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1. Introduction

Many researchers have examined and analyzed various forms of continuity in academic

literature. In general topology, continuity remains a vital and foundational concept in math-

ematics. In 1972, Crossley and Hildebrand [7] introduced the concept of irresoluteness. In

1999, Arokiarani et al. [3] studied gp-irresolute functions, followed by Balasubramanian and

Sarada [5] in 2012, who explored the properties of gpr-irresolute functions. Over time, several

variants of irresolute functions have been introduced. Recently, J. B. Toranagatti proposed

and investigated δgp-continuity [23] as a broader interpretation of continuity. This research

aims to introduce and investigate a completely δgp-irresolute function, which serves as a

more robust variant of the existing gpr-irresolute function.
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2. Preliminaries

Throughout this paper (M, τ), (N , γ) and (P, η) (or simply M, N and P) represent

non-empty topological spaces on which no separation axioms are assumed unless otherwise

stated. For a subset K of M, ć(K) and í(K) denote the closure of K and the interior of K,

respectively.

Definition 2.1. A set J ⊆ M is called:

(i) regular closed [22] if ć(́i(J))=J,

(ii) pre-closed [18] ć(́i(J)) ⊆ J.

Definition 2.2. A set J ⊆ M is called δ-closed [28] if J = ćδ(J) where ćδ(J) = {b ∈ M:

í(ć(U))∩J= ∅, U ∈ ℑ and b ∈ U}.

Definition 2.3. A set J ⊆ M is called δgp-closed [6] (resp., gp-closed [17] and gpr-closed

[10]) if pć(J) ⊆ H whenever J ⊆ H and H is δ-open (resp., open, regular open) in M.

Their complements are the open sets that are related to the previously listed closed sets.

δO(M) is the collection of all δ-open sets in (M, τ). The families of open sets, pre-open

sets, regular open sets, gp-open sets, gpr-open sets, and δgp-open sets are denoted as O(M),

PO(M), RO(M), GPO(M), GPRO(M) and δGPO(M) correspondingly.

Definition 2.4. A function ℓ: (M, ℑ) → (N , γ) is called:

(i) R-maps [12] if ℓ−1(K) ∈ RO(M) for every K ∈ RO(N );

(ii) completely continuous [4] if ℓ−1(K) ∈ RO(M) for every K ∈ γ;

(iii) completely preirresolute [14] (resp., completely gp-irresolute [14] and completely gpr-

irresolute) if ℓ−1(K) ∈ RO(M) for every K ∈ PO(N ) (resp., K ∈ GPO(N ) and K ∈

GPRO(N ));

(iv) δgp-irresolute [23] if ℓ−1(K) ∈ δGPO(M) for every K ∈ δGPO(N );

(v) δgp-continuous [23] if ℓ−1(K) ∈ δGPO(M) for every K ∈ γ;

(vi) pre δgp-continuous [23] if ℓ−1(K) ∈ δGPO(M) for every K ∈ PO(N );

(vii) gpr-irresolute [5] if ℓ−1(K) ∈ δGPR(M) for every K ∈ δGPR(N ).

Definition 2.5. A space (M, ℑ) is called:

(i) δgp-additive [24] if δGPC(M) is closed under arbitrary intersections;

(ii) Tδgp-space [6] if δGPC(M) = C(M);

(iii) preregular T1/2-space [10] if GPRC(M) = PC(M);

(iv) locally indiscrete [13] if ℑ = RO(M).
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3. Completely δgp-irresolute Functions

Definition 3.1. A function ℓ: (M, ℑ) → (N , γ) is called as completely δgp-irresolute

(briefly, c.δgp-i.) if for every point b in M and for any δgp-open set H that includes ℓ(b),

there exists a δ-open set G around b such that ℓ(G) ⊆ H.

Theorem 3.1. The following conditions are equivalent for a function ℓ: (M, ℑ) → (N , γ):

(i) ℓ is c.δgp-i.;

(ii) For each q ∈ M and each D ∈ δGPC(N , ℓ(q)), there exists a C ∈ RO(M, q) such that

ℓ(C) ⊆ D.

Proof. (i) → (ii): Let q ∈ M and D ∈ δGPC(N , ℓ(q)).
(i)
==⇒(∃ J ∈ δO(M, q))(ℓ(J) ⊂ D).

Now, J ∈ δO(M, q) =⇒ (∃ C ∈ RO(M, q)(C ⊂ J)).

Therefore, ( ∃ C ∈ RO(M, q)) (ℓ(C) ⊂ ℓ(J) ⊂ D).

(ii) → (i): Obvious. □

Theorem 3.2. The following conditions are identical for a function ℓ: (M, ℑ) → (N , γ):

(i) ℓ is c.δgp-i.;

(ii) For each q ∈ M and each G ∈ δGPC(N ) where ℓ(q) /∈ G, there exists an H ∈ δC(M)

such that q /∈ H and ℓ−1(G) ⊆ H;

(iii) For each q ∈ M and each G ∈ δGPC(N ) where ℓ(q) /∈ G, there exists an H ∈ RC(M)

such that q /∈ H and ℓ −1(G) ⊆ H;

(iv) For every q ∈ M and each N ∈ δGPC(N ,ℓ(q)), there exists a G ∈ O(M, q) such that

ℓ(́i(ć(G)) ⊆ N;

(v) For every q ∈ M and each H ∈ δGPC(N ,ℓ(q)), there exists a G ∈ O(M, q) such that

ℓ(sc(G)) ⊆ H.

Proof. Obvious. □

Remark 3.1. We can generate the following diagram for the function ℓ: (M, ℑ) → (N , γ)

by using Definitions 2.4 and 3.1.

c.gpr.i. → c.δgp.i. → c.gp.i. → c.p.i. → c.c. → R-m.

↓ ↓

gpr.i. → δgp.i. → p.δgp.c. → δgp.c.
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Notations:

c.gpr.i.: completely gpr-irresolute, c.δgp.i.: completely δgp-irresolute, c.gp.i.: completely

gp-irresolute, c.p.i.: completely pre-irresolute, c.c.: completely continuous, R-m.: R-maps,

gpr.i.: gpr-irresolute, δgp.i.: δgp-irresolute, p.δgp.c.: pre δgp-continuous, δgp.c.: δgp-

continuous.

None of the implications in above diagram is reversible as shown in the following

examples.

Example 3.1. Let M = η = {u1, u2, u3, u4}, τ = {M, ∅, {u1},{u2},{u1, u2},{u1, u2, u3}}

and γ = {η, ∅, {u1}, {u2}, {u1, u2}, {u1, u3}, {u1, u2, u3}}. Then:

(i) The identity function ℓ: (M, ℑ) → (M, γ) is δgp-irresolute, but it is not completely

δgp-irresolute.

(ii) Let us define ℓ: (M, ℑ) → (M, γ) by ℓ(u1) = u1, ℓ(u2) = u3 = ℓ(u3) and ℓ(u4) = u4,

In this case, ℓ is δgp-i. but not gpr-i., since {u1, u2} ∈ GPRC(M, γ) implies that ℓ−1({u1,

u2})={u1} /∈ GPRC(M, ℑ).

Example 3.2. Consider M = {u1, u2, u3, u4} with the topologies

ℑ = {∅, M, {u1}, {u2}, {u1, u2}, {u1, u3}, {u1, u2, u3}} and

γ = {∅, M, {u1},{u2},{u1, u2},{u1, u2, u3}}.

Let the function ℓ: (M, ℑ) → (M, γ) be defined by ℓ(u1) = u2 = ℓ(u3), and ℓ(u2) = u4

with ℓ(u4)= u4. In this scenario, ℓ is c.gp-i. but not c.δgp-i.. This is evident as {u4} ∈

δGPC((M, γ) leads to the conclusion that ℓ−1({u4})) = {u2, u4} /∈ RO(M, ℑ).

Example 3.3. Consider (M, ℑ) as in Example 3.2. We define the function ℓ: (M, ℑ) →

(M, ℑ) by specifying ℓ(u1)= u2, ℓ(u3)= u2, and ℓ(u2)= u4 with ℓ(u4) = u4. In this context,

ℓ is c.δgp-i., but it is not c.gpr-i.. This is because {u1, u4} ∈ GPRO(M, σ) leads to the

conclusion that ℓ−1({u1, u4}) = {u2, u4} /∈ RO(M, ℑ).

Theorem 3.3. For any J ⊆ M, the following are the same where (M, ℑ) is locally indiscrete

space [25].

(i) J is gp-closed;

(ii) J is δgp-closed;

(iii) J is gpr-closed.

As a consequence of Theorem 3.3, we can state the following theorem.
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Theorem 3.4. The statements that follow are interchangeable for ℓ: (M, ℑ) → (N , γ)

where (N , γ) is locally indiscrete space:

(i) ℓ is c.gp-i.;

(ii) ℓ is c.δgp-i.;

(iii) ℓ is c.gpr-i..

Theorem 3.5. The statements that follow are interchangeable for ℓ: (M, ℑ) → (N , γ)

where (N , γ) is Tδgp-space:

(i) ℓ is c.c.;

(ii) ℓ is c.p-i.;

(iii) ℓ is c.gp-i.;

(iv) ℓ is c.δgp-i..

Theorem 3.6. The statements that follow are interchangeable for ℓ: (M, ℑ) → (N , γ)

where (N , γ) is preregular T1/2-space:

(i) ℓ is c.p-i.;

(ii) ℓ is c.gp-i.;

(iii) ℓ is c.δgp-i.;

(iv) ℓ is c.gpr-i..

Definition 3.2. [11] Every gpr-closed set for a space (M, ℑ) is closed if and only if τ∗g= τ

where τ∗g={L ⊆ M: gprcl(M-L)=(M-L)}.

Theorem 3.7. If γ∗g= γ in (N , γ). Then, the assertions that follow are the same:

(i) ℓ: (M, ℑ) → (N , γ) is c.gpr-i.;

(ii) ℓ: (M, ℑ) → (N , γ) is c.δgp-i.;

(iii) ℓ: (M, ℑ) → (N , γ) is c.gp-i.;

(iv) ℓ: (M, ℑ) → (N , γ) is c.p-i.;

(v) ℓ: (M, ℑ) → (N , γ) is c.c..

Theorem 3.8. If γ∗g= γ in (N , γ) and (N , γ) is locally indiscrete. Then, the assertions

that follow are the same:

(i) ℓ: (M, ℑ) → (N , γ) is c.gpr-i.;

(ii) ℓ: (M, ℑ) → (N , γ) is c.δgp-i.;

(iii) ℓ: (M, ℑ) → (N , γ) is c.gp-i.;

(iv) ℓ: (M, ℑ) → (N , γ) is c.p-i.;
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(v) ℓ: (M, ℑ) → (N , γ) is c.c.;

(vi) ℓ: (M, ℑ) → (N , γ) is R-map.

Theorem 3.9. Let ℓ: (M, ℑ) → (N , γ) be such that the space (N , γ) is δgp-additive. The

statement that follow are interchangeable:

(i) ℓ is c.δgp-́i.;

(ii) ℓ−1 (δgp-́i(R)) ⊆ íδ(ℓ
−1(R)) for each R ⊆ N ;

(iii) ℓ (ćδ(S)) ⊆ δgp-ć(ℓ(S)) for each S ⊆ M;

(iv) ćδ( ℓ−1(R)) ⊆ ℓ−1(δgp-ć(R)) for each R ⊆ N ;

(v) ℓ−1(B) ∈ δC(M) for each B ∈ δGPC(N );

(vi) ℓ−1(A) ∈ δO(M) for each A ∈ δGPO(N );

(vii) ℓ−1(A) ∈ RO(M) for each A ∈ δGPO(N );

(viii) ℓ−1(B) ∈ RC(M) for each B ∈ δGPC(N ).

Proof. (i) =⇒ (ii): Let R ⊆ N and x ∈ ℓ−1(δgp-́i(R)).

b ∈ ℓ−1 (δgp-́i(R)) =⇒ δgp-́i(R) ∈ δGPO(N , ℓ(b))
(i)
==⇒ (∃ S ∈ RO(M, q) (ℓ(S) ⊆ δgp-́i(R)⊂ R)

=⇒ (∃ S ∈ RO(M, q))(S ⊆ ℓ−1(R)) =⇒ q ∈ íδ(ℓ
−1(R)).

(ii) =⇒ (iii) : Let S ⊆ M.

S ⊆ M =⇒ ℓ(S) ⊆ N =⇒ N \ ℓ(S) ⊆ N (ii)
==⇒ ℓ−1 [δgp-́i(N\S)] ⊆ íδ(ℓ

−1(N\ℓ(S)))

=⇒ M \ ℓ−1 (δgp-ć(ℓ(S)) ⊆ M \ ćδ(ℓ
−1(ℓ(S))))

=⇒ ćδ (S) ⊂ ćδ ((ℓ−1(ℓ(S))) ⊆ ℓ−1(δgp-ć(ℓ(S)))

=⇒ ℓ(ćδ(S)) ⊆ δgp-ć(ℓ(S)).

(iii) =⇒ (iv): Let R ⊆ N .

R ⊆ N =⇒ ℓ−1(R) ⊆ M (iii)
==⇒ ℓ(ćδ (ℓ−1(ℓ(R))) ⊆ δgp-ć(ℓ−1(R)) ⊆ δgp-ć(R)

=⇒ ćδ ((ℓ−1(R)) ⊆ ℓ−1(δgp-ć(R)).

(iv) =⇒ (v): Let H ∈ δGPC(N ).

H ∈ δGPC(N ) =⇒ H = δgp-ć(H)
(iv)
==⇒ ćδ((ℓ

−1(H)) ⊆ ℓ−1(δgp-ć(H)) = ℓ−1(H)

=⇒ ℓ−1(H) = ćδ (ℓ−1(H)) =⇒ ℓ−1(H) ∈ δC(M).

(i) =⇒ (vi): Obvious.

(viii) ⇐⇒ (vii) =⇒ (vi) : Obvious.

(vi) =⇒ (i): Let K ∈ δGPO(N ) and q ∈ ℓ−1(K).
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(K ∈ δGPO(N ) (q ∈ ℓ−1(K)) =⇒ K ∈ δGPO(N , ℓ(q))
(vi)
==⇒ (L: = ℓ−1(K) ∈ δO(M, q)) (ℓ(L) ⊆ K). □

Theorem 3.10. The following assertions are identical for a bijection ℓ: (M, ℑ) → (N , γ):

(i) ℓ is c.δgp-i.;

(ii) δgp-́i(ℓ(H)) ⊆ ℓ(́iδ(H)) for each H ⊆ M.

Proof. (i) =⇒ (ii) Let H ⊆ M.

H ⊆ M =⇒ M \ H ⊆ M

(i)
==⇒ ℓ[(M\́iδ(H))] = ℓ[ćδ(M \H)] ⊆ δgp-ć(ℓ[M/H])

ℓ is bijection

 =⇒

=⇒ N \ℓ[́iδ(H)] ⊆ N \ δgp-́i(ℓ[H])

=⇒ δgp-́i(ℓ[H]) ⊆ ℓ(́iδ[H]).

(ii) =⇒ (i) : Let K ⊆ M.

K ⊆ M =⇒ M\K⊆M (ii)
==⇒ δgp-́i(ℓ[M\K]) ⊆ ℓ[́iδ(M\K)]

ℓ is bijection

 =⇒

=⇒ N\ δgp-ć(ℓ[K]) ⊆ N \ ℓ[ćδ(K)]

=⇒ ℓ(ćδ(K)) ⊆ δgp-ć(ℓ(K)). □

Lemma 3.1. Let N ⊂ M and N ∈ O (M). The following hold [15].

(i) K ∈ RO(M) =⇒ Y ∩ K ∈ RO(N , τN ).

(ii) H ∈ RO(N , τN ) =⇒ (∃ a K ∈ RO(M) such that H = N ∩ K.

where τN={N ∩ G | G ∈ O(M)}.

Theorem 3.11. If ℓ: (M, ℑ) → (N , γ) is c.δgp-i. and K ∈ ℑ, then the restriction

ℓ/K : K → N is c.δgp-i..

Proof. Let J ∈ δGPO(N ).

J ∈ δGPO(N )
ℓ is c.δgp.i.
=======⇒ℓ−1(J) ∈ RO(M)

K ∈ ℑ

 =⇒

lemma 3.1
=======⇒ (ℓ/K)−1(J) = ℓ−1(J) ∩ K ∈ RO(K). □
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Lemma 3.2. Let N ⊆ M and N ∈ PO(M). Then, N ∩ K ∈ RO(N ) for each K ∈ RO(M)

[2].

Theorem 3.12. If ℓ: (M, ℑ) → (N , ℜ) is a c.δgp-i. and K ∈ PO(M), then ℓ/k : K → N

is c. δgp-i..

Proof. This can be inferred from Lemma 3.2. □

Theorem 3.13.

(i) If ℓ: (M, ℑ) → (N , γ) is δgp-i. and ḱ: (N , γ) → (P, σ) is δgp-i., then the composition

ḱoℓ:(M, ℑ) → (P, σ) is also c.δgp-i.

(ii) If ℓ: (M, ℑ) → (N , γ) is c.δgp-i. and ḱ: (N , γ) → (P, σ) is c.δgp-i., then the

composition ḱoℓ:(M, ℑ) → (P, σ) remains c.δgp-i.

(iii) If ℓ: (M, ℑ) → (N , γ) is an R-map and ḱ: (N , γ) → (P, σ) is c.δgp-i., then the

composition ḱoℓ:(M, ℑ) → (P, σ) is c.δgp-i.

(iv) If ℓ: (M, ℑ) → (N , γ) is c.δgp-i. and ḱ: (N , γ) → (P, σ) is δgp-c., then the composition

ḱoℓ:(M, ℑ) → (P, σ) is also c.c..

Proof. Straightforward. □

Definition 3.3. If J, H ∈ RO(M) (resp., δGPO(M)) cannot be found such that J ∩ H

= ∅ and J ∪ H = M, then a space (M, ℑ) is referred to as almost connected [8] (resp.,

δgp-connected [24]).

Theorem 3.14. If ℓ: (M, ℑ) → (N , γ) is a surjective function that is c.δgp-i. and (M,

ℑ) is almost connected, then (N , γ) is δgp-connected.

Proof. Let us consider that (N , γ) is not δgp-connected.

(N , γ) is not δgp-connected =⇒

(∃ C, D ∈ δGPO(N )\{∅})(C∩D = ∅)(C∪D = N )

ℓ is c.δgp-i. surjection

 =⇒

=⇒ (ℓ−1(C), ℓ−1(D) ∈ RO(M) \{∅})(ℓ−1(C∩D) = ℓ−1(∅))(ℓ−1(C∪D) = ℓ−1(N ))

=⇒ (ℓ−1(C), ℓ−1(D) ∈ RO(M)\{∅})(ℓ−1(C) ∩ ℓ−1(D) = ∅)(ℓ−1(C) ∪ ℓ−1(D) = M).

This (M, ℑ) is not almost connected. □

Definition 3.4.

(i) If each regular open cover of a space (M, ℑ) has a finite subcover, then the space is said
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to as nearly compact (briefly, n.c.) [20];

(ii) Every countable cover of a space (M, ℑ) by regular open sets that has a finite subcover

is called nearly countably compact (briefly, n.c.c.) [9].

(iii) If there is a countable subcover for each cover of M by regular open sets, then the space

(M, ℑ) is referred to as nearly Lindelöf(briefly, n.L.) [8].

(iv) If each δgp-open cover of a space (M, ℑ) has a finite subcover, then the space is said to

as δgp-compact (briefly, δgp.c.) [26];

(v) Every countable cover of a space (M, ℑ) by δgp-open sets that has a finite subcover is

called countably δgp-compact (briefly, c.δgp-c.);

(vi) If there is a countable subcover for each cover of M by δgp-open sets, then the space

(M, ℑ) is referred to as δgp-Lindelöf(briefly, δgp.L.)

Theorem 3.15. Let ℓ: (M, ℑ) → (N , γ) be a c. δgp-i. surjection, then the following hold:

(i) If (M, ℑ) is n.c., then (N , γ) is δgp-c.;

(ii) If (M, ℑ) is n.L., then (N , γ) is δgp-L.;

(iii)If (M, ℑ) is n.c.c., then (N , γ) is c.δgp-c..

Proof. (i) Let M be n.c. and A be an δgp-open cover of N .

(A ⊂ δGPO(N )) (N = ∪ A)
ℓ is c.δ gp.i
=======⇒

(K: = {ℓ−1(J)| J ∈ A} ⊂ RO(M))(M = ∪ K)

M is nearly compact

 =⇒ (∃K∗ ⊂ K)(| K∗ |< ℵ0(M = ∪K∗))

ℓ is surjective
=========⇒ (K: = (ℓ(K∗)⊂ℓ(K)=A)(|ℓ(B∗)| < ℵ0) (K = ℓ(M) = ℓ(∪ B∗) = ∪N∈N∗ ℓ(K)).

(ii) Let M be n.L. and A be an δgp-open cover of N .

(A ⊂ δGPO(N ))(|A| ≤ ℵ0(N = ∪ A))
ℓ is c.δ gp.i.
========⇒

=⇒
(
K := {ℓ−1(J) | J ∈ A} ⊆ RO(M)

)
(M = ∪K)

M is n.c.

 =⇒

=⇒
(
∃K∗ ⊆ K | K |< ℵ0 ∧ M = ∪K∗)

ℓ is surjective

 =⇒

=⇒ (ℓ(K∗) ⊂ ℓ(K) = A)(|ℓ(K∗) | < ℵ0)(N = ℓ(M) = ℓ(∪ K∗) = UN∈N ∗ ℓ(K)).

(iii) Let M be n.c.c. and A be an δgp-open countable cover of N .
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(A ⊂ δGPO(N ))(|A| ≤ ℵ0)(N = ∪ A)
ℓ is c.δ gp.i.
========⇒

=⇒
(
K := {ℓ−1(J) | J ∈ A} ⊆ RO(M)

)
(M = ∪K)

M is n.c.c.

 =⇒

=⇒
(
∃K∗ ⊆ K with |K∗| < ℵ0 ∧ M = ∪K∗)

ℓ is surjective

 =⇒

=⇒ (ℓ (K∗) ⊂ ℓ(K) = A)(| ℓ(K∗)| < ℵ0)(N = ℓ(M) = ℓ(∪ K∗)) = ∪K∈K∗ ℓ(K). □

Definition 3.5.

(i) If there is a finite subcover for each regular closed (resp., δgp-closed) cover of a space (M,

ℑ) then the space is said to be S-closed [27] (resp., δgp-closed compact).

(ii) If every countable cover of M by regular closed (resp., δgp-closed) sets has a finite

subcover, then the space (M, ℑ) is called countably S-closed compact [1](resp., countably

δgp-closed compact).

(iii) If any cover of M by regular closed (resp., δgp-closed) sets admits a countable subcover,

then the space (M, ℑ) is called S-Lindelöf [16] (resp., δgp-closed Lindelöf).

Theorem 3.16. Let ℓ: (M, ℑ) → (N , γ) be a c.δgp-i. surjection. The following is true:

(i) If (M, ℑ) is S-closed, then (N , γ) is δgp-closed compact.

(ii) If (M, ℑ) is S-Lindelöf, then (N , γ) is δgp-closed Lindelöf.

(iii) If (M, ℑ) is countably S-closed compact, then (N , γ) is countably δgp-closed compact.

Proof. (i) Let (M, ℑ) be S-closed and compact and A be an δgp-closed cover of (N , γ).

(A ⊂ δGPC(N ))(N = ∪ A)
ℓ is c.δ gp.i.
========⇒ (H: = {ℓ−1(K)|K ∈ A} ⊂ RC(M))(M = ∪ H)

M is S-closed

 =⇒

=⇒ (∃ N ∗ ⊂ H) (|H∗| < ℵ0) (M = ∪ H)
ℓ is surjective
=========⇒

=⇒ (H : = (ℓ(H∗) ⊂ ℓ(H)=A)(|ℓ(H∗)| < ℵ0)(N = ℓ(M) = ℓ(∪ H∗) = ∪ H∈H∗ ℓ(H)).

(ii) Let (M, ℑ) be S - Lindelöf and A be an δgp-closed countable cover of N .

(A ⊂ δGPC(Q)) (| A | ≤ ℵ0)(N = ∪ A)
ℓ is c.δ gp.i.
========⇒

=⇒
(
B := {ℓ−1[A] | A ∈ A} ⊆ δRC(M)

)
(M = ∪B)

M is Lindelöf closed

 =⇒
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=⇒ (∃ B∗⊂ B)(|B∗| < ℵ0)(M = ∪ B∗)

ℓ is surjective
=========⇒ (ℓ[B∗] ⊂ ℓ[B] = A) (|ℓ[B*]| ≤ ℵ0)

(N = ℓ(M) = ℓ(∪ B∗)) = ∪B∈B∗ ℓ(B).

(iii) Let (M, ℑ) be countable S-closed compact and A be an δgp-closed countable cover of

N .

(A ⊂ δGPC(N )) (|A| ≤ ℵ0)(N = ∪ A)
ℓ is c.δgp.i.
=======⇒

(J:={ℓ−1 (A) | A ∈ A} ⊂ RC(M))(|J| ≤ ℵ0)(M = ∪ J)

M is countable S-closed compact)

 =⇒

=⇒
(
∃J∗ ⊆ J with |J∗| < ℵ0 ∧ M = ∪J∗)

ℓ is surjective

 =⇒

=⇒ (ℓ(J∗) ⊂ ℓ(J) = A) (| ℓ(J∗) | < ℵ0)(N = ℓ(M) = ℓ(∪ J∗) = ∪J∈J∗ ℓ(J). □

Definition 3.6. A space (M, ℑ) is defined as almost regular [19] (or strongly δgp-regular)

if for any L ∈ RC(M) (or δGPC(M) and any point q ∈ M\L, there exist C, D ∈ ℑ (or

δGPO(M)) such that q ∈ C, L ⊆ D and C ∩ D= ∅).

Example 3.4. Consider M = {u1, u2, u3, u4, u5} with the topology ℑ ={∅, M ,{u1, u2},{u3,

u4},{u1, u2, u3, u4}}. Then, (M, ℑ) is strongly δgp-regular

Theorem 3.17. If ℓ: (M, ℑ) → (N , ℜ) c.δgp-i. δgp-open bijection.

If (M, ℑ) is an almost regular, then (N , γ) is strongly δgp-regular.

Proof. Let F ∈ δGPC(N ) and ℓ(r) = s /∈ F.

ℓ(r)=s /∈ F ∈ δGPC(N )
ℓ is c.δgp.i.
=======⇒ r /∈ ℓ−1 (F) ∈ RC(M)

M is almost regular

 =⇒

=⇒ (∃ U, V ∈ δGPO(M)) (r ∈ U) (ℓ−1(F) ⊂ V)(U∩V= ∅)
ℓ is δgp-open bijection
==============⇒ (ℓ(U), ℓ(V) ∈ δGPO(N ))(s = ℓ(r) ∈ ℓ(U))(F⊂ℓ(V))(ℓ(U) ∩ ℓ(V) = ∅).

□

Definition 3.7. A space (M, ℑ) is defined as follows:

(a) Almost normal: [21] For each G ∈ C(M) and each H ∈ RC(M) such that G ∩ H = ∅,

there exist J, K ∈ ℑ such that J ∩ K = ∅, G ⊆ J and H ⊆ K.



INT. J. MAPS MATH. (2025) 8(2):702-716 / A NEW TYPE OF IRRESOLUTE FUNCTION ... 713

(b) Strongly δgp-normal: For any pair G, H ∈ δGPC(M) such that G ∩ H = ∅, there exist

J, K ∈ δGPO(M) such that J ∩ K = ∅, G ⊆ J and H ⊆ K.

Example 3.5. Consider M ={u1, u2, u3, u4} with the topology ℑ ={∅, M, {u1}, {u2}, {u1,

u2},{u1, u3},{u1, u2, u3}}. Then, (M, ℑ) is strongly δgp-normal.

Theorem 3.18. If (M, ℑ) is an almost normal space then (N , γ) is strongly δgp-normal

whenever ℓ:(M, ℑ) → (N , γ) is c. δgp-i. and δgp-open bijection.

Proof. Let C, D ∈ δGPC(N ) and C ∩ D = ∅.

(C, D ∈ δGPC(N )) (C ∩ D)= ∅

ℓ is c.δgp.i.

 =⇒ (ℓ−1(C), ℓ−1(D) ∈ RC(M))(ℓ−1(C ∩D) = ℓ−1(∅))

=⇒
(
ℓ−1(C), ℓ−1(D) ∈ RC(M) ∧ ℓ−1(C) ∩ ℓ−1(D) = ∅

)
RC(M) ⊆ C(M)

 =⇒

=⇒ (ℓ−1(C) ∈ C(M)) ( ℓ−1(D) ∈ RC(M)) (ℓ−1(C) ∩ ℓ−1(D) = ∅)
(M, ℑ) is almost normal
================⇒

=⇒
(
∃U, V ∈ δGPO(M) : ℓ−1(C) ⊆ U, ℓ−1(D) ⊆ V, U ∩ V = ∅

)
ℓ is a δ-gp-open bijection

 =⇒

=⇒ (ℓ(U), ℓ(V) ∈ δGPO(N ))(C ⊆ ℓ(U))(D ⊆ ℓ(V)) (ℓ(U) ∩ ℓ(V) = ∅. □

Definition 3.8. A space (M, ℑ) is said to be δgp-T1 [25] (resp., r-T1 [8]) if for each r, s

(r ̸= s) ∈ M, there exist K1 and K2 ∈ δGPO(M) (resp., O(M)) r ∈ K1, s ∈ K2, r /∈ K2

and s /∈ K1.

Theorem 3.19. If ℓ:(M, ℑ) → (N , γ) is c.δgp-i. injection and (N , γ) is δgp-T1, then

(M, ℑ) is r-T1.

Proof. Let r, s ∈ M and r ̸= s.

((r, s) ∈ M)(r ̸= s)
ℓ is injective
========⇒ ℓ(r) ̸= ℓ(s)

(N , γ) is δgp - T1

 =⇒

=⇒ (∃ U ∈ δGPO(N , ℓ(r) and V ∈ δGPO (N , ℓ(s))) (ℓ(r) /∈ V) (ℓ(s) /∈ U)

ℓ is c.δgp.i.
=======⇒ (ℓ−1(U) ∈ RO(M, r)) (ℓ−1(V) ∈ RO(M, s))(r /∈ ℓ−1(V)) (s /∈ ℓ−1(U)). □
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Definition 3.9. A space (M, ℑ) is said to be δgp-Hausdorff [24] (resp. r-T2 [8]) for each

p, q (p ̸= q) ∈ M, there exist ∈ J, K δGPO(M) (resp., RO(M)) such that p ∈ J, q ∈ K

and J ∩ K = ∅.

Theorem 3.20. If ℓ: (M, ℑ) → (N ,γ) is c.δgp-i. injection and (N , γ) is δgp-Hausdorff,

then (M, ℑ) is r-T2.

Proof. Let r, s ∈ M and r ̸= s.

(r, s) ∈ M×M)(r ̸= s)
ℓ is injective
========⇒ ℓ(r) ̸= ℓ(s)

(N , γ) is δgp-Hausdorff

 =⇒

=⇒ (∃ A ∈ δGPO (N , ℓ(r)) (∃ B ∈ δGPO (N , ℓ(s)) ( A ∩ B= ∅)
ℓ is c.δgp.i.
=======⇒ (ℓ−1(A) ∈ RO (M, r)) (ℓ−1(B) ∈ RO(N , s))(ℓ−1(A) ∩ ℓ−1(B) = ∅). □

Theorem 3.21. Let (N , γ) be δgp-Hausdorff space. If ℓ: (M, ℑ) → (N ,γ) and ḱ: (M, ℑ)

→ (N ,γ) are c.δgp-i.e, then L = {q | ℓ(q) = ḱ(q)} is δ-closed in M.

Proof. Suppose that q /∈ L.

q /∈ L =⇒ ℓ(q) ̸= ḱ(q)

(N , γ) is δgp-Hausdorff

 =⇒

=⇒ (∃ G ∈ δGPO(N, ℓ(q)))(∃ H ∈ δGPO(N , ḱ(q)))(G ∩ H = ∅)
ℓ and ḱ are c.δgp.i.
============⇒

(ℓ−1(G) ∈ RO(M, q))(ḱ−1(H) ∈ RO(M, q))(ℓ−1(G ∩ H) = ∅)(ḱ−1(G ∩ H) = ∅)

=⇒ (U : = ℓ−1(G) ∩ ḱ−1(H) ∈ RO(M, q)) (U ∩ L = ∅) =⇒ q /∈ ćδ(L).

Then, L is δ-closed in M. □

Theorem 3.22. Let (N , γ) be δgp-Hausdorff space. If ℓ: (M, ℑ) → (N ,γ) is c.δgp-i., then

K = {(p, q) | ℓ(p) = ℓ(q)} is δ-closed in M×M.

Proof. Let (p, q) /∈ K.

(p, q) /∈ K =⇒ ℓ(p) ̸= ℓ(q)

(N , γ) is δgp-Hausdorff

 =⇒

(∃ G ∈ δGPO(N ,ℓ(p)))(∃ H ∈ δGPO (N , ℓ(q)))(G ∩ H = ∅)
ℓ is c.δgp.i.
=======⇒ (ℓ−1(G) ∈ RO (M, p)) (ℓ−1(H) ∈ RO (M, q))(ℓ−1(G) ∩ ℓ−1(H) = ∅)

=⇒ (U: = ℓ−1(G) × ℓ−1(H) ∈ RO(M×M, (p, q))(U ∩ K = ∅)

=⇒ (p, q) /∈ ćδ(K)

Then, M is δ-closed in M×M. □
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4. Conclusion

In this research paper, we have defined completely δgp-irresolute functions, strongly δgp-

regular space, and strongly δgp-normal space in topological spaces with an example and

give the proof of the theorems based on their properties. We are interested in extending

our research work to convergence in bitopological spaces and nano topological spaces. In

addition, we plan to find some interesting concepts in bitopological spaces.
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[20] Singal, M. K., Singal, A. R., & Mathur, A. (1969). On nearly-compact spaces. Bollettino dell’Unione

Matematica Italiana, 4(2), 702-710.

[21] Singal M. K., & Arya, S. P. (1970). Almost normal and almost completely regular spaces. Glasnik
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