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Abstract. The energy of a graph Γ is defined as the sum of the absolute values of its

eigenvalues. In this article, we compute the energy of the Indu-Bala product of two reg-

ular graphs and establish bounds for its energy. Furthermore, we explore the concepts

of equienergetic, borderenergetic, orderenergetic, and non-hyperenergetic graphs using the

Indu-Bala product of two regular graphs.
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1. Introduction

Let Γ be a simple graph of order n. The degree of a vertex ui, denoted by di, is defined

as the number of edges incident to it. A graph Γ is said to be r-regular if and only if each

vertex of Γ has degree r. The eigenvalues of the graph Γ of order n are the eigenvalues of its

adjacency matrix A(Γ), denoted by λ1, λ2, . . . , λn.
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Let n0, n− and n+ denote the number of zero, negative and positive eigenvalues of the

graph Γ, respectively. The energy of a graph Γ is defined as

E(Γ) =
n∑

j=1

| λj | .

The line graph L(Γ) of a graph Γ is defined as the graph whose vertex set corresponds to

the edge set of Γ, where two vertices in L(Γ) are adjacent if and only if their corresponding

edges in Γ share a common vertex. The ith iterated line graph of Γ, denoted by Li(Γ) for

i = 1, 2, . . ., is defined recursively as Li(Γ) = L(Li−1(Γ)), with L0(Γ) = Γ and L1(Γ) = L(Γ).

The concept of graph energy, which originated from Hückel molecular orbital theory, was

first introduced by Gutman [6]. If two graphs of the same order have the same energy, they

are called equienergetic graphs. If the energy of a graph is equal to the number of vertices

n, then the graph is said to be orderenergetic [1]. If E(Γ) ≤ 2(n− 1), then the graph is said

to be non-hyperenergetic [17] and if E(Γ) = 2(n − 1), then Γ is said to be borderenergetic

[5]. In the literature, there are various research articles that focus on equienergetic graphs.

For recent papers, see [10, 11, 12, 13, 14].

Graph products such as the Cartesian product, tensor product, strong product and their

corresponding energies have been well studied in the literature [2, 4, 9, 12, 14, 18]. The

distance spectrum, adjacency spectrum, distance Laplacian spectrum and distance signless

Laplacian spectrum of another product namely, the Indu-Bala product have been investigated

in [7, 8, 16]. However, the energy of the Indu-Bala product has not yet been examined.

Therefore, in this paper, we study the energy of the Indu-Bala product, which contributes to

the construction of non-regular equienergetic graphs. For undefined terminology and results

related to the graph spectra, we follow [3].

Definition 1.1 (Indu–Bala product). [7] The Indu–Bala product of two graphs Γ1 and Γ2,

denoted by Γ1▼Γ2, is defined as follows: Let Γ1 ∨ Γ2 denote the join of Γ1 and Γ2, where

V (Γ1) = {w1, w2, . . . , wn1} and V (Γ2) = {z1, z2, . . . , zn2}. Take a disjoint copy of Γ1 ∨ Γ2,

denoted by Γ′
1∨Γ′

2, with vertex sets V (Γ′
1) = {w′

1, w
′
2, . . . , w

′
n1
} and V (Γ′

2) = {z′1, z′2, . . . , z′n2
}.

Finally, add edges between each vertex zi ∈ V (Γ2) and its corresponding copy z′i ∈ V (Γ′
2), for

all i = 1, 2, . . . , n2.
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Figure 1. The graph P3▼P4

Proposition 1.1. [8] Let Γk be an rk-regular graph of order nk, for k = 1, 2. Then, the

spectrum of Γ1▼Γ2 is as follows:

(a) λk(Γ1), with multiplicity 2 for k = 2, 3, . . . , n1;

(b) λk(Γ2) + 1 for k = 2, 3, . . . , n2;

(c) λk(Γ2)− 1 for k = 2, 3, . . . , n2;

(d)
(r1+r2+1)±

√
(r1+r2+1)2−4(r1(r2+1)−n1n2)

2 and
(r1+r2−1)±

√
(r1+r2−1)2−4(r1(r2−1)−n1n2)

2 .

Proposition 1.2. [11] Let a graph Γ have n vertices with eigenvalues λ1, λ2, . . . , λn. Then

n∑
k=1

| λk + 1 |= n+ E(Γ)− 2n− + 2
∑

λk∈(−1,0)

(λk + 1).

Proposition 1.3. [15] Let a graph Γ have n vertices with eigenvalues λ1, λ2, . . . , λn. Then

n∑
k=1

| λk + 2 |= 2n+ E(Γ)− 4n− + 2
∑

λk∈(−2,0)

(λk + 2).

2. Energy of Indu-Bala product of graphs

Lemma 2.1. Let a graph Γ have n vertices with eigenvalues λn ⩽ λn−1 ⩽ · · · ⩽ λ1. Then,

for 0 ⩽ p < λ1,

n∑
k=1

| λk − p |= E(Γ) + np− 2pn+ − 2
∑

λk∈(0,p)

(λk − p).

Proof. Define nλ(I) as the count of eigenvalues of Γ within the interval I.
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Let us compute
n∑

k=1

| λk − p |,

n∑
k=1

| λk − p | =
∑
λk⩽p

(−λk + p) +
∑
λk>p

(λk − p)

=
∑
λk⩽p

−λk + pnλ[λn, p] +
∑
λk>p

λk − pnλ(p, λ1]

= pnλ[λn, p]− pnλ(p, λ1] +
∑
λk⩽0

| λk | +
∑

λk∈(0,p]

−λk

+
∑
λk>p

λk, (2.1)

The E(Γ) can be expressed as,

E(Γ) =
n∑

k=1

| λk | =
∑
λk≤0

| λk | +
∑

λk∈(0,p]

λk +
∑
λk>p

λk (2.2)

The order n can be expressed as,

n = nλ(0, p] + nλ(p, λ1] + n0 + n− (2.3)

or,

n = nλ[λn, p] + nλ(p, λ1]. (2.4)

By equalities 2.2 and 2.4, equality 2.1 becomes,

n∑
k=1

| λk − p | = p(n− nλ(p, λ1])− pnλ(p, λ1] + E(Γ)− 2
∑

λk∈(0,p]

λk

= np− 2pnλ(p, λ1] + E(Γ)− 2
∑

λ
k
∈(0,p]

λk

= E(Γ) + np− 2pn+ + 2pnλ(0, p]

−2
∑

λk∈(0,p]

(λk − p)− 2pnλ(0, p] by the equality 2.3

n∑
k=1

| λk − p | = E(Γ) + np− 2pn+ − 2
∑

λk∈(0,p)

(λk − p).

□

Let ξ be the absolute sum of the eigenvalues mentioned in the case (d) of Proposition 1.1.
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Theorem 2.1. Let the order of an rk-regular graph Γk be nk, where k = 1, 2, then the energy

of Indu-Bala product is

E(Γ1▼Γ2) = 2(E(Γ1) + E(Γ2)) + 2n0
2 − 2(r1 + r2) + 2

∑
λi(Γ2)∈(−1,0)

(λi(Γ2) + 1)

−2
∑

λi(Γ2)∈(0,1)

(λi(Γ2)− 1) + ξ.

Proof. Proposition 1.1 provides the eigenvalues of Indu-Bala product of Γk; k = 1, 2. There-

fore,

E(Γ1▼Γ2) = 2

n1∑
i=2

| λi(Γ1) | +
n2∑
i=2

| λi(Γ2) + 1 | +
n2∑
i=2

| λi(Γ2)− 1 | +ξ

= 2

n1∑
i=1

| λi(Γ1) | −2r1 +

n2∑
i=1

| (λi(Γ2) + 1) | −(r2 + 1)

+

n2∑
i=1

| (λi(Γ2)− 1) | −(r2 − 1) + ξ.

By using Lemma 2.1 and Proposition 1.2, we have

E(Γ1▼Γ2) = 2E(Γ1)− 2r1 + E(Γ2) + n2 − 2n−
2 + 2

∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)− r2

−1 + E(Γ2) + n2 − 2n+
2 − 2

∑
λk(Γ2)∈(0,1)

(λk(Γ2)− 1)− (r2 − 1) + ξ

= 2E(Γ1)− 2r1 + 2E(Γ2) + 2n2 − 2(n−
2 + n+

2 )− 2r2

+2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)− 2
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ (2.5)

= 2(E(Γ1) + E(Γ2))− 2(r1 + r2) + 2n0
2 + 2

∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

−2
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ.

□

Corollary 2.1. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then,

2E(Γ1) + 2E(Γ2)− 2(r1 + r2) + ξ ⩽ E(Γ1▼Γ2)

< 2E(Γ1) + 2E(Γ2) + 2n2 + ξ.

Equality holds at the left side if and only if there is no eigenvalues in the interval (−1, 1).
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Proof. For upper bound, it is observed from the equation 2.5 that

n−
2 −

∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1) > 0 and n+
2 −

∑
λk(Γ2)∈(0,1)

(λk(Γ2)− 1) > 0

Also, if we can eliminate the values r1 and r2 from equation 2.5 as both are positive, we get

E(Γ1▼Γ2) < 2E(Γ1) + 2E(Γ2) + 2n2 + ξ.

For lower bound, it is easy to observe from Theorem 2.1 that∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1) > 0and−
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) > 0,

also n0
2 ≥ 0, on removing these values from Theorem 2.1, we obtain,

2E(Γ1) + 2E(Γ2)− 2(r1 + r2) + ξ < E(Γ1▼Γ2).

The equality on the left side is derived from the following fact,∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1) = 0,
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) = 0 and n0
2 = 0

if and only if Γ2 has no eigenvalues in the interval (−1, 1). □

There are numerous equienergetic graphs with the same regularity and same order, one

can find them in the recent articles [11, 12, 13, 14]. With the help of these graphs and

Indu-Bala product, one can easily construct non-regular equienergetic graphs.

Corollary 2.2. Let Hi; i = 1, 2 be two r-regular graphs of same order n. Then Hi▼Γ2; i = 1, 2

are equienergetic graphs if and only if Hi; i = 1, 2 are equienergetic.

Proof. Proof follows from Theorem 2.1 that Hi▼Γ2; i = 1, 2 are equienergetic graphs if and

only if

2(E(H1) + E(Γ2)) + 2n0
2 − 2(r + r2) + 2

∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

−
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ = 2(E(H2) + E(Γ2)) + 2n0
2 − 2(r + r2)

+2
∑

λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)−
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1) + ξ.

On both sides, the terms of Γ2 are common. Therefore,

E(H1) = E(H2).

□
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Example 2.1. The regular graphs Kn,n□Kn−1 and Kn−1,n−1□Kn are non-isomorphic having

the degree 2n− 2 and order 2n2 − 2n, where □ denotes the Cartesian product. For all n ≥ 5

and k ≥ 0, these graphs Lk(Kn,n□Kn−1) and Lk(Kn−1,n−1□Kn) are equienergetic [14]. By

Corollary 2.2, Lk(Kn,n□Kn−1)▼Γ2 and Lk(Kn−1,n−1□Kn)▼Γ2 are equienergetic, non-regular

graphs.

The following finding presents a large collection of non-regular equienergetic graphs.

Proposition 2.1. Let Hi; i = 1, 2 be two r(≥ 3)-regular graphs of same order n. Let Γ2 be

any graph. Then Lk(Hi)▼Γ2; i = 1, 2 are equienergetic graphs.

Proof. If Hi; i = 1, 2 denote r(≥ 3)-regular graphs with order n. Then the graphs Lk(Hi); i =

1, 2 and k ≥ 2 are equienergetic graphs of same degree by Theorem 4.1 of [13]. Therefore,

by this observation and Corollary 2.2 completes the proof. □

Corollary 2.3. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is non-hyperenergetic if E(Γ1) + E(Γ2) ⩽ 2n1 + n2 − 1− ξ
2 .

Proof. The two graphs Γ1 and Γ2 of order n1 and n2 then the order of Γ1▼Γ2 is 2(n1 + n2).

If E(Γ1) + E(Γ2) ⩽ 2n1 + n2 − 1− ξ
2 , then by Corollary 2.1, we have following

E(Γ1▼Γ2) < 2(E(Γ1) + E(Γ2)) + 2n2 + ξ ⩽ 2(2(n1 + n2)− 1).

This shows that, the graph Γ1▼Γ2 is non-hyperenergetic. □

Corollary 2.4. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is borderenergetic if and only if

E(Γ1) + E(Γ2) = 2(n1 + n2) + (r1 + r2)− n0
2 −

∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

+
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1)− ξ

2
− 1.

Specifically, if λk(Γ2) /∈ (−1, 1), then Γ1▼Γ2 is borderenergetic if and only if E(Γ1)+E(Γ2) =

2(n1 + n2) + (r1 + r2)− 1− ξ
2 .

Proof. By the definition of borderenergetic graph and Theorem 2.1 together provide the

proof. □
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Corollary 2.5. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is orderenergetic if and only if

E(Γ1) + E(Γ2) = (n1 + n2) + (r1 + r2)− n0
2 −

∑
λk(Γ2)∈(−1,0)

(λk(Γ2) + 1)

+
∑

λk(Γ2)∈(0,1)

(λk(Γ2)− 1)− ξ

2
.

Specifically if λk(Γ2) /∈ (−1, 1) then, Γ1▼Γ2 is orderenergetic if and only if E(Γ1) +E(Γ2) =

2(n1 + n2) + (r1 + r2)− ξ
2 .

Proof. By the definition of orderenergetic graph and Theorem 2.1 together provide the proof.

□

Theorem 2.2. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then,

E(Γ1▼Γ2) = 2(E(Γ1) + E(Γ2)) + 2(n1 + n2)− 2(r1 + r2)− 4(n−
1 + n−

2 )− 4

+4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1.

Proof. If λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn are the eigenvalues of any regular graph Γ, then the

eigenvalues of complement of Γ are n − 1 − λ1,−(λ2 + 1),−(λ3 + 1), · · · ,−(λn + 1). From

Proposition 1.1, the eigenvalues of Indu-Bala product Γ1▼Γ2 are as follows:

(a) −(λk(Γ1) + 1), with multiplicity 2 for k = 2, 3, · · · , n1;

(b) −λk(Γ2) for k = 2, 3, · · · , n2;

(c) −(λk(Γ2) + 2) for k = 2, 3, · · · , n2;

(d)
(n1+n2)−(r1+r2+1)±

√
((n1+n2)−(r1+r2+1))2−4((n1−1−r1)(n2−r2)−n1n2)

2 and

(n1+n2)−(r1+r2+3)±
√

((n1+n2)−(r1+r2+3))2−4((n1−1−r1)(n2−r2−2)−n1n2)

2

Here, we denote the absolute sum of the all eigenvalues in the (d) case as ξ1

E(Γ1▼Γ2)

= 2

n1∑
k=2

| −λk(Γ1)− 1 | +
n2∑
k=2

| −λk(Γ2) | +
n2∑
k=2

| −λk(Γ2)− 2 | +ξ1

= 2

n1∑
k=1

| λk(Γ1) + 1 | −2(r1 + 1) +

n2∑
k=1

| λk(Γ2) | −r2

+

n2∑
k=1

| λk(Γ2) + 2 | −(r2 + 2) + ξ1.
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Using Propositions 1.2 and 1.3, we get E(Γ1▼Γ2)

= 2E(Γ1) + 2n1 − 4n−
1 + 4

∑
λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)− 2(r1 + 1)

+E(Γ2)− r2 + E(Γ2) + 2n2 − 4n−
2

+2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2)− (r2 + 2) + ξ1

= 2E(Γ1) + 2E(Γ2) + 4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)− 4(n−
1 + n−

2 )− 4

+2(n1 + n2)− 2(r1 + r2) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1

= 2(E(Γ1) + E(Γ2)) + 2(n1 + n2)− 2(r1 + r2)− 4(n−
1 + n−

2 )− 4

+4
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1.

□

Corollary 2.6. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then,

2(E(Γ1) + E(Γ2))− 4(n−
1 + n−

2 )− 2(r1 + r2)− 4 + ξ1 ≤ E(Γ1▼Γ2)

< 2(E(Γ1) + E(Γ2)) + 2(n1 + n2) + ξ1.

Equality holds at the left side if and only if Γ1 has no eigenvalues in the interval (−1, 0) and

Γ2 has no eigenvalues in the interval (−2, 0).

Proof. For upper bound, it can be seen from Theorem 2.2

n−
1 −

∑
λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) > 0 and 2n−
2 −

∑
λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) > 0

Along these, if we can eliminate the values 4, r1, r2 from E(Γ1▼Γ2) in Theorem 2.2 as these

are positive, we obtain,

E(Γ1▼Γ2) < 2E(Γ1) + 2E(Γ2) + 2(n1 + n2) + ξ1.

For lower bound, ∑
λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) > 0 and
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) > 0

and n1, n2 ≥ 0, on removing these values from Theorem 2.2, we obtain, 2(E(Γ1) +E(Γ2))−

4(n−
1 + n−

2 )− 2(r1 + r2)− 4 + ξ1 < E(Γ1▼Γ2).
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The equality holds at the left side by the following fact

∑
λk(Γ1)∈(−1,0)

(λk(Γ1) + 1) = 0 and
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) = 0

if and only if Γ1 has no eigenvalues in the interval (−1, 0) and Γ2 has no eigenvalues in the

interval (−2, 0). □

Corollary 2.7. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then, Γ1▼Γ2

is non-hyperenergetic if E(Γ1) + E(Γ2) ⩽ (n1 + n2)− 1− ξ1
2 .

Proof. If Γ1 and Γ2 are graphs of order n1 and n2, then order of Γ1▼Γ2 is 2(n1 + n2). If

E(Γ1) + E(Γ2) ⩽ (n1 + n2)− 1− ξ1
2 and by Corollary 2.6, we have the following equation.

i.e. E(Γ1▼Γ2) < 2(E(Γ1) + E(Γ2)) + 2(n1 + n2) + ξ1 ⩽ 2(2(n1 + n2)− 1).

This shows that, the graph Γ1▼Γ2 is non-hyperenergetic. □

Corollary 2.8. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then, G1▼Γ2

is borderenergetic if and only if

E(Γ1) + E(Γ2) = (n1 + n2) + 2(n−
1 + n−

2 ) + (r1 + r2) + 1

−2
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)−
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2)− ξ1
2

Specifically, if Γ1 and Γ2 contains no eigenvalues in the interval (−1, 0) and (−2, 0) respec-

tively, then Γ1▼Γ2 is borderenergetic if and only if E(Γ1) + E(Γ2) = 2(n1 + n2) + 2(n−
1 +

n−
2 ) + (r1 + r2) + 1− ξ1

2 .

Proof. The definition of borderenergetic and Theorem 2.2 together provide the proof. □

Corollary 2.9. Let the order of an rk-regular graph Γk be nk, where k = 1, 2. Then Γ1▼Γ2

is orderenergetic if and only if

E(Γ1) + E(Γ2) = 2(n−
1 + n−

2 ) + (r1 + r2) + 2

−2
∑

λk(Γ1)∈(−1,0)

(λk(Γ1) + 1)−
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2)− ξ1
2
.

Specifically, if Γ1 and Γ2 contains no eigenvalues in the intervals (−1, 0) and (−2, 0) respec-

tively, then Γ1▼Γ2 is orderenergetic if and only if E(Γ1)+E(Γ2) = 2(n1+n2)+2(n−
1 +n−

2 )+

(r1 + r2)− ξ1
2 .

Proof. The definition of orderenergetic and Theorem 2.2 together provide the proof. □
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Corollary 2.10. Let the order of an r-regular graph Hk; k = 1, 2 be n, with no eigenvalues in

the interval (−1, 0). Then Hk▼Γ2; k = 1, 2 are equienergetic graphs if and only if Hk; k = 1, 2

are equienergetic with same number of negative eigenvalues.

Proof. Proof follows from Theorem 2.2 that Hi▼Γ2; i = 1, 2 are equienergetic graphs if and

only if

2(E(H1) + E(Γ2)) + 2(n1 + n2)− 2(r + r2)− 4(n−
1 + n−

2 )− 4

+4
∑

λk(H1)∈(−1,0)

(λk(H1) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1 = 2(E(H2) + E(Γ2))

+2(n1 + n2)− 2(r + r2)− 4(n∗−
1 + n−

2 )− 4

+4
∑

λk(H2)∈(−1,0)

(λk(H2) + 1) + 2
∑

λk(Γ2)∈(−2,0)

(λk(Γ2) + 2) + ξ1.

Here, n∗−
1 denotes the number negative eigenvalues in H2.

On both sides, the terms of Γ2 are common and also, H1 and H2 have same regularity.

Therefore,

E(H1)− 2n−
1 = E(H2)− 2n∗−

1 .

□

Example 2.2. Let us take the graphs in Example 2.1. These are integral graphs, which means

no eigenvalues in (−1, 0). These graphs posses same count of negative eigenvalues. Therefore,

by Corollary 2.10, Lk(Kn,n□Kn−1)▼Γ2 and Lk(Kn−1,n−1□Kn)▼Γ2 are equienergetic graphs.

The following finding presents another large collection of non-regular equienergetic graphs.

Proposition 2.2. Let the order of an r(≥ 3)-regular graph Hk; k = 1, 2 be n and Γ2 be any

graph. Then Lk(Hi)▼Γ2; i = 1, 2 and k ≥ 2 are equienergetic graphs.

Proof. If Hi; i = 1, 2 denote r(≥ 3)-regular graphs with order n. Then by Theorem 4.1 of

[13], the graphs Lk(Hi); i = 1, 2 and k ≥ 2 are equienergetic graphs of same degree. In

addition these have all negative eigenvalues equal to −2. Therefore, by this observation and

Corollary 2.10 completes the proof. □
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3. Conclusion

In this paper, we calculate the energy of the Indu-Bala product two regular graphs.

Furthermore, we investigate the properties such as equienergetic, borderenergetic, orderener-

getic and non-hyperenergetic characteristics using the Indu-Bala product. Further, one can

study the Indu-Bala product of two non-regular graphs.
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