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ON HYPERCYCLICITY OF WEIGHTED COMPOSITION OPERATORS

ON STEIN MANIFOLDS
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Abstract. In this manuscript, we study the hypercyclicity of weighted composition oper-

ators defined on the set of holomorphic complex functions on a connected Stein n-manifold

M. We show that a weighted composition operator Cψ,ω (associated to a holomorphic self-

map ψ and a holomorphic function ω on M) is hypercyclic with respect to an increasing

sequence (nl)l of natural numbers if and only if at every p ∈ M we have ω(p) ̸= 0 and the

self-map ψ is injective without any fixed points in M, ψ(M) is a Runge domain and for

every M-convex compact subset C ⊂ M there is a positive integer number k such that the

sets C and ψ[nk](C) are separable in M.
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1. Introduction

Let U be a domain in the complex plane C, and H(U) be the space of holomorphic complex

functions in U. The space H(U) is endowed with the topology of locally uniform convergence,

under which it becomes a complete separable metric space. We are interested in proving the

existence of dense orbits for composition operators on H(U). If ψ is a holomorphic self-map

on U, then the composition operator associated to ψ is defined as Cψ(f) = f ◦ ψ for every

f ∈ H(U).
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The first step has been taken in 1929 by Birkhoff ([7]) when he proved that there exists an

entire function λ : C 7→ C such that {λ ◦ tn}n∈N forms a dense set in H(C), where {tn}∞n=1

is the sequence of C-automorphisms defined by tn : z 7→ z + n. The function λ is called

universal.

Gethner and Shapiro have studied universal vectors for operators on spaces of holomorphic

functions in 1987 ([13]). In 90s, the subject of cyclic composition operators has been discussed

by many researchers ([8, 9, 10, 14]). In the same decade, some generalizations to hypercyclic

operators have also been studied ([15, 20, 21]).

In 2001, Shapiro studied the dynamics of linear operators ([22]) which followed by Grose-

Erdman in 2003 ([16]). As a concrete example, Bernal-Gonzales has studied the universal

entire functions for affine endomorphisms on Cn in 2005.

A class of linear fractional maps of the ball and its composition operators has been con-

sidered by Bayart in 2007 ([5]). One can find the continuation of research progress on the

hypercyclicity of operators in the references [6, 11, 18, 24]. Between them, the manuscript

[24] has a special importance because it discuss on the hypercyclicity of composition op-

erators associated to some holomorphic self-maps defined on an important class of complex

manifolds namely Stein manifolds. The important properties of Stein manifolds can be found

in [24].

The weighted composition operators associated to some holomorphic self-maps have been

interested in some recent researches (see for instance [1, 2, 3, 4, 23]). Also, in [19], the authors

have studied the dynamics of weighted composition operators on Stein manifolds, where the

maps and functions are defined on a Stein manifold.

In this paper, we consider a holomorphic self-map ψ ∈ O(M) defined on a connected

Stein n-manifold M and a holomorphic function ω ∈ H(M). We study the hypercyclicity of

weighted composition operator Cψ,ω : H(M) → H(M) defined by rule Cψ,ω(f) := ω · (f ◦ ψ)

with respect to an increasing sequence of natural numbers.

We prove that Cψ,ω is hypercyclic if and only if for every p ∈ M , ω(p) ̸= 0 and ψ

is univalent without fixed points in M, ψ(M) is a Runge domain and for every compact

holomorphically convex set C ⊂ M there is an integer n such that C ∩ψ[n](C) = ∅ and their

sum is M-convex.

In the study of hypercyclicity of Cψ,ω, which is connected with some approximation the-

orems, one can use two well-known theorems namely the Runge Theorem and Oka-Weil

Theorem.
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2. Preliminaries

In this section, we present the preliminary concepts and notations from [1, 2, 5, 6, 17, 24].

We denote the family of all open subsets of a given topological space X by Op(X) and

the family of all compact subsets of X by Cp(X). As usual, C(X,Y ) denotes the set of all

continuous maps between two topological spaces X and Y .

Definition 2.1. For every C ∈ Cp(X) and U ∈ Op(Y ), the set of functions f ∈ C(X,Y )

satisfying condition f(C) ⊂ U is denoted by V(C,U). The topology generated by subbase

△ := {V(C,U)|C ∈ Cp(X), U ∈ Op(Y )}

is called the compact-open topology on C(X,Y ).

We note that △ does not always form a base for a topology on C(X,Y ). The compact-open

topology (which is applied in homotopy theory and functional analysis) was introduced by

Ralph Fox in 1945 [12].

A continuous map f ∈ C(X,Y ) is said to be proper if each connected component of f−1(K)

is compact for every K ∈ Cp(Y ).

Definition 2.2. Let X be a topological vector space and {αr : X → X}∞r=1 be a sequence

of continuous self-maps on X.

(1) {αr}∞r=1 is called topologically transitive if for every non-empty U, V ∈ Op(X) there

exists r0 such that αr0(U) ∩ V ̸= ∅.

(2) A point p ∈ X is said to be an universal element for {αr}∞r=1 if the sequence

{αr(p)}∞r=1 of points is dense in X.

(3) A point p ∈ X is said to be an weakly universal element for {αr}∞r=1 if the sequence

{αr(p)}∞r=1 of points is dense in X with respect to the weak topology of X.

(4) The sequence {αr}∞r=1 is said to be universal if it admits a universal element.

(5) The sequence {αr}∞r=1 is said to be weakly universal if it admits a weakly universal

element.

Definition 2.3. Let X be a topological vector space and α : X → X be a continuous

self-map on X.

(1) The iterations of α is defined by α[1] = α, α[2] = α◦α and α[r+1] = α◦α[r] for integer

number r ≥ 2.
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(2) We say that α is hypercyclic with respect to an increasing sequence {rk}∞k=1 ⊂ N if

the sequence {α[rk]}∞k=1 is universal.

(3) We say that α is weakly hypercyclic with respect to an increasing sequence {rk}∞k=1 ⊂ N

if the sequence {α[rk]}∞k=1 is weakly universal.

(4) α is called hypercyclic if it is hypercyclic with respect to the full sequence {r}∞r=1.

(5) α is called weakly hypercyclic if it is hypercyclic with respect to the full sequence

{r}∞r=1.

Here, we recall an essential theorem from [15] which gives a necessary and sufficient con-

dition for topological transitivity of a sequence of continuous linear maps on a separable

Fréchet space using the set of its universal elements. Remember that, a Fréchet space is a

complete locally convex metrizable topological vector space.

Theorem 2.1. Let F be separable Fréchet space and {αr}∞r=1 be a sequence of continuous

self-maps on F. This sequence is topologically transitive if and only if the set of its universal

elements is dense in F. Moreover, in this case the set of universal elements for {αr}∞r=1 is a

dense Gδ-subset of F.

Also, we recall another useful theorem from [15] in this context.

Theorem 2.2. Let F be separable Fréchet space and {αr}∞r=1 be a sequence of continuous

self-maps on F. If αr has dense range in F for each r ∈ N and the sequence {αr}∞r=1 is

commuting (i.e. for every r, s ∈ N, we have αr ◦ αs = αs ◦ αr), then the set of universal

elements of {αr}∞r=1 is empty or dense in F.

The hypercyclicity of a bounded linear map α on a Fréchet space F means that for a vector

v ∈ F, its orbit (i.e. Orb(α,v) = {α[r](v)}∞r=1) is dense in F. By these theorems we get a

corollary that allows us to investigate topological transitivity instead of hypercyclicity. Also,

Theorem 3 in [15] has a similar argument.

Corollary 2.1. Let X be a separable Fréchet space, let α : X → X be a continuous map,

and let {rk}∞k=1 ⊂ N be an increasing sequence. Then, α is hypercyclic w.r.t. {rk}∞k=1 if and

only if the sequence {α[rk]}∞k=1 is topologically transitive.

Now, we introduce the Stein manifold which plays main role in this paper.

Definition 2.4. A complex manifold M of (finite) dimension n is called a Stein manifold, if

it satisfies the following four conditions:
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(1) M admits a compact exhaustion, which means that, there is a sequence (Cr)
∞
r=1 of

compact subsets of M such that M =
⋃∞
r=l Cr and for each r, Cr ⊂ (Cr+1)

0.

(2) ĈM ∈ Cp(M) for every C ∈ Cp(M), where

ĈM := {p ∈ M : |f(p)| ≤ sup
C

|f |,∀f ∈ O(M)}

is the holomorphic hull of C.

(3) H(M) separates points in M, i.e. for each two distinct points p, q ∈ M, there exists

f ∈ H(M) with f(p) ̸= f(q),

(4) For each p ∈ M there exists a map F ∈ O(M,Cn) such that the derivative of F at p

is an isomorphism.

Definition 2.5. Let M be a Stein n-manifold.

(1) A C ∈ Cp(M) is said to be M-convex (equivalently, holomorphically convex) if

ĈM = C.

(2) In special case M = Cn, ĈM is denoted with shorter symbol Ĉ and is called the

polynomial hull of C.

(3) A C ∈ Cp(Cn) is called polynomially convex if C = Ĉ.

For two finite-dimensional complex manifolds M, N, the notation O(M,N) denotes the

set of all holomorphic maps ϕ : M → N. In special cases, we use simple notations O(M) :=

O(M,M) and H(M) := O(M,C). A holomorphic function on an open subset of the complex

plane is called univalent if it is injective.

Definition 2.6.

(1) We say that a sequence of holomorphic maps {ϕk ∈ O(M,N)}∞k=1 is compactly di-

vergent (in O(M,N)) if for each C ∈ Cp(M) and K ∈ Cp(N) there is k0 such that

ϕk(C) ∩K = ∅ for all k ⩾ k0.

(2) The sequence {ϕk ∈ O(M,N)}∞k=1 is said to be run-away (in O(M,N)) if for each

C ∈ Cp(M) and K ∈ Cp(N), there is k0 such that ϕk0(C) ∩ K = ∅. In the case

M = N, it is always enough to consider the situation when C = K.

When M and N admit compact exhaustions, the sequence {ϕk}∞k=1 is run-away if and only

if it has a compactly divergent subsequence.

A holomorphic map f ∈ O(M,N) between to complex manifold is called regular if its

derivative is a monomorphism at each point of M.
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A Runge domain in a Stein Manifold M is a domain U ⊂ M such that every function f ∈

H(U) can be approximated uniformly on U by a sequence of members of H(M). By the well-

known Oka-Weil theorem, on every compact M-convex subset C ⊂ M, every holomorphic

function (i.e. holomorphic on a neighborhood of C) can be approximated uniformly by

functions from H(M).

Remark 2.1. By condition (1) of Definition 2.4, a Stein manifold M has a compact ex-

haustion {Ck}∞k=1 such that
⋃∞
k=l Ck = M and for each k, Ck ⊂ (Ck+1)

0. So, we can take a

sequence of semi-norms {pk : H(M) → R}∞k=1 defined by pk(f) := sup{|f(p)|p ∈ Ck}, which

gives the topology of H(M). So, H(M) with this topology is a separable Fréchet space (see

[23, 24]). This observation allows us to use Corollary 2.1 for the space X = H(M), with M

being a connected Stein manifold.

Remark 2.2. By theorem from [24], a domain U in a connected Stein manifold M is a

Runge domain if and only if every compact subset C ⊂ U satisfies ĈM = ĈU . Also, that

condition is equivalent to equality ĈM ∩ U = ĈU for every compact subset C ⊂ U .

For every locally compact topological space X, the usual compactification with one point

∞X /∈ X is denoted by Xc = X ∪ {∞X}.

It is clear that, if a continuous self-map α defined on a topological vector space X is

hypercyclic, then any universal element of {α[r]}∞r=1 is a hypercyclic vector. Finally, we have

a useful lemma which guarantees that the adjoint operator of a weakly hypercyclic operator

on a topological vector space dose not have any eigenvector.

Lemma 2.1. The adjoint operator of a weakly hypercyclic operator on a topological vector

space does not have any eigenvector.

Proof. Let α be a weakly hypercyclic linear self-map on a topological vector spaceX. Clearly,

α is 1-weakly. Hence, α∗ does not have any eigenvectors by Proposition 3.2 in [11]. □

The following well-known theorems ([24]) characterizes the Runge domains in a Stein

manifold M in the language of holomorphic hulls.

Theorem 2.3. Let U be a Stein manifold which is a domain of a connected Stein manifold

M. Then, the following conditions are equivalent:

(1) The domain U is a Runge domain in M.

(2) ĈM = ĈU for every compact subset C ⊂ U .
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(3) ĈM ∩ U = ĈU for every compact subset C ⊂ U .

Theorem 2.4. Let C and D be two compact subsets of a connected Stein manifold M.

Then the following conditions are equivalent:

(1) C and D are separable in M.

(2) There exist open and disjoint subsets U, V ⊂ M such that ĈM ⊂ U , D̂M ⊂ V and

̂(C ∪D)M ⊂ U ∪ V .

(3) ĈM ∩ D̂M = ∅ and ̂(C ∪D)M = ĈM ∪ D̂M.

In particular, if C and D are disjoint and M-convex, then C ∪D is M-convex if and only if

C and D are separable in M.

Corollary 2.2. Let C and D be two disjoint compact subsets of a connected Stein manifold

M such that C ∪D is M-convex. Then C and D are both M-convex.

3. Main results

In this section, we choose a ψ ∈ O(M) and a weight function ω ∈ H(M) on a connected

Stein n-manifold M. Some necessary conditions for hypercyclicity of the weighted composi-

tion operator Cψ,ω with respect to an increasing sequence of natural numbers {nk}∞k=1 are

presented.

Proposition 3.1. Let {nk}∞k=1 be an increasing sequence of natural numbers, M be a con-

nected Stein n-manifold, ω ∈ H(M) and ψ ∈ O(M). If the weighted composition operator

Cψ,ω is hypercyclic with respect to {nk}∞k=1, then the following conditions hold:

(1) ω ̸= 0 on M and ψ has no fixed point in M.

(2) ψ is injective.

(3) ψ(M) is a Runge domain w.r.t. M.

(4) The sequence {ψ[nk]}∞k=1 is run-away.

Proof.

(1) Remember that H(M) is a separable Fréchet space and the point evaluation linear

functional Ep : H(M) → C (at each point p ∈ M) defined by Ep(h) := h(p) is

continuous. The adjoint of Cψ,ω satisfies the following equality

C∗
ψ,ω(Ep)(h) = Ep ◦Cψ,ω(h) = Ep(ω · (h ◦ ψ)) = ω(p) · (h ◦ ψ)(p).
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So, C∗
ψ,ω has an eigenvalue if ω(p) = 0 or ψ(p) = p and then, in these two cases

Cψ,ω can not be hypercyclic.

(2) Since Cψ,ω is hypercyclic with respect to {nk}∞k=1, it admits a hypercyclic vector

g ∈ H(M). So, for each h ∈ Orb(Cψ,ω, g) there exists a positive integer k such that

h = (C
[nk]
ψ,ω (g)) =

nk−1∏
j=0

C
[j]
ψ (ω) ·C[nk]

ψ g = ω · (
nk−1∏
j=1

ω ◦ ψj) · (g ◦ ψnk).

Assuming ψ(p) = ψ(q) for two distinct points p, q ∈ M, we get 1
ω(p)h(p) =

1
ω(q)h(q)

and then
1

ω(p)
Ep(h) =

1

ω(q)
Eq(h) (3.1)

for every h ∈ Orb(Cψ,ω, g). So, by continuity of 1
ω(p)Ep and

1
ω(q)Eq, it follows that the

equality (3.1) holds for every h ∈ Orb(Cψ,ω, g) = H(M). Therefore, 1
ω(p)Ep =

1
ω(q)Eq

on H(M).

Now, putting g = 1, we get 1
ω(p)Ep(1) =

1
ω(q)Eq(1) which gives ω(p) = ω(q). There-

fore, the equality h(p) = h(q) holds for every g ∈ H(M), which by condition (3) in

Definition 2.4, implies that p = q. So, ψ is injective.

(3) It is enough to prove that the subset of restrictions {h|ψ(M) : h ∈ O(M)} is dense in

O(ψ(M)).

If h ∈ O(ψ(M)), then h◦ψ is holomorphic onM, so there is a subsequence {nlk}∞k=1

of {nk}∞k=1 such that g◦ψ[nlk ] → g◦ψ on M (where, g ∈ H(M) is a hypercyclic vector

for Cψ,ω with respect to {nk}∞k=1). Hence f ◦ψ[nlk−1] → h on ψ(M), as the mapping

ψ is a biholomorphism on its image.

(4) Let K ⊂ M be compact. For each positive integer k, there exists a positive integer

nlk such that |f ◦ ψ[nlk ] − k| ≤ 1
k on K. So, for a big enough k, we have

inf{|f(z)| : z ∈ ψ[nlk ](K)} = inf{|(f ◦ ψ[nlk ])(z)| : z ∈ K} ≥ k − 1

k
> sup{|f(z)| : z ∈ K}.

Hence, ψ[nlk ](K) ∩K = ∅.

□

Remark 3.1. It follows from the equivalence of conditions in Remark 2.2 and theorems 2.3

and 2.4 that ψ maps every M-convex compact C ⊂ M onto an M-convex compact set. Also,

it implies that for any natural number n the set ψ[n](C) is M-convex.

It is natural to ask whether the necessary conditions given by Proposition 3.1 are sufficient.

In [18], it is shown that if M is a simply connected or an infinitely connected planar domain
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or a special type of higher-dimensional Stein manifolds, then the mentioned property holds.

But in general the above necessary conditions are not sufficient, as we can see using a simple

example M = D∗ and ψ(z) = 1
2z then by Theorems 4.6 the operator Cψ is not hypercyclic,

although it satisfies the conditions (1), (2), (3).

Here, we prefer to re-describe the topology of O(M) and the concept of topologically

transitivity of weighted composition operators.

For every K ∈ Cp(M) and f0 ∈ H(M) and positive real number ϵ, the ϵ-neighborhood of

f0 is defined by

NK
ϵ (f0) := {f ∈ H(M) : ∀y ∈ K, |f(y)− f0(y)| < ϵ}.

The family of all such a neighborhoods forms a basis of the topology of H(M).

With the aim of using Corollary 2.1, so let us first clear the topological transitivity of the

sequence (C
[nl]
ψ,ω)l.

Let ψ ∈ O(M) be an injective holomorphic self-map and 0 ̸= ω ∈ H(M). The sequence

(C
[nl]
ψ,ω)

∞
l=1 is topologically transitive if and only if for every ϵ > 0, g, h ∈ H(M) and K ∈

Cp(M) there are natural number k and function f ∈ H(M) such that |f − g| < ϵ and

|C[nk]
ψ,ω (f)− h| < ϵ on K.

As the mapping ψ is injective and ω in non-zero, the above condition has another form:

|f − g| < ϵ on K and |f − [
k−1∏
j=0

Cj
ψ(ω)]

−1 · h ◦ ψ[−nk]| < ϵ on ψ[nk](K). (3.2)

Since M is a Stein manifold, we can restrict to considering only M-convex sets.

Theorem 3.1. Let M be a connected Stein manifold, ψ ∈ O(M), ω ∈ H(M) and the

weighted composition operator Cψ,ω is hypercyclic on O(M). Then for every M-convex

compact subset C ⊂ M , there exists positive integer n such that C ∩ ψ[n](C) = ∅ and the

set C ∪ ψ[n](C) is M-convex.

Proof. Suppose that Cψ,ω is hypercyclic. In view of Corollary 2.1, the condition 3.2 holds.

Fix an M-convex compact set C ⊂ M. By Remark 3.1 we get that the set ψ[n](C) is M-

convex. Using the condition 3.2 for g = 0, h = 1 and ϵ = 1
2 , we get that there are f ∈ O(M)

and k ∈ N such that f(C) ⊂ 1
2D and λ

2 (ψ
[k](C)) ⊂ (1 + 1

2D) where λ = supC [
∏k−1
j=0 C

[j]
ψ (ω)].

This implies that C and λ
2ψ

[k](C) are separable in M, so by Lemma 2.9 in [24], the sum

C ∪ λ
2ψ

[k](C) is M-convex. □
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Theorem 3.2. Let M be a connected Stein manifold, ψ ∈ O(M), ω ∈ H(M) and the

following conditions hold:

(1) for every p ∈ M , ω(p) ̸= 0 and ψ is an injective self-map without fixed point in M.

(2) for every M-convex compact subset C ⊂ M , there exists positive integer n such that

C ∩ ψ[n](C) = ∅ and the set C ∪ ψ[n](C) is M-convex.

Then, the weighted composition operator Cψ,ω is hypercyclic on H(M).

Proof. Assume that {Cn}∞n=1 be an exhaustion of M. Without lose of generality, we can

assume that every Cn isM-convex. Since the compact-open topology onH(M) is independent

of the chosen exhaustion, we can endow H(M) with the topology induced by the semi-norms

on H(M) defined by pn(f) := sup{|f(p)| : p ∈ Cn}. Let U, V ⊂ H(M) be non-empty open

sets and fix f ∈ U and g ∈ V . By definition of compact-open topology of H(M), there is

a closed ball B ⊂ M (with respect to the Carathéodory pseudo-distance as can be seen in

[24]) and a positive real number ϵ such that, every h1 ∈ U satisfies supp∈B |f(p)− h1(p)| < ϵ

and similarly every h2 ∈ V satisfies supp∈B |g(p)− h2(p)| < ϵ.

Now, assume that D be another closed ball such that B ⊂ D◦. Since ψ is an injective

self-map without fixed point on M, then the function f is holomorphic on some neighborhood

of D, and the function g◦(ψ[n0])−1∏n0−1
k=1 (ω◦(ψ[k])−1)

is holomorphic on some neighborhood of ψ[n0](D).

By assumption (2), there exists n0 such that D ∩ ψ[n0](D) = ∅ and the compact set

K := D ∪ψ[n0](D) is M-convex (by Oka-Weil theorem), there exists a holomorphic function

h ∈ H(M) such that supz∈D |f(z)− h(z)| < ϵ and

sup
y∈ψ[n0](D)

| g ◦ (ψ[n0])−1∏n0
k=1(ω ◦ (ψ[k])−1)

(y)− h(y)| < ϵ

M
.

where M := maxy∈ψ[n0](D) |
∏n0
k=1(ω ◦ (ψ[k])−1)(y)|.

Hence supz∈K |f(z)− h(z)| < ϵ and

sup
z∈K

|g(z)− (|Kψ,ω)
[n0]h(z)|

= sup
z∈K

|
n0∏
k=1

(ω ◦ (ψ[k])−1)(y)(
g ◦ (ψ[n0])−1∏n0
k=1(ω ◦ (ψ[k])−1)

(y)− h(y))| < ϵ,

where y := ψ[n0](z). This shows that h ∈ U and (Cψ,ω)
[n0]h ∈ V , so thatCψ,ω is topologically

transitive. Since H(M) is a separable Fréchet space, Cψ,ω is hypercyclic. □

Theorem 3.3. Let M be a connected Stein manifold, ψ ∈ O(M) and ω ∈ H(M) and {nl}∞l=1

be an increasing sequence of positive integer numbers. Then the operator Cψ,ω is hypercyclic
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w.r.t. (nl)l if and only if for every p ∈ M , ω(p) ̸= 0 and ψ is injective without fixed points

in M, ψ(M) is a Runge domain w.r.t. M and for every M-convex compact subset C ⊂ M

there is a positive integer number k such that the sets C and ψ[nk](C) are separable in M.

Proof. Sufficiency in both parts follows from Theorem 3.1 and Theorem 3.2. If the sets C

and ψ[nl](C) are separable in M, since ψ(M) is a Runge domain in M and C is M-convex,

then ψ[nl](C) is M-convex and by a Lemma from [24] their sum is M-convex . Necessity in

both parts follows directly from Theorem 3.1. □

Acknowledgments. The authors would like to thank the referee for some useful comments

and their helpful suggestions that have improved the quality of this paper.

References

[1] Akbarbaglu, I., & Azimi, M. R. (2022). Universal family of translations on weighted Orlicz spaces.

Positivity, 26(1), 1–21.

[2] Akbarbaglu, I., Azimi, M. R., & Kumar, V. (2021). Topologically transitive sequence of cosine operators

on Orlicz spaces. Ann. Funct. Anal., 12(1), 3–14.

[3] Azimi, M. R., & Farmani, M. (2022). Subspace-hypercyclicity of conditional weighted translations on

locally compact groups. Positivity, 26(3), 1–20.

[4] Azimi, M. R., & Jabbarzadeh, M. R. (2022). Hypercyclicity of weighted composition operators on Lp-

spaces. Mediterr. J. Math., 19, Paper No.164, 1–16.

[5] Bayart, F. (2007). A class of linear fractional maps of the ball and its composition operators. Adv. Math.,

209, 649–665.
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