form defined by η(H1) = g(H1, p3) for any H1 ∈ X (M). Then we have

φ2H1 = −H1 + η(H1)p3, η(p3) = 1,

g(φH1, φH2) = g(H1, H2)− η(H1)η(H2),

for any H2 ∈ χ(M). Then for p3=ξ, the structure (φ, ξ, η, g) establish an almost contact

metric structure on M3.

Let ∇ be the Levi-Civita connection with respect to g. We have

[p1, p2] = 0, [p2, p3] = p2, [p3, p1] = −p1.
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Using Koszul’s formula, we can obtain

∇p1p1 = −p1, ∇p2p1 = 0, ∇p3p1 = 0,

∇p1p2 = 0, ∇p2p2 = −p3, ∇p3p2 = 0,

∇p1p3 = p1, ∇p2p3 = p2, ∇p3p3 = 0.

As per above consequence for p3=ξ, the manifold satisfies ∇H1ξ=H1 − η(H1)ξ. Therefore, it

can be classified as a Kenmotsu manifold.

Now, the components of curvature tensor R are as follows

R(p1, p2)p3 = 0, R(p2, p3)p3 = −p2, R(p1, p3)p3 = −p1,

R(p1, p2)p2 = −p1, R(p2, p3)p2 = −p3, R(p1, p3)p2 = 0,

R(p1, p2)p1 = 0, R(p2, p3)p1 = 0, R(p1, p3)p1 = p1.

Also the Ricci tensor S, one can get

S(p1, p1) = S(p2, p2) = S(p3, p3) = −2.

Again, we can easily verify the following

∇H1S(φp1, φp2) = 0, ∇H1S(φp2, φp3) = 0, ∇H1S(φp1, φp1) = 0,

∇H1S(φp1, φp3) = 0, ∇H1S(φp3, φp1) = 0, ∇H1S(φp2, φp2) = 0,

∇H1S(φp2, φp1) = 0, ∇H1S(φp3, φp2) = 0, ∇H1S(φp3, φp3) = 0.

Therefore, we conclude that ∇H1S(φH2, φH3) = 0, for all H1, H2, H3 ∈ χ(M).

So, the Ricci tensor is η-parallel. Also, the scalar curvature of the manifold is -6, then the

Theorems 3.1, 4.1, 5.1, 6.1 and 7.1 are effectively satisfied by this example.

9. Conclusion

As a generalization of ρ-Einstein soliton [2], we study a new type soliton is called an η-

ρ-Einstein soliton and gradient η-ρ-Einstein soliton on a (2n + 1)-dimensional Kenmotsu

manifold admitting extended M-Projective curvature tensor.The study of such new types of

solitons is of significant interest from different fields due to its wide applications in general

relativity, cosmology, quantum field theory, string theory, thermodynamics, mathematical

physics, etc. That is why, we depict some geometrical properties of an η-ρ-Einstein soliton

and gradient η-ρ-Einstein soliton on such manifold.
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