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SEQUENCES DEFINED BY ORLICZ FUNCTION
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Abstract. In this article, we introduce the notion of difference lacunary weak convergence

in sequences defined by an Orlicz function. We examine several algebraic and topological

properties and establish some inclusion relationships between these spaces.
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1. Introduction

The idea of weak convergence, first proposed by Banach [1], is a foundational concept in

functional analysis, offering a framework for understanding the convergence behavior of se-

quences in infinite-dimensional spaces. Despite its significance, weak convergence has several

limitations, particularly when dealing with more complex sequence structures or when finer

convergence criteria are required.

In recent years, researchers like Mahanta and Tripathy [15] have advanced the study of vector-

valued sequence spaces by exploring new types of convergence and their implications. Their

work has contributed to a deeper understanding of the algebraic and topological properties

of these spaces and has led to the development of innovative tools and techniques for ana-

lyzing convergence in more generalized contexts. This expanding research underscores the
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continuous evolution and refinement of sequence space theory, addressing the shortcomings

of traditional weak convergence and meeting the demands of increasingly complex mathe-

matical analysis.

Freedman et al. [7] conducted pioneering research on lacunary sequences, investigating

strongly Cesaro summable and strongly lacunary convergent sequences in the context of

a general lacunary sequence θ. Their work uncovered significant connections between these

two classes of sequences. Following their initial findings, researchers such as Ercan et al.

[5], Gumus [8], Dowari, and Tripathy [2, 3] have further explored various aspects of lacunary

sequences, broadening our understanding of their properties and applications. More recently,

Tamuli and Tripathy [19, 20] have advanced this field by examining generalized difference

lacunary weak convergence of sequences. Their study sheds light on new convergence behav-

iors and enhances the theoretical framework for analyzing lacunary sequences, highlighting

the ongoing development and deepening of this area of research.

Motivation: In recent years, the study of weak convergence in Banach [1] spaces has gained

significant attention due to its essential role in various areas of functional analysis, including

the theory of distribution, optimization, and approximation methods. The concept of weak

convergence was introduced by Banach in the early 20th century, specifically in the 1920s.

Banach developed the theory of weak convergence while working in the context of Banach

spaces, which are complete normed vector spaces. His work laid the foundation for the study

of weak convergence in functional analysis. Fatih Nuray [13] investigated lacunary weak sta-

tistical convergence. Motivated by this work, we have investigated some classes of lacunary

weak convergent of sequences defined by Orlicz function.

Potential Applications: The work done in this article are on weak convergence. The con-

cept of strong convergence implies weak convergence, but not necessarily conversely. There-

fore the work done in this article can be applied for other areas of research, and since, it

covers a larger class of sequences.

2. Definition and Preliminaries

The concept of the difference sequence space Z(∆) was first introduced by Kizmaz [9],

defined as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ X},

where ∆x = (∆xk) = (xk − xk+1), for all k ∈ N.

Later, Et and Colak [6] extended this idea by defining generalized difference sequence spaces,
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expressed as:

Z(∆p) = {x = (xk) : (∆
pxk) ∈ X},

for Z = ℓ∞, c, and c0, where ∆pxk = ∆p−1xk − ∆p−1xk+1 and ∆0xk = xk ∀ k ∈ N.The

binomial expansion for this generalized difference operator is provided below:

∆pxk =

p∑
v=0

(−1)v

 p

v

xk+v, for all k ∈ N. (2.1)

These generalized difference sequence spaces have been further studied by researchers such

as Tripathy [16], Tripathy , Et and Altin [17], among others.

Consider a sequence θ = (ks) of positive integers, which is termed lacunary if k0 = 0, 0 <

ks < ks+1, and hs = ks − ks−1 → ∞ as s → ∞. The intervals determined by θ are denoted

by Is = (ks−1, ks), and qs = ks/ks−1 ∀ s ∈ N.

According to Freedman et al., the space of lacunary strongly convergent sequence Nθ is

defined as follows: [7]

Nθ =

{
x : lim

s→∞

1

hs

∑
i∈Is

|xi − L| = 0, for some L

}
.

An Orlicz function H : [0,∞) → [0,∞) is defined such that H(0) = 0,H(x) > 0 for x >

0, and H(x) → ∞, as x → ∞. This function is continuous, non-decreasing, and convex.

Lindenstrauss and Tzafriri [12] introduced the concept of the Orlicz function to define the

sequence space

ℓH =

{
(xi) ∈ ω :

∞∑
i=1

H
(
|xi|
ρ

)
< ∞, for some ρ > 0

}
,

where ω denotes the class of all sequences. The norm of the sequence space ℓH is given by

||x|| = inf

{
ρ > 0 :

∞∑
i=1

H
(
|xi|
ρ

)
≤ 1

}
,

which transforms it into a Banach space, commonly referred to as an Orlicz sequence space.

Various researchers, including Tripathy and Esi [18], Parashar and Choudhury [14], Tripathy

and Mahanta [15], have explored different forms of Orlicz sequence spaces.

Definition 2.1. A sequence (xi) in a normed linear space X is called weakly convergent to

an element L ∈ X if

lim
i→∞

f(xi − L) = 0, for all f ∈ X ′,

where X ′ represents the continuous dual of X .
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Definition 2.2. A sequence (xi) in a normed linear space X is said to be lacunary weakly

convergent to L ∈ X if

lim
s→∞

1

hs

∑
k∈Is

f(xi − L) = 0,

for all f ∈ X ′, where X ′ is the continuous dual of X. In this context, the notation Dw
θ used

to denote lacunary weak convergent.

Definition 2.3. The sequence space J is termed solid if, for any sequence of scalar (αi)

with |αi| ≤ 1 for all i ∈ N, the condition (xi) ∈ J implies (αixi) ∈ J .

Definition 2.4. A sequence space J ⊂ ω referred to as monotone if it includes all pre-images

of its step spaces.

Definition 2.5. A sequence space J ⊂ ω is known as symmetric if, whenever (xi) ∈ J , the

permuted sequence (xπ(i)) also belongs to J , where π is a permutation of N.

Definition 2.6. A sequence space J is said to be convergence free, if x is in J and if yk = 0

whenever xk = 0, then y is in J

Lemma 2.1. A sequence space J being solid does not necessary imply that J is monotone.

Definition 2.7. An Orlicz function H satisfies the ∆2− condition if there exists a constant

T > 0 such that, for each z ≥ 0

H(2z) ≤ TH(z).

3. Main Result

In this section we introduce the following classes of sequences and establish result invloving

them.

[Dw
θ ,H,∆p]0 =

x = (xk) : lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
= 0, for some g > 0

 ;

[Dw
θ ,H,∆p]1 =

x = (xk) : lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk − L)|

g

)
= 0, for some L and g > 0

 ;

[Dw
θ ,H,∆p]∞ =

x = (xk) : lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
< ∞, for some g > 0

 .

We state, without proof, the following result.
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Theorem 3.1. The classes of sequences [Dw
θ ,H,∆p]0, [Dw

θ ,H,∆p]1 and [Dw
θ ,H,∆p]∞ are

linear spaces.

Theorem 3.2. For any Orlicz function H, [Dw
θ ,H,∆p]∞ is a normed linear space for the

given norm

ξ∆p(x) =

p∑
i=1

|f(xi)|+ inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
≤ 1, s = 1, 2, 3, ...

 ;

where the infimum is taken over all g > 0.

Proof. Clearly, ξ∆p(x) = ξ∆p(−x), x = θ implies ∆pxk = 0 and as such we have H(θ) = 0.

Therefore ξ∆p(θ) = 0. Conversely support that ξ∆p(x) = 0, then

p∑
i=1

|f(xi)|+ inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
≤ 1, s = 1, 2, 3, ...

 = 0.

⇒
p∑

i=1

|f(xi)| = 0 and inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
≤ 1, s = 1, 2, 3, ...

 = 0.

From the first part we have

xi = θ̄, for i = 1, 2, 3, ...,m. (3.2)

where, θ̄ is the zero element. In accordance with this second section, there exists some

gε (0 < gε < ε) for a given ε > 0. such that

sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

gε

)
≤ 1

⇒
∑
k∈Is

H
(
|f(∆pxk)|

gε

)
≤ 1.

Thus, ∑
k∈Is

H
(
|f(∆pxk)|

ε

)
≤

∑
k∈Is

H
(
|f(∆pxk)|

gε

)
≤ 1.

Suppose ∆pxci ̸= θ̄, for each i. Taking ε → 0, we have
|f(∆pxci )|

ε → ∞.

It follows that

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

ε

)
→ ∞,

as ε → 0, for ci ∈ Is. Hence we arrive at a contradiction. Therefore, ∆pxci = θ̄, for each i ∈

N. Thus ∆pxk = θ̄,∀k ∈ N.
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Therefore, it follows from (2.1) and (3.2) that xk = θ̄,∀k ∈ N. Hence x = θ.

Next let g1, g2 > 0 such that

sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g1

)
≤ 1.

and

sup
s

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g2

)
≤ 1.

Let g = g1 + g2, then we have

sup
s

1

hs

∑
k∈Is

H
(
|f(∆p(xk + yk)|

g

)
≤ 1.

Given that the g′s are not negative, we have

ξ∆p(x+y) =

p∑
i=1

|f(xi+yi)|+inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆p(xk + yk))|

g

)
≤ 1, s = 1, 2, 3, ...


⇒ ξ∆p(x+ y) ≤ ξ∆p(x) + ξ∆p(y).

Let φ ̸= 0, and φ ∈ C, then

ξ∆p(φx) =

p∑
i=1

|f(φxi)|+ inf

g > 0 : sup
s

1

hs

∑
k∈Is

H
(
|f(∆p(φxk))|

g

)
≤ 1, s = 1, 2, 3, ...


≤ |φ|ξ∆p(x).

This completes the theorem’s proof. □

Theorem 3.3. The sequence space [Dw
θ ,H,∆p]∞ is convex.

Proof. Consider (xk), (yk) ∈ [Dw
θ ,H,∆p]∞. Then from the definition of the space we can

write

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

gx

)
< ∞, for some gx > 0,

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pyk)|

gy

)
< ∞, for some gy > 0.

Now, for z = λx+ (1− λ)y we have to show that

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆p(λxk + (1− λ)yk)|

gz

)
< ∞, for some gz > 0

Since H is convex function, we have

H
(
|f(∆p(λxk + (1− λ)yk)|

gz

)
≤ λH

(
|f(∆pxk)|

gx

)
+ (1− λ)H

(
|f(∆pyk)|

gy

)
,



INT. J. MAPS MATH. (2025) 8(2):413-424 / SOME CLASSES OF LACUNARY WEAK ... 419

where gz = λgx + (1− λ)gy

Now, taking the limit s → ∞ :

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆pzk)|

gz

)
≤ λ lim

s→∞

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

gx

)
+(1−λ) lim

s→∞

1

hs

∑
k∈Is

H
(
|f(∆pyk)|

gy

)
Therefore, z = λx+ (1− λ)y ∈ [Dw

θ ,H,∆p]∞.

Hence [Dw
θ ,H,∆p]∞ is convex. □

Theorem 3.4. Let H1 and H2 be Orlicz functions satisfying ∆2− condition. Then

(i) [Dw
θ ,H1,∆

p]G ⊆ [Dw
θ ,H2.H1,∆

p]G .

(ii)[Dw
θ ,H1,∆

p]G ∩ [Dw
θ ,H2,∆

p]G ⊆ [Dw
θ ,H1 +H2,∆

p]G , where G = 0, 1, and ∞.

Proof. We prove it in the case of G = 0, we will apply same methods to the remaining cases.

(i) Let (xk) ∈ [Dw
θ ,H1,∆

p]0. Then ∃ g > 0 such that

lim
s→∞

1

hs

∑
k∈Is

H1

(
|f(∆pxk)|

g

)
= 0.

Let 0 < ε < 1 and 0 < δ < 1 such that H2(t) < ε, for 0 ≤ t < δ.

Let yk = H1

(
|f(∆pxk)|

g

)
and consider

∑
k∈Is

H2(yk) =
∑
1

H2(yk) +
∑
2

H2(yk),

where the summations are over yk > δ in the second summation and over yk ≤ δ in the first.

Since,

1

hs

∑
1

H2(yk) < H2(2)
1

hs

∑
1

(yk), (3.3)

for yk > δ, we have

yk < 1 +
yk
δ
.

Given that H2 is convex and non-decreasing, it follows thatSince, H2 is non-decreasing and

convex, it follows that

H2(yk) <
1

2
H2(2) +

1

2
H2

(
2yk
δ

)
.

Since, H2 satisfies ∆2− conditions, we have

H2(yk) = K
yk
δ
H2(2).
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Hence,

1

hs

∑
2

H2(yk) ≤ max
(
1,Kδ−1H2(2)

) 1

hs

∑
2

yk. (3.4)

Taking limit as s → ∞, from (3.3) and (3.4) we have

(xk) ∈ [Dw
θ ,H2.H1,∆

p]0.

Similar proof can be shown for the other cases.

(ii) The proof is obvious and omitted. □

Taking H1(x) = x and H2 = H(x) in Theorem 3.4(i) we have the following particular case.

Corollary 3.1. [Dw
θ ,∆

p]0 ⊆ [Dw
θ ,H,∆p]0

Theorem 3.5. If p ≥ 1, then [Dw
θ ,H,∆p−1]G ⊂ [Dw

θ ,H,∆p]G for G = 0, 1,∞. In gen-

eral [Dw
θ ,H,∆i]G ⊂ [Dw

θ ,H,∆p]G for i = 0, 1, 2, ..., p− 1.

Proof Let (xk) ∈ [Dw
θ ,H,∆p−1]0.

Then we have,

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(∆p−1xk)|

g

)
= 0, for some g > 0. (3.5)

Given that H is convex and non-decreasing, it follows that

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

2g

)
=

1

hs

∑
k∈Is

H
(
|f(∆p−1xk −∆p−1xk+1)|

2g

)

≤

 1

hs

∑
k∈Is

H
(
|f(∆p−1xk)|

g

)
− 1

hs

∑
k∈Is

H
(
|f(∆p−1xk+1)|

g

)
as s → ∞, we have

1

hs

∑
k∈Is

H
(
|f(∆pxk)|

g

)
= 0, by (3.5)

which implies (xk) ∈ [Dw
θ ,H,∆p]0.

The remaining cases will proceed in a similar manner.

Proceeding inductively we have, [Dw
θ ,H,∆i]G ⊂ [Dw

θ ,H,∆p]G and i = 0, 1, ..., p− 1.

The next example strictly follows the inclusion above.

Example 3.1. Let θ = (2s) be a lacunary sequence and H(x) = x. Consider a sequence

(xk) = (kp−1). Then ∆p(xk) = 0,∆p−1xk = (−1)m−1(m-1)! for all k ∈ N. Therefore (xk) ∈

[Dw
θ ,H,∆p]0 but (xk) /∈ [Dw

θ ,H,∆p−1]0
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Theorem 3.6. The space [Dw
θ ,H,∆p]G, where, in general, G = 0, 1,∞ are not solid. The

space [Dw
θ ,H]0 and [Dw

θ ,H]∞ are solid.

Proof Let (xk) ∈ [Dw
θ ,H]0.

Then there exists g > 0 such that

lim
s→∞

1

hs

∑
k∈Is

H
(
|f(xk)|

g

)
= 0.

Let (γk) be a sequence of scalars such that |γk| ≤ 1. Then for each s we can write,

1

hs

∑
k∈Is

H
(
|f(γkxk)|

g

)
≤ 1

hs

∑
k∈Is

H
(
|f(xk)|

g

)
(3.6)

⇒ lim
s→∞

1

hs

∑
k∈Is

H
(
|f(γkxk)|

g

)
= 0.

⇒ (γkαk) ∈ [Dw
θ ,H]0.

From the above inequality (3.6) it follows that [Dw
θ ,H]∞ is solid.

To show that the spaces [Dw
θ ,H,∆p]1, [Dw

θ ,H,∆p]∞ are not solid, in general, we illustrate

the following examples.

Example 3.2. Consider the function f(x) = x, ∀ x ∈ R, and let X = R, with p = 1,.

Let us consider the sequence (xk), defined by xk = k, ∀ k ∈ N. Let H(x) = xr, r ≥ 1 and

the lacunary sequence θ = (2s). Then (xk) ∈ [Dw
θ ,H,∆p]1 and (xk) ∈ [Dw

θ ,H,∆p]∞. Let

(γk) = ((−1)k), then (γkxk) /∈ [Dw
θ ,H,∆p]1 and (γkxk) /∈ [Dw

θ ,H,∆p]∞.

We consider the following example to show that [Dw
θ ,H,∆p]0 is not solid in general.

Example 3.3. Let X = R and consider the function f(x) = x, ∀ x ∈ R. let p = 1, Let us now

consider the sequence (xk), which is defined as xk = 1, ∀ k ∈ N. Assume that H(x) = xr,

r = 2, and that the lacunary sequence is θ = (2s). Let (γk) = ((−1)k), ∀ k ∈ N. Then,

(γkxk) /∈ [Dw
θ ,H,∆p]0.

Thus, the set [Dw
θ ,H,∆p]0 is not solid.

The following result is a consequence of Lemma 1 and Theorem 6.

Corollary 3.2. The spaces [Dw
θ ,H]0 and [Dw

θ ,H]∞ are monotone.

Result 1. The space [Dw
θ ,H,∆p]0 is not convergence free.

Proof The following example makes it obvious.
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Example 3.4. Let p = 1,H = x and f(x) = x. Consider a lacunary sequence θ = (2s).

Consider a sequence (xk) which is define as

xk =
1

2

(
1− (−1)k

)
Then, (xk) ∈ [Dw

θ ,H,∆p]0. Consider the sequence (yk) defined as

xk =

 k, if k is odd

0, if k is even.

Then, (yk) /∈ [Dw
θ ,H,∆p]0.

Result 2. The spaces [Dw
θ ,H,∆p]G , where G = 0, 1,∞ are not symmetric in general.

The following example is given to support the previous result.

Example 3.5. Let p = 1, let X = R, and the function f(x) = x, ∀x ∈ R, be considered.

Let H(x) = x2, and a lacunary sequence θ = (2s). Considering the sequence (xk) where

(xk) ∈ [Dw
θ ,H,∆p]0, define it as:

xk =


1 if k = 2mfor some m ∈ N,

0 otherwise.

After rearranging the sequence (xk) as follows, let (yk) be considered:

yk = (x1, x2, x4, x3, x8, . . . )

Then, (yk) /∈ [Dw
θ ,H,∆p]G , where G = 0, 1,∞.

[Dw
θ ,H,∆p]G , where G = 0, 1,∞ are not symmetric in general.

4. Conclusion

In this paper, we have introduced and studied the concept of difference lacunary weak

convergence in sequences defined by an Orlicz function. Through our exploration, we have

thoroughly examined the algebraic and topological properties of these sequences, providing

a foundational understanding of their structure and behavior. Additionally, we have estab-

lished several key inclusion relationships between these newly defined spaces and other known

sequence spaces, further enriching the framework within which these sequences operate. Our

findings contribute to the broader field of functional analysis, particularly in the study of

sequence spaces and Orlicz functions, offering new insights and potential avenues for future

research
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