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CHARACTERIZATION OF W;-CURVATURE TENSOR ON LORENTZIAN
PARA-KENMOTSU MANIFOLDS

RAJENDRA PRASAD , ABHINAV VERMA *, AND VINDHYACHAL SINGH YADAV

ABSTRACT. The aim of this study is to explore the characteristics of n-dimensional Lorentzian
para-Kenmotsu {briefly, (LPK),} manifolds with Ws-curvature tensor. Firstly, we explore
(LPK), manifold with the condition ‘Ws(A,B,C,¢) = 0 and find that it is an Einstein
manifold. Next, we consider the conditions of ®-Ws-symmetric, Ws-semisymmetric, and
P-We-flat on the (LPK), manifold. Moreover, an example has been constrcuted to verify
the results. Lastly, we explain the condition Ws(E,F).R = 0 on (LPK), manifold that
establishes w-Einstein manifold.
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1. INTRODUCTION

In 1989 [14], B.B. Sinha and K.L. Sai Prasad have defined para-Kenmotsu manifolds. They
investigated the significant properties of para-Kenmotsu manifolds. Later on, para-Kenmotsu
manifolds drew attention of several authors to study the characteristics of such manifolds.
Lorentzian para-Kenmotsu manifolds were initiated in 2018 by A. Haseeb and R. Prasad [3].
R. Sari et al. have explained slant manifolds of a Lorentzian Kenmotsu manifold [I1]. Mobin
Ahmad studied semi-invariant ¢*-submanifolds of Lorentzian para-Sasakian manifolds in
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2019 [I]. Moreover, Abhishek Singh et al., in 2024, explored some results on S-Kenmotsu
manifolds with a non-symmetric non-metric connection [12| 13]. In 2022, Shashikant Pandey
et al. have described certain results of Ricci-soliton on 3-dimensional Lorentzian para a-
Sasakian manifolds [5]. For invariant submanifolds of Lorentzian para-Kenmotsu manifold
to be totally geodesic, Atceken [2] gave the necessary and sufficient conditions.

G.P. Pokhariyal gave the concept of Wg-curvature tensor with the support of Weyl curvature

tensor in 1982 [6l [7], and is described as
1
Ws(A,B)C = R(4,B)C + H[Q(A, B)QC — S(B,C)A], (1.1)

and

We(h,B,C,T) = K(A,B,C,T) + — 90, BS(C.T) — g8, T)S(B,0), (1.2)

n —
vV A,B,C, T € x(M"), where, K(A,B,C,T) = g(R(A,B)C,T), R and @ denote Riemann curva-
ture tensor and Ricci operator, respectively.

This article has been organized in the following manner: Section-1 contains introduction,
where corresponding concepts and their brief histories are given. Section-2 covers prelim-
inaries, containing some basic results, which have been used extensively throughout this
manuscript. Section-3 describes the Lorentzian para-Kenmotsu manifold with the condition
‘Wes(4,B,C,¢) = 0. Section-4 studies the nature of ®*((VgWs)(A,B)C) = 0 on Lorentzian
para-Kenmotsu manifold with the construction of an example. Section-5 and section-6 ex-
amine the behavior of Wg-semisymmetric, and #-Wg-flat on (LPK),, manifold, respectively.
In section-7, we see that an (LPK), manifold with the condition Ws(E,F).R = 0 gives an

w-Einstein manifold.

2. PRELIMINARIES

We assume that M™ is a Lorentzian metric manifold, meaning there by, it is equipped
with an structure (2, (,w, g), where @ is a (1, 1)-type tensor field, ¢ is a vector field, w is a
one-form on M™, and g is a Lorentzian metric tensor holding the subsequent results [8 9] [10]:

*(A) = A+ w(A)(,  g(A Q) =w(h), w(¢)=-1,
(2.3)
&¢ =0, w(PA)=0, g(PA,PB)=g(AB)+ w(A)w(B),
V vector fields A, B on M"™. Thus, M"(®,(,w,g) is called a Lorentzian almost paracontact

manifold.
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Definition 2.1. A Lorentzian almost paracontact manifold M™ (P, (,w, g) is called a Lorentzian

para-Kenmotsu manifold if
(Va®)B = —g(PA,B)( — w(B)PA,

Y vector fields A, B € x(M™). Here, V and x(M") represent Levi-Civita connection, and a

collection of differentiable vector fields on M™, respectively.

We assume that M"™(®,(,w,g) is an (LPK), manifold. The succeeding results hold for
M™(®,(,w,g):

Val = —A — w(h)(, g(¥A,B) = g(A, TB), (2.4)
(Vaw)B = —g(A,B) — w(A)w(B), (2.5)
w(R(A,B)C) = K(A,B,C,¢) = g(B,C)w(A) — g(A, C)w(B), (2.6)

R(A,()B = w(B)A —g(A,B)(,
R(C,A)¢ = A+ w(A)C, (2.7)

R(A,B)¢ = w(B)A — w(A)B,

K(¢,A,B,C) = g(A,B) w(C) — g(A,C)w(B), (2.8)
S(A,¢Q) = (n—1Nw(d), S ¢)=—(n—-1),
(2.9)
(VeS)(C,¢) = S(E,C) — (n — 1)g(E, C),
divR(A,B)C = (V,S)(B,C) — (VsS)(A,C), . (2.10)

here, S denotes Ricci tensor of M"™(P,(,w, g).
Particularly, setting A = ¢, B = (, and C = (, respectively, in on an (LPK), manifold,

it yields
Wa(C,B)C = 9(8,C)C — (OB + —— [w(BJQC - S(8,0)C], (2.11)
Wa(a,)C = —(A,0)¢ + ——w(R)QC, (212
We(A,B)C = g(A, B)C — w(A)B. (2.13)

Definition 2.2. An (LPK), manifold is called an w-FEinstein manifold if its Ricci tensor

satisfies the following relation
S(A,B) = ag(A,B) + Sw(A)w(B),

here, o, and B are scalar functions on M™. In case of § = 0, manifold becomes Finstein

manifold [4].



INT. J. MAPS MATH. (2025) 8(2):360-376 / CHARACTERIZATION OF W;s-CURVATURE TENSOR ... 363

3. ‘Ws(A,B,C,{) =0 ON A LORENTZIAN PARA-KENMOTSU MANIFOLDS

In this part, we discuss the condition ‘Wg(4,B,C,() = 0 on (LPK), manifolds M". We

begin with the subsequent theorem:

Theorem 3.1. An n-dimensional Lorentzian para-Kenmotsu manifold is an Finstein man-

ifold if, We(A,B,C, () = 0.
Proof. ‘“We-curvature tensor is defined by

‘We(A,B,C,T) = K(4,B,C,T) +

” i 1 [9(A,B)S(C,T) — g(A, T)S(B,C)].

VA B, CTe (M.
Putting T = ( into the above equation, we have

We(A,B,G,) = K(A,B,C,0) + ——[g(A B)S(C, ) — 4(4, O)S(3,0)].

Applying ‘Ws(A,B, C,¢) = 0 in the above relation, we get

C(8,B,6,¢) = ——[g(a, O)S(8,C) — g(A,B)S(C, )] (3.14)
Using [2.3] [2.6] and [2.9] the relation yields
— 1S(B, C)w(A) = ¢g(B,C)w(A) — g(A, C)w(B) + g(A,B)w(C). (3.15)

Applying A = ¢ into [3.15] it yields

——S(B,C)w(C) = g(B,C)w(C) — 9(C, Cw(B) + g(C, B)w(C). (3.16)
Using on simplification, the relation [3.16] provides

S(B,C) = (n—1)g(B,C). (3.17)
This completes the proof. ]

4. NATURE OF ®-Wg-SYMMETRIC ON (LPK), MANIFOLDS

We begin this part with the definition of @-Wg-symmetric Lorentzian para-Kenmotsu

manifold:

Definition 4.1. A Lorentzian para-Kenmotsu manifold is said to be a @-Ws-symmetric

Lorentzian para-Kenmotsu manifold, if it satisfies the relation
@*((VeWs)(4,B)C) = 0,

for every A,B,C,E on M™.
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Theorem 4.1. A &-Wg-symmetric Lorentzian para-Kenmotsu manifold is an Einstein man-

ifold.

Proof. Covariant differentiation of relation along E yields

(VEWe)(A,B)C = (VER)(A,B)C —

[(VeS)(B,C)A — g(A,B)(VeQ)C]. (4.18)

n—1
Operating @2 on both sides of the equation and using |2.3 it gives

P*((VeWe)(A,B)C) = (VER)(A,B)C + w((VER)(A,B)C)¢
1

n—1

— 9(A,B)(VeQ)C — g(4,B)(VeS)(C, ()(]-

[(VeS)(B,C)A + (VES) (B, C)w(A)¢ (4.19)

Using [2.9| with condition &?((VeWs)(4,B)C) = 0 into the relation it yields

0 = (VER)(A,B)C + w((VER)(A, B)C)C
1

n—1

- g(A, B)(VEQ)C - g(A, B)S(E> C)C + (n - 1)9(A'B)9(E7 C)C]

[(VES)(B,C)A + (VES)(B,C)w(A)¢ (4.20)

Differentiating covariantly along E, it gives

(Veg)(R(4,B)C, () + 9(VeR(4,B)C, )
+9(R(VEA,B)C, () + g(R(4, VeB)C, ()
+9(R(A,B)VEC, () + g(R(A, B)C, Vk()
= (Veg)(B,C) (4, ¢) + 9(VeB, C) g(4, )
+9(B, VeC) g(A,¢) + 9(B,C) (Veg)(4,¢) (4.21)
+9(B,C) g(VeA, ¢) + 9(B, C) g(4, V()
— (Veg)(A,C) 9(B,¢) — 9(VEA, C) g(B. ()
— 9(A, VeC) g(B,¢) — 9(A,C) (Veg)(B. ()

—9g(A,C) g(VeB, () — g(A,C) g(B, V().

Applying 2.3 and [2.4] into it gives

w((VER(A,B)C) = g(R(A,B)C,E) + g(A,C)g(B,E) — g(B,C)g(4,E). (4.22)
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Relations [4.20] and [4.22] provide

(VER)(A,B)C + K(A,B, C,E)C + g(A,C) g(B,E) ¢ — g(B,C) g(A,E) ¢

1

n —

1 |(VES)(B, C)A + (VeS)(B,C)w(A) ¢ — g(A,B)(VeQ)C (4.23)

—9g(A,B)S(E,C)(+ (n—1)g(A,B)g(E,C) (| = 0.

Innerproduct of along F is given by

9((VeR)(A, B)C,F) + K(A, B, C, E)w(F) + g(4,C)g(B, E)w(F) — g(B, C)g(A, E)w(F)
1

1 |(VeS)(B,C)g(A,F) + (VeS)(B, C)w(A)w(F)

— 9(A,B)g((VEQ)C,F) — g(A,B)S(E, C)w(F) + (n — 1)g(A, B)g(E, C)w(F)] =0 (424

Contracting along E and F, we have

Z eig((VgiR)(A, B)C’ gl) + Z fi’C(A’ B,C, gz)Q(Cv gz)
i=1 i=1
—I—quAC (B,&)yg ZengC (A, E)g(C, &)
1=1
1 n

S| (VeS)(B.0)g(A &) + (Ve.S)(B,Ow(W)g (¢, &)

=1
~ 9(A,B)g((Ve,Q)C. &) — 9(A,B)S(E:,C)g (¢, &)
+ (n = 1)g(8,B)g(E:,C)g (¢, &) =

n —

where, ¢, = g(&;,&;) and {&1, &s....E—1, } are orthonormal base field on (LPK),, manifold.
Using relations and into the above relation, it gives

(divR)(A,B)C + K(A,B,C, () + g(A, C)w(B) — g(B,C)w(A)
1

n —

[(Va8)8,0) + (VeS) (8,00 8)

— 9(A,B)S(C. ) + (n — 1)g(4, B)g(C, )| = 0. (4:25)
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where, din(C):C(;).

Putting the value from and into we have

+ 9(8, CJw(B) — g(B,0)w(A) — ——[(VaS)(8,0)
+(VeS) (B, C)w(A) — C(Zr)g(A,B)} —0. (4.26)
Putting C = ¢ into [£:26] we get
(" =2) (G, 8)(B,¢) = (VoS)(A ) — —— (VeS)(B, CJeo(h) + — AB) =0
1) (VaS)(B.0) — (VaS)(A Q) — —(VeS)(B,Cwld) + (oA B) = 0.
(4.27)
Using the relation [2.9] into [£.27] it gives
D [S(0B) — (1~ 1g(8,B)] - [SAB) ~ (n g(a.D)]
_ ﬁ [S(B,¢) — (n — Dew(B)|w() + Q(nl_ (o8 =0, (4.28)
After simplification, yields
SAB)=[(n—1)+ C(276)]g(A,B)]. (4.29)
Further, contracting [4.24] along A and F and using 2.8, we have
(VES)(C,B) = —S(E,C)w(B) + (n — 1)g(E, C)w(B). (4.30)
Again, contracting the above equation along B and C, we have
(Ver) = =S(E,¢) + (n — 1)w(E). (4.31)

Using[2.9] it yields that scalar curvature r is constant. Therefore, concludes the following:
S(A,B) = (n— 1)g(A, B). (4.32)

Hence, we establish that #-Ws-symmetric (LPK ), manifold is an Einstein manifold.

We consider an (LPK),, manifold of constant curvature, then

R(A,B)C = k[g(B,C)A — g(A, C)B], (4.33)
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where, k is constant.

The relations and [£.33] taken together, we have
Ws(A,B)C = k[g(A,B)C — g(A, C)B]. (4.34)
Differentiating covariantly the relation along E and operating $2 on both sides, it yields
*((VeWs)(A,B)C) = 0. (4.35)
This establishes the subsequent corollary:

Corollary 4.1. The (LPK),, manifolds of constant curvature are -Ws-symmetric (LPK),,

manifolds.

Example 4.1. Consider a differentiable manifold M* = {(u,v,w,t) € R*: u, v, w is non

zero, t>0}. Suppose that {€1,E2,E3,E4} are linearly independent vectors at every point of
M*. We define,

& = €u+t%a &= 6U+té%7 &3 = 6w+t%, &= 5
Lorentzian metric g on M* is established in the following way:
0 ifi#£j
9ij = 9(&i, &) =4 -1 ifi=j=4
1 or else.

Assuming w is one-form corresponding to g is defined by
w(A) = g(A> 84)7

Y A € x(M*), here x(M*) be collection of vector fields on M*. We define @ as (1,1)-tensor
field as follows:

(&) = &, P(&Er) = &, P(&3) = &s, P(&4) = 0.
From linear characteristic of © and g, the following results can easily be proved:
WE) =1,  P(A)=A+wd)Es, (A TB) = g4 B) + w(A)w(B),

V A,B € x(M*). So, when £ = (, structure (@,(,w,q) leading to Lorentzian paracontact
structure as well as manifold M equipped with Lorentzian paracontact structure is said to be

Lorentzian paracontact manifold of dimension-4.
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We represent [A,B] as Lie-derivative of A, B, defined as [A,B] = AB — BA. The non-zero

constituents of Lie bracket are evaluated as below:

Let Riemannian connection with respect to g be denoted by V. So, when £4 = (, we have the

subsequent results:

Ve & = —Ei, Ve & =0, Ve, &3 =0, Ve &y = &1,
Ve, =0, Ve,&s = —E1,  Vg,E5 =0, Ve, &1 = —&s,
Ve,&1 =0, Ve,&s =0, V&3 = &, Veby = —Es,
Ve, &1 =0, Ve, s =0, Ve, 3 =0, Ve,Ex = 0.

Assuming A € x(M*), so A = a1& + a&> + a3€s + as€s, here {E1,E2,E3,E,4} be the basis
of x(M*). Above relations help verify Vy&4 = —A — w(A)Ey for each A € x(M*). Hence,
M* is a Lorentzian para-Kenmotsu manifold of dimension-4. From the above relations, the

non-vanishing constituents of the curvature tensor are evaluated as subsequently,

R(&E1, )& = =&, R(E,E3)E = —Es, R(E1,E)E = &,

R(&1,€2)Er = &1, R(E2,E5)E2 = &3, R(Es, £1)Es = —En,

R(&1,65)é3 = &1, R(Es, €3)E3 = &, R(Es, E4)E5 = —E4,

R(&1,E4)E4 = =1, R(Es, E4)E1 = —Es, R(Es, €)1 = —Es.
It can easily be seen that R(A,B)C = g(B,C)A — g(A,C)B.

From definition of Ricci tensor S on M*, the subsequent result holds,
S(A,B) = Xi_,€ig(R(Ei, A)B, &), gi = 9(&i, &).

Therefore, matriz representation of S is mentioned by

300 0
030 0
S =

003 0
00 0 —3]

This gives, S(A,B) = 3g(A,B) and scalar curvature k = X}_,6;8(E;, &) = 12, this implies that
(LPK), manifold has constant scalar curvature. Hence, relation ®*((VeWs)(A,B)C) = 0
holds.

Thus, the above example verifies the results of this section.
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5. Wg-SEMISYMMETRIC LORENTZIAN PARA-KENMOTSU MANIFOLDS

This part covers the behavior of Ws, when R(A, B) operates on it in (LPK), manifold.

Now, we have the following theorem:

Theorem 5.1. Let (M"™, g) be an (LPK),, manifold. If R(A,B).Ws = 0. Then, M"™ is an

FEinstein manifold, where R(A,B) is a Riemannian operator, and We is a curvature tensor.

Proof. We assume that M™ is an (LPK), manifold satisfying subsequent condition:

(R(A,B).Ws)(E,F)T = 0. (5.36)

From relation [5.36 we have

R(A,B).We(E,F)T = Ws(R(A,B)E,F)T + Ws(E, R(A,B)F)T + Ws(E,F)(R(A,B)T). (5.37)

Taking innerproduct of along C, we have

K (A, B, Ws(E,F)T, C) = ‘Ws(R(A,B)E, F, T, C)+Ws(E, R(A, B)F, T, C)+W;s(E, F, R(4,B)T, C).
(5.38)

Applying A = C = ¢ into [5.38] it provides

K(¢,B,Ws(E,F)T,() = ‘Ws(R(¢,B)E,F, T, )+ Ws(E, R(¢,B)F, T, )+ Ws(E,F, R(¢,B)T, ().

(5.39)
Evaluation of left hand side of with relation it yields
IC(C, B, Wﬁ(E, F)T, C) = —/C(E, F, T, B)
— —lg(E,F)S(T,B) - (5, B)S(F, T)
(5.40)

— w(B)w(T)g(E,F) — w(E)w(B)g(F,T)

+ g(E, T)w(F)w(B) + w(E)w(B)S(F,T).

n—1

Evaluation of first term of right hand side of with the relation [2.6] in the following way:

‘WG(R(Ca B)Ev Fv Tv C) = g(B’ E)‘W6(C7 F’ T’ C) - W(E)‘WG(Bv Fa Ta C)
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Applying the definition of Wi-curvature tensor, the above relation becomes

Ws (R(Cv B)E7 F,T, C) = _g(B7 E)g(F’ T) - g(B’ E)W(F)M(T)

+ 9B, E)w(F)w(T) + ﬁg(s, E)S(F,T) — w(E)w(B)g(F, T)

+ g(B, T)w(E)w(F) — g(B,F)w(E)w(T) + w(E)w(B)S(F,T). (5.41)

n—1
Evaluation of middle term of right hand side of with into the following way:
“We(E, R((,B)F, T, () = Ws(E, (, T,()g(B,F) — w(F) Ws(E,B, T, ().
Now, from the definition of Ws-curvature tensor, the above relation becomes

‘We <E7 R(C7 B)Fv T, C) = g(B, F)g(E, T)

+9(B, F)w(E)w(T) — w(E)w(F)g(B, T) + g(E, T)w(E)w(B)

— g(E, B)w(F)w(T) + w(E)w(F)S(B, T). (5.42)

n—1
Evaluation of the last term of into the following way:
In view of relation [2.7] the last term of becomes

LWG(EH F, R(Ca B)Tv C) = g(B7 T)CW6(E7 F, C? () - W(T)‘W(;(E, F,B, C)a
Using the definition [T.2] with relation [2.7] and [2.9] into the above relation, we have
‘Wﬁ(Ea F, R(Cv B)T7 C) = _g(B7 T)Q(Ev F) - W(E)W(F)Q(B, T)
— w(T)w(E)g(F,B) + g(E.B)w(F)w(T)
1

— w(T)w(E)g(F,B) + ——w(E)w(T)S(F,B). (5.43)

Putting the values from [5.40] [5.41], [5.42] and [5.43]into [5.39] we have

K(E,F,T,B) + ﬁg(E,F)S(T,B) —g(B,E)g(F,T)

+9(B,F)g(ET) + —— (8, Thw(BJw(F) — (8, T)g(E,F)

— (B, T)w(E)w(F) — g(F, B)w(E)w(T) + w(E)w(T)S(F,B) = 0. (5.44)

n—1
Contracting along E, and B, on evaluation, it provides
S(F,T) = (n—1)g(F,T). (5.45)

This completes the proof. O
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6. P-Wg-FLAT LORENTZIAN PARA-KENMOTSU MANIFOLDS

Theorem 6.1. If an (LPK),, manifold is ®-Wsg-flat, then it is an Einstein manifold.

Proof. Let us consider that an (LPK), manifold is #-Ws-flat. Then,
‘W(PA, BB, &C, IT) = 0, (6.46)
By definition of Ws curvature tensor

K (A, BB, &C, BT) + ﬁ[g(@!\, ¥B)S(&C, IT) — S(EB, BC)g(PA, T)] = 0. (6.47)

By definition of Riemann curvature tensor, we have
R(A,B)®C = V,Vp®C — VpV,, &C — V|, 5 PC.
Taking innerproduct of the above relation with respect to @T, it gives
g(R(A,B)®C, &T) = g(VaVpPC, PT) — g(VpV,,@C, &T) — g(V|y 5 PC, PT). (6.48)
Evaluation of the term V,Vg®C provides
VaVe®C = —g(Va®B, C)( — g(®B, VaC)(¢
+ g(PB,C)A + g(PB, C)w(A)¢ — (V4w)(C)PB — w(V,C)PB
+ g(PA,B)w(C)( + w(B)w(C)PA — w(C)P(V,B)
— g(PA, ViC)( — w(VEC)PA + @(V, VEC). (6.49)
Taking innerproduct of with @T, we have
9(VaVe&C, OT) = —g(Va¥B, C)g((, PT) — g(¥B, VaC)g((, 2T)
+ 9(PB,C)g(A, OT) + g(PB, C)w(A)g(¢, PT) — (Vaw)(C)g(PB, IT)
— w(VaC)g(PB, PT) + g(PA, B)w(C)g((, PT) + w(B)w(C)g(PA, IT)
—w(C)g(@(VaB), PT) — g(PA, VEC)g((, T)
— w(VgC)g(PA, IT) + g(P(VaVEC), PT). (6.50)
Using [2.3] into we have
9(VaVe®C, OT) = g(B,C)g(A, PT) — (V4w)(C)g(¥B, 4T)
— W(V4C)g(@B, @T) + w(B)w(C)g(@h, BT) — w(C)g((V4B), OT)

— w(V3C)g(PA, OT) + g(S(VaVsC), BT). (6.51)
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Applying A <> B in [6.51] we have

g(VeV@C, PT) = g(PA,C)g(B, PT) — (Vew)(C)g(PA, PT)
— w(VEC)g(PA, PT) 4+ w(A)w(C)g(PB, PT) — w(C)g(P(VeA), PT)

— w(ViC)g(PB, PT) + g(P(VpV,C), PT). (6.52)
Differentiating covariantly ¢C along [A, B|, we find
Ving(PC) = —g(P[A, B],C)¢ — w(C)[P(VaB — VBA)| + B(V[y 5 C). (6.53)
Taking innerproduct of with @T, we have
9(Viag)(2C), 2T) = —w(C)g(P(ViB), 8T) + w(C)g(S(VsA), PT) + g(P(V[y5/C), 2T). (6.54)

Putting values [6.51] [6.52] and [6.54] into relation [6.48] it yields

K(A,B,PC,PT) = g(PB,C)g(A, PT) — g(PA,C)g(B, PT)
+ (Vpw)(C)g(PA, PT) — (Vaw)(C)g(PB, PT) + w(B)w(C)g(PA, PT)

— w(A)w(C)g(EB, BT) + g(P(R(A,B)C, BT). (6.55)

Applying the relation into the last term of right hand side of and then transposing

to left hand side, we have
K(A,B,&C,dT) — K(A,B,C, &°T) = g(&B, C)g(A, BT) — g(®PA, C)g(B, PT)
+ [(Vaw)(C) + w(B)w(C)]g(PA, PT) — [(Vaw)(C) + w(A)w(C)]g(PB, PT). (6.56)
Using and [2.5] into we have
K(A,B,®C,oT) — K(4,B,C,T) — w(T)K(A,B,C,() = g(PB,C)g(4, 2T)
— 9(®A,C)g(B,PT) — g(B,C)g(PA, PT) + g(A,C)g(PB, PT). (6.57)

Using and into we have
K(A,B, dC, $T) — K(A,B,C, T) = g(PB,C)g(A, $T)
— g(®A,C)g(B,PT) — g(B,C)g(A,T) + g(A,C)g(B,T). (6.58)
By Riemann curvature property, we have

K(A,B,C,T) = K(C,T, A, B). (6.59)
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Applying X < Z, and Y < T into [6.58, we have

K(C,T, DA, $B) — K(C, T, A,B) = g(&T, A)g(C, IB)

- g(@C, A)g(T7 @B) - g(T7 A)g(C, B) + g(C, A)g(T7 B)'

Subtracting [6.60] from [6.58], and using [6.59 we have

K(A,B, C, IT) = K(C, T, DA, IB).

Applying A — @A, and B — @B into [6.61] we have

KC(PA, $B, &C, IT) = K(C, T, D*A, $°B).

Applying and into on simplification, we have

K(®A, $B, C, $T) = K(A, B, C, T) 4 g(A, T)w(B)w(C)

— 9(A,C)w(B)w(T) + g(B, C)w(A)w(T) — g(B, T)w(A)w(C).

Putting value from relation [6.63] into [6.47] we have

K(Av B, Cv T) - g(Au

_g(Bv

+8(c,

C)w(B)w(T) + g(B, C)w(A)w(T)
T)w(A)w(C) + ﬁ[S(C, T)g(A,B) + (n — 1)g(A,B)w(C)w(T)

T)w(A)w(B) — S(B,C)g(A, T) — S(B, C)w(A)w(T)] = 0.

Contracting [6.64] with respect to A, and T, we have

S(8,C) — w(B)w(C) — g(B,C) — w(B)w(C) + ——[S(B,C)

On simplification of

This completes the proof.

n—1

+ (n — Dw(C)w(B) + S(C, ()w(B) — nS(B,C) + S(B,C)] = 0.

it concludes

S(B,C) = (n — 1)g(B,C).

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)
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7. LORENTZIAN PARA-KENMOTSU MANIFOLDS WITH CONDITION W§(E,F).R =0

In this part, we explore the behavior of (LPK), manifold admitting Ws(E,F).R = 0.

We begin this with the subsequent theorem:

Theorem 7.1. An (LPK), manifold is an w-Finstein manifold if, it satisfies the relation
Ws(E,F). R =0 .

Proof. Let us consider that the (LPK), manifold admits the condition
Ws(E,F).R = 0. (7.67)
From the relation we have
W (E,F)R(A,B)C — R(Ws(E, F)A, B)C — R(A, We(E,F)B)C — R(A,B)Ws(E,F)IC=0. (7.68)
Putting B = ( into the relation we have
We(E,F)(R(A, €)C) — R(Ws(E,F)A, ¢)C — R(A, Ws(E,F)C)C — R(A, O)Ws(E,F)C = 0. (7.69)

Evaluation of the terms of the relation in the subsequent manner:
Using into first term of we get
Ws(E, F)R(A, ¢)C = w(C)R(E, F)A
1 1
n— n—

T g(A, O)w(E)F — (A, C)g(E, F)C + g(A, O)w(F)E. (7.70)
Using and into second term of [7.69] we get
R(WG (E7 F)A7 C)C = OJ(C)R(E, F)A

+ ﬁg(E, F)w(C)QA — ﬁs (F, A)w(C)E — K(E,F, 4,C)¢

1 1
— —g(E,F)S(A —O6(F,A)g(E . 71
LGRS0+ S(E A0 (.71)
Applying relations and into third term of we get

R (A, We(E, F)C)C = g(E, F)w(C)A — g(E, F)g(A, C)C — w(E)R(A, F)C. (7.72)
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Using and into fourth term of we get

R(A, O)Ws(E, F)C = g(F, C)w(E)A — g(E, C)w(F)A

+ g(E, F)uw(C)A — ﬁS(F, C)w(E)A — K(E,F, C, A)¢

_ ﬁg(E, F)S(A,C)¢ + ﬁS(F’ C)g(E,A)C. (7.73)

Putting the values from [7.70] [7.71], [7.72], and [7.73] into [7.69] it gives

(A, CY(BJF + ——g(E, F)S(A,0)C — ——S(F, A)g(E,O)C

—2¢(E,F)w(C)A + w(E)R(A,F)C — g(F,C)w(E)A + g(E,C)w(F)A
1

L SR (B~ S(F.0)(E A = 0. (r.72)

Contracting [7.74] along A, we have

(F, C)(E) + ——g(,F)S(C,0) — — = S(F, C)g(E, ) — 2ng(E, F)(C) + w(E)S(F,C)

~ ng(F, C)w(E) + ng(E, CJu(F) + " S(F,C)w(E) — ﬁS(F, C)w(E) = 0. (7.75)

Putting E = ¢ and making use of 2.9] into it provides

(n—1)
2

(n—1)

S(F,C) = 5

g(Fa C) -

w(E)w(F). (7.76)
This completes the proof. O
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