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RIEMANNIAN CR MANIFOLDS AND ρ-EINSTEIN SOLITONS: A

GEOMETRIC ANALYSIS AND APPLICATIONS

PRABHAKARAN SWAPNA SANGEETHA ID AND MALLANNARA S. SIDDESHA ID ∗

Abstract. In this article, we investigate ρ-Einstein solitons on Riemannian CR manifolds.

Specifically, we explore the properties of ρ-Einstein solitons in the presence of cyclic η-

recurrent Ricci tensors on Riemannian CR manifolds. We also examine these solitons with

respect to Torse-forming vector fields. Additionally, we study ρ-Einstein solitons satisfying

Ricci semi-symmetric condition on Riemannian CR manifolds. Furthermore, we examine the

properties of conharmonic and conformal curvature tensors on Riemannian CR manifolds

admitting ρ-Einstein solitons. Finally, we discuss the applications of ρ-Einstein solitons and

their potential uses in various fields.
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1. Introduction

Over the last twenty years, the study of geometric flow has become the main focus of

many mathematicians as it helps in understanding the geometric structures of manifolds

in Riemannian geometry. In order to better comprehend these structures on Riemannian

manifolds (M, g), Hamilton [15] developed the ‘Ricci flow’ in 1982, which is described by

gt = −2S,
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where S denotes the Ricci tensor and g is the Riemannian metric on M that satisfies the

Ricci soliton equation

£V g + 2S + 2λg = 0,

where £V denotes the Lie derivative along the vector field V on M , and λ is a constant. The

manifolds admitting such type of structures are called Ricci solitons. The nature of these

solitons depends on λ, i.e. λ = 0 is steady, λ > 0 is shrinking and λ < 0 is expanding.

Bourguignon [3] gave the generalization of the Ricci flow in 1980s by introducing the notion

of Ricci-Bourguignon flow, which is described by

gt = −2S + 2ρrg, g(0) = g0, (1.1)

where r represents the scalar curvature and ρ( ̸= 0) is a real constant. For specific values of

ρ, we get certain tensors associated to equation(1.1):

1. ρ = 1
2 , Einstein tensor S − r

2g.

2. ρ = 1
n , traceless Ricci tensor S − r

ng.

3. ρ = 1
2(n−1) , Schouten tensor S − r

2(n−1)g.

4. ρ = 0, Ricci tensor S.

The self-similar solution to the Ricci-Bourguignon flow is the Ricci-Bourguignon soliton (also

called as ‘ρ-Einstein soliton’) whose equation is

£V g + 2S + 2(λ− ρr)g = 0. (1.2)

The ρ-Einstein soliton is steady if λ = 0, shrinking if λ < 0 and expanding if λ > 0.

Recent mathematical research focuses on classifying Ricci solitons in Riemannian mani-

folds under particular geometric conditions. Chen and Deshmukh [5] investigated potential

fields as concurrent fields and provided a classification of Ricci solitons. Sharma [29] studied

gradient Ricci solitons with scalar curvature which is constant and non-homothetic conformal

vector fields on Riemannian manifolds, yielding significant findings. Naik [22] characterized

Ricci solitons and gradient Ricci almost solitons on Riemannian manifolds, specifically those

admitting concurrent recurrent vector fields, known as Riemannian CR manifolds. For fur-

ther studies on Ricci solitons across various classes of Riemannian manifolds, we suggest

[7, 24, 36].

Now, let’s recall some concepts on vector fields in Riemannian manifolds. A smooth vec-

tor field ξ, on M is said to be conformal if ∃ a smooth function ψ (referred to as ‘conformal
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coefficient’) on M such as

£ξg = 2ψg. (1.3)

In specific, ξ is said to be homothetic (Killing) vector field if ψ is constant, i.e. dψ = 0.

If the dual 1-form η is closed, i.e. ξ is closed, then (1.3) becomes

∇Z2ξ = ψZ2 (1.4)

for all Z2, a vector field and ∇, the Levi-Civita connection on M . From (1.4), we observe

that ξ is a closed homothetic vector field (parallel) if ψ is constant, i.e. dψ = 0 satisfies. In

particular, ξ is said to be concurrent when ψ = 1 in (1.4). For additional information, we

suggest [4, 8, 35]. In contrast, ξ is called a recurrent vector field when

∇ξ = η ⊗ ξ.

We recommend [6, 13] for results on Riemannian manifolds admitting recurrent vector field.

A vector field Z2 that satisfies the expression

∇Z2ξ = αZ2 + βη(Z2)ξ, α, β ∈ R,

generalizes both closed homothetic (concurrent), as well as recurrent vector fields. Thus, we

observe that £ξg = 2αid+2βη⊗η. If ξ is a unit vector field, then (£ξg)(ξ, ξ) = 0 = 2(α+β),

which implies

∇Z2ξ = α[Z2 − η(Z2)ξ] (1.5)

for any Z2 ∈ χ(M) and α ∈ R is a constant. Here, we regard a unit vector field ξ, which is

non-parallel and satisfies (1.5), as a concurrent-recurrent vector field.

The existence of certain vector fields within a Riemannian manifold is a key element

of differential geometry. These vector fields are classified into two types: Killing and con-

formal vector fields [9, 10]. This article highlights Killing vector fields because of their

significant prospects for future applications. Drawing on the works of Ahmad et al [1] on

ρ-Einstein solitons in Lorentzian para-Kenmotsu manifolds, and inspired by the works of

[8, 12, 17, 20, 22, 27, 37], it is essential to explore the geometry of ρ-Einstein solitons in

Riemannian CR manifolds.

The current paper investigates ρ-Einstein solitons on Riemannian CR manifolds. The

paper is structured as follows: Section 2 describes the preliminary concepts. Section 3 centers

on the analysis of Riemannian CR manifolds admitting ρ-Einstein solitons. Section 4 exam-

ines ρ-Einstein solitons on Riemannian CR manifolds with cyclic η-recurrent Ricci tensor.
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Section 5 delves into ρ-Einstein solitons on Riemannian CR manifolds with a torse-forming

vector field. Section 6 addresses Riemannian CR manifolds admitting ρ-Einstein solitons that

satisfy R(ξ, Z1) ·S = 0. Section 7 highlights Riemannian CR manifolds admitting ρ-Einstein

solitons concerning the conharmonic curvature tensor. Section 8 focuses on Riemannian

CR manifolds admitting ρ-Einstein solitons with respect to the conformal curvature tensor.

Section 9 gives some applications of ρ-Einstein solitons on various fields. The final section,

section 10, draws the concluding remarks based on the obtained results.

2. Preliminaries

Let M be a Riemannian manifold of dimension n, admitting a concurrent recurrent vector

field ξ, a 1-form η and a Riemannian metric g that satisfies the following relations:

η(ξ) = 1, (2.6)

g(Z1, ξ) = η(Z1), g(Z2, ξ) = η(Z2), (2.7)

∇Z1ξ = α[Z1 − η(Z1)ξ], (2.8)

(∇Z1η)(Z2) = α[g(Z2, Z1)− η(Z1)η(Z2)] (2.9)

for all Z1, Z2 ∈ χ(M), ∇ denotes the Levi-Civita connection on M , and α ∈ R is a constant.

A Riemannian CR manifold satisfies the following relations [22]:

g(R(Z1, Z2)Z3, ξ) = η(R(Z1, Z2)Z3) = −α2[g(Z2, Z3)η(Z1)− g(Z1, Z3)η(Z2)], (2.10)

R(ξ, Z1)Z2 = −α2[g(Z1, Z2)ξ − η(Z2)Z1], (2.11)

R(Z1, Z2)ξ = −α2[η(Z2)Z1 − η(Z1)Z2], (2.12)

R(ξ, Z1)ξ = −α2[η(Z1)ξ − Z1], (2.13)

S(Z1, ξ) = −(n− 1)α2η(Z1), S(ξ, ξ) = −(n− 1)α2, (2.14)

Qξ = −(n− 1)α2ξ, (2.15)

where R denotes the Riemannian curvature, S represents the Ricci tensor and Q indicates

the Ricci operator which is given as S(Z1, Z2) = g(QZ1, Z2), ∀ Z1, Z2 ∈ χ(M).

Definition 2.1. [33] A Riemannian CR manifold is said to be an η-Einstein manifold when

its Ricci tensor S satisfies the following relation

S(Z1, Z2) = ag(Z1, Z2) + bη(Z1)η(Z2),
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for smooth functions a and b. If b = 0, then the Riemannian CR manifold reduces to an

Einstein manifold.

Remark 2.1. [23] In a Riemannian CR manifold, we have

ξ(r) = −2α(r + n(n− 1)α2). (2.16)

Remark 2.2. From (2.16), if an n-dimensional Riemannian CR manifold is of constant

curvature, then

r = −α2n(n− 1). (2.17)

3. Riemannian CR manifolds admitting ρ-Einstein solitons

In this section, we examine ρ-Einstein solitons on a Riemannian CR manifold and we ex-

plore the nature of solitons for various values of ρ.

Let an n-dimensional Riemannian CR manifold M admit ρ-Einstein soliton. Then (1.2)

holds. So we have

(£ξg)(Z1, Z2) + 2S(Z1, Z2) + 2(λ− ρr)g(Z1, Z2) = 0 (3.18)

for all Z1, Z2 ∈ χ(M).

We know that

(£ξg)(Z1, Z2) = g(∇Z1ξ, Z2) + g(Z1,∇Z2ξ) = 2α[g(Z1, Z2)− η(Z1)η(Z2)]. (3.19)

Hence, (3.18) leads to

S(Z1, Z2) = −(λ− ρr + α)g(Z1, Z2) + αη(Z1)η(Z2). (3.20)

Substituting Z2 = ξ in (3.20) and making use of (2.6) and (2.7), we get

S(Z1, ξ) = −(λ− ρr)η(Z1), (3.21)

which implies

Qξ = −(λ− ρr)ξ. (3.22)

From (2.14) and (3.21), we obtain

λ = α2(n− 1) + ρr. (3.23)

Now, if r is constant, then by Remark (2.2), (3.23) becomes

λ = α2(n− 1)(1− ρn). (3.24)
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Therefore, we state:

Theorem 3.1. If a Riemannian CR manifold of dimension n admits ρ-Einstein soliton then

it is an η-Einstein manifold with the soliton constant λ = α2(n− 1)(1− ρn).

Now from the above theorem we obtain the following corollary:

Corollary 3.1. Let an n-dimensional Riemannian CR manifold admit a ρ-Einstein soliton,

then we have:

Values of ρ Soliton type Soliton constant Nature of soliton

ρ = 1
2 Einstein soliton λ = −α2(n−1)(n−2)

2 Shrinking

ρ = 1
n Traceless Ricci soliton λ = 0 Steady

ρ = 1
2(n−1) Schouten soliton λ = α2(n−2)

2 Expanding

ρ = 0 Ricci soliton λ = α2(n− 1) Expanding

Lemma 3.1. Let an n-dimensional Riemannian CR manifold admit a ρ-Einstein soliton

∋ V = bξ, where b is a function. Then, V is a constant multiple of ξ and an n-dimensional

Riemannian CR manifold is an η-Einstein manifold of the type

S(Z1, Z2) = −(bα+ (λ− ρr))g(Z1, Z2) + bαη(Z1)η(Z2).

Proof. Let (g, V, λ, ρ) be a ρ-Einstein soliton on an n-dimensional Riemannian CR manifold,

∋ V is pointwise collinear with ξ i.e. V = bξ. Then (1.2) holds. Hence, we have

bg(∇Z1ξ, Z2) + Z1(b)η(Z2) + bg(Z1,∇Z2ξ)

+Z2(b)η(Z1) + 2S(Z1, Z2) + 2(λ− ρr)g(Z1, Z2) = 0,

which from (2.8) implies

2bαg(Z1, Z2)− 2bαη(Z1)η(Z2) + Z1(b)η(Z2)

+η(Z1)Z2(b) + 2S(Z1, Z2) + 2(λ− ρr)g(Z1, Z2) = 0. (3.25)

Substituting Z2 = ξ in (3.25) and making use of (2.6), (2.7) and (2.14), we have

Z1(b) + ξ(b)η(Z1)− 2[α2η(Z1)(n− 1)− (λ− ρr)η(Z1)] = 0. (3.26)

Now putting Z1 = ξ in (3.26) and making use of (2.6), we get

ξ(b)− α2(n− 1) + (λ− ρr) = 0. (3.27)
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Using (3.27) in (3.26), we have

db = [α2(n− 1)− (λ− ρr)]η. (3.28)

Applying d on both sides of (3.28), we obtain

[α2(n− 1)− (λ− ρr)]dη = 0 =⇒ λ = α2(n− 1) + ρr, dη ̸= 0. (3.29)

Therefore, by (3.28) and (3.29) db = 0, i.e. b is constant. Thus, (3.25) becomes

S(Z1, Z2) = −[bα+ (λ− ρr)]g(Z1, Z2) + bαη(Z1)η(Z2).

□

4. ρ-Einstein solitons on n-dimensional Riemannian CR manifolds with

respect to cyclic η-recurrent Ricci tensor

In this section, we discuss the characteristic of ρ-Einstein soliton on a Riemannian CR

manifold with respect to cyclic η-recurrent Ricci tensor and explore the nature of solitons for

various values of ρ.

Definition 4.1. [34] A Riemannian CR manifold M of dimension n is said to have cyclic

η-recurrent Ricci tensor if

(∇Z1S)(Z2, Z3) + (∇Z2S)(Z3, Z1) + (∇Z3S)(Z1, Z2)

= η(Z1)S(Z2, Z3) + η(Z2)S(Z3, Z1) + η(Z3)S(Z1, Z2), (4.30)

for any Z1, Z2, Z3 ∈ χ(M).

Now, considering an n-dimensional Riemannian CR manifold M admitting a ρ-Einstein

soliton with cyclic η-recurrent Ricci tensor, then equation (4.30) holds.

Applying covariant derivative on (3.20) with respect to Z1 yields

(∇Z1S)(Z2, Z3) = ρZ1(r)g(Z2, Z3) + α2g(Z1, Z2)η(Z3)

+α2g(Z1, Z3)η(Z2)− 2α2η(Z1)η(Z2)η(Z3). (4.31)

Similarly, we get

(∇Z2S)(Z3, Z1) = ρZ2(r)g(Z3, Z1) + α2g(Z2, Z3)η(Z1)

+α2g(Z1, Z2)η(Z3)− 2α2η(Z1)η(Z2)η(Z3), (4.32)
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and

(∇Z3S)(Z1, Z2) = ρZ3(r)g(Z1, Z2) + α2g(Z3, Z1)η(Z2)

+α2g(Z3, Z2)η(Z1)− 2α2η(Z1)η(Z2)η(Z3). (4.33)

Making use of (4.31)-(4.33) in (4.30) we get

ρ[Z1(r)g(Z2, Z3) + Z2(r)g(Z3, Z1) + Z3(r)g(Z1, Z2)] = 3α(1 + 2α)η(Z1)η(Z2)η(Z3)

−(λ− ρr + α(1 + 2α))[g(Z2, Z3)η(Z1) + g(Z1, Z3)η(Z2) + g(Z1, Z2)η(Z3)],

which on substitution of Z2 = Z3 = ξ and utilization of (2.6) and (2.7) gives

ρ[Z1(r) + ξ(r)η(Z1) + ξ(r)η(Z1)] = 3α(1 + 2α)η(Z1)− 3(λ− ρr + α(1 + 2α))η(Z1). (4.34)

Now taking Z1 = ξ and making use of (2.6) gives

3ρξ(r) = 3α(1 + 2α)− 3(λ− ρr + α(1 + 2α)). (4.35)

Let r be a constant. Then ξ(r) = 0. Hence by (2.16) and (2.17), equation (4.35) implies

λ = −α2ρn(n− 1).

Thus, we state the following result:

Theorem 4.1. If an n-dimensional Riemannian CR manifold with constant scalar curvature

admitting ρ-Einstein solitons has cyclic η-recurrent Ricci tensor, then the soliton constant is

given by λ = −α2ρn(n− 1).

Now we have the following corollary:

Corollary 4.1. Let the metric of n-dimensional Riemannian CR manifold with constant

scalar curvature be a ρ-Einstein soliton. Then we have:

Values of ρ Soliton type Soliton constant Nature of soliton

ρ = 1
2 Einstein soliton λ = −α2n(n−1)

2 Shrinking

ρ = 1
n Traceless Ricci soliton λ = −α2(n− 1) Shrinking

ρ = 1
2(n−1) Schouten soliton λ = −α2n

2 Shrinking

ρ = 0 Ricci soliton λ = 0 Steady
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5. ρ-Einstein solitons on n-dimensional Riemannian CR manifolds with

respect to Torse-forming vector field

In this section, we examine the nature of ρ-Einstein soliton on a Riemannian CR manifold

with a torse-forming vector field and discuss the nature of solitons for various values of ρ.

Definition 5.1. [32] On a Riemannian manifold (M, g), a vector field V is said to be torse-

forming if

∇Z1V = fZ1 + ω(Z1)V, (5.36)

where f is a smooth function, ω is a 1-form and ∇ is the Levi-Civita connection of g.

Considering an n-dimensional Riemannian CR manifold admitting a ρ-Einstien soliton and

ξ, the Reeb vector field to be a torse-forming vector field, then (5.36) implies

∇Z1ξ = fZ1 + ω(Z1)ξ (5.37)

for any Z1 ∈ χ(M). Taking the inner product on (5.37) with ξ gives

η(∇Z1ξ) = fη(Z1) + ω(Z1). (5.38)

Using (2.8) in (5.38), we get

ω(Z1) = −fη(Z1). (5.39)

It follows from (5.39), equation (5.37) becomes

∇Z1ξ = f(Z1 − η(Z1)ξ). (5.40)

By virtue of (5.40), we have

(£ξg)(Z1, Z2) = 2f [g(Z1, Z2)− η(Z1)η(Z2)]. (5.41)

In view of (5.41), equation (3.18) leads to

S(Z1, Z2) = −(f + λ− ρr)g(Z1, Z2) + fη(Z1)η(Z2). (5.42)

Substituting Z1 = Z2 = ξ in (5.42) then utilizing (2.6), (2.14) and (2.17) we obtain

λ = α2(n− 1)(1− ρn).

Thus, we have:
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Theorem 5.1. If an n-dimensional Riemannian CR manifold of constant scalar curvature

admit a ρ-Einstien soliton with torse-forming vector field ξ, then it is an η-Einstein manifold

with the soliton constant λ = α2(n−1)(1−ρn). Further, for particular values of ρ, the nature

of solitons can be discussed which is same as Corollary 3.1.

6. ρ-Einstein solitons on n-dimensional Riemannian CR manifolds satisfying

R(ξ, Z1) · S = 0

In this section, we investigate the nature of ρ-Einstein solitons on Riemannian CR mani-

folds that satisfies Ricci semi-symmetric condition.

Let an n-dimensional Riemannian CR manifold admit a ρ-Einstein soliton that satisfy the

condition R(ξ, Z1) · S = 0. Then, we have

S(R(ξ, Z1)Z2, Z3) + S(Z2, R(ξ, Z1)Z3) = 0,

which by using (2.11) yields

−α2g(Z2, Z1)S(ξ, Z3) + α2η(Z2)S(Z1, Z3)− α2g(Z3, Z1)S(Z2, ξ) + α2η(Z3)S(Z2, Z1) = 0.

Substituting Z3 = ξ in the above equation and utilizing (2.6) and (3.21), we obtain

S(Z1, Z2) = −(λ− ρr)g(Z1, Z2). (6.43)

Now substituting Z2 = ξ in (6.43) and utilizing (2.14) and (2.17) we get

λ = α2(n− 1)(1− ρn).

Now we state:

Theorem 6.1. If an n-dimensional Riemannian CR manifold of constant scalar curvature

tensor admit a ρ-Einstein soliton and satisfies the condition R(ξ, Z1) · S = 0, then it is an

Einstein manifold with the soliton constant λ = α2(n − 1)(1 − ρn). Further, for particular

values of ρ, the nature of solitons can be discussed which is same as Corollary 3.1.

7. Conharmonic curvature tensor on n-dimensional Riemannian CR manifolds

admitting ρ-Einstein solitons

In this section, we inspect the nature of ρ-Einstein soliton on Riemannian CR manifolds

with respect to conharmonic curvature tensor.
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On a Riemannian manifoldM of dimension n, the conharmonic curvature tensor K is defined

by [18]

K(Z1, Z2)Z3 = R(Z1, Z2)Z3 +
1

n− 2

[
S(Z1, Z3)Z2 − S(Z2, Z3)Z1

+g(Z1, Z3)QZ2 − g(Z2, Z3)QZ1

]
, (7.44)

for all Z1, Z2, Z3 ∈ χ(M).

Now, considering a conharmonically flat Riemannian CR manifold of dimension n admitting

a ρ-Einstein soliton i.e. K(Z1, Z2)Z3 = 0. Then from (7.44), we have

R(Z1, Z2)Z3 = − 1

n− 2

[
S(Z1, Z3)Z2 − S(Z2, Z3)Z1 + g(Z1, Z3)QZ2 − g(Z2, Z3)QZ1

]
.

Putting Z3 = ξ and making use of (2.12), (3.21) and (3.22), the above equation yields

−α2[η(Z2)Z1 − η(Z1)Z2] = − 1

n− 2

[
(λ− ρr)(η(Z2)Z1 − η(Z1)Z2)

+η(Z1)QZ2 − η(Z2)QZ1

]
. (7.45)

Now substituting Z2 = ξ in (7.45), equation (7.45) yields

QZ1 = [λ− ρr − α2(n− 2)]Z1 − [2λ− 2ρr − α2(n− 2)]η(Z1)ξ. (7.46)

Applying the inner product on (7.46) with Z2 leads to

S(Z1, Z2) = [λ− ρr − α2(n− 2)]g(Z1, Z2)− [2λ− 2ρr − α2(n− 2)]η(Z1)η(Z2). (7.47)

Now substituting Z2 = ξ in (7.47) and utilizing (2.6), (2.7) and (2.14), we get

λ = α2(n− 1) + ρr. (7.48)

Let r be a constant. Then by (2.17), equation (7.48) turns to

λ = α2(n− 1)(1− ρn).

Thus, we state:

Theorem 7.1. If the metric of a conharmonically flat Riemannian CR manifold of dimen-

sion n with constant scalar curvature r is a ρ-Einstein soliton, then it is η-Einstein with the

soliton constant λ = α2(n− 1)(1− ρn).
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8. Conformal curvature tensor on n-dimensional Riemannian CR manifolds

admitting ρ-Einstein solitons

In this section, we examine the nature of ρ-Einstein soliton on Riemannian CR manifolds

with respect to conformal curvature tensor.

On a Riemannian manifold M of dimension n, the conformal curvature tensor C is defined

by [21]

C(Z1, Z2)Z3 = R(Z1, Z2)Z3 +
1

n− 2

[
S(Z1, Z3)Z2 − S(Z2, Z3)Z1 + g(Z1, Z3)QZ2

−g(Z2, Z3)QZ1

]
+

r

(n− 1)(n− 2)

[
g(Z2, Z3)Z1 − g(Z1, Z3)Z2

]
(8.49)

for all Z1, Z2, Z3 ∈ χ(M).

Now, considering a conformally flat Riemannian CR manifold of dimension n admitting a

ρ-Einstein soliton i.e. C(Z1, Z2)Z3 = 0. Then from (8.49), we have

R(Z1, Z2)Z3 = − 1

n− 2

[
S(Z1, Z3)Z2 − S(Z2, Z3)Z1 + g(Z1, Z3)QZ2 − g(Z2, Z3)QZ1

]
− r

(n− 1)(n− 2)

[
g(Z2, Z3)Z1 − g(Z1, Z3)Z2

]
.

Substituting Z3 = ξ in the above equation and making use of (2.12), (3.21) and (3.22), the

above equation yields

−α2[η(Z2)Z1 − η(Z1)Z2] = − 1

n− 2

[
(λ− ρr)(η(Z2)Z1 − η(Z1)Z2)

+η(Z1)QZ2 − η(Z2)QZ1

]
− r

(n− 1)(n− 2)

[
η(Z2)Z1 − η(Z1)Z2

]
. (8.50)

Now putting Z2 = ξ in (8.50), equation (8.50) yields

QZ1 = [λ− ρr − 2α2(n− 1)]Z1 − [2λ− 2ρr − 2α2(n− 1)]η(Z1)ξ. (8.51)

Applying the inner product on (8.51) with Z2 leads to

S(Z1, Z2) = [λ− ρr − 2α2(n− 1)]g(Z1, Z2)− [2λ− 2ρr − 2α2(n− 1)]η(Z1)η(Z2). (8.52)

Now substituting Z2 = ξ in (8.52) and utilizing (2.6), (2.7) and (2.14), we get

λ = α2(n− 1) + ρr. (8.53)
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Let r be a constant. Then, by (2.17), equation (8.53) turns to

λ = α2(n− 1)(1− ρn).

Thus, we state:

Theorem 8.1. If the metric of a conformally flat Riemannian CR manifold of dimension n

with constant scalar curvature r is a ρ-Einstein soliton, then it is η-Einstein with the soliton

constant λ = α2(n− 1)(1− ρn).

9. Applications

As generalized fixed points of Hamilton’s Ricci flow gt = −2S [16], Ricci solitons are a nat-

ural generalization of Einstein metrics on a Riemannian manifold. This evolution equation

permits a metric to smooth out irregularities based on the Ricci curvature of the manifold,

i.e. expands for negative Ricci curvature and shrinks in positive case. It is a nonlinear diffu-

sion equation comparable to the heat equation for metrics. For ρ-Einstein solitons, we have

obtained the steady, expanding, and shrinking conditions.

Ricci solitons, known as quasi-Einstein metrics in physics literature, are of great interest

to physicists as they have wide applications in the fields of physics [14], biology, chemistry,

[19] and economics [28]. As Ricci solitons are self-similar solutions to the Ricci flow, they

were instrumental in resolving the century-old Poincaré conjecture [25, 26]. Additionally,

Ricci flow and Ricci solitons play a major role in medical imaging for brain surfaces [31],

illustrating their wide-ranging impact.

The study of ρ-Einstein solitons aids in comprehending the geometry and topology of

Riemannian manifolds. In general relativity, ρ-Einstein solitons provide models for space-

time metrics with specific properties, helping to understand solutions to the Einstein field

equations and contributing to cosmological models and the study of gravitational waves [30].

With respect to Ricci flow, ρ-Einstein solitons model the formation of singularities and pro-

vides insights on the nature of singularities that form during the flow, leading to a better

understanding of the long-term behaviors in cosmology and the potential fate of the universe.

Further, Dey and Roy [11] discussed some applications of η-Ricci-Bourguignon solitons

to general relativity. According to them, symmetry is a fascinating feature of our universe,

governed by the laws of nature and applicable to various physical phenomena, including

general relativity. Early in the 1800s, Albert Einstein made the discovery of the “Theory

of General Relativity.” In this theory, the gravitational field is defined by the curvature of
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space-time, and its source is the energy-momentum tensor. The most effective tools for

comprehending general relativity in mathematics are differential geometry and relativistic

models. A connected 4-dimensional Lorentzian manifold, a particular subclass of pseudo-

Riemannian manifolds with Lorentzian metric g with signature (-,+,+,+), can be used to

model the spacetime of general relativity and cosmology. The matter content of spacetime

is represented by the energy-momentum tensor and is believed to behave as a fluid with

properties such as pressure, density, dynamical and kinematic quantities like acceleration,

velocity, vorticity, shear, and expansion [2]. These properties can be better understood by

studying the nature of solitons. In this paper, we have examined the soliton constants in

various cases and also have discussed on soliton constants for different values of ρ.

Moreover, ρ-Einstein solitons are also useful in classifying compact Riemannian manifolds

with prescribed curvature conditions. The conformal curvature tensor (Weyl tensor in four

dimensions) quantifies the deviation of a manifold from being conformally flat and remains

invariant under conformal transformations of the metric. Studying these solitons in the con-

text of conformal curvature involves examining how they affect the conformal geometry of

the manifold. In this article, we have obtained the soliton constants of ρ-Einstein solitons

with respect to conformal and conharmonic curvature tensors on Riemannian CR manifold.

In summary, ρ-Einstein solitons are fundamental in understanding manifold geometry,

contributing to the study of geometric flows, singularity formation, manifold classification,

and various interdisciplinary applications. Their study bridges theoretical mathematics and

practical applications, highlighting their significance in both realms.

10. Conclusion

In this paper, we have systematically explored the behavior of ρ-Einstein solitons on Rie-

mannian CR manifolds under various geometric conditions. Our analysis demonstrates that

such solitons consistently reveal deep connections to η-Einstein and Einstein manifolds struc-

tures. Key findings from the Theorems 3.1, 4.1, 5.1, 6.1, 7.1, and 8.1 highlights that, re-

gardless of the specific geometric conditions-whether involving torse-forming vector fields, or

conditions like conharmonic or conformal flatness-these solitons share a common character-

istic. They are invariably associated with η-Einstein manifolds, and their soliton constant

takes the form λ = α2(n−1)(1−ρn), emphasizing the uniformity of their geometric structure.
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Moreover, when additional curvature conditions are imposed, such as the Ricci semi-

symmetric condition R(ξ, Z1) · S = 0, the manifold transforms into an Einstein manifold,

reinforcing the broader geometric significance of ρ-Einstein solitons.

This study highlights the rich interplay between ρ-Einstein solitons and the curvature

properties of Riemannian CR manifolds, contributing to a deeper understanding of their ge-

ometry. Through these results, we gain valuable insights into the solitons behavior across

various curvature contexts, providing a foundation for future investigations in both theoret-

ical mathematics and practical applications in physics and cosmology.
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