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Abstract. The aim of this study is to explore the characteristics of n-dimensional Lorentzian

para-Kenmotsu {briefly, (LPK)n} manifolds with W6-curvature tensor. Firstly, we explore

(LPK)n manifold with the condition ‘W6(A, B, C, ζ) = 0 and find that it is an Einstein

manifold. Next, we consider the conditions of Φ-W6-symmetric, W6-semisymmetric, and

Φ-W6-flat on the (LPK)n manifold. Moreover, an example has been constrcuted to verify

the results. Lastly, we explain the condition W6(E, F).R = 0 on (LPK)n manifold that

establishes ω-Einstein manifold.
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1. Introduction

In 1989 [14], B.B. Sinha and K.L. Sai Prasad have defined para-Kenmotsu manifolds. They

investigated the significant properties of para-Kenmotsu manifolds. Later on, para-Kenmotsu

manifolds drew attention of several authors to study the characteristics of such manifolds.

Lorentzian para-Kenmotsu manifolds were initiated in 2018 by A. Haseeb and R. Prasad [3].

R. Sari et al. have explained slant manifolds of a Lorentzian Kenmotsu manifold [11]. Mobin

Ahmad studied semi-invariant ζ⊥-submanifolds of Lorentzian para-Sasakian manifolds in
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2019 [1]. Moreover, Abhishek Singh et al., in 2024, explored some results on β-Kenmotsu

manifolds with a non-symmetric non-metric connection [12, 13]. In 2022, Shashikant Pandey

et al. have described certain results of Ricci-soliton on 3-dimensional Lorentzian para α-

Sasakian manifolds [5]. For invariant submanifolds of Lorentzian para-Kenmotsu manifold

to be totally geodesic, Atceken [2] gave the necessary and sufficient conditions.

G.P. Pokhariyal gave the concept of W6-curvature tensor with the support of Weyl curvature

tensor in 1982 [6, 7], and is described as

W6(A, B)C = R(A, B)C+
1

n− 1
[g(A, B)QC− S(B, C)A], (1.1)

and

‘W6(A, B, C, T) = K(A, B, C, T) +
1

n− 1
[g(A, B)S(C, T)− g(A, T)S(B, C), (1.2)

∀ A, B, C, T ∈ χ(Mn), where, K(A, B, C, T) = g(R(A, B)C, T), R and Q denote Riemann curva-

ture tensor and Ricci operator, respectively.

This article has been organized in the following manner: Section-1 contains introduction,

where corresponding concepts and their brief histories are given. Section-2 covers prelim-

inaries, containing some basic results, which have been used extensively throughout this

manuscript. Section-3 describes the Lorentzian para-Kenmotsu manifold with the condition

‘W6(A, B, C, ζ) = 0. Section-4 studies the nature of Φ2((∇EW6)(A, B)C) = 0 on Lorentzian

para-Kenmotsu manifold with the construction of an example. Section-5 and section-6 ex-

amine the behavior of W6-semisymmetric, and Φ-W6-flat on (LPK)n manifold, respectively.

In section-7, we see that an (LPK)n manifold with the condition W6(E, F).R = 0 gives an

ω-Einstein manifold.

2. Preliminaries

We assume that Mn is a Lorentzian metric manifold, meaning there by, it is equipped

with an structure (Φ, ζ, ω, g), where Φ is a (1, 1)-type tensor field, ζ is a vector field, ω is a

one-form on Mn, and g is a Lorentzian metric tensor holding the subsequent results [8, 9, 10]:

Φ2(A) = A+ ω(A)ζ, g(A, ζ) = ω(A), ω(ζ) = −1,

Φζ = 0, ω(ΦA) = 0, g(ΦA, ΦB) = g(A, B) + ω(A)ω(B),

 (2.3)

∀ vector fields A, B on Mn. Thus, Mn(Φ, ζ, ω, g) is called a Lorentzian almost paracontact

manifold.
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Definition 2.1. A Lorentzian almost paracontact manifold Mn(Φ, ζ, ω, g) is called a Lorentzian

para-Kenmotsu manifold if

(∇AΦ)B = −g(ΦA, B)ζ − ω(B)ΦA,

∀ vector fields A, B ∈ χ(Mn). Here, ∇ and χ(Mn) represent Levi-Civita connection, and a

collection of differentiable vector fields on Mn, respectively.

We assume that Mn(Φ, ζ, ω, g) is an (LPK)n manifold. The succeeding results hold for

Mn(Φ, ζ, ω, g):

∇Aζ = −A− ω(A)ζ, g(ΦA, B) = g(A, ΦB), (2.4)

(∇Aω)B = −g(A, B)− ω(A)ω(B), (2.5)

ω(R(A, B)C) = K(A, B, C, ζ) = g(B, C)ω(A)− g(A, C)ω(B), (2.6)

R(A, ζ)B = ω(B)A− g(A, B)ζ,

R(ζ, A)ζ = A+ ω(A)ζ,

R(A, B)ζ = ω(B)A− ω(A)B,


(2.7)

K(ζ, A, B, C) = g(A, B) ω(C)− g(A, C)ω(B), (2.8)

S(A, ζ) = (n− 1)ω(A), S(ζ, ζ) = −(n− 1),

(∇ES)(C, ζ) = S(E, C)− (n− 1)g(E, C),

 (2.9)

divR(A, B)C = (∇AS)(B, C)− (∇BS)(A, C), . (2.10)

here, S denotes Ricci tensor of Mn(Φ, ζ, ω, g).

Particularly, setting A = ζ, B = ζ, and C = ζ, respectively, in 1.1 on an (LPK)n manifold,

it yields

W6(ζ, B)C = g(B, C)ζ − ω(C)B+
1

n− 1
[ω(B)QC− S(B, C)ζ], (2.11)

W6(A, ζ)C = −g(A, C)ζ +
1

n− 1
ω(A)QC, (2.12)

W6(A, B)ζ = g(A, B)ζ − ω(A)B. (2.13)

Definition 2.2. An (LPK)n manifold is called an ω-Einstein manifold if its Ricci tensor

satisfies the following relation

S(A, B) = αg(A, B) + βω(A)ω(B),

here, α, and β are scalar functions on Mn. In case of β = 0, manifold becomes Einstein

manifold [4].
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3. ‘W6(A, B, C, ζ) = 0 on a Lorentzian para-Kenmotsu Manifolds

In this part, we discuss the condition ‘W6(A, B, C, ζ) = 0 on (LPK)n manifolds Mn. We

begin with the subsequent theorem:

Theorem 3.1. An n-dimensional Lorentzian para-Kenmotsu manifold is an Einstein man-

ifold if, ‘W6(A, B, C, ζ) = 0.

Proof. ‘W6-curvature tensor is defined by 1.2

‘W6(A, B, C, T) = K(A, B, C, T) +
1

n− 1
[g(A, B)S(C, T)− g(A, T)S(B, C)].

∀ A, B, C, T ∈ χ(Mn).

Putting T = ζ into the above equation, we have

‘W6(A, B, C, ζ) = K(A, B, C, ζ) +
1

n− 1
[g(A, B)S(C, ζ)− g(A, ζ)S(B, C)].

Applying ‘W6(A, B, C, ζ) = 0 in the above relation, we get

K(A, B, C, ζ) =
1

n− 1
[g(A, ζ)S(B, C)− g(A, B)S(C, ζ)]. (3.14)

Using 2.3, 2.6, and 2.9, the relation 3.14 yields

1

n− 1
S(B, C)ω(A) = g(B, C)ω(A)− g(A, C)ω(B) + g(A, B)ω(C). (3.15)

Applying A = ζ into 3.15, it yields

1

n− 1
S(B, C)ω(ζ) = g(B, C)ω(ζ)− g(ζ, C)ω(B) + g(ζ, B)ω(C). (3.16)

Using 2.3, on simplification, the relation 3.16 provides

S(B, C) = (n− 1)g(B, C). (3.17)

This completes the proof. □

4. nature of Φ-W6-symmetric on (LPK)n manifolds

We begin this part with the definition of Φ-W6-symmetric Lorentzian para-Kenmotsu

manifold:

Definition 4.1. A Lorentzian para-Kenmotsu manifold is said to be a Φ-W6-symmetric

Lorentzian para-Kenmotsu manifold, if it satisfies the relation

Φ2((∇EW6)(A, B)C) = 0,

for every A, B, C, E on Mn.
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Theorem 4.1. A Φ-W6-symmetric Lorentzian para-Kenmotsu manifold is an Einstein man-

ifold.

Proof. Covariant differentiation of relation 1.1 along E yields

(∇EW6)(A, B)C = (∇ER)(A, B)C− 1

n− 1
[(∇ES)(B, C)A− g(A, B)(∇EQ)C]. (4.18)

Operating Φ2 on both sides of the equation 4.18 and using 2.3, it gives

Φ2((∇EW6)(A, B)C) = (∇ER)(A, B)C+ ω((∇ER)(A, B)C)ζ

− 1

n− 1
[(∇ES)(B, C)A+ (∇ES)(B, C)ω(A)ζ

− g(A, B)(∇EQ)C− g(A, B)(∇ES)(C, ζ)ζ].

(4.19)

Using 2.9 with condition Φ2((∇EW6)(A, B)C) = 0 into the relation 4.19, it yields

0 = (∇ER)(A, B)C+ ω((∇ER)(A, B)C)ζ

− 1

n− 1
[(∇ES)(B, C)A+ (∇ES)(B, C)ω(A)ζ

− g(A, B)(∇EQ)C− g(A, B)S(E, C)ζ + (n− 1)g(A.B)g(E, C)ζ].

(4.20)

Differentiating covariantly 2.6 along E, it gives

(∇Eg)(R(A, B)C, ζ) + g(∇ER(A, B)C, ζ)

+ g(R(∇EA, B)C, ζ) + g(R(A,∇EB)C, ζ)

+ g(R(A, B)∇EC, ζ) + g(R(A, B)C,∇Eζ)

= (∇Eg)(B, C) g(A, ζ) + g(∇EB, C) g(A, ζ)

+ g(B,∇EC) g(A, ζ) + g(B, C) (∇Eg)(A, ζ)

+ g(B, C) g(∇EA, ζ) + g(B, C) g(A,∇Eζ)

− (∇Eg)(A, C) g(B, ζ)− g(∇EA, C) g(B, ζ)

− g(A,∇EC) g(B, ζ)− g(A, C) (∇Eg)(B, ζ)

− g(A, C) g(∇EB, ζ)− g(A, C) g(B,∇Eζ).

(4.21)

Applying 2.3 and 2.4 into 4.21, it gives

ω((∇ER(A, B)C) = g(R(A, B)C, E) + g(A, C)g(B, E)− g(B, C)g(A, E). (4.22)
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Relations 4.20 and 4.22, provide

(∇ER)(A, B)C+K(A, B, C, E)ζ + g(A, C) g(B, E) ζ − g(B, C) g(A, E) ζ

− 1

n− 1

[
(∇ES)(B, C)A+ (∇ES)(B, C)ω(A) ζ − g(A, B)(∇EQ)C

− g(A, B)S(E, C) ζ + (n− 1) g(A, B) g(E, C) ζ
]
= 0.

(4.23)

Innerproduct of 4.23 along F is given by

g((∇ER)(A, B)C, F) +K(A, B, C, E)ω(F) + g(A, C)g(B, E)ω(F)− g(B, C)g(A, E)ω(F)

− 1

n− 1

[
(∇ES)(B, C)g(A, F) + (∇ES)(B, C)ω(A)ω(F)

− g(A, B)g((∇EQ)C, F)− g(A, B)S(E, C)ω(F) + (n− 1)g(A, B)g(E, C)ω(F)
]
= 0. (4.24)

Contracting 4.24 along E and F, we have

n∑
i=1

ϵig((∇EiR)(A, B)C, Ei) +
n∑

i=1

ϵiK(A, B, C, Ei)g(ζ, Ei)

+

n∑
i=1

ϵig(A, C)g(B, Ei)g(ζ, Ei)−
n∑

i=1

ϵig(B, C)g(A, Ei)g(ζ, Ei)

− 1

n− 1

n∑
i=1

ϵi

[
(∇EiS)(B, C)g(A, Ei) + (∇EiS)(B, C)ω(A)g(ζ, Ei)

− g(A, B)g((∇EiQ)C, Ei)− g(A, B)S(Ei, C)g(ζ, Ei)

+ (n− 1)g(A, B)g(Ei, C)g(ζ, Ei)
]
= 0.

where, ϵi = g(Ei, Ei) and {E1, E2....En−1, ζ} are orthonormal base field on (LPK)n manifold.

Using relations 2.3, 2.6, 2.8, and 2.9 into the above relation, it gives

(divR)(A, B)C+K(A, B, C, ζ) + g(A, C)ω(B)− g(B, C)ω(A)

− 1

n− 1

[
(∇AS)(B, C) + (∇ζS)(B, C)ω(A)

− g(A, B)
C(r)

2
− g(A, B)S(C, ζ) + (n− 1)g(A, B)g(C, ζ)

]
= 0. (4.25)
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where, divQ(C)=
C(r)

2
.

Putting the value from 2.6, and 2.10 into 4.25, we have

(∇AS)(B, C)− (∇BS)(A, C) + g(B, C)ω(A)− g(A, C)ω(B)

+ g(A, C)ω(B)− g(B, C)ω(A)− 1

n− 1

[
(∇AS)(B, C)

+ (∇ζS)(B, C)ω(A)−
C(r)

2
g(A, B)

]
= 0. (4.26)

Putting C = ζ into 4.26, we get

(n− 2)

(n− 1)
(∇AS)(B, ζ) − (∇BS)(A, ζ) −

1

n− 1
(∇ζS)(B, ζ)ω(A) +

1

2(n− 1)
ζ(r)g(A, B) = 0.

(4.27)

Using the relation 2.9 into 4.27, it gives

(n− 2)

(n− 1)

[
S(A, B)− (n− 1)g(A, B)

]
−
[
S(A, B)− (n− 1)g(A, B)

]
− 1

n− 1

[
S(B, ζ)− (n− 1)ω(B)

]
ω(A) +

1

2(n− 1)
ζ(r)g(A, B) = 0. (4.28)

After simplification, 4.28 yields

S(A, B) = [(n− 1) +
ζ(r)

2
]g(A, B)]. (4.29)

Further, contracting 4.24 along A and F and using 2.8, we have

(∇ES)(C, B) = −S(E, C)ω(B) + (n− 1)g(E, C)ω(B). (4.30)

Again, contracting the above equation along B and C, we have

(∇Er) = −S(E, ζ) + (n− 1)ω(E). (4.31)

Using 2.9, it yields that scalar curvature r is constant. Therefore, 4.29 concludes the following:

S(A, B) = (n− 1)g(A, B). (4.32)

Hence, we establish that Φ-W6-symmetric (LPK)n manifold is an Einstein manifold.

□

We consider an (LPK)n manifold of constant curvature, then

R(A, B)C = k[g(B, C)A− g(A, C)B], (4.33)



INT. J. MAPS MATH. (2025) 8(2):360-376 / CHARACTERIZATION OF W6-CURVATURE TENSOR ... 367

where, k is constant.

The relations 1.1 and 4.33, taken together, we have

W6(A, B)C = k[g(A, B)C− g(A, C)B]. (4.34)

Differentiating covariantly the relation 4.34 along E and operating Φ2 on both sides, it yields

Φ2((∇EW6)(A, B)C) = 0. (4.35)

This establishes the subsequent corollary:

Corollary 4.1. The (LPK)n manifolds of constant curvature are Φ-W6-symmetric (LPK)n

manifolds.

Example 4.1. Consider a differentiable manifold M4 = {(u, v, w, t) ∈ ℜ4: u, v, w is non

zero, t>0}. Suppose that {E1, E2, E3, E4} are linearly independent vectors at every point of

M4. We define,

E1 = eu+t ∂

∂u
, E2 = ev+t ∂

∂v
, E3 = ew+t ∂

∂w
, E4 =

∂

∂t
.

Lorentzian metric g on M4 is established in the following way:

gij = g(Ei, Ej) =


0 if i ̸= j

−1 if i = j = 4

1 or else.

Assuming ω is one-form corresponding to g is defined by

ω(A) = g(A, E4),

∀ A ∈ χ(M4), here χ(M4) be collection of vector fields on M4. We define Φ as (1, 1)-tensor

field as follows:

Φ(E1) = E1, Φ(E2) = E2, Φ(E3) = E3, Φ(E4) = 0.

From linear characteristic of Φ and g, the following results can easily be proved:

ω(E4) = −1, Φ2(A) = A+ ω(A)E4, g(ΦA, ΦB) = g(A, B) + ω(A)ω(B),

∀ A, B ∈ χ(M4). So, when E4 = ζ, structure (Φ, ζ, ω, g) leading to Lorentzian paracontact

structure as well as manifold M equipped with Lorentzian paracontact structure is said to be

Lorentzian paracontact manifold of dimension-4.



368 R. PRASAD, A. VERMA, AND V. S. YADAV

We represent [A, B] as Lie-derivative of A, B, defined as [A, B] = AB − BA. The non-zero

constituents of Lie bracket are evaluated as below:

[E1, E4] = −E1, [E2, E4] = −E2, [E3, E4] = −E3.

Let Riemannian connection with respect to g be denoted by ∇. So, when E4 = ζ, we have the

subsequent results:

∇E1E1 = −E4, ∇E1E2 = 0, ∇E1E3 = 0, ∇E1E4 = −E1,

∇E2E1 = 0, ∇E2E2 = −E4, ∇E2E3 = 0, ∇E2E4 = −E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = −E4, ∇E3E4 = −E3,

∇E4E1 = 0, ∇E4E2 = 0, ∇E4E3 = 0, ∇E4E4 = 0.

Assuming A ∈ χ(M4), so A = a1E1 + a2E2 + a3E3 + a4E4, here {E1, E2, E3, E4} be the basis

of χ(M4). Above relations help verify ∇AE4 = −A − ω(A)E4 for each A ∈ χ(M4). Hence,

M4 is a Lorentzian para-Kenmotsu manifold of dimension-4. From the above relations, the

non-vanishing constituents of the curvature tensor are evaluated as subsequently,

R(E1, E2)E1 = −E2, R(E1, E3)E1 = −E3, R(E1, E4)E1 = −E4,

R(E1, E2)E2 = E1, R(E2, E3)E2 = −E3, R(E2, E4)E2 = −E4,

R(E1, E3)E3 = E1, R(E2, E3)E3 = E2, R(E3, E4)E3 = −E4,

R(E1, E4)E4 = −E1, R(E2, E4)E4 = −E2, R(E3, E4)E4 = −E3.

It can easily be seen that R(A, B)C = g(B, C)A− g(A, C)B.

From definition of Ricci tensor S on M4, the subsequent result holds,

S(A, B) = Σ4
i=1εig(R(Ei, A)B, Ei), εi = g(Ei, Ei).

Therefore, matrix representation of S is mentioned by

S =


3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 −3

 .

This gives, S(A, B) = 3g(A, B) and scalar curvature κ = Σ4
i=1εiS(Ei, Ei) = 12, this implies that

(LPK)4 manifold has constant scalar curvature. Hence, relation Φ2((∇EW6)(A, B)C) = 0

holds.

Thus, the above example verifies the results of this section.
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5. W6-semisymmetric Lorentzian para-Kenmotsu Manifolds

This part covers the behavior of W6, when R(A, B) operates on it in (LPK)n manifold.

Now, we have the following theorem:

Theorem 5.1. Let (Mn, g) be an (LPK)n manifold. If R(A, B).W6 = 0. Then, Mn is an

Einstein manifold, where R(A, B) is a Riemannian operator, and W6 is a curvature tensor.

Proof. We assume that Mn is an (LPK)n manifold satisfying subsequent condition:

(R(A, B).W6)(E, F)T = 0. (5.36)

From relation 5.36, we have

R(A, B).W6(E, F)T = W6(R(A, B)E, F)T + W6(E,R(A, B)F)T + W6(E, F)(R(A, B)T). (5.37)

Taking innerproduct of 5.37 along C, we have

K(A, B,W6(E, F)T, C) = ‘W6(R(A, B)E, F, T, C)+‘W6(E,R(A, B)F, T, C)+‘W6(E, F,R(A, B)T, C).

(5.38)

Applying A = C = ζ into 5.38, it provides

K(ζ, B,W6(E, F)T, ζ) = ‘W6(R(ζ, B)E, F, T, ζ)+‘W6(E,R(ζ, B)F, T, ζ)+‘W6(E, F,R(ζ, B)T, ζ).

(5.39)

Evaluation of left hand side of 5.39 with relation 2.6, it yields

K(ζ, B,W6(E, F)T, ζ) = −K(E, F, T, B)

− 1

n− 1
[g(E, F)S(T, B)− g(E, B)S(F, T)]

− ω(B)ω(T)g(E, F)− ω(E)ω(B)g(F, T)

+ g(E, T)ω(F)ω(B) +
1

n− 1
ω(E)ω(B)S(F, T).

(5.40)

Evaluation of first term of right hand side of 5.39 with the relation 2.6 in the following way:

‘W6(R(ζ, B)E, F, T, ζ) = g(B, E)‘W6(ζ, F, T, ζ)− ω(E)‘W6(B, F, T, ζ).
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Applying the definition of W6-curvature tensor, the above relation becomes

W6(R(ζ, B)E, F, T, ζ) = −g(B, E)g(F, T)− g(B, E)ω(F)ω(T)

+ g(B, E)ω(F)ω(T) +
1

n− 1
g(B, E)S(F, T)− ω(E)ω(B)g(F, T)

+ g(B, T)ω(E)ω(F)− g(B, F)ω(E)ω(T) +
1

n− 1
ω(E)ω(B)S(F, T). (5.41)

Evaluation of middle term of right hand side of 5.39 with 2.6 into the following way:

‘W6(E,R(ζ, B)F, T, ζ) = ‘W6(E, ζ, T, ζ)g(B, F)− ω(F)‘W6(E, B, T, ζ).

Now, from the definition of W6-curvature tensor, the above relation becomes

‘W6(E,R(ζ, B)F, T, ζ) = g(B, F)g(E, T)

+ g(B, F)ω(E)ω(T)− ω(E)ω(F)g(B, T) + g(E, T)ω(E)ω(B)

− g(E, B)ω(F)ω(T) +
1

n− 1
ω(E)ω(F)S(B, T). (5.42)

Evaluation of the last term of 5.39 into the following way:

In view of relation 2.7, the last term of 5.39 becomes

‘W6(E, F,R(ζ, B)T, ζ) = g(B, T)‘W6(E, F, ζ, ζ)− ω(T)‘W6(E, F, B, ζ),

Using the definition 1.2 with relation 2.7 and 2.9 into the above relation, we have

‘W6(E, F,R(ζ, B)T, ζ) = −g(B, T)g(E, F)− ω(E)ω(F)g(B, T)

− ω(T)ω(E)g(F, B) + g(E.B)ω(F)ω(T)

− ω(T)ω(E)g(F, B) +
1

n− 1
ω(E)ω(T)S(F, B). (5.43)

Putting the values from 5.40, 5.41, 5.42, and 5.43 into 5.39, we have

K(E, F, T, B) +
1

n− 1
g(E, F)S(T, B)− g(B, E)g(F, T)

+ g(B, F)g(E, T) +
1

n− 1
S(B, T)ω(E)ω(F)− g(B, T)g(E, F)

− g(B, T)ω(E)ω(F)− g(F, B)ω(E)ω(T) +
1

n− 1
ω(E)ω(T)S(F, B) = 0. (5.44)

Contracting 5.44 along E, and B, on evaluation, it provides

S(F, T) = (n− 1)g(F, T). (5.45)

This completes the proof. □
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6. Φ-W6-flat Lorentzian para-Kenmotsu Manifolds

Theorem 6.1. If an (LPK)n manifold is Φ-W6-flat, then it is an Einstein manifold.

Proof. Let us consider that an (LPK)n manifold is Φ-W6-flat. Then,

‘W6(ΦA, ΦB, ΦC, ΦT) = 0. (6.46)

By definition of W6 curvature tensor 1.2

K(ΦA, ΦB, ΦC, ΦT) +
1

n− 1
[g(ΦA, ΦB)S(ΦC, ΦT)− S(ΦB, ΦC)g(ΦA, ΦT)] = 0. (6.47)

By definition of Riemann curvature tensor, we have

R(A, B)ΦC = ∇A∇BΦC−∇B∇AΦC−∇[A,B]ΦC.

Taking innerproduct of the above relation with respect to ΦT, it gives

g(R(A, B)ΦC, ΦT) = g(∇A∇BΦC, ΦT)− g(∇B∇AΦC, ΦT)− g(∇[A,B]ΦC, ΦT). (6.48)

Evaluation of the term ∇A∇BΦC provides

∇A∇BΦC = −g(∇AΦB, C)ζ − g(ΦB,∇AC)ζ

+ g(ΦB, C)A+ g(ΦB, C)ω(A)ζ − (∇Aω)(C)ΦB− ω(∇AC)ΦB

+ g(ΦA, B)ω(C)ζ + ω(B)ω(C)ΦA− ω(C)Φ(∇AB)

− g(ΦA,∇BC)ζ − ω(∇BC)ΦA+ Φ(∇A∇BC). (6.49)

Taking innerproduct of 6.49 with ΦT, we have

g(∇A∇BΦC, ΦT) = −g(∇AΦB, C)g(ζ, ΦT)− g(ΦB,∇AC)g(ζ, ΦT)

+ g(ΦB, C)g(A, ΦT) + g(ΦB, C)ω(A)g(ζ, ΦT)− (∇Aω)(C)g(ΦB, ΦT)

− ω(∇AC)g(ΦB, ΦT) + g(ΦA, B)ω(C)g(ζ, ΦT) + ω(B)ω(C)g(ΦA, ΦT)

− ω(C)g(Φ(∇AB), ΦT)− g(ΦA,∇BC)g(ζ, ΦT)

− ω(∇BC)g(ΦA, ΦT) + g(Φ(∇A∇BC), ΦT). (6.50)

Using 2.3 into 6.50, we have

g(∇A∇BΦC, ΦT) = g(ΦB, C)g(A, ΦT)− (∇Aω)(C)g(ΦB, ΦT)

− ω(∇AC)g(ΦB, ΦT) + ω(B)ω(C)g(ΦA, ΦT)− ω(C)g(Φ(∇AB), ΦT)

− ω(∇BC)g(ΦA, ΦT) + g(Φ(∇A∇BC), ΦT). (6.51)



372 R. PRASAD, A. VERMA, AND V. S. YADAV

Applying A ↔ B in 6.51, we have

g(∇B∇AΦC, ΦT) = g(ΦA, C)g(B, ΦT)− (∇Bω)(C)g(ΦA, ΦT)

− ω(∇BC)g(ΦA, ΦT) + ω(A)ω(C)g(ΦB, ΦT)− ω(C)g(Φ(∇BA), ΦT)

− ω(∇AC)g(ΦB, ΦT) + g(Φ(∇B∇AC), ΦT). (6.52)

Differentiating covariantly ΦC along [A, B], we find

∇[A,B](ΦC) = −g(Φ[A, B], C)ζ − ω(C)[Φ(∇AB−∇BA)] + Φ(∇[A,B]C). (6.53)

Taking innerproduct of 6.53 with ΦT, we have

g(∇[A,B](ΦC), ΦT) = −ω(C)g(Φ(∇AB), ΦT) + ω(C)g(Φ(∇BA), ΦT) + g(Φ(∇[A,B]C), ΦT). (6.54)

Putting values 6.51, 6.52 and 6.54 into relation 6.48, it yields

K(A, B, ΦC, ΦT) = g(ΦB, C)g(A, ΦT)− g(ΦA, C)g(B, ΦT)

+ (∇Bω)(C)g(ΦA, ΦT)− (∇Aω)(C)g(ΦB, ΦT) + ω(B)ω(C)g(ΦA, ΦT)

− ω(A)ω(C)g(ΦB, ΦT) + g(Φ(R(A, B)C, ΦT). (6.55)

Applying the relation 2.4 into the last term of right hand side of 6.55, and then transposing

to left hand side, we have

K(A, B, ΦC, ΦT)−K(A, B, C, Φ2T) = g(ΦB, C)g(A, ΦT)− g(ΦA, C)g(B, ΦT)

+ [(∇Bω)(C) + ω(B)ω(C)]g(ΦA, ΦT)− [(∇Aω)(C) + ω(A)ω(C)]g(ΦB, ΦT). (6.56)

Using 2.3, and 2.5 into 6.56, we have

K(A, B, ΦC, ΦT)−K(A, B, C, T)− ω(T)K(A, B, C, ζ) = g(ΦB, C)g(A, ΦT)

− g(ΦA, C)g(B, ΦT)− g(B, C)g(ΦA, ΦT) + g(A, C)g(ΦB, ΦT). (6.57)

Using 2.3, and 2.6 into 6.57, we have

K(A, B, ΦC, ΦT)−K(A, B, C, T) = g(ΦB, C)g(A, ΦT)

− g(ΦA, C)g(B, ΦT)− g(B, C)g(A, T) + g(A, C)g(B, T). (6.58)

By Riemann curvature property, we have

K(A, B, C, T) = K(C, T, A, B). (6.59)
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Applying X ↔ Z, and Y ↔ T into 6.58, we have

K(C, T, ΦA, ΦB)−K(C, T, A, B) = g(ΦT, A)g(C, ΦB)

− g(ΦC, A)g(T, ΦB)− g(T, A)g(C, B) + g(C, A)g(T, B). (6.60)

Subtracting 6.60 from 6.58, and using 6.59, we have

K(A, B, ΦC, ΦT) = K(C, T, ΦA, ΦB). (6.61)

Applying A → ΦA, and B → ΦB into 6.61, we have

K(ΦA, ΦB, ΦC, ΦT) = K(C, T, Φ2A, Φ2B). (6.62)

Applying 2.3, and 6.59 into 6.62, on simplification, we have

K(ΦA, ΦB, ΦC, ΦT) = K(A, B, C, T) + g(A, T)ω(B)ω(C)

− g(A, C)ω(B)ω(T) + g(B, C)ω(A)ω(T)− g(B, T)ω(A)ω(C). (6.63)

Putting value from relation 6.63 into 6.47, we have

K(A, B, C, T)− g(A, C)ω(B)ω(T) + g(B, C)ω(A)ω(T)

− g(B, T)ω(A)ω(C) +
1

n− 1
[S(C, T)g(A, B) + (n− 1)g(A, B)ω(C)ω(T)

+ S(C, T)ω(A)ω(B)− S(B, C)g(A, T)− S(B, C)ω(A)ω(T)] = 0. (6.64)

Contracting 6.64 with respect to A, and T, we have

S(B, C)− ω(B)ω(C)− g(B, C)− ω(B)ω(C) +
1

n− 1
[S(B, C)

+ (n− 1)ω(C)ω(B) + S(C, ζ)ω(B)− nS(B, C) + S(B, C)] = 0. (6.65)

On simplification of 6.65, it concludes

S(B, C) = (n− 1)g(B, C). (6.66)

This completes the proof. □
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7. Lorentzian para-Kenmotsu manifolds with condition W6(E, F).R = 0

In this part, we explore the behavior of (LPK)n manifold admitting W6(E, F).R = 0.

We begin this with the subsequent theorem:

Theorem 7.1. An (LPK)n manifold is an ω-Einstein manifold if, it satisfies the relation

W6(E, F).R = 0 .

Proof. Let us consider that the (LPK)n manifold admits the condition

W6(E, F).R = 0. (7.67)

From the relation 7.67, we have

W6(E, F)R(A, B)C−R(W6(E, F)A, B)C−R(A,W6(E, F)B)C−R(A, B)W6(E, F)C = 0. (7.68)

Putting B = ζ into the relation 7.68, we have

W6(E, F)(R(A, ζ)C)−R(W6(E, F)A, ζ)C−R(A,W6(E, F)ζ)C−R(A, ζ)W6(E, F)C = 0. (7.69)

Evaluation of the terms of the relation 7.69 in the subsequent manner:

Using 2.7, 2.9, 1.1, 2.13 into first term of 7.69, we get

W6(E, F)R(A, ζ)C = ω(C)R(E, F)A

+
1

n− 1
g(E, F)ω(C)QA− 1

n− 1
S(F, A)ω(C)E− g(A, C)ω(F)E

+ g(A, C)ω(E)F− g(A, C)g(E, F)ζ + g(A, C)ω(F)E. (7.70)

Using 2.7, 2.9, and 1.1, into second term of 7.69, we get

R(W6(E, F)A, ζ)C = ω(C)R(E, F)A

+
1

n− 1
g(E, F)ω(C)QA− 1

n− 1
S(F, A)ω(C)E−K(E, F, A, C)ζ

− 1

n− 1
g(E, F)S(A, C)ζ + 1

n− 1
S(F, A)g(E, C)ζ. (7.71)

Applying relations 2.7, and 2.13 into third term of 7.69, we get

R(A,W6(E, F)ζ)C = g(E, F)ω(C)A− g(E, F)g(A, C)ζ − ω(E)R(A, F)C. (7.72)
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Using 2.7, 2.9, 1.1 and 2.13 into fourth term of 7.69, we get

R(A, ζ)W6(E, F)C = g(F, C)ω(E)A− g(E, C)ω(F)A

+ g(E, F)ω(C)A− 1

n− 1
S(F, C)ω(E)A−K(E, F, C, A)ζ

− 1

n− 1
g(E, F)S(A, C)ζ + 1

n− 1
S(F, C)g(E, A)ζ. (7.73)

Putting the values from 7.70, 7.71, 7.72, and 7.73 into 7.69, it gives

g(A, C)ω(E)F+
2

n− 1
g(E, F)S(A, C)ζ − 1

n− 1
S(F, A)g(E, C)ζ

− 2g(E, F)ω(C)A+ ω(E)R(A, F)C− g(F, C)ω(E)A+ g(E, C)ω(F)A

+
1

n− 1
S(F, C)ω(E)A− 1

n− 1
S(F, C)g(E, A)ζ = 0. (7.74)

Contracting 7.74 along A, we have

g(F, C)ω(E) +
2

n− 1
g(E, F)S(ζ, C)− 1

n− 1
S(F, ζ)g(E, C)− 2ng(E, F)ω(C) + ω(E)S(F, C)

− ng(F, C)ω(E) + ng(E, C)ω(F) +
n

n− 1
S(F, C)ω(E)− 1

n− 1
S(F, C)ω(E) = 0. (7.75)

Putting E = ζ and making use of 2.9 into 7.75, it provides

S(F, C) = (n− 1)

2
g(F, C)− (n− 1)

2
ω(E)ω(F). (7.76)

This completes the proof. □
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