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A SOLITONIC STUDY ON PARA-SASAKIAN MANIFOLDS ADMITTING
SEMI-SYMMETRIC NONMETRIC CONNECTION

ABHIJIT MANDAL *

ABSTRACT. In this paper we have introduced a new semi-symmetric nonmetric connection
(briefly, SSNM-connection) and established its existence on para-Sasakian manifold. We
obtain Riemannian curvature tensor, Ricci tensor, scalar curvature etc. with respect to the
SSNM-connection and studied the properties of para-Sasakian manifold with the help of
this connection. We also study n-Einstein soliton on para-Sasakian manifolds with respect
to this connection and prove that a para-Sasakian manifold admitting n-Einstein soliton
with respect to the SSNM-connection is a generalized 7-Einstein manifold. Further, we
investigate n-Einstein soliton on para-Sasakian manifolds satisfying R.S = 0,S.R = 0 and
R.R =0, where R and S are Riemannian curvature tensor and Ricci tensor with respect to
the SSNM-connection, respectively. At last, some conclusions are made after observing all
the results and an example of 3-dimensional para-Sasakian manifold admitting the SSNM-
connection is given in which all the results can be verified easily.

Keywords: Para-Sasakian manifold, Semi-symmetric nonmetric connection, Einstein soli-
ton, n-Einstein soliton.
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1. INTRODUCTION

In 1979, the notion of para-Sasakian (briefly, P-Sasakian) and special para-Sasakian (briefly,
SP-Sasakian) manifolds were introduced by Sato and Matsumoto [26]. Later, Adati and Mat-
sumoto investigate some interesting results on P-Sasakian manifolds and SP-Sasakian man-
ifolds in [I]. The properties of para-Sasakian manifold have been studied by many authors.
For instance, we see [2, [16] (17, 19, 2], 25, 28] and their references.
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In 1924, Friedmann and Schouten gave the notion of semi-symmetric connection on a
differentiable manifold. A linear connection on a differentiable manifold M is said to be

semi-symmetric if its torsion tensor 1" satisfies
T(A1,A2) = m(A2)A1 — m(A1)Ag, (1.1)

for all A1, Ay € x (M) , where x (M) is the set of all vector fields on M and 7 is a 1-form

associated with the vector field P given by
7T(A1) = (S(Al, P),

where § is a metric on M. In 1932, Hayden [I4] introduced the semi-symmetric metric
connection on a Riemannian manifold and later it was named as Hayden connection. A

linear connection V is said to be metric connection if
(VAl(;) (A2>A3) = 07 (12)

otherwise it is nonmetric. A systematic study of semi-symmetric metric connection was
initiated by Yano [31] in 1970. He proved that a Riemannian manifold with respect to
the semi-symmetric metric connection has vanishing curvature tensor if and only if it is
conformally flat. The study of semi-symmetric metric connection was further developed by
Amur and Puzara [4], Binh [5], De [II], Ozgur and Sular [20], Singh and Pandey [27] and
many others.

On the other hand, semi-symmetric nonmetric connetion whose torsion is given by
was introduced by Agashe and Chafle [3] in 1992. They showed that a Riemannian manifold
is projectively flat if it’s curvature tensor with respect to the SSNM-connection vanishes.
This linear connection was further developed by many researchers such as Chaubey and
Ojha [9], De and Kamilya [12], De, Han and Zhao [13], Prasad and Singh [22], Prasad and
Verma [23] and many others. Recently, in [I0], Chaubey and Yieldiz defined a new type of
SSNM-connection on Remannian manifolds. They investigated various curvature properties
of Riemannian manifold with respect to the SSNM-connection and studied Ricci soliton on
Riemannian manifold with respect to this connection. Motivated by their studies, here the
SSNM-connection has been introduced on para-Sasakian manifold to study some properties
and explore 7-Einstein soliton on this manifold.

R. S. Hamilton was the first who introduced the notion of Ricci flow in the early 1980s.

His [I5] observation on Ricci flow was that it is a tool by which the formation of a manifold
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can be simplified. It is the process which deforms the metric of a differentiable manifold by

smoothing out the irregularities. The equation of Ricci flow is given by

% = —-25, (1.3)
where ¢ is a Riemannian metric, S is Ricci curvature tensor and ¢ being the time. The solitons
for the Ricci flow is the self similar solutions of the above partial differential equation, where
the metrices at various times differ by a diffeomorphism of the manifold. A triple (d, V, ) is

used to represent a Ricci soliton regard to Ricci flow, where V' is a smooth vector field and

A is a scalar, which satisfies the equation
L,6+25+2\ =0, (1.4)

where L, 0 denotes the Lie derivative of § along the vector field V. A Ricci soliton is said
to be shrinking if A < 0, steady if A = 0 and expanding if A > 0. The vector field V is
called potential vector field and if it is a gradient of a differentiable function, then the Ricci
soliton (4, V, A) is said to be a gradient Ricci soliton and the associated differentiable function
is named as potential function. Ricci soliton was further studied by many researchers. For
instance, we see [8| [I8], 24}, 29, [30] and their references.

Catino and Mazzieri [7] in 2016 first introduced the notion of Einstein soliton as a gener-
alization of Ricci soliton. An almost contact manifold M with structure (¢, ¢, n,d) is said to

have an Einstein soliton (4, V, \) if
L,6+25+(2X—r)d=0, (1.5)

holds, where r being the scalar curvature. The Einstein soliton (4, V, \) is said to be shrinking,
steady, expanding according as A < 0, A = 0, A > 0, respectively. Einstein soliton creates

some self-similar solutions of the Einstein flow equation given by

a6
— =-2 . 1.
T S+rd (1.6)

Again as a generalization of Einstein soliton, the n-Einstein soliton on a Riemannian

manifold M (¢,¢,n,d) was introduced by Blaga [6] and it is given by
L,0+25+2A\—r)d+26n®@n=0, (1.7)

where, § is some constant. When § = 0 the notion of 7-Einstein soliton simply reduces

to the notion of Einstein soliton. And when 5 # 0, the data (6,V,\, ) is called proper
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n-Einstein soliton on M. The n-Einstein soliton is called shrinking if A < 0, steady if A = 0,

and expanding if A > 0.

Definition 1.1. A para-Sasakian manifold M is called an n-Finstein manifold if its Ricci

tensor is of the form
S (A2, Az) = 116 (A2, Az) + 12 (A2) 1 (A3)
for all A, As € x (M), where l1,ls are scalars.

Definition 1.2. A para-Sasakian manifold M is called a generalized n-Einstein manifold if

its Ricci tensor is of the form
S (A2,A3) = k16 (A2, Ag) + kan (A2)  (As) + k36 (A2, ¢A3),
for all Aa, Az € x (M), where ki, ko and ks are scalars.

This paper is structured as follows:

First two sections of the paper has been kept for introduction and preliminaries. In
Section-3, we introduce semi-symmetric nonmetric connection (V) on para-Sasakian man-
ifolds. In Section-4, we study n-Einstein soliton on para-Sasakian manifold with re-
spect to V. Section-5 deals with 7-Einstein soliton on para-Sasakian manifold satisfying

R(s,A1).S = 0. Section-6 concerns with 7-Einstein soliton on para-Sasakian manifold sat-

isfying S(s,A1).R = 0. Section-7 contains 7-Einstein soliton on para-Sasakian manifold
satisfying R(s,A1).R = 0. Section-8 contains a non trivial example of three dimensional
para-Sasakian manifold admitting semi-symmetric non metric connection.

2. PRELIMINARIES

Let M be an n-dimensional differentiable manifold with structure (¢,<,n), where 7 is a

1-form, ¢ is the structure vector field, ¢ is a (1, 1)-tensor field satisfying [26]
¢ (A1) = A —n(Ar)en(o) =1, (2.8)
¢(s) = 0,mo9=0, (2.9)

for all vector field A1 on M is called almost paracontact manifold. If an almost paracontact

manifold M with structure (¢, s,n) admits a pseudo-Riemannian metric ¢ such that [32]

d (pA1, 9A2) = =6 (A1, A2) +n (A1) n(A2), (2.10)
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then we say that M is an almost paracontact metric manifold with an almost paracontact

metric structure (¢, ¢,n,0). From (2.10)) one can deduce that

5(Ala¢A2) = -9 (¢A17A2) )

6(A1,6) = n(s).

(2.11)

(2.12)

An almost paracontact metric structure of M becomes a paracontact metric structure [32] if

6 (A1, 9A2) = dn(Aq, Ag),
for all vector fields A1, Ay on M, where

an(As, A2) = 5 {Am(Aa) — Aen(Ar) = n([Ar, Aa])}.

The manifold M is called a para-Sasakian manifold if
(VA1¢) AQ == _6 (A17 AQ) S + 77 (AQ) A17

for any smooth vector fields Ay, Ao on M.

In a para-Sasakian manifold the following relations also hold [32]

(Vam s = 0(A1,0A2), Va6 = —PAy,
n(R(AL,A2) Az) = 0(A1, Az)n (Az) — 6 (A2, Az) m (A1),

R(A,A2)¢ = n(A1)Ag —n(A2) Ay,
R(s,A1)A2 = —0(A1,A2)s+n(A2) Ay,
R(A1,6)A2 = (A1, A2)s —n(A2) Ay,

R(c,A1)s = Ar—n(A)s,

S(Ae) = —(n—=1)n(A),

S5(66) = —(n=1),Qs=—(n—-1)s,

S (pA1,pA2) = S (A1, A2) 4+ (n—1)n (A1) n(A2),

for any smooth vector fields Ay, Ao and As on M.

(2.13)

(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)
(2.20)
(2.21)

(2.22)

3. SEMI-SYMMETRIC NONMETRIC CONNECTION ON PARA-SASAKIAN MANIFOLDS

In this section we get the relation between SSNM-connection and Levi-Civita connection

on para-Sasakian manifold M. Then we obtain Riemannian curvature tensor, Ricci curvature
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tensor, Ricci operator and scalar curvature of M with respect to the SSNM-connection. We
also establish here the first Bianchi identity with respect to SSNM-connection on M.

Let M (¢,¢,7m,0) be an n-dimensional para-Sasakian manifold equipped with Levi-Civita
connection V corresponding to the Riemannian metric d. Let a linear connection V on M be

defined by
_ 1
Va, Ay =V Ay + 3 [ (A2) Ay — 1 (A1) Ag], (3.23)

for all A1, Ay € x (M).
Using the fact that V is a metric connection, we have from (3.23) that

[0 (A1, A2) n (As) + 6 (A1, Ag) m (A2)]

N =

(VAlé) (A2, A3) =

—0 (A2, Az)m (A1), (3.24)

for all Ay, Ag, A3 € x (M). Therefore V is a nonmetric connection on M. The torsion tensor

of V is given by
T(Al,Ag) = 7](A2) A1 —T](Al)AQ. (325)

Suppose that the connection V defined on M is connected with the Levi-Civita connection

V by the relation

VAo =V, A +H (A, As), (3.26)

where H (A1, A2) is a tensor field of type (1,1). By definition of torsion tensor, we have

T (A1,Ap) = H (A1, Ag) — H (Mg, Ay). (3.27)

In view of (3.25]) and (3.26]) we have

0 (M (A1, Az), Ag) + 0 (H (A1, As) , Ag) = %5(A1,A2)77(A3)+%5(A1,A3)U(A2)

=0 (A2, Ag)m (A1), (3.28)
5 (H (A2, A1) A3) + 5 (M (Ao, Ag) A1) = 26 (Ao, M) (As) + 50 (A, Ag) 1 (An)

=0 (A1, Ag)n(A2), (3.29)
5 (H (A3, A1) A2) 48 (M (Mg, A2) Ar) = 20 (Ag, M) (Aa) -+ 56 (Ao, As)n (A1)

=0 (A1, A2) 1 (As) . (3.30)
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In view of (3.27)), (3.28)), (3.29)) and (3.30), we have

5 (T (A1, M), As) +6 (T (A, A1), As) + 6 (T (As, Ag) , Ay)
= (M (A1, A9),Ag) — 6 (H (Mg, Ay), As) + 6 (H (As, Ar) , Ag)

—6(H (A1, As), Ag) + 6 (H (A, Ag), Ay) — 6 (H (Ag, Ag) , Ay)
= 26 (H (A1, As), Ag) — 26 (Ay, Ag) 7 (As)

+(5 (AQ, Ag) n (Al) — 5 (Al, Ag) n (Ag) .
Setting
0 (T (A37A1) aAQ) =9 (T* (Ala A2) 7A3) s
6 (T (A3, A2), A1) = 6(T* (Mg, A1), Az),
in (B:31), we get
6 (T (A1, A2) , As) + 6 (T (A1, Az) ,Ag) + 6 (T (A2, A1), Az)
= 2(5 (/H (Al,Ag) ,Ag) — 25 (Al,Az) n (Ag)
+6 (A2, Ag) (A1) — 6 (A1, Az)m (A2),
which implies that
1 _
2H (A1, A2) = 3 [T (A1, Ag) + T (A, A2) + T (Ag,Al)]

+6 (A1, Ag) s + % [ (A2) A1 —n (A1) Ag].

From (3.25)), (3.32)) and (3.33)), it follows that

T (A1,A2) = —6(A1,A2) s +n(A1)n(A2),

T* (A2, A1) = —0 (A1, A2)c+n(A1)n(Ag).

Substituting (3.25)), (3.36)) and (3.37) in (3.35]), we obtain

H (A1, A2) = 5 [n(A2) Av —n (A1) Ag].

N | —

In reference to (3.26)) and (3.38]), we can easily bring out the equation ([3.23]).

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

Theorem 3.1. There exists a unique semi-symmetric nonmetric connection V on a para-

Sasakian manifold M given by .
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On para-Sasakian manifold the connection V has the following properties
— 1
(Vam) Ay = —55 (A1, A2), (3.39)
_ 1
Va,s = —oA + 3 [Ar — 1 (A1)g], (3.40)

for all A1, Ay € x (M).
Let R be the Riemannian curvature tensor with respect to SSNM-connection on a para-

Sasakian manifold defined as
R(Al, AQ)Ag - ﬁAlﬁAQAg - v/bﬁ/\l/\g - ﬁ[Al’AQ}As' (341)

In reference of (2.13)), (2.14) and (3.23) we have

o 1
VA, Va,As = Vi, Va,Az+ 3 [6 (A1, 9A3) Ao + 1 (VA A3) Ao + 1 (A3) Vi, Ag]

—% [0 (A1, 9A2) Ag + 1 (VA A2) Ag + 1 (Az) Vi, A
b3 11V, 5) Ay (A1) Va, A
110 (A) 1 (Aa) As — 71 (A1) 1 (As) As). (3.42)

_ 1
ViaaoAs = Via, Az + 3 [0 (As) Va, Ao — 1 (As) VA, Ad]

+% [ (VA A1) Az =1 (Va, Az) As] . (343)

Interchanging A; and Ag in (3.42)) and using it along with (3.42) and (3.43]) in (3.41)) we get

R(A1,A2)A3 = R(Ay,Az)A3+ % [0 (A1, 9A3) Ao — 6 (A2, 9A3) Ay — 26 (A1, pA2) A3]
1 I (A2) Ay~ (A1) sl (As). (3.4

for all Ay, Ao, Ag € x (M).
Writing the equation (3.44]) by cyclic permutations of A1, Ay and Az and using first Bianchi

identity with respect to Levi-Civita connection we get
R(A1, A2)As+R(Ag, A3)A1+R(As, A1)Ay = 2 [0 (A1, pAs) Ao — & (A2, pA3) Ay — § (A1, dA2) Ag].
Proposition 3.1. The SSNM-connection satisfies first Bianchi identity if and only if

0 (A1, pA3) Ao = 0 (A2, dA3) A1 + 6 (A1, dA2) As,

holds for all Ay, Ay and Ag € x (M).
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Taking inner product of (3.44)) with a vector field A and contracting over A; and A we get
_ 1
S(AQ, Ag) = S(AQ, Ag) - E(n - 3)5(A2, ¢A3)
1
+Z(n —1)n(A2)n(As), (3.45)

where S denotes Ricci tensor with respect to V.

Lemma 3.1. Let M be an n-dimensional para-Sasakian manifold admitting SSNM-connection,

then

n(R(A1,A2)A3) = 6(A1, Az)n(Ag) — 6(Az, Az)n (A1) — 0(Ar, ¢A2)n (Asz)

5 1501, 645)n (A2) — 5(Az, 6)n (A1), (3.46)

RhiAzds = 5 [0(8n) Ao = (A2) Au] = 3 (A1, 003)s, (3.47)
Bls, A)As = —6(Ao, As)s — 50(Aa, 0A3)s

+%77 (Ag) Ao + %n (A2)n (As) s, (3.48)

_ 1
R(A1,6)A3 = 5(A1,A3)<+§5(A1,¢A3)€

~ 20 (8g) Ay = (M) 0 (As)s, (3.49)
QA = QA - 5(n—3)0A1 + 1n— (M), (3.50)
S(his) = —3n— (), (3.51)
Qs = —Z(n —1)s, (3.52)

_ 1 1
To= rt (=1 = (= 3), (3.53)

for all Ay, Ay and A3 € x (M), where 1) = trace(¢) and R, Q, T denote Riemannian

curvature tensor, Ricci operator, scalar curvature with respect to V, respectively.

Figen value of Ricci operator with respect to SSNM-connection corresponding to the eigen

vector is —3(n — 1).

4. n-EINSTEIN SOLITON ON PARA-SASAKIAN MANIFOLD WITH RESPECT TO
SSNM-CONNECTION

In this section we find the condition of 7-Einstein soliton on a para-Sasakian manifold M

to be invariant under SSNM-connection. Further, we study n-Einstein soliton on M with
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respect to SSNM-connection in which the potential vector field being pointwise collinear with
the structure vector field of M.

The equation ([1.7)) with respect to SSNM-connection takes the form

0= (L,0) (A1, Ag) +25(A1, Ag) + (2X —T)3(A1, Az) + 267(A1)n(A2), (4.54)

for all Ay, Ag, A3, V € x (M) . Expanding L, and using (3.45), (3.53) in (4.54) we get

0 = (5(?/\1‘/, Ag) + 6(A1,VA2V) + 2§(A1, Ag)
+(2X =7)6(A1, A2) + 268n(A1)n(Asg)

= (LV(S) (Al, Ag) + QS(Al, AQ) + (2)\ — T)(S(Al, AQ) + 257](/\1)7}(1\2)

+0V) = 0= 1)+ 5 00— 35| 641, A2) = 53V, M)
5V An(A2) — (0= B)5(A1, 6A2) + (n— Dn(An(Ae). (459)

Theorem 4.1. An n-FEinstein soliton (6, V, A, ) on a para-Sasakian manifold M to be in-

variant under SSNM-connection if and only if
1 1 1
0 = |n(V)- Z(” -1+ 5(” = 3)¢| (A1, Ag) — 55(‘/, Az)n(Aq)
1 1
—50(ViA)n(A2) = (n = 3)8(A1, 9A2) + 5 (n — 1)n(A1)n(Az),
holds for Ay, As, A3, V € x (M) .
Consider the distribution D on M as D =kern. If V € D, then
n(V)=0.
Taking covariant derivative with respect to ¢ and using (V.n)V = 0, we get

n(V.V) =0. (4.56)

In view of (3.23]) and (4.56|) we have

n(Viv) =o. (4.57)
After expanding the Lie derivative in (4.54) we get

0 = 6(?A1‘/EA2)+5(A1,WA2V)+2§(A1,A2)

+(2X = 7)0(A1, A2) + 2081 (A1) n (Ag). (4.58)
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Setting A1 = Ay = ¢ and using (3.45)), (3.53) and (4.57)) in (4.58]) we obtain

rzz(Hﬁ)—Z(n—lH%(n—B)w, (4.59)

where trace(¢) = 1.

Theorem 4.2. Let M be a para-Sasakian manifold admitting n-Einstein soliton (5, V, \, 3)
with respect to SSNM-connection such that V € D, then scalar curvature of M is given by
7.59).
Setting V = ¢ in (4.54]) we get
0 = 6(Va,5,A2) + (A1, Vass) +25(A1, Ag)

+(2)\ — ?)5([\1, AQ) + 257](A1)7](A2). (460)

Using (3.40) and (4.60) we obtain

S(A1,Ag) = —5 (A =T+ DA, A2) = 3 (28— Dn(An(A). (461)

Using ([3.45)) and (3.53)) in (4.61]) we get

S(A1,A2) = kd(A1, A2) + In(A1)n(Ag) + md(Aq, pA2), (4.62)
where
1 1 1
k = 3 2)\—T—Z(n—5)+f(n—3)1/} ,
1
m = —%(n—3)

Corollary 4.1. If a para-Sasakian manifold M admits n-Einstein soliton (6,¢,\, ) with

respect to SSNM-connection, then M is generalized n-FEinstein.

Corollary 4.2. If a para-Sasakian manifold M contains an n-FEinstein soliton (0,s, \, B) with
respect to SSNM-connection such that the structure vector field ¢ be parallel i.e., Vi, ¢ = 0,

then M 1is generalized n-Finstein manifold.

Setting Ao = ¢ and using (3.51)) and (3.53]) in (4.61)) we have

r:2()\+5)—£(n—1)+%(n—3)w, (4.63)

where trace(¢) = 1.
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Corollary 4.3. If a para-Sasakian manifold M admits n-Einstein soliton (9,5, X\, ) with
respect to SSNM-connection, then the scalar curvature of M is given by .

Putting f =0 and ¢ = 0 in (4.63) we get

1 7
)\—§T+§(n—l).

Corollary 4.4. Let a para-Sasakian manifold M contain an Einstein soliton (0,¢,\) with

respect to SSNM-connection, then the soliton is shrinking, steady or expanding if

7 7 7
r< —Z(n —1),r= _E(H —1),r> —Z(n —1),

respectively, provided trace(¢) = 0.

5. n-EINSTEIN SOLITON ON PARA-SASAKIAN SATISFYING R(s,A1).S =0

The condition that must be satisfied by S is
?(R(g,Al)AQ,Ag) +§(A2,R(§,A1)A3) =0, (564)

for all A1, Ag, Az € x (M).
Using (3.48) and replacing the expression of S from (4.61)) in (5.64) we get

0 = S [2(\+8) =7 [6(A1, A2)n (Az) 4+ 6(A1, Az)n (Az)]

1
2
+7 200+ B) = 7] [6(A1, 9A2)n (Az) + 6(A1, pAs)n (A2)]

[2A =7 + 1] [0(A1, A2)n (A3) + 5(A1, Az)n (A2)]

= 00| W |

-1 [2A+ 88 —T —3]n (A1) n (A2)n (A3). (5.65)

Setting As = ¢ in (5.65) we get

0 — % 20\ + 8) — 7] [6(A1, Ao) + 1 (A1) 1 (As)]
4& [2(A+ B) = 7] [0(A1, 9A2)]
_g [2A =7+ 1] [6(A1, A2) + 1 (A1) 1 (A2)]
1

—7 A+ 83T =3 (A1) (M) (5.66)
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Contracting (5.66|) over A; and As we get

0 = i(n—1+21/;)>\+%[2(n—1)+¢]5
—é[n—1+2¢] r+i(n—1)—%(n—3)¢
_%(n _1), (5.67)

where trace(¢) = 1.

Theorem 5.1. Let a para-Sasakian manifold M admits n-Einstein soliton (3,s, A, 3) with
respect to SSNM-connection. If M satisfies the equation R(s,A1).S = 0, then the soliton
constants are given by the equation .

Setting 8 =1 = 0 in (5.67)) we obtain
1
2A=r+ Z(n—i— 11).
Corollary 5.1. Let a para-Sasakian manifold M contain an Einstein soliton (3,5, \) with

respect to SSNM-connection. If M satisfies the equation R(s,A1).S = 0, then the soliton is

shrinking, steady or expanding if
1 1 1
r < —Z(n +11),r = —Z(n +11),r > —Z(n +11),

respectively, provided trace(¢) = 0.

6. n-EINSTEIN SOLITON ON PARA-SASAKIAN SATISFYING S(s,A1).R =0
The condition that must be satisfied by S is
0 = S(A1,R(Aa, A3)Ay)s — S(s, R(A2, A3)Ay) Ay
+S(A1, A2)R(s, A3)Ay — S(s, A2)R(A1, A3)Ay
+S (A1, A3)R(Aa, 6)Ay — S(s, A3)R(Aa, A1) Ay
+S (A1, Ay)R(Ao, A3)s — S(s, Ay) R(A2, A3)Aq, (6.68)
for all A1, Ao, Ag, Ay € x (M) . Taking inner product with ¢ the relation becomes
0 = S(A1,R(A2, A3)Ay) — S(s, R(Ag, Az)Ag)n(Ay)
+S(Ar, A2)n(R(s, Ag)Ag) = S(s, A2)n(R(A1, As)Aq)
+S(Ar, Ag)n(R(A2,9)Ag) = S(s, Ag)n(R(Az2, Ar)Ag)

+S (A1, A)n(R(Az, Az)s) — S(s, Aa)n(R(Az, Az)A1). (6.69)



INT. J. MAPS MATH. (2025) 8(2):460-480 / SOLITONIC STUDY ON PARA-SASAKIAN MANIFOLDS 473

Setting Ay =¢ in we obtain

0 = S(A1, R(A2,A3)s) — S(s, R(Ag, Az)s)n(Ar)
+S(A1, A2)n(R(s, Az)s) — S(s, Ag)n(R(A1, Az)s)
+S(A1, Az)n(R(Az2,)s) — S(s, Az)n(R(Az, Ar)s)

-{—g(/\l, C)T](R(AQ, A3)§) - §(§, §)77(E(A2, A3)A1) (670)

Using (3.46), (3.47), (3.49), (£.61) in (6.70) we get

[(2A =7+ 1)6(A1, A2) + (28 — 1)n(A1)n(A2)] n(As)

ol w

=2 1A =T+ DA, Ag) — (26— DA n(As)] (Ae)

+ ()\ +h— ;) [6(A1, A2)n(As) — 6(Ay, Ag)n(As)] . (6.71)
Setting A1 =¢ in we get
p=1 (6.72)
In view of and we get
Azr—l—é(?n— 1) - i(n—?))w, (6.73)
where trace (¢) = 1.

Theorem 6.1. Let a para-Sasakian manifold M admits n-Einstein soliton (3,s, A, 5) with
respect to SSNM-connection. If M satisfies the equation S(s,A1).R = 0, then the soliton

constants are given by equations and .

Corollary 6.1. There exists no Einstein soliton with respect to SSNM-connection on M

satisfying S(c,A1).R = 0.

7. n-EINSTEIN SOLITON ON PARA-SASAKIAN SATISFYING E(g,Al)ﬁ =0.

The condition must be satisfied by R is

0 = R(s,A1)R(A2,A3)Ay — R(R(,A1)Ag, Az)Ay

“R(As, R(s, A1)A3) Ay — R(As, A3)R(s, A1) Ay (7.74)
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Using (3.44)), (3.46)), (3.47) and (3.48)) in (7.74) we get

1 — 3
0 = —d(A1, R(A2,A3)Ay)s — 55(A1, dR(A2, A3)Ay)s + ZW(R(A27A3)A4)A1

(A2, A)An(Ar)s = Jn(A)R(As, As)Aa = Ji(AD R (A2, Ag)y
—6(A1,A9) {5(1&3, Ag)s + %5(1\3, dA1)s — zn(A4)A3 - in(A3)77(A4)§]
5008, 6) [ 380, M)+ 35000, 080)s = Sn(A)As — {n(Aa)n(ha)]
FAa(Aa) 88 A+ 30(Aa, 65 — Fn(A)Aa — Ja(Aa)n(Aos]

=2 (Aa) A2 — 1(A2)Aa] 501, A0) + 3501080 — JA0n(A)

~5(ha.0a) [ M)+ 30102, 65 — pa(A0a(A1e] — Foha Rk ADAS
#0(0,A0) (342, A0 + 30(A0, 6Ae)s — J(AA — Jrha)nAn
50001, 60) [ 342 M)+ 30002, 0A2)s — (A A2 — To(Aa)n(da)]

1 1 3 1
—177(1\1)77(1\3) {5(1\2,1\4% + 55(1\27 dA4)s — ZU(A4)A2 - 477(A2)77(A4)<} . (7.75)
Setting V = ¢ in (7.75) we get

3 3 3
0 = —70(A1, Ag)n(A2)s + £ 0(A1, Az)n(As)s + 7 6(Az, @A3)n(A1)s

~25(An, 6AS)(Aa)s + S6(As, GAIN(As)s — 26(As, GA5)Ay

#5500, 80) + 5000008 — go(An(A0)| Fn(ha)s + A
L (A = 0(Aa)Ar} - 88 080 | (o)
+5 |3 00— 1)) ~ 6(a,0a)e] n(0) - R(a, Ao

+5 [900,80) + 53(41,080) ~ J(An)n(Ae)| [-n(ha)s + A

- 0r(A)s = 1(A1)Aa} - 880 080 | (o), (7.70
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Taking inner product of (7.76]) with a vector field A5 we get

0 = 250 An(Aa)n(As) + 26(A0 Aan(As)n(As) + 26(A, oAsIn(AL ()
= 2500, oI (As) + Z6(Ar, BA)(AS)(As) — 3N, 6AI(Ar, As)

#3 [9(00,00) + (01, 002) ~ {a(A0n(A2)| Fn(Aa)a(da) + 5(Aa, o)

2 [ 005000, 49) — (0038, 490} — 80 64| ()

Jé _i {n(A2)8(As, As) — n(As)d(As, As)} — 6(As, ¢A3)77(A5)] (A1)

#5 [9100,80) + 3041, 080) = {8049 F-n(ha)a(ha) + 0(ha, o)

—2 i {n(A2)d(A1, As) = n(A1)S(As, As)} — 5(As, ¢A1>H<As>] n(As)

—Z(S(E(Ag,Ag)Al, As). (7.77)

Contracting ([7.77)) over Ao and A5 we obtain
_ 1 1
(s Aa) = (0= 1) [3(As, Aa) + pulAnn(e) + oA od)] . (779
Using in we get
1 _ 1
0 = 5(2)\ —T+1)6(A1, Ag) + 5 (28 = 1) n(A1)n(A2)
1 1

(1) [6<A1, M)+ (An(As) + Sa(As, ¢>A3>] . (7.79)

Setting Ao = ¢ in ([7.79) we have
200+ 8)=r+—(n—-1)— =(n—3)y, (7.80)

where trace (¢) = 1.

Theorem 7.1. Let a para-Sasakian manifold M admits n-Einstein soliton (3,s, A, 3) with
respect to SSNM-connection. If M satisfies the equation R(s,A1).R = 0, then the relation
between the soliton constants are given by equation .

Setting 8 = 0 in (7.80) we get
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Corollary 7.1. Let a para-Sasakian manifold M contain an Einstein soliton (0,¢,\) with

respect to SSNM-connection. If M satisfies the equation R(s,A1).R = 0, then the soliton is

shrinking, steady and expanding if

13 13 13
——(m-1),r=——(Mn-1 ——(n-1
r< 4(n )T 4(n ), > (n—1),

respectively, provided trace(¢p) = 0.

8. EXAMPLE OF PARA-SASAKIAN MANIFOLD ADMITTING SSNM-CONNECTION

Let us consider 3-dimensional manifold
M? = {(z,y,2) € R*},

where (7, z) are the standard co-ordinates in R3. We choose the linearly independent vector

fields

0 0 0 0
E=c L By=e (L L) =2
L=e oy’ 2 c <8y 8z>’ 3 Ox

Let g be the pseudo Riemannian metric defined by ¢ (E;, Ej) =0, if i # j for i,j =1,2,3,
and g (E1, E1) = —1,9 (E2, E2) = —1,9 (E3, E3) = 1

Let n be the 1-form defined by n(X) = g (X, E3) for any X € x (M?). Let ¢ be the (1,1)
tensor field defined by

¢E1 = Ei,¢Ey = Ey, ¢E3=0. (8.81)
3

trace(¢) = Zg(Ei,¢Ei) =-2 (8.82)
i=1

Let X, Y, Z €x (MS) be given by

X = x1FE1 +x0Fs 4+ x3E3,
= B +y2E2 4+ y3Es,

Z = z1F1+ 290Fy + 23F3.
Then, we have

g(X,)Y) = xy + z2y2 + x3y3,
77(X) = I3,

9(@X,0Y) = xy1 + 2200
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Using the linearity of g and ¢, n(E3) = 1,¢°X = X — n(X)E3 and g(¢X,9Y) =
—g(X,Y)+n(X)n(Y) for all X, Y € x (M). We have

[E1, B3] = 0,[Ey, E3] = —E1, [Es, E3] = Es,

[Ey, E1] = 0,[Es, By] = Ey, [Es, Es] = —Es.

Let the Levi-Civita connection with respect to g be V, then using Koszul formula we get the

following
VB Vy Ey V, E3 —-E3 0 -—-E
VBt Vg Ey VB3| = 0 FEs3 —F»
Vi, EBv Vg Ey V, Es 0 0 0

From the above results we see that the structure (¢, &, 7, g) satisfies
(Vx9)Y =—g(X,Y){+n(Y) X,

for all X, Y € x (M3) , where 1 (£) = n(F3) = 1. Hence M3 (¢,£,7,9) is a para-Sasakian
manifold.

The components of Riemannian curvature tensor of M? are given by

R(E1, Es)Es R(E1, E3)Es R(Ey, E2)E; _E, —E 0
R(Es, E)E1 R(Es,E3)Es R(Es,E3)Er | =| B2 E» 0
R(Es, E1)Ey R(E3,E2)E> R(Es3, E1)Es Es E3 0

The components of Ricci curvature tensor of M? are given by
S(E1, E1) = S(Es, E3) =0,S(Es, Ey) = 2. (8.83)

Therefore the scalar curvature of M3 is
3

r=> " S(E;,E)=2. (8.84)
i=1
Using we have the following values of V :
Ve Br Vy, Ex YV, E3 —E3 0 —iE
Vu,Bi VB VyEs|=| 0 E3 —{E
Ve Br VB V, Ej 1By 3B, 0

By the help of and above matrix we get the components of Riemannian curvature
tensor of M3 with respect to SSNM-connection as follows
R(Ey,E))E1 R(Ey,E3)E, R(Es, E3)E; —3E, —3E3; 0
R(E1,E2)E; R(E1,FE3)Ey R(E, E3)Es | = | —1E) 0 —3E5
R(E1, E2)Es R(E1,E3)Es R(Ey, E3)FE; 0 —iEl iEg
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The components of Ricci curvature tensor of M3 with respect to SSNM-connection are

given by
1

S(Ey,Br) = 5(Ey, Ep) = 1,5(Ey, B3) = 5. (8.85)

Therefore the scalar curvature of M3 with respect to SSNM-connection is

3
i=1

In view of (8.82)), (8.84) and (8.86) we have

5
F =3
= 24731~ 3(3-3).(-2)
1 1
= r+y-1)—5(n-3)y,

which verifies the relation (3.53)). Similarly, we can verify all the results obtained.

9. CONCLUSION

From the results obtained in this paper we can conclude that if a para-Sasakian manifold
M(,s,m,0) admits n-Einstein soliton (4,¢, A, 5) with respect to semi-symmetric nonmetric
connection, then M is generalized n-Einstein manifold. We also conclude that if a para-
Sasakian manifold M admitting n-Einstein soliton (d, ¢, A, 5) with respect to semi-symmetric
nonmetric connection satisfies R.S = 0,S.R = 0 and R.R = 0, then the soliton constants
depend on scalar curvature of M and trace of the function ¢ on M
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