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GE-ALGEBRAS WITH NORMS
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Abstract. In this paper, we introduce and study the concept of normed GE-algebras, an

extension of GE-algebras equipped with a GE-norm, which provides a framework to mea-

sure the magnitude of algebraic elements. We define the magnitude function and explore its

properties in the context of GE-algebras. Through theorems and propositions, we examine

the behavior of sequences in these normed structures, demonstrating convergence proper-

ties, quasi-metrics, and the relationship between norms and algebraic operations. We also

establish the connection between normed GE-algebras and their product spaces, as well

as the implications for convergent sequences and limit uniqueness. Finally, we generalize

these results to mappings between normed GE-algebras and investigate the implications of

GE-morphisms in preserving convergence behavior.
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1. Introduction

In the 1950s, Hilbert algebras were introduced by L. Henkin and T. Skolem as a means

to investigate non-classical logics, particularly intuitionistic logic. As demonstrated by A.

Diego, these algebras belong to the category of locally finite varieties, a fact highlighted

in [6]. Over time, a community of scholars developed the theory of Hilbert algebras, as

evidenced by works such as [4, 5, 7]. In the broader scope of algebraic structures, the

process of generalization is of utmost importance. Y. B. Jun et al. introduced the concept of
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BH-algebras as a generalization of BCH/BCI/BCK-algebras and investigated its important

properties in [9]. R. H. Abass introduced the notions of norm and distance in BH-algebras

and given some basic properties in normed BH-algebras in [1].

The introduction of GE-algebras, proposed by R. K. Bandaru et al. as an extension

of Hilbert algebras, marked a significant step in this direction. This advancement led to

the examination of various properties, as explored in [2]. The evolution of GE-algebras

was greatly influenced by filter theory. In light of this, R. K. Bandaru et al. introduced

the concept of belligerent GE-filters in GE-algebras, closely investigating its attributes as

documented in [3]. Generalized algebraic structures, such as GE-algebras, offer a broad

framework to study a variety of algebraic and topological properties.

The concept of norms has a rich history in mathematics, originating in the study of

vector spaces and Banach algebras, where norms quantify the size of elements and induce

metric spaces [14]. In logical algebras, norms have been adapted to capture algebraic prop-

erties, as seen in normed BCK/BCI-algebras [8], where norms relate to implication opera-

tions, and in MV-algebras, where norms support quantitative semantics [11]. Unlike these

structures, normed GE-algebras, introduced in this paper, define a GE-norm tailored to the

non-commutative binary operation of GE-algebras, inducing quasi-metric spaces rather than

metric spaces. This generalization extends the applicability of norms to non-linear algebraic

systems, offering a novel framework for studying convergence and topological properties in

generalized algebraic settings.

In this context, normed GE-algebras represent an important class that combines the alge-

braic properties of GE-algebras with a GE-norm, enabling the measurement of the magnitude

of elements. This paper aims to extend the classical understanding of algebraic norms by

introducing the concept of a GE-norm, defined as a real-valued mapping that satisfies specific

properties akin to a norm in conventional algebraic systems. We begin by formally defin-

ing the notion of a GE-norm and explore its compatibility with the underlying operations

of the GE-algebra. Following this, we investigate the properties of the magnitude function

derived from the norm and establish a series of results on its behavior. Notably, we prove

that normed GE-algebras induce quasi-metric spaces and that these spaces generate a T0-

topology. In subsequent sections, we delve into the properties of convergent sequences in

normed GE-algebras, proving the uniqueness of limits and characterizing the boundedness

of certain subsequences. We also establish several results concerning the preservation of

normed structures under GE-morphisms, culminating in a product theorem for GE-algebras.
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This work contributes to the ongoing development of generalized algebraic systems, provid-

ing both theoretical insights and practical tools for further exploration of algebraic norms,

convergence, and topological spaces in GE-algebras.

2. Preliminaries

Definition 2.1 ([2]). A GE-algebra is a non-empty set X with a constant 1 and a binary

operation “∗” satisfying the following axioms:

(GE1) a ∗ a = 1,

(GE2) 1 ∗ a = a,

(GE3) a ∗ (b ∗ c) = a ∗ (b ∗ (a ∗ c))

for all a, b, c ∈ X.

In a GE-algebra X, a binary relation “≤X” is defined by

(∀a, b ∈ X) (a ≤X b ⇔ a ∗ b = 1) . (2.1)

Definition 2.2 ([2, 3]). A GE-algebra X is said to be

• transitive if it satisfies:

(∀a, b, c ∈ X) (a ∗ b ≤X (c ∗ a) ∗ (c ∗ b)) . (2.2)

• commutative if it satisfies:

(∀a, b ∈ X) ((a ∗ b) ∗ b = (b ∗ a) ∗ a) . (2.3)

Proposition 2.1 ([2]). Every GE-algebra X satisfies the following items.

a ∗ 1 = 1. (2.4)

a ∗ (a ∗ b) = a ∗ b. (2.5)

a ≤X b ∗ a. (2.6)

a ∗ (b ∗ c) ≤X b ∗ (a ∗ c). (2.7)

1 ≤X a ⇒ a = 1. (2.8)

a ≤X (b ∗ a) ∗ a. (2.9)

a ≤X (a ∗ b) ∗ b. (2.10)

a ≤X b ∗ c ⇔ b ≤X a ∗ c. (2.11)
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for all a, b, c ∈ X. If X is transitive, then

a ≤X b ⇒ c ∗ a ≤X c ∗ b, b ∗ c ≤X a ∗ c. (2.12)

a ∗ b ≤X (b ∗ c) ∗ (a ∗ c). (2.13)

a ≤X b, b ≤X c ⇒ a ≤X c. (2.14)

for all a, b, c ∈ X.

Definition 2.3 ([12]). Let (X, ∗X , 1X) and (Y, ∗Y , 1Y ) be GE-algebras. A mapping f : X →

Y is called a GE-morphism if it satisfies:

(∀ϱ1, ϱ2 ∈ X)(f(ϱ1 ∗X ϱ2) = f(ϱ1) ∗Y f(ϱ2)). (2.15)

Let Xα := {(Xα, ∗α, 1α) | α ∈ Λ} be a family of GE-algebras where Λ is an index set. Let∏
Xα be the set of all mappings ð : Λ →

⋃
α∈Λ

Xα with ð(α) ∈ Xα, that is,

∏
Xα :=

{
ð : Λ →

⋃
α∈Λ

Xα | ð(α) ∈ Xα, α ∈ Λ

}
. (2.16)

We define a binary operation ⊛ on
∏

Xα and the constant 1 by(
∀ð, f ∈

∏
Xα

)
((ð⊛ f)(α) = ð(α) ∗α f(α)) (2.17)

and 1(α) = 1α, respectively, for every α ∈ Λ. It is routine to verify that (
∏

Xα,⊛,1) is a

GE-algebra, which is called the product GE-algebra (see [3]).

3. Normed GE-algebras

In what follows, let X := (X, ∗, 1X) and R be a GE-algebra and the set of all real numbers,

respectively, unless otherwise specified. In the absence of ambiguity, the GE-algebra X :=

(X, ∗, 1X) can simply be represented by X.

Definition 3.1. A GE-norm on X := (X, ∗, 1X) is defined to be a mapping || · || : X → R

that satisfies:

(∀ϱ ∈ X) (||ϱ|| ≥ 0) , (3.18)

(∀ϱ ∈ X) (||ϱ|| = 0 ⇔ ϱ = 1X) , (3.19)

(∀ϱ, ς,ϖ ∈ X) (||ϱ ∗ϖ|| ≤ ||ϱ ∗ ς||+ ||ς ∗ϖ||) . (3.20)
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The GE-norm defined above shares similarities with classical norms, such as those in vector

spaces or Banach algebras, where non-negativity and zero norm at the identity (conditions

(3.18) and (3.19)) ensure a measure of magnitude [14]. However, it differs significantly

due to the non-linear, non-commutative structure of GE-algebras. Unlike classical norms,

which induce symmetric metrics, the GE-norm’s triangle-like inequality (condition (3.20)) is

tailored to the binary operation “∗”, leading to a quasi-metric space (Example 3.3). This

formulation is chosen to align with the GE-algebra’s axioms (GE1–GE3) and partial order

≤X , ensuring compatibility with algebraic operations and enabling the study of convergence

in non-commutative settings.

A normed GE-algebra is a GE-algebra X := (X, ∗, 1X) equipped with a GE-norm

|| · || : X → R and it is denoted by (X, || · ||).

Given a GE-algebra X := (X, ∗, 1X), if there exists a function || · || mapping elements of

X to non-negative real numbers satisfying the conditions (3.19) and (3.20), then (X, || · ||) is

a normed GE-algebra.

Example 3.1. For every GE-algebra X := (X, ∗, 1X), define a mapping:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then || · || is a GE-norm on X := (X, ∗, 1X), and so

(X, || · ||) is a normed GE-algebra.

In normed GE-algebras, the “GE-norm” often provides a way to measure the “magnitude”

of elements in a way that is compatible with the algebraic operation “∗”.

By the magnitude of a normed GE-algebra (X, || · ||), we mean a real-valued function ð on

X ×X defined as follows:

(∀ϱ, ς ∈ X) (ð(ϱ, ς) = ||ϱ ∗ ς||) . (3.21)

We say ð(ϱ, ς) is the magnitude of (ϱ, ς).
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Proposition 3.1. The magnitude ð : X ×X → R of (X, || · ||) has the following assertions:

ð(ϱ, ς) ≥ 0, ð(ϱ, ϱ) = 0 = ð(ϱ, 1X), (3.22)

ð satisfies the triangle inequality, (3.23)

ð(1X , ϱ) = 0 ⇒ ϱ = 1X , (3.24)

ϱ ≤X ς ⇒ ð(1X , ς) ≤ ð(1X , ϱ), (3.25)

ð(ϱ, ς) ≤ ð(1X , ς), (3.26)

ð(ς, ϱ ∗ϖ) ≤ ð(ϱ, ς ∗ϖ), (3.27)

ð(ς ∗ ϱ, ϱ) ≤ ð(1X , ϱ), (3.28)

ð(ϱ ∗ ς, ς) ≤ ð(1X , ϱ), (3.29)

for all ϱ, ς,ϖ ∈ X.

Proof. Let ϱ, ς,ϖ ∈ X. Then (3.22) and (3.23) are clear by (3.18), (3.19) and (3.19). The

combination of (GE2) and (3.19) induces (3.24). Let ϱ, ς ∈ X be such that ϱ ≤X ς. Then

ϱ ∗ ς = 1, and so

ð(1X , ς)
(3.21)
= ||1X ∗ ς||

(3.20)

≤ ||1X ∗ ϱ||+ ||ϱ ∗ ς|| = ||1X ∗ ϱ||+ ||1||

(3.19)
= ||1X ∗ ϱ||+ 0 = ||1X ∗ ϱ|| (3.21)= ð(1X , ϱ).

Hence (3.25) is valid. By the combination of (GE2), (2.6) and (3.25), we have (3.26). Using

(GE2), (2.7) and (3.25), we get (3.27), (3.28) and (3.29). □

Proposition 3.2. If X := (X, ∗, 1X) is transitive, then the magnitude ð : X ×X → R of (X,

|| · ||) satisfies:

(∀ϱ, ς,ϖ ∈ X) (ð(ς ∗ϖ, ϱ ∗ϖ) ≤ ð(ϱ, ς)) . (3.30)

Proof. Using (GE2), (2.13) and (3.25), we obtain (3.30). □

The following example shows that any magnitude ð : X ×X → R of (X, || · ||) does not

satisfy the following.

(∀ϱ, ς ∈ X) (ð(ϱ, ς) = 0 = ð(ς, ϱ) ⇒ ϱ = ς) . (3.31)
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Example 3.2. Consider a non-commutative GE-algebra X := (X, ∗, 1X), where X = {1X ,

ℓ1, ℓ2, ℓ3, ℓ4} and a binary operation “∗” is given in the following table:

∗ 1X ℓ1 ℓ2 ℓ3 ℓ4

1X 1X ℓ1 ℓ2 ℓ3 ℓ4

ℓ1 1X 1X ℓ2 ℓ3 1X

ℓ2 1X ℓ4 1X 1X ℓ4

ℓ3 1X ℓ1 1X 1X ℓ1

ℓ4 1X 1X ℓ2 ℓ3 1X

Define a mapping:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then || · || is a GE-norm on X := (X, ∗, 1X), and so

(X, || · ||) is a normed GE-algebra. We can observe that ð(ℓ2, ℓ3) = ||ℓ2 ∗ ℓ3|| = ||1X || = 0 and

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||1X || = 0. Therefore ð(ℓ2, ℓ3) = 0 = ð(ℓ3, ℓ2). But ℓ2 ̸= ℓ3. Hence

(3.31) is not valid.

Theorem 3.1. If X := (X, ∗, 1X) is a commutative GE-algebra, then its magnitude

ð : X ×X → R satisfies (3.31).

Proof. Let X := (X, ∗, 1X) be a commutative GE-algebra. Then (X,≤X) is antisymmetric.

Let ϱ, ς ∈ X be such that ð(ϱ, ς) = 0 = ð(ς, ϱ). Then ||ϱ ∗ ς|| = 0 and ||ς ∗ ϱ|| = 0, which

imply from (3.19) that ϱ ∗ ς = 1 and ς ∗ ϱ = 1, i.e., ϱ ≤X ς and ς ≤X ϱ. Hence ϱ = ς, and so

(3.31) is valid. □

The following example shows that any magnitude ð : X ×X → R of (X, || · ||) does not

satisfy the following.

(∀ϱ, ς ∈ X) (ð(ϱ, ς) = ð(ς, ϱ)) . (3.32)
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Example 3.3. Consider a non-commutative GE-algebra X := (X, ∗, 1X), where X = {1X ,

ℓ1, ℓ2, ℓ3} and a binary operation “∗” is given in the following table:

∗ 1X ℓ1 ℓ2 ℓ3

1X 1X ℓ1 ℓ2 ℓ3

ℓ1 1X 1X 1X 1X

ℓ2 1X ℓ1 1X 1X

ℓ3 1X ℓ1 ℓ2 1X

Define a mapping:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then || · || is a GE-norm on X := (X, ∗, 1X), and so (X,

|| · ||) is a normed GE-algebra. We can observe that ð(ℓ2, ℓ3) = ||ℓ2 ∗ ℓ3|| = ||1X || = 0 and

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||ℓ2|| = ϱ0. Therefore ð(ℓ2, ℓ3) ̸= ð(ℓ3, ℓ2). Hence (3.32) is not valid.

Example 3.3 is indicating that the magnitude ð : X×X → R of (X, ||·||) cannot be a metric

on X, that is, (X, ð) is not a metric space. But we know that the magnitude ð : X ×X → R

of (X, || · ||) is a quasi metric on X, and thus (X,ð) is a quasi metric space which generates

a T0-space on X. For the quasi metric ð on X, we define new real-valued mappings ð−1 and

ð∨ on X ×X as follows:

ð− : X ×X → R, (ϱ, ς) 7→ ð(ς, ϱ). (3.33)

ð∨ : X ×X → R, (ϱ, ς) 7→ max{ð(ϱ, ς), ð−(ϱ, ς)}. (3.34)

It is clear that ð− and ð∨ are quasi metrices on X.

The following example illustrates the quasi metrices ð− and ð∨ on X.

Example 3.4. Consider the normed GE-algebra (X, || · ||) in Example 3.3. Then

X ×X = {(1X , 1X), (1X , ℓ1), (1X , ℓ2), (1X , ℓ3), (ℓ1, 1X), (ℓ1, ℓ1),

(ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ2, 1X), (ℓ2, ℓ1), (ℓ2, ℓ2), (ℓ2, ℓ3),

(ℓ3, 1X), (ℓ3, ℓ1), (ℓ3, ℓ2), (ℓ3, ℓ3)}

and the binary operation “⊛” on X ×X is given by Table 3.1.
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Table 3.1. Tabular representation for the operation “⊛” on X ×X

⊛ (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(1X , 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(1X , ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(1X , ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(1X , ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ2, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ2, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ2, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ3, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ3, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ3, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ3, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

The quasi metrices ð− and ð∨ on X appear as follows.

ð−(ϱ, ς) =

 0 if (ϱ, ς) ∈ (X ×X) \A,

ϱ0 if (ϱ, ς) ∈ A,

and

ð∨(ϱ, ς) =

 0 if (ϱ, ς) ∈ B,

ϱ0 if (ϱ, ς) ∈ (X ×X) \B,

where A = {(ℓ1, 1X), (ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ2, 1X), (ℓ2, ℓ3), (ℓ3, 1X)} and

B = {(1X , 1X), (ℓ1, ℓ1), (ℓ2, ℓ2), (ℓ3, ℓ3)}.
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Table 3.1 (continued)

⊛ (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(1X , 1X) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(1X , ℓ1) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X)

(1X , ℓ2) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, 1X) (ℓ1, 1X)

(1X , ℓ3) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(ℓ2, ℓ1) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X)

(ℓ2, ℓ2) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, 1X) (ℓ1, 1X)

(ℓ2, ℓ3) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, 1X)

(ℓ3, 1X) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, ℓ3)

(ℓ3, ℓ1) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X) (ℓ1, 1X)

(ℓ3, ℓ2) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, 1X) (ℓ1, 1X)

(ℓ3, ℓ3) (ℓ1, 1X) (ℓ1, ℓ1) (ℓ1, ℓ2) (ℓ1, 1X)

Theorem 3.2. Let f : X → Y be an onto GE-morphism from a GE-algebra X := (X, ∗, 1X)

to a GE-algebra Y := (Y, ∗, 1Y ). If (X, || · ||) is a normed GE-algebra, then so is (Y, || · ||).

Proof. Assume that (X, || · ||) is a normed GE-algebra. Since f is onto, f−1(ℏ) ̸= ∅ for every

ℏ ∈ Y . So we can take ||ℏ|| = inf
ϱ∈f−1(ℏ)

||ϱ||. It is clear that ||ℏ|| ≥ 0. If ||ℏ|| = 0, then

inf
ϱ∈f−1(ℏ)

||ϱ|| = 0, and so there exists ϱ ∈ X such that ||ϱ|| = 0. Hence ϱ = 1X which implies

that ℏ = f(ϱ) = f(1X) = 1Y . If ℏ = 1Y , then ||ℏ|| = inf
ϱ∈f−1(ℏ)

||ϱ|| (3.25)
= ||1X || = 0 since

1X ∈ f−1(1Y ). Let ℏ, ȷ, ℘ ∈ Y . Then there exist ϱ, ς,ϖ ∈ X such that f(ϱ) = ℏ, f(ς) = ȷ
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Table 3.1 (continued)

⊛ (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, ℓ3)

(1X , 1X) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, ℓ3)

(1X , ℓ1) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X)

(1X , ℓ2) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X)

(1X , ℓ3) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ2, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ2, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ2, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ3, 1X) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, ℓ3)

(ℓ3, ℓ1) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X) (ℓ2, 1X)

(ℓ3, ℓ2) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, 1X) (ℓ2, 1X)

(ℓ3, ℓ3) (ℓ2, 1X) (ℓ2, ℓ1) (ℓ2, ℓ2) (ℓ2, 1X)

and f(ϖ) = ℘. Hence

||ℏ ∗ ℘|| = inf
u∈f−1(ℏ∗℘)

||u|| = inf
u∈f−1(ℏ)∗f−1(℘)

||u|| = inf
ϱ∈f−1(ℏ),
ϖ∈f−1(℘)

||ϱ ∗ϖ||

(3.20)

≤ inf
ϱ∈f−1(ℏ),
ς∈f−1(ȷ)

||ϱ ∗ ς||+ inf
ς∈f−1(ȷ),

ϖ∈f−1(℘)

||ς ∗ϖ||

= inf
v∈f−1(ℏ)∗f−1(ȷ)

||v||+ inf
w∈f−1(ȷ)∗f−1(℘)

||w||

= inf
v∈f−1(ℏ∗ȷ)

||v||+ inf
w∈f−1(ȷ∗℘)

||w||

= ||ℏ ∗ ȷ||+ ||ȷ ∗ ℘||.

Hence (Y, || · ||) is a normed GE-algebra. □

Theorem 3.3. Let f : X → Y be a one-to-one GE-morphism from a GE-algebra X :=

(X, ∗, 1X) to a GE-algebra

Y := (Y, ∗, 1Y ). If (Y, || · ||) is a normed GE-algebra, then so is (X, || · ||).
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Table 3.1 (continued)

⊛ (ℓ3, 1X) (ℓ3, ℓ1) (ℓ3, ℓ2) (ℓ3, ℓ3)

(1X , 1X) (ℓ3, 1X) (ℓ3, ℓ1) (ℓ3, ℓ2) (ℓ3, ℓ3)

(1X , ℓ1) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X)

(1X , ℓ2) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X) (ℓ3, 1X)

(1X , ℓ3) (ℓ3, 1X) (ℓ3, ℓ1) (ℓ3, ℓ2) (ℓ3, 1X)

(ℓ1, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ1, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ1, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ1, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ2, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ2, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ2, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ2, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

(ℓ3, 1X) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , ℓ3)

(ℓ3, ℓ1) (1X , 1X) (1X , 1X) (1X , 1X) (1X , 1X)

(ℓ3, ℓ2) (1X , 1X) (1X , ℓ1) (1X , 1X) (1X , 1X)

(ℓ3, ℓ3) (1X , 1X) (1X , ℓ1) (1X , ℓ2) (1X , 1X)

Proof. Assume that (Y, || · ||) is a normed GE-algebra. For every ϱ ∈ X, let ||ϱ|| = ||f(ϱ)||.

Then ||ϱ|| = ||f(ϱ)||
(3.18)

≥ 0 and

||ϱ|| = 0 ⇔ ||f(ϱ)|| = 0
(3.19)⇔ f(ϱ) = 1X = f(1X) ⇔ ϱ = 1X

since f is a one-to-one GE-morphism. For every ϱ, ς,ϖ ∈ X, we get

||ϱ ∗ϖ|| = ||f(ϱ ∗ϖ)|| = ||f(ϱ) ∗ f(ϖ)||

(3.20)

≤ ||f(ϱ) ∗ f(ς)||+ ||f(ς) ∗ f(ϖ)||

= ||f(ϱ ∗ ς)||+ ||f(ς ∗ϖ)||

= ||ϱ ∗ ς||+ ||ς ∗ϖ||.

Therefore (X, || · ||) is a normed GE-algebra. □

Theorem 3.4. Let X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) be GE-algebras and consider the

product GE-algebra X × Y := (X × Y,⊛,1) of X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ). Then
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X×Y is a normed GE-algebra if and only if X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) are normed

GE-algebras.

Proof. Assume that X× Y is a normed GE-algebra and consider the projection

fX : X × Y → X and fY : X × Y → Y . Then fX and fY are onto GE-morphisms. Hence

X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) are normed GE-algebras by Theorem 3.2.

Conversely, suppose that X := (X, ∗, 1X) and Y := (Y, ∗, 1Y ) are normed GE-algebras. If

ℏ ∈ X × Y , then ℏ = (ϱℏ, ςℏ) for some ϱℏ ∈ X and ςℏ ∈ Y . Define ||ℏ|| = ||ϱℏ||+ ||ςℏ||. Then

||ℏ|| = ||ϱℏ||+ ||ςℏ|| ≥ 0 and

||ℏ|| = 0 ⇔ ||ϱℏ||+ ||ςℏ|| = 0 ⇔ ||ϱℏ|| = 0 = ||ςℏ||

(3.19)⇔ ϱℏ = 1X and ςℏ = 1Y

⇔ ℏ = (ϱℏ, ςℏ) = (1X , 1Y ) = 1.

Let ℏ := (ϱℏ, ςℏ), ȷ := (ϱȷ, ςȷ), ℘ := (ϱ℘, ς℘) ∈ X × Y. Then

||ℏ⊛ ℘|| = ||(ϱℏ ∗ ϱ℘, ςℏ ∗ ς℘)||

= ||ϱℏ ∗ ϱ℘||+ ||ςℏ ∗ ς℘||

(3.20)

≤ (||ϱℏ ∗ ϱȷ||+ ||ϱȷ ∗ ϱ℘||) + (||ςℏ ∗ ςȷ||+ ||ςȷ ∗ ς℘||)

= (||ϱℏ ∗ ϱȷ||+ ||ςℏ ∗ ςȷ||) + (||ϱȷ ∗ ϱ℘||+ ||ςȷ ∗ ς℘||)

= ||(ϱℏ ∗ ϱȷ, ςℏ ∗ ςȷ)||+ ||(ϱȷ ∗ ϱ℘, ςȷ ∗ ς℘)||

= ||ℏ⊛ ȷ||+ ||ȷ⊛ ℘||.

Therefore X× Y is a normed GE-algebra. □

Definition 3.2. Let (X, || · ||) be a normed GE-algebra and consider a sequence {ℏn} in X.

Then {ℏn} is said to be convergent in X if there exists a number ℏ0 in X such that for every

ε > 0 (no matter how small), there exists a natural number k0 such that the magnitude for

(ℏn, ℏ0) and (ℏ0, ℏn) is less than ε for all n ≥ k0, that is, it can be written as:

lim
n→∞

ℏn = ℏ0 if and only if for every ε > 0 there exists k0 ∈ N such that

n ≥ k0 ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε.

In this case, we say that ℏ0 is the limit of {ℏn}.
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Theorem 3.5. Let X := (X, ∗, 1X) be a commutative GE-algebra. In a normed GE-algebra

(X, || · ||), a convergent sequence cannot have two different limits, that is, If a sequence {ℏn}

converges to a limit ℏ0, then that limit is unique.

Proof. Let {ℏn} be a convergent sequence in X, and let ℏ0 and ȷ0 be two limits of {ℏn}. Then

for every ε > 0, there exists a natural number k0 such that ð(ℏn, ℏ0) < ε
2 , ð(ℏ0, ℏn) < ε

2 ,

ð(ℏn, ȷ0) < ε
2 and ð(ℏ0, ȷn) < ε

2 for all n ≥ k0. Hence

ð(ℏ0, ȷ0)
(3.21)
= ||ℏ0 ∗ ȷ0||

(3.20)

≤ ||ℏ0 ∗ ℏn||+ ||ℏn ∗ ȷ0||

(3.21)
= ð(ℏ0, ℏn) + ð(ℏn, ȷ0) < ε

2 + ε
2 = ε.

By the similarly way, we have ð(ȷ0, ℏ0) ≤ ε. Since ε is arbitrary, it follows that ð(ℏ0, ȷ0) =

0 = ð(ȷ0, ℏ0). Using Theorem 3.1, we conclude that ℏ0 = ȷ0. Therefore {ℏn} has a unique

limit. □

Theorem 3.6. In a normed GE-algebra (X, || · ||), every convergent sequence {ℏn} in X

satisfies:

(∀ε > 0)(∃k0 ∈ N) (n,m ≥ k0 ⇒ ð(ℏn, ℏm) < ε and ð(ℏm, ℏn) < ε) . (3.35)

Proof. Let X := ⟨X, ∗, 1X⟩ be a normed GE-algebra with GE-norm ∥ · ∥, and let ð(ϱ, ς) =

∥ϱ ∗ ς∥ be the magnitude function. Suppose {ℏn} is a sequence in X that converges to ℏ0 in

X. By definition 3.2, for every ε > 0, there exists k0 ∈ N such that for all n ≥ k0,

ð(ℏn, ℏ0) = ∥ℏn ∗ ℏ0∥ < ε and ð(ℏ0, ℏn) = ∥ℏ0 ∗ ℏn∥ < ε.

To prove that {ℏn} satisfies condition (3.35), fix ε > 0. Since {ℏn} converges to ℏ0, there

exists k0 ∈ N such that for all n ≥ k0,

ð(ℏn, ℏ0) <
ε

2
and ð(ℏ0, ℏn) <

ε

2
.

We need to show that for all n,m ≥ k0, ð(ℏn, ℏm) < ε and ð(ℏm, ℏn) < ε. Consider

ð(ℏn, ℏm) = ∥ℏn ∗ ℏm∥. By the triangle-like inequality of the GE-norm (Definition 3.1,

condition (3.20)), for any ϱ, ς,ϖ ∈ X,

∥ϱ ∗ϖ∥ ≤ ∥ϱ ∗ ς∥+ ∥ς ∗ϖ∥.

Set ϱ = ℏn, ϖ = ℏm, and ς = ℏ0. Then,

∥ℏn ∗ ℏm∥ ≤ ∥ℏn ∗ ℏ0∥+ ∥ℏ0 ∗ ℏm∥,
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i.e.,

ð(ℏn, ℏm) ≤ ð(ℏn, ℏ0) + ð(ℏ0, ℏm).

Since n,m ≥ k0, we have:

ð(ℏn, ℏ0) = ∥ℏn ∗ ℏ0∥ <
ε

2
, ð(ℏ0, ℏm) = ∥ℏ0 ∗ ℏm∥ <

ε

2
.

Thus,

ð(ℏn, ℏm) ≤ ð(ℏn, ℏ0) + ð(ℏ0, ℏm) <
ε

2
+

ε

2
= ε.

Similarly, we can show that ð(ℏm, ℏn) < ε. □

The converse of Theorem 3.6 is not valid as seen in the following example.

Example 3.5. (i) For the normed GE-algebra (X, || · ||) in Example 3.2, we can observe that

if

ℏn =

 ℓ1 if n is odd,

ℓ4 if n is even,

then the sequence {ℏn} in X satisfies (3.35). If we take ε > 0 such that ϱ0 ≥ ε, then

ð(ℏ7, ℓ2) = ||ℓ1 ∗ ℓ2|| = ||ℓ2|| = ϱ0 ≮ ε

and/or ð(ℓ2, ℏ7) = ||ℓ2 ∗ ℓ1|| = ||ℓ4|| = ϱ0 ≮ ε. Hence {ℏn} is not convergent.

(ii) Let (0, 1] ⊆ R and define a binary operation “∗” on (0, 1] as follows:

ϱ ∗ ς =

 ς if ϱ = 1,

1 otherwise.

Then ((0, 1], ∗, 1) is a GE-algebra. If we take a sequence { 1
n+1}n∈N, then it satisfies (3.35)

but does not converge in (0, 1].

Theorem 3.7. Let {ℏn} be a sequence in a normed GE-algebra (X, || · ||) where X :=

(X, ∗, 1X) is a commutative GE-algebra. Then it is convergent if and only if all of its non-

trivial subsequences converge.

Proof. Assume that {ℏn} is a convergent sequence in (X, || · ||) and let ℏ0 be its limit. For

every ε > 0 there exists k0 ∈ N such that

n ≥ k0 ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε.

Let {ℏϕ(n)} be a non-trivial subsequence of {ℏn}. If n ≥ k0, then ϕ(n) ≥ n ≥ k0, and so

ð(ℏϕ(n), ℏ0) < ε and ð(ℏ0, ℏϕ(n)) < ε. This shows that {ℏϕ(n)} is convergent.
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Conversely, suppose that all of non-trivial subsequences of {ℏn} converge. If {ℏn} is not

convergent, then there are at least two non-trivial subsequences, say {ℏϕ(n)} and {ℏϕ(m)},

with different limits ℏ0 and ȷ0, respectively. This is a contradiction by Theorem 3.5, and

thus {ℏn} is a convergent sequence in (X, || · ||). □

Theorem 3.8. Let {ℏn} be a sequence in (X, || · ||). If ℏ0 is a limit of {ℏn}, then 1X is a

limit of the sequences {ℏn ∗ ℏ0} and {ℏ0 ∗ ℏn}.

Proof. If ℏ0 is a limit of {ℏn}, then for every ε > 0 there exists k0 ∈ N such that

n ≥ k0 ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε.

Hence ð(ℏn ∗ ℏ0, 1X)
(3.22)
= 0 < ε and

ð(1X , ℏn ∗ ℏ0)
(3.21)
= ||1X ∗ (ℏn ∗ ℏ0)||

(GE2)
= ||ℏn ∗ ℏ0||

(3.21)
= ð(ℏn, ℏ0) < ε.

Therefore 1X is a limit of {ℏn ∗ ℏ0}. Similarly, {ℏ0 ∗ ℏn} has a limit 1X . □

Theorem 3.9. Let {ℏn} be a sequence in a normed GE-algebra (X, || · ||). If ℏ0 is a limit of

{ℏn}, then {ð(ℏn, ȷ0)} and {ð(ȷ0, ℏn)} are bounded above for all ȷ0 ∈ X.

Proof. Assume that {ℏn} converges to ℏ0. By the definition of convergence, for every ε > 0

there exists a natural number k0 such that ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε for all n ≥ k0. It

follows from (3.20) that

ð(ℏn, ȷ0) ≤ ð(ℏn, ℏ0) + ð(ℏ0, ȷ0) < ε+ ð(ℏ0, ȷ0)

and ð(ȷ0, ℏn) ≤ ð(ȷ0, ℏ0)+ð(ℏ0, ℏn) < ð(ȷ0, ℏ0)+ε. If n < k0, then ð(ℏn, ȷ0) = ||ℏn ∗ ȷ0|| ≤ M

and ð(ȷ0, ℏn) = ||ȷ0 ∗ ℏn|| ≤ M where

M := max{||ℏn ∗ ȷ0||, ||ȷ0 ∗ ℏn||}.

This completes the proof. □

Let ð be the magnitude of a normed GE-algebra (X, || · ||). Consider the following:

(∀ϱ, ς,ϖ ∈ X)

 ϱ ≤X ς ⇒

 ð(ϱ,ϖ) ≤ ð(ς,ϖ)

ð(ϖ, ς) ≤ ð(ϖ, ϱ)

 . (3.36)

The following example shows that (3.36) is not valid in general.
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Example 3.6. Consider a GE-algebra X := (X, ∗, 1X), where X = {1X , ℓ1, ℓ2, ℓ3, ℓ4, ℓ5}

and a binary operation “∗” is given in the following table:

∗ 1X ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

1X 1X ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

ℓ1 1X 1X 1X ℓ3 ℓ3 ℓ5

ℓ2 1X ℓ1 1X ℓ4 ℓ4 ℓ5

ℓ3 1X 1X ℓ2 1X 1X ℓ5

ℓ4 1X 1X 1X 1X 1X ℓ5

ℓ5 1X ℓ1 ℓ2 ℓ3 ℓ4 1X

Define a norm || · || on X := (X, ∗, 1X) as follows:

|| · || : X → R, ϱ 7→

 0 if ϱ = 1X ,

ϱ0 otherwise,

where ϱ0 is a positive real number. Then (X, || · ||) is a normed GE-algebra. Note that

ℓ3 ∗ ℓ1 = 1X and ℓ4 ∗ ℓ2 = 1X , i.e., ℓ3 ≤X ℓ1 and ℓ4 ≤X ℓ2. We can observe that

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||ℓ2|| = ϱ0 ≰ 0 = ||1X || = ||ℓ1 ∗ ℓ2|| = ð(ℓ1, ℓ2)

and

ð(ℓ3, ℓ2) = ||ℓ3 ∗ ℓ2|| = ||ℓ2|| = ϱ0 ≰ 0 = ||1X || = ||ℓ3 ∗ ℓ4|| = ð(ℓ3, ℓ4).

We now discuss the squeeze theorem for convergence sequences.

Theorem 3.10. Assume that every magnitude ð of a normed GE-algebra (X, || · ||) satisfies

(3.36). Let {ℏn}, {ȷn} and {℘n} be sequences in (X, || · ||) such that {ȷn} is trapped between

{ℏn} and {℘n} for a sufficiently large n, that is, there exists a natural number k0 such that

ℏn ≤X ȷn ≤X ℘n for all n > k0. If {ℏn} and {℘n} converge to ℏ0, then {ȷn} also converges

to ℏ0.

Proof. If {ℏn} and {℘n} converge to ℏ0, then for every ε > 0 there exist natural numbers kℏ

and kȷ such that

n ≥ kℏ ⇒ ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε

and

n ≥ kȷ ⇒ ð(℘n, ℏ0) < ε and ð(ℏ0, ℘n) < ε.
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Using (3.36), we have

ð(ℏn, ℏ0) ≤ ð(ȷn, ℏ0) ≤ ð(℘n, ℏ0)

and

ð(℘0, ℏn) ≤ ð(ȷ0, ℏn) ≤ ð(ℏ0, ℏn)

for all k0 := max{kℏ, kȷ}. It follows that if n ≥ k0, then ð(ȷn, ℏ0) < ε and ð(ℏ0, ȷn) < ε. Thus

{ȷn} converges to ℏ0. □

Theorem 3.11. Let f be a GE-morphism from a GE-algebra X := (X, ∗X , 1X) to a GE-

algebra Y := (Y, ∗Y , 1Y ). Assume that ||ϱ|| = ||f(ϱ)|| for all ϱ ∈ X. Then a sequence {ℏn} in

(X, || · ||) converges to ℏ0 if and only if the sequence {f(ℏn)} in (Y, || · ||) converges to f(ℏ0).

Proof. Assume that a sequence {ℏn} in (X, || · ||) converges to ℏ0. Then for every ε > 0, there

exists a natural number k0 such that ð(ℏn, ℏ0) < ε and ð(ℏ0, ℏn) < ε for all n ≥ k0. Using

(2.15) and (3.21), we have

ð(f(ℏn), f(ℏ0)) = ||f(ℏn) ∗Y f(ℏ0)|| = ||f(ℏn ∗X ℏ0)||

= ||ℏn ∗X ℏ0|| = ð(ℏn, ℏ0) < ε

and

ð(f(ℏ0), f(ℏn)) = ||f(ℏ0) ∗Y f(ℏn)|| = ||f(ℏ0 ∗X ℏn)||

= ||ℏ0 ∗X ℏn|| = ð(ℏ0, ℏn) < ε

Therefore the sequence {f(ℏn)} converges to f(ℏ0).

Conversely, suppose that the sequence {f(ℏn)} in (Y, || · ||) converges to f(ℏ0). For every

ε > 0 there exists a natural number k0 such that ð(f(ℏn), f(ℏ0)) < ε and ð(f(ℏ0), f(ℏn)) < ε

for all n ≥ k0. It follows that

ð(ℏn, ℏ0) = ||ℏn ∗X ℏ0|| = ||f(ℏn ∗X ℏ0)||

= ||f(ℏn) ∗Y f(ℏ0)|| = ð(f(ℏn), f(ℏ0)) < ε

and

ð(ℏ0, ℏn) = ||ℏ0 ∗X ℏn|| = ||f(ℏ0 ∗X ℏn)||

= ||f(ℏ0) ∗Y f(ℏn)|| = ð(f(ℏ0), f(ℏn)) < ε

for all n ≥ k0. Consequently, {ℏn} converges to ℏ0. □
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4. Conclusion

This paper introduces normed GE-algebras, equipping GE-algebras with a GE-norm to

measure element magnitudes. We defined a magnitude function ð(ϱ, ς) = ∥ϱ∗ ς∥ that induces

a quasi-metric space, generating a T0-topology (Theorem 3.1, Example 3.3). Key results

include the Cauchy-like property of convergent sequences (Theorem 3.6), preservation of

normed structures under GE-morphisms (Theorem 3.2), and properties of product spaces

(Theorem 3.4). These findings establish normed GE-algebras as a robust framework for

studying convergence and topological properties in generalized algebraic systems. The sig-

nificance of this work lies in bridging algebraic and geometric concepts, enabling the analysis

of non-commutative structures in a topological context. The quasi-metric and T0-topology

support applications in functional analysis, modeling asymmetric distances, and in mathe-

matical logic, quantifying logical distances in non-classical logics [13]. The GE-morphism and

product theorems facilitate the study of complex algebraic systems. Future work includes

exploring additional topological properties, such as compactness or connectedness, in the T0-

topology. Extending GE-norms to BCK/BCI-algebras or residuated lattices could broaden

their scope [8]. Applications in functional analysis (e.g., asymmetric function spaces) and

topology (e.g., non-Hausdorff spaces) are promising. Open problems, such as characterizing

complete normed GE-algebras, encourage further interdisciplinary research.

Normed GE-algebras offer promising applications across several mathematical disciplines.

In functional analysis, the quasi-metric spaces induced by GE-norms (Example 3.3) provide

a framework for studying function spaces with asymmetric distances, which are relevant in

asymmetric functional analysis [10]. These spaces can model non-reversible processes or

directed convergence, extending traditional Banach space techniques. In topology, the T0-

topology generated by normed GE-algebras facilitates the study of non-Hausdorff topological

spaces, which are prevalent in computational topology and data analysis. This topology

supports the analysis of convergence properties in generalized settings. In mathematical

logic, normed GE-algebras, as extensions of Hilbert algebras linked to intuitionistic logic,

enable quantitative semantics where the GE-norm measures the “distance” between logical

propositions [13]. This can enhance reasoning frameworks in non-classical logics, such as

those used in artificial intelligence and formal verification. These applications underscore the

versatility of normed GE-algebras and pave the way for future interdisciplinary research.
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GE-Norm

∥ · ∥ (Def. 3.1)

Quasi-Metric

ð(ϱ, ς) = ∥ϱ ∗ ς∥ (Ex. 3.3)

T0-Topology

(Thm. 3.1)

Convergence Properties

(Thm. 3.6)

Induces

Generates

Governs

Figure 1. Flowchart illustrating the relationships between GE-norms, quasi-

metrics, T0-topology, and convergence properties in normed GE-algebras. The

GE-norm induces a quasi-metric, which generates a T0-topology, governing

sequence convergence (e.g., Cauchy-like property in Theorem 3.6).
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