

International Journal of Maps in Mathematics

Volume 8, Issue 2, 2025, Pages: 681-701

E-ISSN: 2636-7467

www.simadp.com/journalmim

GE-ALGEBRAS WITH NORMS

RAVIKUMAR BANDARU D * AND YOUNG BAE JUN

ABSTRACT. In this paper, we introduce and study the concept of normed GE-algebras, an extension of GE-algebras equipped with a GE-norm, which provides a framework to measure the magnitude of algebraic elements. We define the magnitude function and explore its properties in the context of GE-algebras. Through theorems and propositions, we examine the behavior of sequences in these normed structures, demonstrating convergence properties, quasi-metrics, and the relationship between norms and algebraic operations. We also establish the connection between normed GE-algebras and their product spaces, as well as the implications for convergent sequences and limit uniqueness. Finally, we generalize these results to mappings between normed GE-algebras and investigate the implications of GE-morphisms in preserving convergence behavior.

Keywords: GE-norm, Normed GE-algebra, Magnitude, Convergent, Limit.

2020 Mathematics Subject Classification: 03G25, 06F35.

1. Introduction

In the 1950s, Hilbert algebras were introduced by L. Henkin and T. Skolem as a means to investigate non-classical logics, particularly intuitionistic logic. As demonstrated by A. Diego, these algebras belong to the category of locally finite varieties, a fact highlighted in [6]. Over time, a community of scholars developed the theory of Hilbert algebras, as evidenced by works such as [4, 5, 7]. In the broader scope of algebraic structures, the process of generalization is of utmost importance. Y. B. Jun et al. introduced the concept of

Received: 2024.09.11 Revised: 2025.05.09 Accepted: 2025.07.24

Ravikumar Bandaru o ravimaths83@gmail.com o https://orcid.org/0000-0001-8661-7914

Young Bae Jun & skywine@gmail.com & https://orcid.org/0000-0002-0181-8969.

^{*} Corresponding author

BH-algebras as a generalization of BCH/BCI/BCK-algebras and investigated its important properties in [9]. R. H. Abass introduced the notions of norm and distance in BH-algebras and given some basic properties in normed BH-algebras in [1].

The introduction of GE-algebras, proposed by R. K. Bandaru et al. as an extension of Hilbert algebras, marked a significant step in this direction. This advancement led to the examination of various properties, as explored in [2]. The evolution of GE-algebras was greatly influenced by filter theory. In light of this, R. K. Bandaru et al. introduced the concept of belligerent GE-filters in GE-algebras, closely investigating its attributes as documented in [3]. Generalized algebraic structures, such as GE-algebras, offer a broad framework to study a variety of algebraic and topological properties.

The concept of norms has a rich history in mathematics, originating in the study of vector spaces and Banach algebras, where norms quantify the size of elements and induce metric spaces [14]. In logical algebras, norms have been adapted to capture algebraic properties, as seen in normed BCK/BCI-algebras [8], where norms relate to implication operations, and in MV-algebras, where norms support quantitative semantics [11]. Unlike these structures, normed GE-algebras, introduced in this paper, define a GE-norm tailored to the non-commutative binary operation of GE-algebras, inducing quasi-metric spaces rather than metric spaces. This generalization extends the applicability of norms to non-linear algebraic systems, offering a novel framework for studying convergence and topological properties in generalized algebraic settings.

In this context, normed GE-algebras represent an important class that combines the algebraic properties of GE-algebras with a GE-norm, enabling the measurement of the magnitude of elements. This paper aims to extend the classical understanding of algebraic norms by introducing the concept of a GE-norm, defined as a real-valued mapping that satisfies specific properties akin to a norm in conventional algebraic systems. We begin by formally defining the notion of a GE-norm and explore its compatibility with the underlying operations of the GE-algebra. Following this, we investigate the properties of the magnitude function derived from the norm and establish a series of results on its behavior. Notably, we prove that normed GE-algebras induce quasi-metric spaces and that these spaces generate a T_0 -topology. In subsequent sections, we delve into the properties of convergent sequences in normed GE-algebras, proving the uniqueness of limits and characterizing the boundedness of certain subsequences. We also establish several results concerning the preservation of normed structures under GE-morphisms, culminating in a product theorem for GE-algebras.

This work contributes to the ongoing development of generalized algebraic systems, providing both theoretical insights and practical tools for further exploration of algebraic norms, convergence, and topological spaces in GE-algebras.

2. Preliminaries

Definition 2.1 ([2]). A GE-algebra is a non-empty set X with a constant 1 and a binary operation "*" satisfying the following axioms:

$$(GE1) \ \mathfrak{a} * \mathfrak{a} = 1,$$

$$(GE2) \ 1 * \mathfrak{a} = \mathfrak{a},$$

$$(GE3) \ \mathfrak{a} * (\mathfrak{b} * \mathfrak{c}) = \mathfrak{a} * (\mathfrak{b} * (\mathfrak{a} * \mathfrak{c}))$$
 for all $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X$.

In a GE-algebra X, a binary relation " \leq_X " is defined by

$$(\forall \mathfrak{a}, \mathfrak{b} \in X) (\mathfrak{a} \leq_X \mathfrak{b} \Leftrightarrow \mathfrak{a} * \mathfrak{b} = 1). \tag{2.1}$$

Definition 2.2 ([2, 3]). A GE-algebra X is said to be

• transitive if it satisfies:

$$(\forall \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X) (\mathfrak{a} * \mathfrak{b} \leq_X (\mathfrak{c} * \mathfrak{a}) * (\mathfrak{c} * \mathfrak{b})). \tag{2.2}$$

• commutative if it satisfies:

$$(\forall \mathfrak{a}, \mathfrak{b} \in X) ((\mathfrak{a} * \mathfrak{b}) * \mathfrak{b} = (\mathfrak{b} * \mathfrak{a}) * \mathfrak{a}). \tag{2.3}$$

Proposition 2.1 ([2]). Every GE-algebra X satisfies the following items.

$$\mathfrak{a} * 1 = 1. \tag{2.4}$$

$$\mathfrak{a} * (\mathfrak{a} * \mathfrak{b}) = \mathfrak{a} * \mathfrak{b}. \tag{2.5}$$

$$\mathfrak{a} \leq_X \mathfrak{b} * \mathfrak{a}. \tag{2.6}$$

$$\mathfrak{a} * (\mathfrak{b} * \mathfrak{c}) \leq_X \mathfrak{b} * (\mathfrak{a} * \mathfrak{c}). \tag{2.7}$$

$$1 \le_X \mathfrak{a} \implies \mathfrak{a} = 1. \tag{2.8}$$

$$\mathfrak{a} \leq_X (\mathfrak{b} * \mathfrak{a}) * \mathfrak{a}. \tag{2.9}$$

$$\mathfrak{a} \leq_X (\mathfrak{a} * \mathfrak{b}) * \mathfrak{b}. \tag{2.10}$$

$$\mathfrak{a} \leq_X \mathfrak{b} * \mathfrak{c} \Leftrightarrow \mathfrak{b} \leq_X \mathfrak{a} * \mathfrak{c}.$$
 (2.11)

for all $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X$. If X is transitive, then

$$\mathfrak{a} \leq_X \mathfrak{b} \Rightarrow \mathfrak{c} * \mathfrak{a} \leq_X \mathfrak{c} * \mathfrak{b}, \ \mathfrak{b} * \mathfrak{c} \leq_X \mathfrak{a} * \mathfrak{c}.$$
 (2.12)

$$\mathfrak{a} * \mathfrak{b} \leq_X (\mathfrak{b} * \mathfrak{c}) * (\mathfrak{a} * \mathfrak{c}). \tag{2.13}$$

$$\mathfrak{a} \leq_X \mathfrak{b}, \, \mathfrak{b} \leq_X \mathfrak{c} \implies \mathfrak{a} \leq_X \mathfrak{c}.$$
 (2.14)

for all $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X$.

Definition 2.3 ([12]). Let $(X, *_X, 1_X)$ and $(Y, *_Y, 1_Y)$ be GE-algebras. A mapping $f : X \to Y$ is called a GE-morphism if it satisfies:

$$(\forall \varrho_1, \varrho_2 \in X)(f(\varrho_1 *_X \varrho_2) = f(\varrho_1) *_Y f(\varrho_2)). \tag{2.15}$$

Let $\mathbb{X}_{\alpha} := \{(X_{\alpha}, *_{\alpha}, 1_{\alpha}) \mid \alpha \in \Lambda\}$ be a family of GE-algebras where Λ is an index set. Let $\prod \mathbb{X}_{\alpha}$ be the set of all mappings $\eth : \Lambda \to \bigcup_{\alpha \in \Lambda} X_{\alpha}$ with $\eth(\alpha) \in X_{\alpha}$, that is,

$$\prod \mathbb{X}_{\alpha} := \left\{ \eth : \Lambda \to \bigcup_{\alpha \in \Lambda} X_{\alpha} \mid \eth(\alpha) \in X_{\alpha}, \alpha \in \Lambda \right\}.$$
 (2.16)

We define a binary operation \circledast on $\prod \mathbb{X}_{\alpha}$ and the constant 1 by

$$\left(\forall \eth, f \in \prod \mathbb{X}_{\alpha}\right) \left((\eth \circledast f)(\alpha) = \eth(\alpha) *_{\alpha} f(\alpha)\right) \tag{2.17}$$

and $\mathbf{1}(\alpha) = 1_{\alpha}$, respectively, for every $\alpha \in \Lambda$. It is routine to verify that $(\prod \mathbb{X}_{\alpha}, \circledast, \mathbf{1})$ is a GE-algebra, which is called the *product GE-algebra* (see [3]).

3. Normed GE-algebras

In what follows, let $\mathbb{X} := (X, *, 1_X)$ and \mathbb{R} be a GE-algebra and the set of all real numbers, respectively, unless otherwise specified. In the absence of ambiguity, the GE-algebra $\mathbb{X} := (X, *, 1_X)$ can simply be represented by \mathbb{X} .

Definition 3.1. A GE-norm on $\mathbb{X} := (X, *, 1_X)$ is defined to be a mapping $||\cdot|| : X \to \mathbb{R}$ that satisfies:

$$(\forall \varrho \in X) (||\varrho|| \ge 0), \tag{3.18}$$

$$(\forall \varrho \in X) (||\varrho|| = 0 \iff \varrho = 1_X), \tag{3.19}$$

$$(\forall \varrho, \varsigma, \varpi \in X) (||\varrho * \varpi|| \le ||\varrho * \varsigma|| + ||\varsigma * \varpi||). \tag{3.20}$$

The GE-norm defined above shares similarities with classical norms, such as those in vector spaces or Banach algebras, where non-negativity and zero norm at the identity (conditions (3.18) and (3.19)) ensure a measure of magnitude [14]. However, it differs significantly due to the non-linear, non-commutative structure of GE-algebras. Unlike classical norms, which induce symmetric metrics, the GE-norm's triangle-like inequality (condition (3.20)) is tailored to the binary operation "*", leading to a quasi-metric space (Example 3.3). This formulation is chosen to align with the GE-algebra's axioms (GE1-GE3) and partial order \leq_X , ensuring compatibility with algebraic operations and enabling the study of convergence in non-commutative settings.

A normed GE-algebra is a GE-algebra $\mathbb{X} := (X, *, 1_X)$ equipped with a GE-norm $||\cdot|| : X \to \mathbb{R}$ and it is denoted by $(\mathbb{X}, ||\cdot||)$.

Given a GE-algebra $\mathbb{X} := (X, *, 1_X)$, if there exists a function $||\cdot||$ mapping elements of X to non-negative real numbers satisfying the conditions (3.19) and (3.20), then $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra.

Example 3.1. For every GE-algebra $\mathbb{X} := (X, *, 1_X)$, define a mapping:

$$||\cdot||: X \to \mathbb{R}, \ \varrho \mapsto \begin{cases} 0 & \text{if } \varrho = 1_X, \\ \varrho_0 & \text{otherwise,} \end{cases}$$

where ϱ_0 is a positive real number. Then $||\cdot||$ is a GE-norm on $\mathbb{X} := (X, *, 1_X)$, and so $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra.

In normed GE-algebras, the "GE-norm" often provides a way to measure the "magnitude" of elements in a way that is compatible with the algebraic operation "*".

By the magnitude of a normed GE-algebra (\mathbb{X} , $||\cdot||$), we mean a real-valued function \eth on $X \times X$ defined as follows:

$$(\forall \varrho, \varsigma \in X) \left(\eth(\varrho, \varsigma) = ||\varrho * \varsigma|| \right). \tag{3.21}$$

We say $\eth(\varrho,\varsigma)$ is the magnitude of (ϱ,ς) .

Proposition 3.1. The magnitude $\eth: X \times X \to \mathbb{R}$ of $(\mathbb{X}, ||\cdot||)$ has the following assertions:

$$\eth(\varrho,\varsigma) \ge 0, \, \eth(\varrho,\varrho) = 0 = \eth(\varrho,1_X),$$
(3.22)

$$\eth$$
 satisfies the triangle inequality, (3.23)

$$\eth(1_X, \varrho) = 0 \implies \varrho = 1_X, \tag{3.24}$$

$$\varrho \le_X \varsigma \implies \eth(1_X, \varsigma) \le \eth(1_X, \varrho),$$
 (3.25)

$$\eth(\varrho,\varsigma) \le \eth(1_X,\varsigma),\tag{3.26}$$

$$\eth(\varsigma, \varrho * \varpi) \le \eth(\varrho, \varsigma * \varpi), \tag{3.27}$$

$$\eth(\varsigma * \varrho, \varrho) \le \eth(1_X, \varrho),\tag{3.28}$$

$$\eth(\varrho * \varsigma, \varsigma) \le \eth(1_X, \varrho), \tag{3.29}$$

for all $\varrho, \varsigma, \varpi \in X$.

Proof. Let $\varrho, \varsigma, \varpi \in X$. Then (3.22) and (3.23) are clear by (3.18), (3.19) and (3.19). The combination of (GE2) and (3.19) induces (3.24). Let $\varrho, \varsigma \in X$ be such that $\varrho \leq_X \varsigma$. Then $\varrho * \varsigma = 1$, and so

$$\widetilde{\eth}(1_X,\varsigma) \stackrel{(3.21)}{=} ||1_X * \varsigma|| \stackrel{(3.20)}{\leq} ||1_X * \varrho|| + ||\varrho * \varsigma|| = ||1_X * \varrho|| + ||1||$$

$$\stackrel{(3.19)}{=} ||1_X * \varrho|| + 0 = ||1_X * \varrho|| \stackrel{(3.21)}{=} \widetilde{\eth}(1_X,\varrho).$$

Hence (3.25) is valid. By the combination of (GE2), (2.6) and (3.25), we have (3.26). Using (GE2), (2.7) and (3.25), we get (3.27), (3.28) and (3.29).

Proposition 3.2. If $\mathbb{X} := (X, *, 1_X)$ is transitive, then the magnitude $\eth : X \times X \to \mathbb{R}$ of $(\mathbb{X}, ||\cdot||)$ satisfies:

$$(\forall \rho, \varsigma, \varpi \in X) (\eth(\varsigma * \varpi, \rho * \varpi) \le \eth(\rho, \varsigma)). \tag{3.30}$$

Proof. Using (GE2), (2.13) and (3.25), we obtain (3.30).

The following example shows that any magnitude $\eth: X \times X \to \mathbb{R}$ of $(\mathbb{X}, ||\cdot||)$ does not satisfy the following.

$$(\forall \varrho, \varsigma \in X) (\eth(\varrho, \varsigma) = 0 = \eth(\varsigma, \varrho) \Rightarrow \varrho = \varsigma). \tag{3.31}$$

Example 3.2. Consider a non-commutative GE-algebra $\mathbb{X} := (X, *, 1_X)$, where $X = \{1_X, \ell_1, \ell_2, \ell_3, \ell_4\}$ and a binary operation "*" is given in the following table:

Define a mapping:

$$||\cdot||: X \to \mathbb{R}, \ \varrho \mapsto \begin{cases} 0 & \text{if } \varrho = 1_X, \\ \varrho_0 & \text{otherwise,} \end{cases}$$

where ϱ_0 is a positive real number. Then $||\cdot||$ is a GE-norm on $\mathbb{X} := (X, *, 1_X)$, and so $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra. We can observe that $\eth(\ell_2, \ell_3) = ||\ell_2 * \ell_3|| = ||1_X|| = 0$ and $\eth(\ell_3, \ell_2) = ||\ell_3 * \ell_2|| = ||1_X|| = 0$. Therefore $\eth(\ell_2, \ell_3) = 0 = \eth(\ell_3, \ell_2)$. But $\ell_2 \neq \ell_3$. Hence (3.31) is not valid.

Theorem 3.1. If $\mathbb{X} := (X, *, 1_X)$ is a commutative GE-algebra, then its magnitude $\eth: X \times X \to \mathbb{R}$ satisfies (3.31).

Proof. Let $\mathbb{X} := (X, *, 1_X)$ be a commutative GE-algebra. Then (X, \leq_X) is antisymmetric. Let $\varrho, \varsigma \in X$ be such that $\eth(\varrho, \varsigma) = 0 = \eth(\varsigma, \varrho)$. Then $||\varrho * \varsigma|| = 0$ and $||\varsigma * \varrho|| = 0$, which imply from (3.19) that $\varrho * \varsigma = 1$ and $\varsigma * \varrho = 1$, i.e., $\varrho \leq_X \varsigma$ and $\varsigma \leq_X \varrho$. Hence $\varrho = \varsigma$, and so (3.31) is valid.

The following example shows that any magnitude $\eth: X \times X \to \mathbb{R}$ of $(X, ||\cdot||)$ does not satisfy the following.

$$(\forall \varrho, \varsigma \in X) \left(\eth(\varrho, \varsigma) = \eth(\varsigma, \varrho) \right). \tag{3.32}$$

Example 3.3. Consider a non-commutative GE-algebra $\mathbb{X} := (X, *, 1_X)$, where $X = \{1_X, \ell_1, \ell_2, \ell_3\}$ and a binary operation "*" is given in the following table:

Define a mapping:

$$||\cdot||: X \to \mathbb{R}, \ \varrho \mapsto \begin{cases} 0 & \text{if } \varrho = 1_X, \\ \varrho_0 & \text{otherwise,} \end{cases}$$

where ϱ_0 is a positive real number. Then $||\cdot||$ is a GE-norm on $\mathbb{X} := (X, *, 1_X)$, and so $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra. We can observe that $\eth(\ell_2, \ell_3) = ||\ell_2 * \ell_3|| = ||1_X|| = 0$ and $\eth(\ell_3, \ell_2) = ||\ell_3 * \ell_2|| = ||\ell_2|| = \varrho_0$. Therefore $\eth(\ell_2, \ell_3) \neq \eth(\ell_3, \ell_2)$. Hence (3.32) is not valid.

Example 3.3 is indicating that the magnitude $\eth: X \times X \to \mathbb{R}$ of $(\mathbb{X}, ||\cdot||)$ cannot be a metric on X, that is, (X, \eth) is not a metric space. But we know that the magnitude $\eth: X \times X \to \mathbb{R}$ of $(\mathbb{X}, ||\cdot||)$ is a quasi metric on X, and thus (X, \eth) is a quasi metric space which generates a T_0 -space on X. For the quasi metric \eth on X, we define new real-valued mappings \eth^{-1} and \eth^{\vee} on $X \times X$ as follows:

$$\eth^-: X \times X \to \mathbb{R}, \ (\varrho, \varsigma) \mapsto \eth(\varsigma, \varrho).$$
 (3.33)

$$\eth^{\vee}: X \times X \to \mathbb{R}, \ (\varrho, \varsigma) \mapsto \max\{\eth(\varrho, \varsigma), \eth^{-}(\varrho, \varsigma)\}. \tag{3.34}$$

It is clear that \eth^- and \eth^\vee are quasi metrices on X.

The following example illustrates the quasi metrices \eth^- and \eth^\vee on X.

Example 3.4. Consider the normed GE-algebra $(X, ||\cdot||)$ in Example 3.3. Then

$$X \times X = \{(1_X, 1_X), (1_X, \ell_1), (1_X, \ell_2), (1_X, \ell_3), (\ell_1, 1_X), (\ell_1, \ell_1), (\ell_1, \ell_2), (\ell_1, \ell_3), (\ell_2, 1_X), (\ell_2, \ell_1), (\ell_2, \ell_2), (\ell_2, \ell_3), (\ell_3, 1_X), (\ell_3, \ell_1), (\ell_3, \ell_2), (\ell_3, \ell_3)\}$$

and the binary operation " \circledast " on $X \times X$ is given by Table 3.1.

Table 3.1. Tabular representation for the operation " \circledast " on $X \times X$

*	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X, \ell_2)$	$(1_X, \ell_3)$
$\overline{(1_X,1_X)}$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,\ell_3)$
$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
$(1_X, \ell_2)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
$(1_X, \ell_3)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,1_X)$
$(\ell_1, 1_X)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,\ell_3)$
(ℓ_1,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_2)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_3)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,1_X)$
$(\ell_2, 1_X)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X, \ell_2)$	$(1_X,\ell_3)$
(ℓ_2,ℓ_1)	$(1_X, 1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_2,ℓ_2)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_2,ℓ_3)	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X, \ell_2)$	$(1_X,1_X)$
$(\ell_3, 1_X)$	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X, \ell_2)$	$(1_X, \ell_3)$
(ℓ_3,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_3,ℓ_2)	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_3,ℓ_3)	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,1_X)$

The quasi metrices \eth^- and \eth^\vee on X appear as follows.

$$\eth^{-}(\varrho,\varsigma) = \left\{ \begin{array}{ll} 0 & \text{if } (\varrho,\varsigma) \in (X \times X) \setminus A, \\ \\ \varrho_{0} & \text{if } (\varrho,\varsigma) \in A, \end{array} \right.$$

and

$$\eth^{\vee}(\varrho,\varsigma) = \begin{cases} 0 & \text{if } (\varrho,\varsigma) \in B, \\ \varrho_0 & \text{if } (\varrho,\varsigma) \in (X \times X) \setminus B, \end{cases}$$

where $A=\{(\ell_1,1_X),(\ell_1,\ell_2),(\ell_1,\ell_3),(\ell_2,1_X),(\ell_2,\ell_3),(\ell_3,1_X)\}$ and

$$B = \{(1_X, 1_X), (\ell_1, \ell_1), (\ell_2, \ell_2), (\ell_3, \ell_3)\}.$$

Table 3.1 (continued)

*	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	(ℓ_1,ℓ_3)
$(1_X, 1_X)$	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	(ℓ_1,ℓ_3)
$(1_X,\ell_1)$	$(\ell_1, 1_X)$	$(\ell_1, 1_X)$	$(\ell_1, 1_X)$	$(\ell_1,1_X)$
$(1_X,\ell_2)$	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	$(\ell_1,1_X)$	$(\ell_1,1_X)$
$(1_X,\ell_3)$	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	$(\ell_1,1_X)$
$(\ell_1, 1_X)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,\ell_3)$
(ℓ_1,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_2)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_3)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X, \ell_2)$	$(1_X,1_X)$
$(\ell_2, 1_X)$	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	(ℓ_1,ℓ_3)
(ℓ_2,ℓ_1)	$(\ell_1, 1_X)$	$(\ell_1, 1_X)$	$(\ell_1,1_X)$	$(\ell_1,1_X)$
(ℓ_2,ℓ_2)	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	$(\ell_1, 1_X)$	$(\ell_1, 1_X)$
(ℓ_2,ℓ_3)	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	$(\ell_1,1_X)$
$(\ell_3, 1_X)$	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	(ℓ_1,ℓ_3)
(ℓ_3,ℓ_1)	$(\ell_1, 1_X)$	$(\ell_1, 1_X)$	$(\ell_1,1_X)$	$(\ell_1,1_X)$
(ℓ_3,ℓ_2)	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	$(\ell_1, 1_X)$	$(\ell_1,1_X)$
(ℓ_3,ℓ_3)	$(\ell_1, 1_X)$	(ℓ_1,ℓ_1)	(ℓ_1,ℓ_2)	$(\ell_1,1_X)$

Theorem 3.2. Let $f: X \to Y$ be an onto GE-morphism from a GE-algebra $\mathbb{X} := (X, *, 1_X)$ to a GE-algebra $\mathbb{Y} := (Y, *, 1_Y)$. If $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra, then so is $(\mathbb{Y}, ||\cdot||)$.

Proof. Assume that $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra. Since f is onto, $f^{-1}(\hbar) \neq \emptyset$ for every $\hbar \in Y$. So we can take $||\hbar|| = \inf_{\varrho \in f^{-1}(\hbar)} ||\varrho||$. It is clear that $||\hbar|| \geq 0$. If $||\hbar|| = 0$, then $\inf_{\varrho \in f^{-1}(\hbar)} ||\varrho|| = 0$, and so there exists $\varrho \in X$ such that $||\varrho|| = 0$. Hence $\varrho = 1_X$ which implies that $\hbar = f(\varrho) = f(1_X) = 1_Y$. If $\hbar = 1_Y$, then $||\hbar|| = \inf_{\varrho \in f^{-1}(\hbar)} ||\varrho|| \stackrel{(3.25)}{=} ||1_X|| = 0$ since $1_X \in f^{-1}(1_Y)$. Let $\hbar, \jmath, \wp \in Y$. Then there exist $\varrho, \varsigma, \varpi \in X$ such that $f(\varrho) = \hbar, f(\varsigma) = \jmath$

 $(1_X, 1_X)$

 $(1_X, \ell_3)$

 $(1_X, 1_X)$

 $(1_X, 1_X)$

 $(1_X, 1_X)$

 (ℓ_2,ℓ_3)

 $(\ell_2, 1_X)$

 $(\ell_2, 1_X)$

 $(\ell_2, 1_X)$

Table 3.1 (continued)				
*	$(\ell_2, 1_X)$	(ℓ_2,ℓ_1)	(ℓ_2,ℓ_2)	(ℓ_2,ℓ_3)
$(1_X, 1_X)$	$(\ell_2, 1_X)$	(ℓ_2,ℓ_1)	(ℓ_2,ℓ_2)	(ℓ_2,ℓ_3)
$(1_X,\ell_1)$	$(\ell_2, 1_X)$	$(\ell_2, 1_X)$	$(\ell_2,1_X)$	$(\ell_2,1_X)$
$(1_X, \ell_2)$	$(\ell_2, 1_X)$	$(\ell_2, 1_X)$	$(\ell_2,1_X)$	$(\ell_2,1_X)$
$(1_X,\ell_3)$	$(\ell_2, 1_X)$	(ℓ_2,ℓ_1)	(ℓ_2,ℓ_2)	$(\ell_2,1_X)$
$(\ell_1, 1_X)$	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,\ell_3)$
(ℓ_1,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_2)	$(1_X, 1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$

 $(1_X, \ell_1)$

 $(1_X, \ell_1)$

 $(1_X, 1_X)$

 $(1_X, \ell_1)$

 $(1_X, \ell_1)$

 (ℓ_2,ℓ_1)

 $(\ell_2, 1_X)$

 (ℓ_2,ℓ_1)

 (ℓ_2,ℓ_1)

 $(1_X, \ell_2)$

 $(1_X, \ell_2)$

 $(1_X, 1_X)$

 $(1_X, 1_X)$

 $(1_X, \ell_2)$

 (ℓ_2,ℓ_2)

 $(\ell_2, 1_X)$

 $(\ell_2, 1_X)$

 (ℓ_2,ℓ_2)

and $f(\varpi) = \wp$. Hence

 (ℓ_1,ℓ_3)

 $(\ell_2, 1_X)$

 (ℓ_2,ℓ_1)

 (ℓ_2,ℓ_2)

 (ℓ_2,ℓ_3)

 $(\ell_3, 1_X)$

 (ℓ_3,ℓ_1)

 (ℓ_3,ℓ_2)

 (ℓ_3,ℓ_3)

 $(1_X, 1_X)$

 $(1_{X},1_{X})$

 $(1_X, 1_X)$

 $(1_X,1_X)$

 $(1_X, 1_X)$

 $(\ell_2, 1_X)$

 $(\ell_2, 1_X)$

 $(\ell_2, 1_X)$

 $(\ell_2, 1_X)$

$$\begin{split} ||\hbar * \wp|| &= \inf_{u \in f^{-1}(\hbar * \wp)} ||u|| = \inf_{u \in f^{-1}(\hbar) * f^{-1}(\wp)} ||u|| = \inf_{\substack{\varrho \in f^{-1}(\hbar), \\ \varpi \in f^{-1}(\wp)}} ||\varrho * \varpi|| \\ & \stackrel{(3.20)}{\leq} \inf_{\substack{\varrho \in f^{-1}(\hbar), \\ \varsigma \in f^{-1}(\jmath)}} ||\varrho * \varsigma|| + \inf_{\substack{\varsigma \in f^{-1}(\jmath), \\ \varpi \in f^{-1}(\wp)}} ||\varsigma * \varpi|| \\ &= \inf_{v \in f^{-1}(\hbar) * f^{-1}(\jmath)} ||v|| + \inf_{w \in f^{-1}(\jmath) * f^{-1}(\wp)} ||w|| \\ &= \inf_{v \in f^{-1}(\hbar * \jmath)} ||v|| + \inf_{w \in f^{-1}(\jmath * \wp)} ||w|| \\ &= ||\hbar * \jmath|| + ||\jmath * \wp||. \end{split}$$

Hence $(\mathbb{Y}, ||\cdot||)$ is a normed GE-algebra.

Theorem 3.3. Let $f: X \to Y$ be a one-to-one GE-morphism from a GE-algebra $\mathbb{X} := (X, *, 1_X)$ to a GE-algebra

 $\mathbb{Y} := (Y, *, 1_Y)$. If $(\mathbb{Y}, ||\cdot||)$ is a normed GE-algebra, then so is $(\mathbb{X}, ||\cdot||)$.

CC 11 0 4	/
Table 3.1	(continued)
10000 0.1	i cononnaca i

*	$(\ell_3, 1_X)$	(ℓ_3,ℓ_1)	(ℓ_3,ℓ_2)	(ℓ_3,ℓ_3)
$\overline{(1_X,1_X)}$	$(\ell_3, 1_X)$	(ℓ_3,ℓ_1)	(ℓ_3,ℓ_2)	(ℓ_3,ℓ_3)
$(1_X, \ell_1)$	$(\ell_3, 1_X)$	$(\ell_3, 1_X)$	$(\ell_3, 1_X)$	$(\ell_3, 1_X)$
$(1_X, \ell_2)$	$(\ell_3, 1_X)$	$(\ell_3, 1_X)$	$(\ell_3, 1_X)$	$(\ell_3, 1_X)$
$(1_X, \ell_3)$	$(\ell_3, 1_X)$	(ℓ_3,ℓ_1)	(ℓ_3,ℓ_2)	$(\ell_3, 1_X)$
$(\ell_1, 1_X)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X, \ell_3)$
(ℓ_1,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_2)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_1,ℓ_3)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,1_X)$
$(\ell_2, 1_X)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X, \ell_3)$
(ℓ_2,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_2,ℓ_2)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_2,ℓ_3)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,1_X)$
$(\ell_3, 1_X)$	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,\ell_3)$
(ℓ_3,ℓ_1)	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_3,ℓ_2)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,1_X)$	$(1_X,1_X)$
(ℓ_3,ℓ_3)	$(1_X,1_X)$	$(1_X,\ell_1)$	$(1_X,\ell_2)$	$(1_X,1_X)$

Proof. Assume that $(\mathbb{Y}, ||\cdot||)$ is a normed GE-algebra. For every $\varrho \in X$, let $||\varrho|| = ||f(\varrho)||$. Then $||\varrho|| = ||f(\varrho)|| \stackrel{(3.18)}{\geq} 0$ and

$$||\varrho|| = 0 \Leftrightarrow ||f(\varrho)|| = 0 \stackrel{(3.19)}{\Leftrightarrow} f(\varrho) = 1_X = f(1_X) \Leftrightarrow \varrho = 1_X$$

since f is a one-to-one GE-morphism. For every $\varrho, \varsigma, \varpi \in X$, we get

$$\begin{aligned} ||\varrho * \varpi|| &= ||f(\varrho * \varpi)|| = ||f(\varrho) * f(\varpi)|| \\ &\leq ||f(\varrho) * f(\varsigma)|| + ||f(\varsigma) * f(\varpi)|| \\ &= ||f(\varrho * \varsigma)|| + ||f(\varsigma * \varpi)|| \\ &= ||\rho * \varsigma|| + ||\varsigma * \varpi||. \end{aligned}$$

Therefore $(X, ||\cdot||)$ is a normed GE-algebra.

Theorem 3.4. Let $\mathbb{X} := (X, *, 1_X)$ and $\mathbb{Y} := (Y, *, 1_Y)$ be GE-algebras and consider the product GE-algebra $\mathbb{X} \times \mathbb{Y} := (X \times Y, \circledast, \mathbf{1})$ of $\mathbb{X} := (X, *, 1_X)$ and $\mathbb{Y} := (Y, *, 1_Y)$. Then

 $\mathbb{X} \times \mathbb{Y}$ is a normed GE-algebra if and only if $\mathbb{X} := (X, *, 1_X)$ and $\mathbb{Y} := (Y, *, 1_Y)$ are normed GE-algebras.

Proof. Assume that $\mathbb{X} \times \mathbb{Y}$ is a normed GE-algebra and consider the projection $f_X : X \times Y \to X$ and $f_Y : X \times Y \to Y$. Then f_X and f_Y are onto GE-morphisms. Hence $\mathbb{X} := (X, *, 1_X)$ and $\mathbb{Y} := (Y, *, 1_Y)$ are normed GE-algebras by Theorem 3.2.

Conversely, suppose that $\mathbb{X} := (X, *, 1_X)$ and $\mathbb{Y} := (Y, *, 1_Y)$ are normed GE-algebras. If $\hbar \in X \times Y$, then $\hbar = (\varrho_{\hbar}, \varsigma_{\hbar})$ for some $\varrho_{\hbar} \in X$ and $\varsigma_{\hbar} \in Y$. Define $||\hbar|| = ||\varrho_{\hbar}|| + ||\varsigma_{\hbar}||$. Then $||\hbar|| = ||\varrho_{\hbar}|| + ||\varsigma_{\hbar}|| \ge 0$ and

$$\begin{aligned} ||\hbar|| &= 0 \iff ||\varrho_{\hbar}|| + ||\varsigma_{\hbar}|| = 0 \iff ||\varrho_{\hbar}|| = 0 = ||\varsigma_{\hbar}|| \\ &\stackrel{(3.19)}{\Leftrightarrow} \varrho_{\hbar} = 1_{X} \text{ and } \varsigma_{\hbar} = 1_{Y} \\ &\Leftrightarrow \hbar = (\varrho_{\hbar}, \varsigma_{\hbar}) = (1_{X}, 1_{Y}) = \mathbf{1}. \end{aligned}$$

Let $\hbar := (\varrho_{\hbar}, \varsigma_{\hbar}), \ \jmath := (\varrho_{\jmath}, \varsigma_{\jmath}), \ \wp := (\varrho_{\wp}, \varsigma_{\wp}) \in X \times Y$. Then

$$\begin{split} ||\hbar \circledast \wp|| &= ||(\varrho_{\hbar} * \varrho_{\wp}, \varsigma_{\hbar} * \varsigma_{\wp})|| \\ &= ||\varrho_{\hbar} * \varrho_{\wp}|| + ||\varsigma_{\hbar} * \varsigma_{\wp}|| \\ &\leq (||\varrho_{\hbar} * \varrho_{\jmath}|| + ||\varrho_{\jmath} * \varrho_{\wp}||) + (||\varsigma_{\hbar} * \varsigma_{\jmath}|| + ||\varsigma_{\jmath} * \varsigma_{\wp}||) \\ &= (||\varrho_{\hbar} * \varrho_{\jmath}|| + ||\varsigma_{\hbar} * \varsigma_{\jmath}||) + (||\varrho_{\jmath} * \varrho_{\wp}|| + ||\varsigma_{\jmath} * \varsigma_{\wp}||) \\ &= ||(\varrho_{\hbar} * \varrho_{\jmath}, \varsigma_{\hbar} * \varsigma_{\jmath})|| + ||(\varrho_{\jmath} * \varrho_{\wp}, \varsigma_{\jmath} * \varsigma_{\wp})|| \\ &= ||\hbar \circledast \jmath|| + ||\jmath \circledast \wp||. \end{split}$$

Therefore $\mathbb{X} \times \mathbb{Y}$ is a normed GE-algebra.

Definition 3.2. Let $(X, ||\cdot||)$ be a normed GE-algebra and consider a sequence $\{\hbar_n\}$ in X. Then $\{\hbar_n\}$ is said to be convergent in X if there exists a number \hbar_0 in X such that for every $\varepsilon > 0$ (no matter how small), there exists a natural number k_0 such that the magnitude for (\hbar_n, \hbar_0) and (\hbar_0, \hbar_n) is less than ε for all $n \geq k_0$, that is, it can be written as:

 $\lim_{n\to\infty} h_n = h_0$ if and only if for every $\varepsilon > 0$ there exists $k_0 \in \mathbb{N}$ such that

$$n \ge k_0 \implies \eth(\hbar_n, \hbar_0) < \varepsilon \text{ and } \eth(\hbar_0, \hbar_n) < \varepsilon.$$

In this case, we say that \hbar_0 is the limit of $\{\hbar_n\}$.

Theorem 3.5. Let $\mathbb{X} := (X, *, 1_X)$ be a commutative GE-algebra. In a normed GE-algebra $(\mathbb{X}, ||\cdot||)$, a convergent sequence cannot have two different limits, that is, If a sequence $\{\hbar_n\}$ converges to a limit \hbar_0 , then that limit is unique.

Proof. Let $\{\hbar_n\}$ be a convergent sequence in X, and let \hbar_0 and j_0 be two limits of $\{\hbar_n\}$. Then for every $\varepsilon > 0$, there exists a natural number k_0 such that $\eth(\hbar_n, \hbar_0) < \frac{\varepsilon}{2}$, $\eth(\hbar_0, \hbar_n) < \frac{\varepsilon}{2}$, $\eth(\hbar_0, j_n) < \frac{\varepsilon}{2}$ for all $n \ge k_0$. Hence

$$\mathfrak{J}(\hbar_0, \jmath_0) \stackrel{(3.21)}{=} ||\hbar_0 * \jmath_0|| \stackrel{(3.20)}{\leq} ||\hbar_0 * \hbar_n|| + ||\hbar_n * \jmath_0||$$

$$\stackrel{(3.21)}{=} \mathfrak{J}(\hbar_0, \hbar_n) + \mathfrak{J}(\hbar_n, \jmath_0) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

By the similarly way, we have $\eth(\jmath_0, \hbar_0) \leq \varepsilon$. Since ε is arbitrary, it follows that $\eth(\hbar_0, \jmath_0) = 0 = \eth(\jmath_0, \hbar_0)$. Using Theorem 3.1, we conclude that $\hbar_0 = \jmath_0$. Therefore $\{\hbar_n\}$ has a unique limit.

Theorem 3.6. In a normed GE-algebra $(X, ||\cdot||)$, every convergent sequence $\{\hbar_n\}$ in X satisfies:

$$(\forall \varepsilon > 0)(\exists k_0 \in \mathbb{N}) (n, m \ge k_0 \implies \eth(\hbar_n, \hbar_m) < \varepsilon \text{ and } \eth(\hbar_m, \hbar_n) < \varepsilon). \tag{3.35}$$

Proof. Let $\mathbb{X} := \langle X, *, 1_X \rangle$ be a normed GE-algebra with GE-norm $\| \cdot \|$, and let $\eth(\varrho, \varsigma) = \|\varrho * \varsigma\|$ be the magnitude function. Suppose $\{\hbar_n\}$ is a sequence in X that converges to \hbar_0 in X. By definition 3.2, for every $\varepsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that for all $n \geq k_0$,

$$\eth(\hbar_n, \hbar_0) = \|\hbar_n * \hbar_0\| < \varepsilon \quad \text{and} \quad \eth(\hbar_0, \hbar_n) = \|\hbar_0 * \hbar_n\| < \varepsilon.$$

To prove that $\{\hbar_n\}$ satisfies condition (3.35), fix $\varepsilon > 0$. Since $\{\hbar_n\}$ converges to \hbar_0 , there exists $k_0 \in \mathbb{N}$ such that for all $n \geq k_0$,

$$\eth(\hbar_n, \hbar_0) < \frac{\varepsilon}{2}$$
 and $\eth(\hbar_0, \hbar_n) < \frac{\varepsilon}{2}$.

We need to show that for all $n, m \geq k_0$, $\eth(\hbar_n, \hbar_m) < \varepsilon$ and $\eth(\hbar_m, \hbar_n) < \varepsilon$. Consider $\eth(\hbar_n, \hbar_m) = \|\hbar_n * \hbar_m\|$. By the triangle-like inequality of the GE-norm (Definition 3.1, condition (3.20)), for any $\varrho, \varsigma, \varpi \in X$,

$$\|\varrho * \varpi\| \le \|\varrho * \varsigma\| + \|\varsigma * \varpi\|.$$

Set $\varrho = \hbar_n$, $\varpi = \hbar_m$, and $\varsigma = \hbar_0$. Then,

$$\|h_n * h_m\| < \|h_n * h_0\| + \|h_0 * h_m\|,$$

i.e.,

$$\eth(\hbar_n, \hbar_m) \leq \eth(\hbar_n, \hbar_0) + \eth(\hbar_0, \hbar_m).$$

Since $n, m \ge k_0$, we have:

$$\eth(\hbar_n, \hbar_0) = \|\hbar_n * \hbar_0\| < \frac{\varepsilon}{2}, \quad \eth(\hbar_0, \hbar_m) = \|\hbar_0 * \hbar_m\| < \frac{\varepsilon}{2}.$$

Thus,

$$\eth(\hbar_n, \hbar_m) \leq \eth(\hbar_n, \hbar_0) + \eth(\hbar_0, \hbar_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Similarly, we can show that $\eth(\hbar_m, \hbar_n) < \varepsilon$.

The converse of Theorem 3.6 is not valid as seen in the following example.

Example 3.5. (i) For the normed GE-algebra $(X, ||\cdot||)$ in Example 3.2, we can observe that if

$$h_n = \begin{cases}
\ell_1 & \text{if } n \text{ is odd,} \\
\ell_4 & \text{if } n \text{ is even,}
\end{cases}$$

then the sequence $\{\hbar_n\}$ in X satisfies (3.35). If we take $\varepsilon > 0$ such that $\varrho_0 \geq \varepsilon$, then

$$\eth(\hbar_7,\ell_2) = ||\ell_1 * \ell_2|| = ||\ell_2|| = \varrho_0 \not< \varepsilon$$

and/or $\eth(\ell_2, \hbar_7) = ||\ell_2 * \ell_1|| = ||\ell_4|| = \varrho_0 \nleq \varepsilon$. Hence $\{\hbar_n\}$ is not convergent.

(ii) Let $(0,1] \subseteq \mathbb{R}$ and define a binary operation "*" on (0,1] as follows:

$$\varrho * \varsigma = \begin{cases} \varsigma & \text{if } \varrho = 1, \\ 1 & \text{otherwise.} \end{cases}$$

Then ((0,1],*,1) is a GE-algebra. If we take a sequence $\{\frac{1}{n+1}\}_{n\in\mathbb{N}}$, then it satisfies (3.35) but does not converge in (0,1].

Theorem 3.7. Let $\{\hbar_n\}$ be a sequence in a normed GE-algebra $(\mathbb{X}, ||\cdot||)$ where $\mathbb{X} := (X, *, 1_X)$ is a commutative GE-algebra. Then it is convergent if and only if all of its non-trivial subsequences converge.

Proof. Assume that $\{\hbar_n\}$ is a convergent sequence in $(\mathbb{X}, ||\cdot||)$ and let \hbar_0 be its limit. For every $\varepsilon > 0$ there exists $k_0 \in \mathbb{N}$ such that

$$n \ge k_0 \implies \eth(\hbar_n, \hbar_0) < \varepsilon \text{ and } \eth(\hbar_0, \hbar_n) < \varepsilon.$$

Let $\{\hbar_{\phi(n)}\}\$ be a non-trivial subsequence of $\{\hbar_n\}$. If $n \geq k_0$, then $\phi(n) \geq n \geq k_0$, and so $\eth(\hbar_{\phi(n)}, \hbar_0) < \varepsilon$ and $\eth(\hbar_0, \hbar_{\phi(n)}) < \varepsilon$. This shows that $\{\hbar_{\phi(n)}\}\$ is convergent.

Conversely, suppose that all of non-trivial subsequences of $\{\hbar_n\}$ converge. If $\{\hbar_n\}$ is not convergent, then there are at least two non-trivial subsequences, say $\{\hbar_{\phi(n)}\}$ and $\{\hbar_{\phi(m)}\}$, with different limits \hbar_0 and j_0 , respectively. This is a contradiction by Theorem 3.5, and thus $\{\hbar_n\}$ is a convergent sequence in $(\mathbb{X}, ||\cdot||)$.

Theorem 3.8. Let $\{\hbar_n\}$ be a sequence in $(\mathbb{X}, ||\cdot||)$. If \hbar_0 is a limit of $\{\hbar_n\}$, then 1_X is a limit of the sequences $\{\hbar_n * \hbar_0\}$ and $\{\hbar_0 * \hbar_n\}$.

Proof. If h_0 is a limit of $\{h_n\}$, then for every $\varepsilon > 0$ there exists $k_0 \in \mathbb{N}$ such that

$$n \ge k_0 \implies \eth(\hbar_n, \hbar_0) < \varepsilon \text{ and } \eth(\hbar_0, \hbar_n) < \varepsilon.$$

Hence $\eth(\hbar_n * \hbar_0, 1_X) \stackrel{(3.22)}{=} 0 < \varepsilon$ and

$$\eth(1_X, \hbar_n * \hbar_0) \stackrel{(3.21)}{=} ||1_X * (\hbar_n * \hbar_0)|| \stackrel{(GE2)}{=} ||\hbar_n * \hbar_0||$$

$$\stackrel{(3.21)}{=} \eth(\hbar_n, \hbar_0) < \varepsilon.$$

Therefore 1_X is a limit of $\{\hbar_n * \hbar_0\}$. Similarly, $\{\hbar_0 * \hbar_n\}$ has a limit 1_X .

Theorem 3.9. Let $\{\hbar_n\}$ be a sequence in a normed GE-algebra $(\mathbb{X}, ||\cdot||)$. If \hbar_0 is a limit of $\{\hbar_n\}$, then $\{\eth(\hbar_n, \jmath_0)\}$ and $\{\eth(\jmath_0, \hbar_n)\}$ are bounded above for all $\jmath_0 \in X$.

Proof. Assume that $\{\hbar_n\}$ converges to \hbar_0 . By the definition of convergence, for every $\varepsilon > 0$ there exists a natural number k_0 such that $\eth(\hbar_n, \hbar_0) < \varepsilon$ and $\eth(\hbar_0, \hbar_n) < \varepsilon$ for all $n \ge k_0$. It follows from (3.20) that

$$\eth(\hbar_n, \jmath_0) \leq \eth(\hbar_n, \hbar_0) + \eth(\hbar_0, \jmath_0) < \varepsilon + \eth(\hbar_0, \jmath_0)$$

and $\eth(\jmath_0, \hbar_n) \leq \eth(\jmath_0, \hbar_0) + \eth(\hbar_0, \hbar_n) < \eth(\jmath_0, \hbar_0) + \varepsilon$. If $n < k_0$, then $\eth(\hbar_n, \jmath_0) = ||\hbar_n * \jmath_0|| \leq M$ and $\eth(\jmath_0, \hbar_n) = ||\jmath_0 * \hbar_n|| \leq M$ where

$$M := \max\{||h_n * j_0||, ||j_0 * h_n||\}.$$

This completes the proof.

Let \eth be the magnitude of a normed GE-algebra (\mathbb{X} , $||\cdot||$). Consider the following:

$$(\forall \varrho, \varsigma, \varpi \in X) \left(\begin{array}{c} \varrho \leq_X \varsigma \Rightarrow \begin{cases} \eth(\varrho, \varpi) \leq \eth(\varsigma, \varpi) \\ \eth(\varpi, \varsigma) \leq \eth(\varpi, \varrho) \end{array} \right). \tag{3.36}$$

The following example shows that (3.36) is not valid in general.

Example 3.6. Consider a GE-algebra $\mathbb{X} := (X, *, 1_X)$, where $X = \{1_X, \ell_1, \ell_2, \ell_3, \ell_4, \ell_5\}$ and a binary operation "*" is given in the following table:

Define a norm $||\cdot||$ on $\mathbb{X} := (X, *, 1_X)$ as follows:

$$||\cdot||: X \to \mathbb{R}, \ \varrho \mapsto \begin{cases} 0 & \text{if } \varrho = 1_X, \\ \varrho_0 & \text{otherwise,} \end{cases}$$

where ϱ_0 is a positive real number. Then $(\mathbb{X}, ||\cdot||)$ is a normed GE-algebra. Note that $\ell_3 * \ell_1 = 1_X$ and $\ell_4 * \ell_2 = 1_X$, i.e., $\ell_3 \leq_X \ell_1$ and $\ell_4 \leq_X \ell_2$. We can observe that

$$\eth(\ell_3, \ell_2) = ||\ell_3 * \ell_2|| = ||\ell_2|| = \varrho_0 \nleq 0 = ||1_X|| = ||\ell_1 * \ell_2|| = \eth(\ell_1, \ell_2)$$

and

$$\eth(\ell_3,\ell_2) = ||\ell_3*\ell_2|| = ||\ell_2|| = \varrho_0 \nleq 0 = ||1_X|| = ||\ell_3*\ell_4|| = \eth(\ell_3,\ell_4).$$

We now discuss the squeeze theorem for convergence sequences.

Theorem 3.10. Assume that every magnitude \eth of a normed GE-algebra $(\mathbb{X}, ||\cdot||)$ satisfies (3.36). Let $\{\hbar_n\}$, $\{\jmath_n\}$ and $\{\wp_n\}$ be sequences in $(\mathbb{X}, ||\cdot||)$ such that $\{\jmath_n\}$ is trapped between $\{\hbar_n\}$ and $\{\wp_n\}$ for a sufficiently large n, that is, there exists a natural number k_0 such that $\hbar_n \leq_X \jmath_n \leq_X \wp_n$ for all $n > k_0$. If $\{\hbar_n\}$ and $\{\wp_n\}$ converge to \hbar_0 , then $\{\jmath_n\}$ also converges to \hbar_0 .

Proof. If $\{\hbar_n\}$ and $\{\wp_n\}$ converge to \hbar_0 , then for every $\varepsilon > 0$ there exist natural numbers k_{\hbar} and k_{\jmath} such that

$$n \ge k_{\hbar} \implies \eth(\hbar_n, \hbar_0) < \varepsilon \text{ and } \eth(\hbar_0, \hbar_n) < \varepsilon$$

and

$$n \ge k_1 \implies \eth(\wp_n, \hbar_0) < \varepsilon \text{ and } \eth(\hbar_0, \wp_n) < \varepsilon.$$

Using (3.36), we have

$$\eth(\hbar_n, \hbar_0) \leq \eth(\jmath_n, \hbar_0) \leq \eth(\wp_n, \hbar_0)$$

and

$$\eth(\wp_0, \hbar_n) \le \eth(\jmath_0, \hbar_n) \le \eth(\hbar_0, \hbar_n)$$

for all $k_0 := \max\{k_{\hbar}, k_{\jmath}\}$. It follows that if $n \geq k_0$, then $\eth(\jmath_n, \hbar_0) < \varepsilon$ and $\eth(\hbar_0, \jmath_n) < \varepsilon$. Thus $\{\jmath_n\}$ converges to \hbar_0 .

Theorem 3.11. Let f be a GE-morphism from a GE-algebra $\mathbb{X} := (X, *_X, 1_X)$ to a GE-algebra $\mathbb{Y} := (Y, *_Y, 1_Y)$. Assume that $||\varrho|| = ||f(\varrho)||$ for all $\varrho \in X$. Then a sequence $\{\hbar_n\}$ in $(\mathbb{X}, ||\cdot||)$ converges to \hbar_0 if and only if the sequence $\{f(\hbar_n)\}$ in $(\mathbb{Y}, ||\cdot||)$ converges to $f(\hbar_0)$.

Proof. Assume that a sequence $\{\hbar_n\}$ in $(\mathbb{X}, ||\cdot||)$ converges to \hbar_0 . Then for every $\varepsilon > 0$, there exists a natural number k_0 such that $\eth(\hbar_n, \hbar_0) < \varepsilon$ and $\eth(\hbar_0, \hbar_n) < \varepsilon$ for all $n \geq k_0$. Using (2.15) and (3.21), we have

$$\mathfrak{d}(f(\hbar_n), f(\hbar_0)) = ||f(\hbar_n) *_Y f(\hbar_0)|| = ||f(\hbar_n *_X \hbar_0)||$$

$$= ||\hbar_n *_X \hbar_0|| = \mathfrak{d}(\hbar_n, \hbar_0) < \varepsilon$$

and

$$\mathfrak{d}(f(\hbar_0), f(\hbar_n)) = ||f(\hbar_0) *_Y f(\hbar_n)|| = ||f(\hbar_0 *_X \hbar_n)||$$

$$= ||\hbar_0 *_X \hbar_n|| = \mathfrak{d}(\hbar_0, \hbar_n) < \varepsilon$$

Therefore the sequence $\{f(\hbar_n)\}$ converges to $f(\hbar_0)$.

Conversely, suppose that the sequence $\{f(\hbar_n)\}$ in $(\mathbb{Y}, ||\cdot||)$ converges to $f(\hbar_0)$. For every $\varepsilon > 0$ there exists a natural number k_0 such that $\eth(f(\hbar_n), f(\hbar_0)) < \varepsilon$ and $\eth(f(\hbar_0), f(\hbar_n)) < \varepsilon$ for all $n \geq k_0$. It follows that

$$\begin{split} \eth(\hbar_n, \hbar_0) &= ||\hbar_n *_X \hbar_0|| = ||f(\hbar_n *_X \hbar_0)|| \\ &= ||f(\hbar_n) *_Y f(\hbar_0)|| = \eth(f(\hbar_n), f(\hbar_0)) < \varepsilon \end{split}$$

and

$$\begin{split} \eth(\hbar_0, \hbar_n) &= ||\hbar_0 *_X \hbar_n|| = ||f(\hbar_0 *_X \hbar_n)|| \\ &= ||f(\hbar_0) *_Y f(\hbar_n)|| = \eth(f(\hbar_0), f(\hbar_n)) < \varepsilon \end{split}$$

for all $n \geq k_0$. Consequently, $\{\hbar_n\}$ converges to \hbar_0 .

4. Conclusion

This paper introduces normed GE-algebras, equipping GE-algebras with a GE-norm to measure element magnitudes. We defined a magnitude function $\eth(\varrho,\varsigma) = \|\varrho * \varsigma\|$ that induces a quasi-metric space, generating a T_0 -topology (Theorem 3.1, Example 3.3). Key results include the Cauchy-like property of convergent sequences (Theorem 3.6), preservation of normed structures under GE-morphisms (Theorem 3.2), and properties of product spaces (Theorem 3.4). These findings establish normed GE-algebras as a robust framework for studying convergence and topological properties in generalized algebraic systems. The significance of this work lies in bridging algebraic and geometric concepts, enabling the analysis of non-commutative structures in a topological context. The quasi-metric and T_0 -topology support applications in functional analysis, modeling asymmetric distances, and in mathematical logic, quantifying logical distances in non-classical logics [13]. The GE-morphism and product theorems facilitate the study of complex algebraic systems. Future work includes exploring additional topological properties, such as compactness or connectedness, in the T_0 topology. Extending GE-norms to BCK/BCI-algebras or residuated lattices could broaden their scope [8]. Applications in functional analysis (e.g., asymmetric function spaces) and topology (e.g., non-Hausdorff spaces) are promising. Open problems, such as characterizing complete normed GE-algebras, encourage further interdisciplinary research.

Normed GE-algebras offer promising applications across several mathematical disciplines. In functional analysis, the quasi-metric spaces induced by GE-norms (Example 3.3) provide a framework for studying function spaces with asymmetric distances, which are relevant in asymmetric functional analysis [10]. These spaces can model non-reversible processes or directed convergence, extending traditional Banach space techniques. In topology, the Totopology generated by normed GE-algebras facilitates the study of non-Hausdorff topological spaces, which are prevalent in computational topology and data analysis. This topology supports the analysis of convergence properties in generalized settings. In mathematical logic, normed GE-algebras, as extensions of Hilbert algebras linked to intuitionistic logic, enable quantitative semantics where the GE-norm measures the "distance" between logical propositions [13]. This can enhance reasoning frameworks in non-classical logics, such as those used in artificial intelligence and formal verification. These applications underscore the versatility of normed GE-algebras and pave the way for future interdisciplinary research.

FIGURE 1. Flowchart illustrating the relationships between GE-norms, quasimetrics, T_0 -topology, and convergence properties in normed GE-algebras. The GE-norm induces a quasi-metric, which generates a T_0 -topology, governing sequence convergence (e.g., Cauchy-like property in Theorem 3.6).

Acknowledgments. The authors would like to thank the referee for some useful comments and their helpful suggestions that have improved the quality of this paper.

References

- [1] Abass, R. H. (2018). On the normed BH-algebras. Int. J. Pure Appl. Math., 119(10), 339–348.
- [2] Bandaru, R. K., Borumand Saeid, A., & Jun, Y. B. (2021). On GE-algebras. Bull. Sect. Log., 50(1), 81–96. https://doi.org/10.18778/0138-0680.2020.20
- [3] Bandaru, R. K., Borumand Saeid, A., & Jun, Y. B. (2022). Belligerent GE-filter in GE-algebras. J. Indones. Math. Soc., 28(1), 31–43. https://doi.org/10.22342/jims.28.1.1056.31-43
- [4] Celani, S. (2002). A note on homomorphisms of Hilbert algebras. Int. J. Math. Math. Sci., 29(1), 55–61.DOI:10.1155/S0161171202011134
- [5] Celani, S. (2002). Hilbert algebras with supremum. Algebr. Univ., 67, 237–255 D0I10.1007/ s00012-012-0178-z
- [6] Diego, A. (1966). Sur les algebres de Hilbert, Collection de Logique Mathematique, Edition Hermann, Serie A, XXI.
- [7] Dudek, W. A. (1999). On ideals in Hilbert algebras. Acta Univ. Palacki. Olomuc, Fac. rer.nat. ser. Math., 38(1), 31–34. http://eudml.org/doc/23677
- [8] Iorgulescu, A. (2008). Algebras of Logic as BCK-algebras. Editura ASE.

- [9] Jun, Y. B., Roh, E. H. and Kim, H. S. (1998). On BH-algebras. Sci. Math., 1(3), 347-354.
- [10] Kelley, J. L. (1955). General Topology. Springer.
- [11] Mundici, D. (1998). MV-algebras and their applications. Springer.
- [12] Rezaei, A., Bandaru, R. K., Borumand Saeid, A., & Jun, Y. B. (2021). Prominent GE-filters and GE-morphisms in GE-algebras. Afr. Mat. 32, 1121–1136. https://doi.org/10.1007/s13370-021-00886-6
- [13] Rasiowa, H. (1974). An Algebraic Approach to Non-Classical Logics. North-Holland.
- [14] Rudin, W. (1991). Functional Analysis. McGraw-Hill.

DEPARTMENT OF MATHEMATICS, VIT-AP UNIVERSITY, 522237 AMARAVATI, INDIA

Department of Mathematics Education, Gyeongsang National University, 52828 Jinju, KOREA