

International Journal of Maps in Mathematics

Volume 8, Issue 2, 2025, Pages:481-492

E-ISSN: 2636-7467

www.simadp.com/journalmim

ON HYPERCYCLICITY OF WEIGHTED COMPOSITION OPERATORS ON STEIN MANIFOLDS

FIROOZ PASHAIE (* , MOHAMMAD REZA AZIMI (, AND SEYYED MOHAMMAD SHAHIDI (

ABSTRACT. In this manuscript, we study the hypercyclicity of weighted composition operators defined on the set of holomorphic complex functions on a connected Stein n-manifold \mathbf{M} . We show that a weighted composition operator $\mathbf{C}_{\psi,\omega}$ (associated to a holomorphic self-map ψ and a holomorphic function ω on \mathbf{M}) is hypercyclic with respect to an increasing sequence $(n_l)_l$ of natural numbers if and only if at every $p \in \mathbf{M}$ we have $\omega(p) \neq 0$ and the self-map ψ is injective without any fixed points in \mathbf{M} , $\psi(\mathbf{M})$ is a Runge domain and for every \mathbf{M} -convex compact subset $C \subset \mathbf{M}$ there is a positive integer number k such that the sets C and $\psi^{[n_k]}(C)$ are separable in \mathbf{M} .

Keywords: Holomorphic, Composition operators, Hypercyclic, Convex.

2020 Mathematics Subject Classification: Primary: 47B33, 47B38, Secondary: 32H50.

1. Introduction

Let U be a domain in the complex plane \mathbb{C} , and $\mathbb{H}(U)$ be the space of holomorphic complex functions in U. The space $\mathbb{H}(U)$ is endowed with the topology of locally uniform convergence, under which it becomes a complete separable metric space. We are interested in proving the existence of dense orbits for composition operators on $\mathbb{H}(U)$. If ψ is a holomorphic self-map on U, then the composition operator associated to ψ is defined as $\mathbf{C}_{\psi}(f) = f \circ \psi$ for every $f \in \mathbb{H}(U)$.

Received: 2024.10.26 Revised: 2025.02.22 Accepted: 2025.03.14

Firooz Pashaie \Leftrightarrow f_pashaie@maragheh.ac.ir \Leftrightarrow https://orcid.org/0000-0002-3020-7649 Mohammad Reza Azimi \Leftrightarrow mhr.azimi@maragheh.ac.ir \Leftrightarrow https://orcid.org/0000-0002-7337-1617 Seyyed Mohammad Shahidi \Leftrightarrow muhamd.shahidi@gmail.com \Leftrightarrow https://orcid.org/0009-0000-2150-9074.

^{*} Corresponding author

The first step has been taken in 1929 by Birkhoff ([7]) when he proved that there exists an entire function $\lambda : \mathbb{C} \to \mathbb{C}$ such that $\{\lambda \circ t_n\}_{n \in \mathbb{N}}$ forms a dense set in $\mathbb{H}(\mathbb{C})$, where $\{t_n\}_{n=1}^{\infty}$ is the sequence of \mathbb{C} -automorphisms defined by $t_n : z \mapsto z + n$. The function λ is called universal.

Gethner and Shapiro have studied universal vectors for operators on spaces of holomorphic functions in 1987 ([13]). In 90s, the subject of cyclic composition operators has been discussed by many researchers ([8, 9, 10, 14]). In the same decade, some generalizations to hypercyclic operators have also been studied ([15, 20, 21]).

In 2001, Shapiro studied the dynamics of linear operators ([22]) which followed by Grose-Erdman in 2003 ([16]). As a concrete example, Bernal-Gonzales has studied the universal entire functions for affine endomorphisms on \mathbb{C}^n in 2005.

A class of linear fractional maps of the ball and its composition operators has been considered by Bayart in 2007 ([5]). One can find the continuation of research progress on the hypercyclicity of operators in the references [6, 11, 18, 24]. Between them, the manuscript [24] has a special importance because it discuss on the hypercyclicity of composition operators associated to some holomorphic self-maps defined on an important class of complex manifolds namely Stein manifolds. The important properties of Stein manifolds can be found in [24].

The weighted composition operators associated to some holomorphic self-maps have been interested in some recent researches (see for instance [1, 2, 3, 4, 23]). Also, in [19], the authors have studied the dynamics of weighted composition operators on Stein manifolds, where the maps and functions are defined on a Stein manifold.

In this paper, we consider a holomorphic self-map $\psi \in \mathcal{O}(\mathbf{M})$ defined on a connected Stein *n*-manifold \mathbf{M} and a holomorphic function $\omega \in \mathbb{H}(\mathbf{M})$. We study the hypercyclicity of weighted composition operator $\mathbf{C}_{\psi,\omega} : \mathbb{H}(\mathbf{M}) \to \mathbb{H}(\mathbf{M})$ defined by rule $\mathbf{C}_{\psi,\omega}(f) := \omega \cdot (f \circ \psi)$ with respect to an increasing sequence of natural numbers.

We prove that $\mathbf{C}_{\psi,\omega}$ is hypercyclic if and only if for every $p \in \mathbf{M}$, $\omega(p) \neq 0$ and ψ is univalent without fixed points in \mathbf{M} , $\psi(\mathbf{M})$ is a Runge domain and for every compact holomorphically convex set $C \subset \mathbf{M}$ there is an integer n such that $C \cap \psi^{[n]}(C) = \emptyset$ and their sum is \mathbf{M} -convex.

In the study of hypercyclicity of $\mathbf{C}_{\psi,\omega}$, which is connected with some approximation theorems, one can use two well-known theorems namely the Runge Theorem and Oka-Weil Theorem.

2. Preliminaries

In this section, we present the preliminary concepts and notations from [1, 2, 5, 6, 17, 24]. We denote the family of all open subsets of a given topological space X by $\mathbf{Op}(X)$ and the family of all compact subsets of X by $\mathbf{Cp}(X)$. As usual, $\mathcal{C}(X,Y)$ denotes the set of all continuous maps between two topological spaces X and Y.

Definition 2.1. For every $C \in \mathbf{Cp}(X)$ and $U \in \mathbf{Op}(Y)$, the set of functions $f \in \mathcal{C}(X,Y)$ satisfying condition $f(C) \subset U$ is denoted by $\mathcal{V}(C,U)$. The topology generated by subbase

$$\triangle := \{ \mathcal{V}(C, U) | C \in \mathbf{Cp}(X), U \in \mathbf{Op}(Y) \}$$

is called the *compact-open topology* on C(X,Y).

We note that \triangle does not always form a base for a topology on $\mathcal{C}(X,Y)$. The compact-open topology (which is applied in homotopy theory and functional analysis) was introduced by Ralph Fox in 1945 [12].

A continuous map $f \in \mathcal{C}(X,Y)$ is said to be *proper* if each connected component of $f^{-1}(K)$ is compact for every $K \in \mathbf{Cp}(Y)$.

Definition 2.2. Let X be a topological vector space and $\{\alpha_r : X \to X\}_{r=1}^{\infty}$ be a sequence of continuous self-maps on X.

- (1) $\{\alpha_r\}_{r=1}^{\infty}$ is called topologically transitive if for every non-empty $U, V \in \mathbf{Op}(X)$ there exists r_0 such that $\alpha_{r_0}(U) \cap V \neq \emptyset$.
- (2) A point $p \in X$ is said to be an universal element for $\{\alpha_r\}_{r=1}^{\infty}$ if the sequence $\{\alpha_r(p)\}_{r=1}^{\infty}$ of points is dense in X.
- (3) A point $p \in X$ is said to be an weakly universal element for $\{\alpha_r\}_{r=1}^{\infty}$ if the sequence $\{\alpha_r(p)\}_{r=1}^{\infty}$ of points is dense in X with respect to the weak topology of X.
- (4) The sequence $\{\alpha_r\}_{r=1}^{\infty}$ is said to be *universal* if it admits a universal element.
- (5) The sequence $\{\alpha_r\}_{r=1}^{\infty}$ is said to be weakly universal if it admits a weakly universal element.

Definition 2.3. Let X be a topological vector space and $\alpha: X \to X$ be a continuous self-map on X.

(1) The iterations of α is defined by $\alpha^{[1]} = \alpha$, $\alpha^{[2]} = \alpha \circ \alpha$ and $\alpha^{[r+1]} = \alpha \circ \alpha^{[r]}$ for integer number $r \geq 2$.

- (2) We say that α is hypercyclic with respect to an increasing sequence $\{r_k\}_{k=1}^{\infty} \subset \mathbb{N}$ if the sequence $\{\alpha^{[r_k]}\}_{k=1}^{\infty}$ is universal.
- (3) We say that α is weakly hypercyclic with respect to an increasing sequence $\{r_k\}_{k=1}^{\infty} \subset \mathbb{N}$ if the sequence $\{\alpha^{[r_k]}\}_{k=1}^{\infty}$ is weakly universal.
- (4) α is called *hypercyclic* if it is hypercyclic with respect to the full sequence $\{r\}_{r=1}^{\infty}$.
- (5) α is called weakly hypercyclic if it is hypercyclic with respect to the full sequence $\{r\}_{r=1}^{\infty}$.

Here, we recall an essential theorem from [15] which gives a necessary and sufficient condition for topological transitivity of a sequence of continuous linear maps on a separable Fréchet space using the set of its universal elements. Remember that, a Fréchet space is a complete locally convex metrizable topological vector space.

Theorem 2.1. Let \mathbf{F} be separable Fréchet space and $\{\alpha_r\}_{r=1}^{\infty}$ be a sequence of continuous self-maps on \mathbf{F} . This sequence is topologically transitive if and only if the set of its universal elements is dense in \mathbf{F} . Moreover, in this case the set of universal elements for $\{\alpha_r\}_{r=1}^{\infty}$ is a dense G_{δ} -subset of \mathbf{F} .

Also, we recall another useful theorem from [15] in this context.

Theorem 2.2. Let **F** be separable Fréchet space and $\{\alpha_r\}_{r=1}^{\infty}$ be a sequence of continuous self-maps on **F**. If α_r has dense range in **F** for each $r \in \mathbb{N}$ and the sequence $\{\alpha_r\}_{r=1}^{\infty}$ is commuting (i.e. for every $r, s \in \mathbb{N}$, we have $\alpha_r \circ \alpha_s = \alpha_s \circ \alpha_r$), then the set of universal elements of $\{\alpha_r\}_{r=1}^{\infty}$ is empty or dense in **F**.

The hypercyclicity of a bounded linear map α on a Fréchet space \mathbf{F} means that for a vector $\mathbf{v} \in \mathbf{F}$, its orbit (i.e. $Orb(\alpha, \mathbf{v}) = \{\alpha^{[r]}(\mathbf{v})\}_{r=1}^{\infty}$) is dense in \mathbf{F} . By these theorems we get a corollary that allows us to investigate topological transitivity instead of hypercyclicity. Also, Theorem 3 in [15] has a similar argument.

Corollary 2.1. Let X be a separable Fréchet space, let $\alpha: X \to X$ be a continuous map, and let $\{r_k\}_{k=1}^{\infty} \subset \mathbb{N}$ be an increasing sequence. Then, α is hypercyclic w.r.t. $\{r_k\}_{k=1}^{\infty}$ if and only if the sequence $\{\alpha^{[r_k]}\}_{k=1}^{\infty}$ is topologically transitive.

Now, we introduce the Stein manifold which plays main role in this paper.

Definition 2.4. A complex manifold \mathbf{M} of (finite) dimension n is called a *Stein manifold*, if it satisfies the following four conditions:

- (1) **M** admits a *compact exhaustion*, which means that, there is a sequence $(C_r)_{r=1}^{\infty}$ of compact subsets of **M** such that $\mathbf{M} = \bigcup_{r=1}^{\infty} C_r$ and for each $r, C_r \subset (C_{r+1})^0$.
- (2) $\widehat{C}_{\mathbf{M}} \in \mathbf{Cp}(\mathbf{M})$ for every $C \in \mathbf{Cp}(\mathbf{M})$, where

$$\widehat{C}_{\mathbf{M}} := \{ p \in \mathbf{M} : |f(p)| \le \sup_{C} |f|, \forall f \in \mathcal{O}(\mathbf{M}) \}$$

is the holomorphic hull of C.

- (3) $\mathbb{H}(\mathbf{M})$ separates points in \mathbf{M} , i.e. for each two distinct points $p, q \in \mathbf{M}$, there exists $f \in \mathbb{H}(\mathbf{M})$ with $f(p) \neq f(q)$,
- (4) For each $p \in \mathbf{M}$ there exists a map $F \in \mathcal{O}(\mathbf{M}, \mathbb{C}^n)$ such that the derivative of F at p is an isomorphism.

Definition 2.5. Let M be a Stein *n*-manifold.

- (1) A $C \in \mathbf{Cp}(\mathbf{M})$ is said to be **M**-convex (equivalently, holomorphically convex) if $\widehat{C}_{\mathbf{M}} = C$.
- (2) In special case $\mathbf{M} = \mathbb{C}^n$, $\widehat{C}_{\mathbf{M}}$ is denoted with shorter symbol \widehat{C} and is called the polynomial hull of C.
- (3) A $C \in \mathbf{Cp}(\mathbb{C}^n)$ is called polynomially convex if $C = \widehat{C}$.

For two finite-dimensional complex manifolds \mathbf{M} , \mathbf{N} , the notation $\mathcal{O}(\mathbf{M}, \mathbf{N})$ denotes the set of all holomorphic maps $\phi : \mathbf{M} \to \mathbf{N}$. In special cases, we use simple notations $\mathcal{O}(\mathbf{M}) := \mathcal{O}(\mathbf{M}, \mathbf{M})$ and $\mathbb{H}(\mathbf{M}) := \mathcal{O}(\mathbf{M}, \mathbb{C})$. A holomorphic function on an open subset of the complex plane is called univalent if it is injective.

Definition 2.6.

- (1) We say that a sequence of holomorphic maps $\{\phi_k \in \mathcal{O}(\mathbf{M}, \mathbf{N})\}_{k=1}^{\infty}$ is compactly divergent (in $\mathcal{O}(\mathbf{M}, \mathbf{N})$) if for each $C \in \mathbf{Cp}(\mathbf{M})$ and $K \in \mathbf{Cp}(\mathbf{N})$ there is k_0 such that $\phi_k(C) \cap K = \emptyset$ for all $k \geqslant k_0$.
- (2) The sequence $\{\phi_k \in \mathcal{O}(\mathbf{M}, \mathbf{N})\}_{k=1}^{\infty}$ is said to be run-away (in $\mathcal{O}(\mathbf{M}, \mathbf{N})$) if for each $C \in \mathbf{Cp}(\mathbf{M})$ and $K \in \mathbf{Cp}(\mathbf{N})$, there is k_0 such that $\phi_{k_0}(C) \cap K = \emptyset$. In the case $\mathbf{M} = \mathbf{N}$, it is always enough to consider the situation when C = K.

When **M** and **N** admit compact exhaustions, the sequence $\{\phi_k\}_{k=1}^{\infty}$ is run-away if and only if it has a compactly divergent subsequence.

A holomorphic map $f \in \mathcal{O}(\mathbf{M}, \mathbf{N})$ between to complex manifold is called *regular* if its derivative is a monomorphism at each point of \mathbf{M} .

A Runge domain in a Stein Manifold \mathbf{M} is a domain $U \subset \mathbf{M}$ such that every function $f \in \mathbb{H}(U)$ can be approximated uniformly on U by a sequence of members of $\mathbb{H}(\mathbf{M})$. By the well-known Oka-Weil theorem, on every compact \mathbf{M} -convex subset $C \subset \mathbf{M}$, every holomorphic function (i.e. holomorphic on a neighborhood of C) can be approximated uniformly by functions from $\mathbb{H}(\mathbf{M})$.

Remark 2.1. By condition (1) of Definition 2.4, a Stein manifold \mathbf{M} has a compact exhaustion $\{C_k\}_{k=1}^{\infty}$ such that $\bigcup_{k=l}^{\infty} C_k = \mathbf{M}$ and for each k, $C_k \subset (C_{k+1})^0$. So, we can take a sequence of semi-norms $\{p_k : \mathbb{H}(\mathbf{M}) \to \mathbb{R}\}_{k=1}^{\infty}$ defined by $p_k(f) := \sup\{|f(p)|p \in C_k\}$, which gives the topology of $\mathbb{H}(\mathbf{M})$. So, $\mathbb{H}(\mathbf{M})$ with this topology is a separable Fréchet space (see [23, 24]). This observation allows us to use Corollary 2.1 for the space $X = \mathbb{H}(\mathbf{M})$, with \mathbf{M} being a connected Stein manifold.

Remark 2.2. By theorem from [24], a domain U in a connected Stein manifold \mathbf{M} is a Runge domain if and only if every compact subset $C \subset U$ satisfies $\widehat{C}_{\mathbf{M}} = \widehat{C}_U$. Also, that condition is equivalent to equality $\widehat{C}_{\mathbf{M}} \cap U = \widehat{C}_U$ for every compact subset $C \subset U$.

For every locally compact topological space X, the usual compactification with one point $\infty_X \notin X$ is denoted by $X_c = X \cup \{\infty_X\}$.

It is clear that, if a continuous self-map α defined on a topological vector space X is hypercyclic, then any universal element of $\{\alpha^{[r]}\}_{r=1}^{\infty}$ is a hypercyclic vector. Finally, we have a useful lemma which guarantees that the adjoint operator of a weakly hypercyclic operator on a topological vector space dose not have any eigenvector.

Lemma 2.1. The adjoint operator of a weakly hypercyclic operator on a topological vector space does not have any eigenvector.

Proof. Let α be a weakly hypercyclic linear self-map on a topological vector space X. Clearly, α is 1-weakly. Hence, α^* does not have any eigenvectors by Proposition 3.2 in [11].

The following well-known theorems ([24]) characterizes the Runge domains in a Stein manifold \mathbf{M} in the language of holomorphic hulls.

Theorem 2.3. Let U be a Stein manifold which is a domain of a connected Stein manifold M. Then, the following conditions are equivalent:

- (1) The domain U is a Runge domain in \mathbf{M} .
- (2) $\widehat{C}_{\mathbf{M}} = \widehat{C}_U$ for every compact subset $C \subset U$.

(3) $\widehat{C}_{\mathbf{M}} \cap U = \widehat{C}_U$ for every compact subset $C \subset U$.

Theorem 2.4. Let C and D be two compact subsets of a connected Stein manifold M. Then the following conditions are equivalent:

- (1) C and D are separable in \mathbf{M} .
- (2) There exist open and disjoint subsets $U, V \subset \mathbf{M}$ such that $\widehat{C}_{\mathbf{M}} \subset U$, $\widehat{D}_{\mathbf{M}} \subset V$ and $(\widehat{C \cup D})_{\mathbf{M}} \subset U \cup V$.
- (3) $\widehat{C}_{\mathbf{M}} \cap \widehat{D}_{\mathbf{M}} = \emptyset$ and $(\widehat{C \cup D})_{\mathbf{M}} = \widehat{C}_{\mathbf{M}} \cup \widehat{D}_{\mathbf{M}}$.

In particular, if C and D are disjoint and M-convex, then $C \cup D$ is M-convex if and only if C and D are separable in M.

Corollary 2.2. Let C and D be two disjoint compact subsets of a connected Stein manifold M such that $C \cup D$ is M-convex. Then C and D are both M-convex.

3. Main results

In this section, we choose a $\psi \in \mathcal{O}(\mathbf{M})$ and a weight function $\omega \in \mathbb{H}(\mathbf{M})$ on a connected Stein *n*-manifold \mathbf{M} . Some necessary conditions for hypercyclicity of the weighted composition operator $\mathbf{C}_{\psi,\omega}$ with respect to an increasing sequence of natural numbers $\{n_k\}_{k=1}^{\infty}$ are presented.

Proposition 3.1. Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of natural numbers, \mathbf{M} be a connected Stein *n*-manifold, $\omega \in \mathbb{H}(\mathbf{M})$ and $\psi \in \mathcal{O}(\mathbf{M})$. If the weighted composition operator $\mathbf{C}_{\psi,\omega}$ is hypercyclic with respect to $\{n_k\}_{k=1}^{\infty}$, then the following conditions hold:

- (1) $\omega \neq 0$ on **M** and ψ has no fixed point in **M**.
- (2) ψ is injective.
- (3) $\psi(\mathbf{M})$ is a Runge domain w.r.t. \mathbf{M} .
- (4) The sequence $\{\psi^{[n_k]}\}_{k=1}^{\infty}$ is run-away.

Proof.

(1) Remember that $\mathbb{H}(\mathbf{M})$ is a separable Fréchet space and the point evaluation linear functional $\mathcal{E}_p : \mathbb{H}(\mathbf{M}) \to \mathbb{C}$ (at each point $p \in \mathbf{M}$) defined by $\mathcal{E}_p(h) := h(p)$ is continuous. The adjoint of $\mathbf{C}_{\psi,\omega}$ satisfies the following equality

$$\mathbf{C}_{\psi,\omega}^*(\mathcal{E}_p)(h) = \mathcal{E}_p \circ \mathbf{C}_{\psi,\omega}(h) = \mathcal{E}_p(\omega \cdot (h \circ \psi)) = \omega(p) \cdot (h \circ \psi)(p).$$

So, $\mathbf{C}_{\psi,\omega}^*$ has an eigenvalue if $\omega(p) = 0$ or $\psi(p) = p$ and then, in these two cases $\mathbf{C}_{\psi,\omega}$ can not be hypercyclic.

(2) Since $\mathbf{C}_{\psi,\omega}$ is hypercyclic with respect to $\{n_k\}_{k=1}^{\infty}$, it admits a hypercyclic vector $g \in \mathbb{H}(\mathbf{M})$. So, for each $h \in Orb(\mathbf{C}_{\psi,\omega}, g)$ there exists a positive integer k such that

$$h = (\mathbf{C}_{\psi,\omega}^{[n_k]}(g)) = \prod_{j=0}^{n_k-1} \mathbf{C}_{\psi}^{[j]}(\omega) \cdot \mathbf{C}_{\psi}^{[n_k]} g = \omega \cdot (\prod_{j=1}^{n_k-1} \omega \circ \psi^j) \cdot (g \circ \psi^{n_k}).$$

Assuming $\psi(p) = \psi(q)$ for two distinct points $p, q \in \mathbf{M}$, we get $\frac{1}{\omega(p)}h(p) = \frac{1}{\omega(q)}h(q)$ and then

$$\frac{1}{\omega(p)}\mathcal{E}_p(h) = \frac{1}{\omega(q)}\mathcal{E}_q(h) \tag{3.1}$$

for every $h \in Orb(\mathbf{C}_{\psi,\omega}, g)$. So, by continuity of $\frac{1}{\omega(p)}\mathcal{E}_p$ and $\frac{1}{\omega(q)}\mathcal{E}_q$, it follows that the equality (3.1) holds for every $h \in \overline{Orb(\mathbf{C}_{\psi,\omega}, g)} = \mathbb{H}(\mathbf{M})$. Therefore, $\frac{1}{\omega(p)}\mathcal{E}_p = \frac{1}{\omega(q)}\mathcal{E}_q$ on $\mathbb{H}(\mathbf{M})$.

Now, putting g = 1, we get $\frac{1}{\omega(p)}\mathcal{E}_p(1) = \frac{1}{\omega(q)}\mathcal{E}_q(1)$ which gives $\omega(p) = \omega(q)$. Therefore, the equality h(p) = h(q) holds for every $g \in \mathbb{H}(\mathbf{M})$, which by condition (3) in Definition 2.4, implies that p = q. So, ψ is injective.

(3) It is enough to prove that the subset of restrictions $\{h|_{\psi(\mathbf{M})}: h \in \mathcal{O}(\mathbf{M})\}$ is dense in $\mathcal{O}(\psi(\mathbf{M}))$.

If $h \in \mathcal{O}(\psi(\mathbf{M}))$, then $h \circ \psi$ is holomorphic on \mathbf{M} , so there is a subsequence $\{n_{l_k}\}_{k=1}^{\infty}$ of $\{n_k\}_{k=1}^{\infty}$ such that $g \circ \psi^{[n_{l_k}]} \to g \circ \psi$ on \mathbf{M} (where, $g \in \mathbb{H}(\mathbf{M})$ is a hypercyclic vector for $C_{\psi,\omega}$ with respect to $\{n_k\}_{k=1}^{\infty}$). Hence $f \circ \psi^{[n_{l_k}-1]} \to h$ on $\psi(\mathbf{M})$, as the mapping ψ is a biholomorphism on its image.

(4) Let $K \subset \mathbf{M}$ be compact. For each positive integer k, there exists a positive integer n_{l_k} such that $|f \circ \psi^{[n_{l_k}]} - k| \leq \frac{1}{k}$ on K. So, for a big enough k, we have

$$\inf\{|f(z)|: z \in \psi^{[n_{l_k}]}(K)\} = \inf\{|(f \circ \psi^{[n_{l_k}]})(z)|: z \in K\} \ge k - \frac{1}{k} > \sup\{|f(z)|: z \in K\}.$$
Hence, $\psi^{[n_{l_k}]}(K) \cap K = \emptyset$.

Remark 3.1. It follows from the equivalence of conditions in Remark 2.2 and theorems 2.3 and 2.4 that ψ maps every M-convex compact $C \subset \mathbf{M}$ onto an M-convex compact set. Also, it implies that for any natural number n the set $\psi^{[n]}(C)$ is M-convex.

It is natural to ask whether the necessary conditions given by Proposition 3.1 are sufficient. In [18], it is shown that if \mathbf{M} is a simply connected or an infinitely connected planar domain

INT. J. MAPS MATH. (2025) 8(2):481-492 / HYPERCYCLICITY OF WEIGHTED COMPOSITION ... 489 or a special type of higher-dimensional Stein manifolds, then the mentioned property holds. But in general the above necessary conditions are not sufficient, as we can see using a simple example $\mathbf{M} = \mathbb{D}_*$ and $\psi(z) = \frac{1}{2}z$ then by Theorems 4.6 the operator C_{ψ} is not hypercyclic, although it satisfies the conditions (1), (2), (3).

Here, we prefer to re-describe the topology of $\mathcal{O}(\mathbf{M})$ and the concept of topologically transitivity of weighted composition operators.

For every $K \in \mathbf{Cp}(\mathbf{M})$ and $f_0 \in \mathbb{H}(\mathbf{M})$ and positive real number ϵ , the ϵ -neighborhood of f_0 is defined by

$$N_{\epsilon}^{K}(f_{0}) := \{ f \in \mathbb{H}(\mathbf{M}) : \forall y \in K, |f(y) - f_{0}(y)| < \epsilon \}.$$

The family of all such a neighborhoods forms a basis of the topology of $\mathbb{H}(\mathbf{M})$.

With the aim of using Corollary 2.1, so let us first clear the topological transitivity of the sequence $(\mathbf{C}_{\eta_l \omega}^{[n_l]})_l$.

Let $\psi \in \mathcal{O}(\mathbf{M})$ be an injective holomorphic self-map and $0 \neq \omega \in \mathbb{H}(\mathbf{M})$. The sequence $(\mathbf{C}_{\psi,\omega}^{[n_l]})_{l=1}^{\infty}$ is topologically transitive if and only if for every $\epsilon > 0$, $g, h \in \mathbb{H}(\mathbf{M})$ and $K \in \mathbf{Cp}(\mathbf{M})$ there are natural number k and function $f \in \mathbb{H}(\mathbf{M})$ such that $|f - g| < \epsilon$ and $|\mathbf{C}_{\psi,\omega}^{[n_k]}(f) - h| < \epsilon$ on K.

As the mapping ψ is injective and ω in non-zero, the above condition has another form:

$$|f - g| < \epsilon \text{ on } K \text{ and } |f - [\prod_{j=0}^{k-1} \mathbf{C}_{\psi}^{j}(\omega)]^{-1} \cdot h \circ \psi^{[-n_k]}| < \epsilon \text{ on } \psi^{[n_k]}(K).$$
 (3.2)

Since M is a Stein manifold, we can restrict to considering only M-convex sets.

Theorem 3.1. Let \mathbf{M} be a connected Stein manifold, $\psi \in \mathcal{O}(\mathbf{M})$, $\omega \in \mathbb{H}(\mathbf{M})$ and the weighted composition operator $\mathbf{C}_{\psi,\omega}$ is hypercyclic on $\mathcal{O}(\mathbf{M})$. Then for every \mathbf{M} -convex compact subset $C \subset \mathbf{M}$, there exists positive integer n such that $C \cap \psi^{[n]}(C) = \emptyset$ and the set $C \cup \psi^{[n]}(C)$ is \mathbf{M} -convex.

Proof. Suppose that $\mathbf{C}_{\psi,\omega}$ is hypercyclic. In view of Corollary 2.1, the condition 3.2 holds. Fix an \mathbf{M} -convex compact set $C \subset \mathbf{M}$. By Remark 3.1 we get that the set $\psi^{[n]}(C)$ is \mathbf{M} -convex. Using the condition 3.2 for g = 0, h = 1 and $\epsilon = \frac{1}{2}$, we get that there are $f \in \mathcal{O}(\mathbf{M})$ and $k \in \mathbf{N}$ such that $f(C) \subset \frac{1}{2}\mathbb{D}$ and $\frac{\lambda}{2}(\psi^{[k]}(C)) \subset (1 + \frac{1}{2}\mathbb{D})$ where $\lambda = \sup_{C}[\prod_{j=0}^{k-1} \mathbf{C}_{\psi}^{[j]}(\omega)]$. This implies that C and $\frac{\lambda}{2}\psi^{[k]}(C)$ are separable in \mathbf{M} , so by Lemma 2.9 in [24], the sum $C \cup \frac{\lambda}{2}\psi^{[k]}(C)$ is \mathbf{M} -convex.

Theorem 3.2. Let \mathbf{M} be a connected Stein manifold, $\psi \in \mathcal{O}(\mathbf{M})$, $\omega \in \mathbb{H}(\mathbf{M})$ and the following conditions hold:

- (1) for every $p \in \mathbf{M}$, $\omega(p) \neq 0$ and ψ is an injective self-map without fixed point in \mathbf{M} .
- (2) for every **M**-convex compact subset $C \subset \mathbf{M}$, there exists positive integer n such that $C \cap \psi^{[n]}(C) = \emptyset$ and the set $C \cup \psi^{[n]}(C)$ is **M**-convex.

Then, the weighted composition operator $\mathbf{C}_{\psi,\omega}$ is hypercyclic on $\mathbb{H}(\mathbf{M})$.

Proof. Assume that $\{C_n\}_{n=1}^{\infty}$ be an exhaustion of \mathbf{M} . Without lose of generality, we can assume that every C_n is \mathbf{M} -convex. Since the compact-open topology on $\mathbb{H}(\mathbf{M})$ is independent of the chosen exhaustion, we can endow $\mathbb{H}(\mathbf{M})$ with the topology induced by the semi-norms on $\mathbb{H}(\mathbf{M})$ defined by $p_n(f) := \sup\{|f(p)| : p \in C_n\}$. Let $U, V \subset \mathbb{H}(\mathbf{M})$ be non-empty open sets and fix $f \in U$ and $g \in V$. By definition of compact-open topology of $\mathbb{H}(\mathbf{M})$, there is a closed ball $B \subset \mathbf{M}$ (with respect to the Carathéodory pseudo-distance as can be seen in [24]) and a positive real number ϵ such that, every $h_1 \in U$ satisfies $\sup_{p \in B} |f(p) - h_1(p)| < \epsilon$ and similarly every $h_2 \in V$ satisfies $\sup_{p \in B} |g(p) - h_2(p)| < \epsilon$.

Now, assume that D be another closed ball such that $B \subset D^{\circ}$. Since ψ is an injective self-map without fixed point on \mathbf{M} , then the function f is holomorphic on some neighborhood of D, and the function $\frac{g \circ (\psi^{[n_0]})^{-1}}{\prod_{k=1}^{n_0-1} (\omega \circ (\psi^{[k]})^{-1})}$ is holomorphic on some neighborhood of $\psi^{[n_0]}(D)$.

By assumption (2), there exists n_0 such that $D \cap \psi^{[n_0]}(D) = \emptyset$ and the compact set $K := D \cup \psi^{[n_0]}(D)$ is **M**-convex (by Oka-Weil theorem), there exists a holomorphic function $h \in \mathbb{H}(\mathbf{M})$ such that $\sup_{z \in D} |f(z) - h(z)| < \epsilon$ and

$$\sup_{y \in \psi^{[n_0]}(D)} \left| \frac{g \circ (\psi^{[n_0]})^{-1}}{\prod_{k=1}^{n_0} (\omega \circ (\psi^{[k]})^{-1})} (y) - h(y) \right| < \frac{\epsilon}{M}.$$

where $M := \max_{y \in \psi^{[n_0]}(D)} |\prod_{k=1}^{n_0} (\omega \circ (\psi^{[k]})^{-1})(y)|$.

Hence $\sup_{z \in K} |f(z) - h(z)| < \epsilon$ and

$$\sup_{z \in K} |g(z) - (|K_{\psi,\omega})^{[n_0]} h(z)|$$

$$= \sup_{z \in K} |\prod_{k=1}^{n_0} (\omega \circ (\psi^{[k]})^{-1})(y) (\frac{g \circ (\psi^{[n_0]})^{-1}}{\prod_{k=1}^{n_0} (\omega \circ (\psi^{[k]})^{-1})}(y) - h(y))| < \epsilon,$$

where $y := \psi^{[n_0]}(z)$. This shows that $h \in U$ and $(\mathbf{C}_{\psi,\omega})^{[n_0]}h \in V$, so that $\mathbf{C}_{\psi,\omega}$ is topologically transitive. Since $\mathbb{H}(\mathbf{M})$ is a separable Fréchet space, $\mathbf{C}_{\psi,\omega}$ is hypercyclic.

Theorem 3.3. Let \mathbf{M} be a connected Stein manifold, $\psi \in \mathcal{O}(\mathbf{M})$ and $\omega \in \mathbb{H}(\mathbf{M})$ and $\{n_l\}_{l=1}^{\infty}$ be an increasing sequence of positive integer numbers. Then the operator $\mathbf{C}_{\psi,\omega}$ is hypercyclic

INT. J. MAPS MATH. (2025) 8(2):481-492 / HYPERCYCLICITY OF WEIGHTED COMPOSITION ... 491 w.r.t. $(n_l)_l$ if and only if for every $p \in \mathbf{M}$, $\omega(p) \neq 0$ and ψ is injective without fixed points in \mathbf{M} , $\psi(\mathbf{M})$ is a Runge domain w.r.t. \mathbf{M} and for every \mathbf{M} -convex compact subset $C \subset \mathbf{M}$ there is a positive integer number k such that the sets C and $\psi^{[n_k]}(C)$ are separable in \mathbf{M} .

Proof. Sufficiency in both parts follows from Theorem 3.1 and Theorem 3.2. If the sets C and $\psi^{[n_l]}(C)$ are separable in \mathbf{M} , since $\psi(\mathbf{M})$ is a Runge domain in \mathbf{M} and C is \mathbf{M} -convex, then $\psi^{[n_l]}(C)$ is \mathbf{M} -convex and by a Lemma from [24] their sum is \mathbf{M} -convex. Necessity in both parts follows directly from Theorem 3.1.

Acknowledgments. The authors would like to thank the referee for some useful comments and their helpful suggestions that have improved the quality of this paper.

References

- [1] Akbarbaglu, I., & Azimi, M. R. (2022). Universal family of translations on weighted Orlicz spaces. Positivity, 26(1), 1–21.
- [2] Akbarbaglu, I., Azimi, M. R., & Kumar, V. (2021). Topologically transitive sequence of cosine operators on Orlicz spaces. Ann. Funct. Anal., 12(1), 3–14.
- [3] Azimi, M. R., & Farmani, M. (2022). Subspace-hypercyclicity of conditional weighted translations on locally compact groups. Positivity, 26(3), 1–20.
- [4] Azimi, M. R., & Jabbarzadeh, M. R. (2022). Hypercyclicity of weighted composition operators on L^p-spaces. Mediterr. J. Math., 19, Paper No.164, 1–16.
- [5] Bayart, F. (2007). A class of linear fractional maps of the ball and its composition operators. Adv. Math., 209, 649–665.
- [6] Bayart, F., & Matheron, É. (2009). Dynamics of linear operators. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge.
- [7] Birkhoff, G. D. (1929). Démonstration d'un théorème élémentaire sur les fonctions entières. C.R. Acad. Sci. Paris, 189, 473–475.
- [8] Bourdon, P. S., & Shapiro, J. H. (1990). Cyclic composition operators on H₂. Proc. Symp. Pure Math., 51(2), 43–53.
- [9] Bourdon, P. S., & Shapiro, J. H. (1997). Cyclic phenomena for composition operators. Mem. Amer. Math. Soc., 596.
- [10] Chan, K. C., & Shapiro, J. H. (1991). The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J., 40, 1421–1449.
- [11] Feldman, N. S. (2012). n-Weakly hypercyclic and n-weakly supercyclic operators. J. Funct. Anal., 263, 2255–2299.
- [12] Fox, R. H. (1945). On topologies for function spaces. Bull. Amer. Math. Soc., 51(6), 429-433. https://doi.org/10.1090/S0002-9904-1945-08370-0

- [13] Gethner, R. M., & Shapiro, J. H. (1987). Universal vectors for operators on spaces of holomorphic functions. Proc. Amer. Math. Soc., 100, 281–288.
- [14] Godefroy, G., & Shapiro, J. H. (1991). Operators with dense invariant cyclic vector manifolds. J. Funct. Anal., 98, 229–269.
- [15] Grosse-Erdmann, K. G. (1999). Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N. S.), 36, 345–381.
- [16] Grosse-Erdmann, K. G. (2003). Recent developments in hypercyclicity. Rev. R. Acad. Cien. Serie A. Mat., 97(2), 273–286.
- [17] Grosse-Erdmann, K. G., & Manguillot, A. P. (2011). Linear chaos. Universitext. Springer, London.
- [18] Grosse-Erdmann, K. G., & Mortini, R. (2009). Universal functions for composition operators with nonautomorphic symbol. J. Anal. Math., 107, 355–376.
- [19] Pashaie, F., Azimi, M. R., & Shahidi, S. M. Dynamics of weighted composition operators on Stein manifolds. (Submitted).
- [20] Salas, H. N. (1995). Hypercyclic weighted shifts. Trans. Amer. Math. Soc., 347, 993–1004.
- [21] Shapiro, J. H. (1993). Composition operators and classical function theory. Springer-Verlag, New York.
- [22] Shapiro, J. H. (2001). Notes on dynamics of linear operators. http://www.math.msu.edu/shapiro
- [23] Yousefi, B., & Rezaei, H. (2007). Hypercyclic property of weighted composition operators. Proc. Amer. Math. Soc., 135, 3263–3271.
- [24] Zajac, S. (2016). Hypercyclicity of composition operators in Stein manifolds. Proc. Amer. Math. Soc., 144(9), 3991–4000.

DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, UNIVERSITY OF MARAGHEH, P.O.BOX 55181-83111, MARAGHEH, IRAN.

DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, UNIVERSITY OF MARAGHEH, P.O.BOX 55181-83111, MARAGHEH, IRAN.

Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P.O.Box 55181-83111, Maragheh, Iran.