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LORENTZIAN B-KENMOTSU MANIFOLD ADMITTING GENERALIZED
TANAKA-WEBSTER CONNECTION

ABHISHEK SINGH ¥ | RAJENDRA PRASAD * | AND LALIT KUMAR *+

ABSTRACT. In this manuscript, we investigate Lorentzian S-Kenmotsu manifold admitting
generalized Tanaka-Webster connection (GTWC) V. We study curvature tensor and its
properties with respect to the above connection. Further, we study the connection on ex-
tended generalized ¢-recurrent Lorentzian g-Kenmotsu manifold. We also investigate the
properties of projectively flat, {-projectively flat and n-parallel p-tensor on Lorentzian (-
Kenmotsu manifold admitting the connection V. Moreover, we study Ricci soliton on the
above manifold with respect to the connection (GTWC). Finally, we give an example of
3-dimensional Lorentzian S-Kenmotsu manifold verifying our results.
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1. INTRODUCTION

The semi-Riemannian geometry [29] fascinates the researchers because of its abilities to
determine the several problems of science, technology, medical and their related areas. A
differentiable manifold 9t of dimension (2n 4 1) equipped with a semi-Riemannian metric g,
whose signature is (p, ¢), (p+q = 2n+1), referred to as (2n+1)-dimensional semi-Riemannian
manifold. In particular, if we replace p by 1 and ¢ by 2n, then the semi-Riemannian manifold
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Mt reduces into Lorentzian manifold. The basic characterization of the vectors in a Lorentzian
manifold were the starting point to study the geometry of it. As a reason, Lorentzian
manifold 97 is the finest choice for the researchers to study the general theory of relativity
and cosmological models. The material substance of the cosmos is referred to behave like
a perfect fluid space-time in standard cosmological models. In describing the gravity of the
space-time, the Riemannian curvature R, the Ricci tensor S, and the scalar curvature t play
an essential role.

In the Gray-Hervella classification of almost Hermitian manifolds [7], there appears a class
Wy, of Hermitian manifolds which are closely related to locally conformal Kédhler manifolds
[5]. An almost contact metric structure (¢,¢,n,g) on M is referred to as trans-Sasakian
structure [I5] if (M x R, J,G) belongs to the class Wy [7], where J is the almost complex

structure on 9 x R defined by

J (ﬂl,{;) = <90111 —fC777(ﬂ1)£j)

for all vector fields 41 on 91, smooth functions f on 9 x R and G is the product metric on

M x R. This can be defined by [4]

(Vi o)ty = a(g(t, U2)¢ — n(tha)hy) + B(g(pih, Ua)C — n(Lha)pih) (1.1)

for some smooth functions «, 8 on 9 and we say that the trans-Sasakian structure is of type
(0, 8).

The concept of a-Sasakian and S-Kenmotsu manifolds was initiated by Janssens and Van-
hecke in 1981, where o and 8 are non-zero real numbers. We know that [11] trans-Sasakian
structure of type (0,0), (0, 3), and (v, 0) are cosymplectic [3, 4], f-Kenmotsu, and a-Sasakian,
respectively. Marrero [I3] proved that a trans-Sasakian manifold of dimension n > 5 is either
cosymplectic or a-Sasakian or S-Kenmotsu manifold.

Tanno [25] studied the generalized Tanaka-Webster connection (GTWC) for contact metric
manifolds by using the canonical connection. This connection coincides with the Tanaka-
Webster connection if the associated CR-structure is integrable. Using this connection, some
characterizations of real hypersurfaces in complex space forms [23] have been studied by few
geometers. Recently, many authors [6] [12], 16} 18| 20, 22] studied generalized Tanaka-Webster
connection (GTWC) in Kenmotsu manifolds.

Hamilton [§] introduced the theory of Ricci flow to establish a canonical metric on a smooth

manifold in 1982. The Ricci flow is an evolution equation for metrics on a Riemannian
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manifold defined by

3}
5% (1) = 2%,
A Ricci soliton (g, V, ©) on a Riemannian manifold (901, g) is a generalization of an Einstein

metric such that it satisfies the following condition [9] [10]:
Lyg+25+20g =0, (1.2)

where S is the Ricci tensor, £y is the Lie derivative operator along the vector field ¥V on
(9M, g) and O is a real number. The Ricci soliton (g, V,©) is said to be shrinking, steady,
and expanding according to © < 0,0 = 0, and © > 0, respectively.

In this paper, we have taken § as a real constant. Motivated by above studies, the present
work is classified as follows: After the introduction, we give a brief account of Lorentzian
[-Kenmotsu manifold in section 2. In section 3, we study the expressions for curvature
tensor and some results on Lorentzian S-Kenmotsu manifold with respect to GTWC V. In
section 4, we also study extended generalized (-recurrent Lorentzian S-Kenmotsu manifold
admitting the GTWC V. In section 5, we investigate the properties of projectively flat,
(-projectively flat and n-parallel ¢-tensor on Lorentzian S-Kenmotsu manifold with respect
to the GTWC V. Moreover, in section 6, we study Ricci soliton on Lorentzian S-Kenmotsu
manifold admitting the GTWC V. In the last section, we give an example of 3-dimensional

Lorentzian 8-Kenmotsu manifold with respect to the GTWC v varifying our results.

2. PRELIMINARIES

A differentiable manifold of dimension (2n + 1) is referred to as Lorentzian S-Kenmotsu
manifold if it admits a (1, 1)-tensor field ¢, a contravariant vector field ¢, a covariant vector

field 7 and Lorentzian metric g which satisfy

n(¢) =-1, ¢{=0, n(p)=0, (2.3)
O (L) =ty + ()¢, g(t, ) = n(th), (2.4)
gy, o) = g(Uy, o) +n(Uh)n(tha),  g(pth, Uz) = g(U, pilo) (2.5)

Vi, o € X(9M), where X (M) is a set of all smooth vector fields on 9. Then such a quartet
(¢, ¢, m, g) is known as Lorentzian para-contact quartet and the manifold 9t with a Lorentzian

para-contact quartet is referred to as a Lorentzian para-contact manifold [14) [19] 21].
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On a Lorentzian para-contact manifold, we also have

(Vi p)la = Blg(pth, Ua)¢ — n(2)pih] (2.6)

V iy, 4 € X(OM), where V is the Levi-Civita connection with respect to the Lorentzian
metric g. Therefore a Lorentzian para-contact manifold satisfying (2.6]) is referred to as a
Lorentzian S-Kenmotsu manifold [27].

On a Lorentzian -Kenmotsu manifold 9, the following relations hold [I, 2]:

Vi, ¢ = Blth — n(th)c], (2.7)

(Vi = Blg(th, Ua) — n(th)n(el)], (2.8)
N(R(8, Ua)tls) = B7[g(Lh, Us)n(8la) — g(tha, Us)n(th)], (2.9)
R, Up)¢ = B7[n(th)the — n(Lz) 8], (2.10)

R(C, Uty = F2[n(t2)th — g(th, U2)C], (2.11)

S(th, ¢) = —2n8%(th), (2.12)

S(th, Ha) = g(Ql, Us), (2.13)

QU = —2n6%4;, (2.14)

Q¢ = —2np%C, (2.15)

St pily) = g(Qpih, pil). (2.16)

Using (2.5), (2.13), (2.14) and Q¢ = ¢, we have

Sy, pils) = S(8h, 8hs) — 2n8%n(Lh)n(Lhs), (2.17)

S(¢,¢) = 2np? (2.18)

V iy, Uo, Us € X(I). Where R, S, and 9 denote the curvature tensor of type (1,3), Ricci

tensor of type (0,2), and Ricci operator, respectively with respect to the connection V.
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Definition 2.1. The projective curvature tensor P in (2n + 1)-dimensional Lorentzian (-

Kenmotsu manifold M with respect to the connection V is defined by
1
P8, )tz = R(th, 1)ty — gLz, Us)Qth — g(th, Us) D1 (2.19)

V iUy, Lo, Us € X(OM). The manifold is said to be projectively flat if P vanishes identically on
M.

Definition 2.2. A (2n + 1)-dimensional Lorentzian (-Kenmotsu manifold is said to be (-

projectively flat with respect to Levi-Civita connection V if
Py, 4U2)¢ =0 (2.20)

Vi, Uy € X(M).

Definition 2.3. If the (1,1) tensor ¢ is n-parallel in a Lorentzian B-Kenmotsu manifold

M2+ then we have
9(Vy )i, Us) =0 (2.21)

V Uy, Us, Mg € :{(ﬁﬁ)

3. THE GENERALIZED TANAKA-WEBSTER CONNECTION (GTWC) V

Tanno defined the generalized Tanaka-Webster connection (GTWC) V for contact metric

manifolds. It is given by[24]
Vit = Vi 1 + (Vi 1) (L) — () Vg, € = 7(8h) o8l (3.22)

Vi, U € 36(93?)
By virtue of (2.7) and ([2.8), equation (3.22)) takes the form

Vi tly = Vi, la + By (41, 42)¢ — B(thz)th — n(th)pllz. (3.23)
Replacing Uy by ¢ in and using , , , we have
Vi, ¢ = 288l (3.24)
Now
(Vi @) (8h2) = Vi, (p8l2) — (Vi o). (3.25)

Using (2.6) and (3.23)) in (3.25)), we have

(Vi) (ta) = Ba(pth, Ua)C + n(th )ghs + (gl )n(tha)C. (3.26)
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Now
(Vi) (th) = Vi, n(the) — (Vi ). (3.27)
Using in , we have
(Vi) () = 2Bg(th, 8hs). (3.28)
Now
(Vi 9) (U2, ) = Vi, g(Ua, Us) — g(Vy, Up, 8hs) — g(la, Vi, 8s). (3.29)
Using in (3.29)), we have
(Vi g) (U2, 8s) = 2n(th ) g(ptla, Us) # 0. (3.30)

Thus we can state the following :

Theorem 3.1. The GTWC ¥V on a Lorentzian B-Kenmotsu manifold is a non-metric con-

nection.

Now the torsion tensor 7 of the GTWC V is given as:
T (41, 85) = Vi, 8o — Vi 8l — 8, 4hs]. (3.31)
Using (3.23)) in (3.31), we have

T (41, 4Us) = Bn(Uy)Ua — Bn(Uz)thy — n(L)pls + n(Lha)pil. (3.32)

Now we have the following:

Theorem 3.2. The GTWC ¥V on a Lorentzian B-Kenmotsu manifold associated to the con-

nection V of M is just the only one affine connection, which is non-metric and its torsion

has the form
Let 9% and R denote the curvature tensors of the connections V and 6, respectively. Then
R(8hy, L) s = Vg, Vi, U3 — Vi, Vi 83 — Vg, g118s. (3.33)
Using , , , , and in , we have
Rty )ty = R, U)s + 352[g(Uz, Us)il — g(Lh, Lhs)ils]

—2B[g(pthy, Us)n(t2)C — g(wihz, Us)n (L )C]. (3.34)
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Contracting , we have
S(8ha, 8l3) = S(8h, Lh3) + 61529 (s, Us) — 28g(ptly, iUs).
Using in , we have
Qily = Qs + 61,828y — 28(psly).
Contracting , we have
T=rt+6n(2n+1)3% — 267,

where ¥ = trace(p).

Replacing i3 by ¢ in (3.34) and using ((2.3)), (2.4)), (2.10)), we have

R, )¢ = —2587[n(8h)8y — n(8h)sh] = —293(, Us)C.
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(3.35)

(3.36)

(3.37)

(3.38)

Replacing 41 by ¢, ts by 4 and s by s in (3.34]) and using (2.3)), (2.4)), (2.11]), we have

R(C, )8y = —2[R(C, th)tha + By (el p)C].
Replacing 43 by ¢ in and using , , , we have
S(t, ¢) = 4nfn(ty).
Replacing Ly by ¢ in and using , , we have
Q¢ = 4nB2C.

Taking the cyclic permutation of l;, s and s in (3.34)), we have

R(Us, Us)tly = R(Ua, Uz)shy + 382[g(8ls, £h) Lo — g(8lo, 8 )4U3)]
—28[g(ptha, U1)n(Ls)C — g(pis, th)n(U2)(]

and

R(Us, )l = R(Us, 80t + 382[g(L, Uz )8z — g(8l3, )8l ]

—28[g(pths, Uz)m (1) — g(thy, Ua)n(U3)C].

Using Bianchi’s first identity in the addition of (3.34)), (3.42)) and (3.43), we have

R(Lh, Lo )Lly + R(Lha, s )Ll + R8s, )8y = 0.

Hence we give the following;:

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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Theorem 3.3. The curvature tensor of a Lorentzian 5-Kenmotsu manifold admitting GTWC

\Y satisfies the equation (M

4. EXTENDED GENERALIZED (©-RECURRENT LORENTZIAN [S-KENMOTSU MANIFOLD

ADMITTING THE GTWC V

Definition 4.1. A Lorentzian B-Kenmotsu manifold is said to be an extended generalized

p-recurrent Lorentzian B-Kenmotsu manifold if its curvature tensor R satisfies the relation

P (VwR)(th, U)is) = AW)e* (R(L, z)43)

+BWV) % [g(8h2, Us)8h — g(8l, Ls) o] (4.45)

Vg, o, Us, W € X(ON). Where A,B are two non-vanishing 1-forms such that gV, p1) =
AW) and gOW, p2) = BW) for all W € X(IM) with p1 and py being the vector fields
associated 1-forms A and B, respectively [17].

Suppose an extended generalized ¢-recurrent Lorentzian S-Kenmotsu manifold admitting

the GTWC V. Then from definition 1’ we have

P2((VwR) (U1, th)is) = AW)RA (R, U)ils)

+BWV) 02 [g(8l2, s) 8y — g8l L3) ). (4.46)
Using in , we have
(VwR) (th, )ts = —n((Viw) (8, 1)8hs)¢ + AW [R (L, 1) 85

+n(R (U, U2)Us)C] + BOW)[g(La, LUs)Lh
—g(U, )8 + g(tha, Us)n(Lh)C

—g(4y, Us)n(t2)C]. (4.47)
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Taking inner product in (4.47) with V and using (2.4]), we have

g(VwR) (8, 82)3,V) = —n((VwR) (L, Lo)8ls)n(V)
+AW)[g(R(8hy, £h)il3, V)
(R, 1) Us)n(V)]
+B(W)[g(the, Us)g(th, V)
—g(th, U3)g (U2, V)
+g(La, Uz)n(Lh)n(V)

—g(4, Uz)n(U2)n(V)].
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(4.48)

Let {1,52,63,...,5n} be an orthonormal basis for the tangent space of 9" ! at a point

p € M?FL Taking 4y = V = ¢; and summation over i € [1,n] in (4.48)), we have

2n—+1
(VwS) (o, 8l3) = — Z (VwR) (s, 12 )8hs)n(s:)

FAW)[S (U2, U5) + n(R(C, Up)h3)]

+B(W)[2ng (U2, Us) — g(the, Us) — n(Lh2)n(Us)].

Replacing $t3 by ¢ in (49) and using £3), @4), (3:39), (B-40), we have

2n+1
(VwS)(Ea,¢) = - Z (V) (s, 42)¢)(si)

+4n62A( )n(tlz) + 2nB W) (Ls).
Taking second term of (4.50)), we can calculate

(VW) (6,42)¢) = g(VwR(si, 42)¢, ) — 9(R(Vsi, )¢, €)

—g(R (i, Vintlz), €) — g(R(si, o) Ve, ©).

Let p € M2 *1 since g; is an orthonormal basis, therefore %Wg =0 at p. Also

g(gi(%ﬁuQ)C: C) = _g({)v%(g, C)u% gi) =0.

Since (%Wg) =0, we have

I(VWR(si, 42)¢, €) + g(R(si, Ua2)C, Vo) = 0.

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
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Using in , we have
9((61/\/9?)(%112)(, <)
= —g(R(si, £2)¢, VwC) — g(R(Vwsi, 1), €)
—g(R(si, Vwiha)¢, Q) — 9(R(si, ) Ve, ©).

We also know that

9(R(si, Vwtha)C, €) = 0 = g(R(Viysi, h2)¢, ).

Using (4.55) in (4.54) and using the fact that 9 is skew-symmetric, we obtain

n((VwR)(si, 42)¢) = 0.

Therefore second term of (4.50)) is zero, i.e.

2n+1

Zl n((VwR)(si, ta)On(si) = 0.
Using in (4.50), we ha\:e
(VwS)(ta, ¢) = 45 AW)n(tly) + 208 (W)i(8h2).
Now we know that
(V8 (82, ¢) = VS (i, () — S(Viytly, ¢) — S(thz, V).
Using (3.24), and in ([4.59), we have
(VwS)(t2,¢) = 4n52(Vown)tle — 265 (L, W)

—12n83g(8ha, W) + 432 g(pha, W).

Using (3.28)) in (4.60)), we have

(VwS) (4, €) = —2BS(Us, W) — 4nB3g(8la, W) + 48%g(ptha, W).

By virtue of and , we have
—B8 (U, W) = 2n3%g(8l2, W) + 26%g(ptl2, W)
= 2082 AW)n(8lz) + nBOW)n(sly).
Replacing Ly by ¢ in and using , , , we have

2nB2AW) + nB(W) = 0.

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)
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By virtue of (4.62) and (4.63|), we have
Sy, W) = —2n8%g(8hs, W) + 28g(ptla, W). (4.64)
Thus we can state the following:

Theorem 4.1. An extended generalized p-recurrent Lorentzian (B-Kenmotsu manifold with
respect to the GTWC V is some class of generalized n-Finstein manifold and the 1-forms A
and B are related as [282A(W) + B(W)] = 0.

5. CERTAIN CONDITIONS ON LORENTZIAN 3-KENMOTSU MANIFOLD ADMITTING THE

GTWC V

The projective curvature tensor [2§] P on Lorentzian -Kenmotsu manifold admitting the

GTWC V is defined by

Pt )85 = R(th, Ua)8ls — - [S(8h, Us)th — S(Lh, )8k, (5.65)

If projective curvature tensor P vanishes, then from 1) we have

R, o)t = - (S (L, Us)th — S8k, Ls)tha]. (5.66)

Using (3.34)) and (3.35)) in (5.66[), we have

R(Uy, Uz)Us — 28[g (s, Us)n(La)¢ — g(pila, Us)n(Lh)(]

1
= %[3(%7113)511 — Sy, Us) o 4+ 289 (o, Us)Ls

—2Bg(ptla, tUs)8h]. (5.67)
Taking inner product in (5.67) with V and using (2.4]), we have

g(R(Lh, Uz)U3, V) — 28[g(pthy, Uz)n(U2)n(V) — g(pilz, Us)n (U )n(V)]

= S (th, Us)g(tls, V) — (84, Us)g(ths, V) + 29(pth, 1s)g (80, V)

—2Bg(pls, ts)g(th1, V)]. (5.68)
Replacing V by ( in (5.68]) and using (2.3]), , we have

N(R(LUs, Uo)U3) — 28[g(piha, Uz)n(Lh) — gy, Uz)n(Lz)]

1

= %[S(ﬂzaﬂ?)ﬁ(ﬂﬂ = S(Uy, Uz)n(the) + 2Bg(pth, Us)n(Us)

—28g(pia, Us)n(th)]. (5.69)
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Replacing $4; by ¢ in (5:69) and using (23), (2I1), @12), we have

S(tly, Uz) = —2nB%g(Us, 83) — 6n8%n(Us)n(Us) — 28(2n — 1)g(ptla, Us). (5.70)

Thus we have the following:

Theorem 5.1. A projectively flat Lorentzian (-Kenmotsu manifold admitting the GTWC v

is a generalized n-Einstein manifold.

Definition 5.1. A Lorentzian 5-Kenmotsu manifold OM2"1 with respect to the GTWC V is
said to be (-projectively flat [26] if

Py, 42)¢ =0

YV Uy, 8o € X(OM) orthogonal to ¢, where P is the projective curvature tensor of the GTWC

V.

Using (3.34) and (3.35) in , we have

P, )z = P(thy, Ug)thz — 5[9(80111,113)112 — g(pila, Uz )Ll]

—20[g(pls, Uz)n(th2)¢ — gz, Uz)n(Lh)C], (5.71)

where
1
Py, tho)s = R(LUy, Us)Us — %[S(ﬂg,ﬂg)ﬂl — S(8g, Us)tho] (5.72)

is a projective curvature tensor with respect to the connection V.

Putting U3 = ¢ in (5.71)) and using (2.3), (2.4]), we have

P(8hy, Uz)( = P(8h, Uz)C. (5.73)

Now we give the following:

Theorem 5.2. A (2n + 1)-dimensional Lorentzian [B-Kenmotsu manifold admitting the
GTWC V is C-projectively flat iff the manifold M1 is C-projectively flat with respect to

the connection V.

Now using (2.10), (2.12)) and (5.72) in (5.73)), we have

P8y, Us)C = 0. (5.74)

Thus we can state the following:
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Theorem 5.3. A (2n + 1)-dimensional Lorentzian B-Kenmotsu manifold admitting the

GTWCV is (-projectively flat.
Next if the (1,1)-tensor ¢ is 7-parallel with respect to the GTWC V, then we have
9((Vay )8, U3) = 0 (5.75)

W ﬂl,ﬂg,ﬂg, S 36(931)
By virtue of (3.26) and (5.75)), we have

Bg(pthy, to)n(Us) + g(8ha, Us)n(th) + n(th)n(Ls)n(Us) = 0. (5.76)
Taking s = ¢ in ((5.76) and using , , we have
gty o) = 0. (5.77)
Replacing s by pils in and using , we have
g9(8h, U2) 4+ n(th)n(Uz) = 0. (5.78)
Replacing 7 by Q44 in and using , , we have
S(ty, Up) = 2n8%n (L )n(s). (5.79)

Hence we have the following;:

Theorem 5.4. If the (1,1)-tensor ¢ is n-parallel on the Lorentzian [3-Kenmotsu manifold
M2+ admitting the GTWC 6, then the manifold M2"T! is a special type of n-Einstein

manifold.

6. RicCl SOLITON ON LORENTZIAN B-KENMOTSU MANIFOLD WITH GTWC V

Let (g,¢,©) be a Ricci soliton on Lorentzian S-Kenmotsu manifold 92"+ with respect

to the GTWC V. Then we have
(£c9) (8, o) + 28 (81, o) + 20g(8ly, o) = 0. (6.80)
Now
(£c9) (W, ) = g(Vi, €, 8h2) + g(th1, Vi, ). (6.81)

Using (3.24)) in (6.81)), we have

(Lcg)(th, 1) = 4Bg(Lh , ). (6.82)
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Using (3.35)) and (6.82)) in (6.80]), we have

Sy, ) = —(©+ 26+ 6n52)g(u17112) + 289 (i, Ls). (6.83)

Now we give the following:

Theorem 6.1. If (g,(,0) be a Ricci soliton on a Lorentzian B-Kenmotsu manifold ON>"+1

with the GTWC 6, then the manifold 2"+ is some class of generalized n-Einstein manifold.

Using (6.82)) in (6.80]), we have

Sy, 4s) = —(268 + O)g(thy, LUs). (6.84)
Contracting , we have
t=—2n+1)(28+ 0). (6.85)
Replacing s by ¢ in and using , , , we have
© = —-24(1+2np). (6.86)
Thus we have the following:

Theorem 6.2. A Ricci soliton (g,(,0) in a Lorentzian 3-Kenmotsu manifold 2"+ ad-

mitting the GTWC V is either steady or shrinking.

Let (g,V,©) be the Ricci soliton in a Lorentzian S-Kenmotsu manifold 912" ! admitting
the GTWC V such that V is pointwise collinear with (, i.e., V = b(, where b is a function.
Then (|1.2)) holds and follows that

bg(Vi, ¢, o) + (£1b)n(Lhe) + bg(th, Vi, ()
+(U2b)n(8l) + 28(8hy, 8p) + 20g(8ly, £p) = 0. (6.87)
Replacing iy by ¢ in and using , , , , we have
(8016) = (20 + Cb + 4bB + 463 + 8nS%)n(Lh). (6.88)
Replacing i, by ¢ in and using , we have

(Cb) = —(© + 2b3 + 4nB?). (6.89)

Equations (6.88]) and (6.89)), yield

(db) = (© + 2683 + 4nB*)n. (6.90)
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Applying d on , we have
(© + 268 + 4nf%)dn = 0. (6.91)
Since dn # 0, from , we have
© = —243(b + 2np). (6.92)
Putting in , we obtain db = 0, i.e., b is a constant. Hence we have the following:

Theorem 6.3. If (g,V,0) be the Ricci soliton in a Lorentzian 3-Kenmotsu manifold N>+
admitting the GTWC V such that V = b, then V is a constant multiple of ¢ and the Ricci

soliton is either steady or shrinking.

7. EXAMPLE OF LORENTZIAN [S-KENMOTSU MANIFOLD

Example 7.1. Let M = {(t,t2,t3) € R3 : t3 > 0} be a 3-dimensional manifold, where
(t1,t2, t3) are the standard coordinates of R3. The vector fields [27]

B o 9 )
— ota 7 N = N T — R
A=y 2T <6t1 * at2>’ %= Fag

are linearly independent at each point of M, where 5 is a real constant. Let g be the Lorentzian

metric defined by

9(s1,2) = g(s1,53) = g(s2,53) =0,

g(s1,61) = g(s2,%2) = —g(s3,53) = 1. (7.93)

Let n be the 1-form defined by n(thy) = g(8hy,s3) for any thy € X(IM) and ¢ be the (1,1)-tensor
field defined by

o) = =2, @ls2) = =<1, (s3) =0. (7.94)
Now using the linearity of ¢ and g, we have
n(ss) = -1, ¢*(8h) = + n(th)ss (7.95)

and

gy, pla) = g(y, Us) + n(Lh)n (L) (7.96)
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V Uy, Us € X(OM). Therefore for ¢3 = (, the structure (p,(,n,g) defines a Lorentzian para-

contact structure on 9. Let V be the Levi-Civita connection with respect to the Lorentzian

metric g. Then we have
[s1,62] =0, [c1,63] = —B<1, [, 53] = —Bea.
We recall Koszul’s formula as

29(Vy, U, U3) = Ug(Ua, Us) + Ung (s, Lhy) — Uzg(Lhy, o)
_g(uh [LLQ?LL?)]) - g(u27 [uhu?)])

+g(Us, [, Us]).

By virtue of , we have

§1§1 ng, v§1§2 — 0) §1§3 /Bglv
VCle - 07 §2§2 /8§3, v§2§3 — 7/8§27
stgl = 07 v§3§2 = 07 v§3§3 =0.

Now for iy = il%q —1—11%2 +ﬂ:{’§3 and ( = g3, we have
Vy, ¢ = Vulgﬁu 20 +1363S3 = —B(8hs1 + Uie)
and
Bl — n(U)¢] = Bliist + e + 2U5ss],

where U, U2 and 43 are scalars.

Now using and (7.101), we have
25(11%9 +5J%§2 +ﬂ:{’§3) = 0.

Since (W61 + Uy + LUs3) # 0, therefore we have

B=0.

(7.97)

(7.98)

(7.99)

(7.100)

(7.101)

(7.102)

Hence it can be easily see that the structure (M3, ¢,(,n,g) is a Lorentzian B-Kenmotsu

manifold.
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By using (7.97) and (7.99), we can obtain the components of the curvature tensor R with

respect to the connection V as follows:

R(s1,%2)s3 =0, R(s1,53)52 =0, R(s2,s3)51 =0,
R(s2,53)s3 = — B2, R(s1,s3)53 = —B%, R(s1,2)5 = B, (7.103)
R(s3,51)51 = B33, R, 61)q = B, R(s3, 2)5 = Bs.

Along with R(s;, <) = 0, Vi = 1,2,3. By using , we can verify equations @),
(2.10) and (2.11).

Now using (3.23), (7.93), (7.94) and (7.99), we obtain

vqgl = O) v§1§2 = 07 v§1g3 = )

vgzgl - O) v§2§2 - 0, 6g2§3 = 0, (7104)

Vg3§1 = _§27 vgg(? - _gla v§3g3 = 0

By using (3.30) and (3.32), we have

(vqg)(g?’ §3) =0, (v<29)(§37§1) =0, (V€3g)(g17§2) =2#0

and also, we have

T(s1,52) =0, T(s1,63) = Bs1 —s2, T(s2,63) = PBs2+¢1.

Along with ’%(gl-, G)=0;Vi=1,23. Hence M3 is a 3-dimensional Lorentzian 3-Kenmotsu
manifold admitting the GTWC V which is a non-metric connection.

Now wusing , and (7.104), we can easily obtain the components of curvature
tensor R with respect to the GTWC V as follows:

R(si, <)k =0 (7.105)

Vi,j,k=1,2,3. In view of , we can verify equations (3.34)), (3.38), (3-39), (3-42),
(3.43) and (3.44). Therefore it is clear that the Theorem 1s well satisfied.

The Ricci tensor S(sj,<k); j, k =1,2,3 of the connection V can be calculated as under:

3
S(sjrsk) = Y g(R(si, )sks i)

=1

It follows that

S(1,61) =0, S(s2,52) =0, S(s3,53) =26 (7.106)
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Along with S(sj,s6) = 0; ¥V (j # k) = 1,2,3. By virtue of , we can verify equations
, and .

The Ricci tensor g(gj,gk); j k=1,2,3 of the connection V can be calculated as under:

3

S5 k) = > g(R(sir 5)sk: i)
=1

It follows that

S(sj5 k) = (7.107)

Vi k=1,2,3.
By virtue of , we can verify equations (3.34) and (5.40).

The scalar curvature ¢ is given by

3
¢ = Zg(g, i)S(si, i)
=1

= g(s1,1)8(s1,61) + g(s2,52)S(s2,52) + g(s3,3)S(s3,3)

=242 (7.108)

Also, the scalar curvature T is given by

3
T= Z 9(si,6)S(sis i)
=1

= g(s1,51)S(s1,61) + 9(s2,52)S (52, 52) + 9(s3,3)S(s3,3)

=0. (7.109)

If (9,¢,©) be the Ricci soliton on I3 with respect to the GTWC 6, then from and
, we have

—(2n+1)(26+0©) =0,
1.€.
0 =-24. (7.110)

Thus the Ricci soliton (g,(,©) on a Lorentzian B-Kenmotsu manifold M admitting the
GTWC V is steady, expanding, and shrinking according to § = 0, 8 < 0, and 8 > 0,
respectively. Hence Theorem is verified.



INT. J. MAPS MATH. (2025) 8(1):227-246 / LORENTZIAN B-KENMOTSU MANIFOLD ... 245

Acknowledgments. This work is supported by Council of Scientific and Industrial Re-
search (CSIR), India, under Senior Research Fellowship with File No. 09/703(0007)/2020-
EMR-I.

REFERENCES

[1] Bagewadi, C. S., & Girish Kumar, E. (2004). Note on trans-Sasakian manifolds. Tensor. N. S., (65)1,
80-88.
[2] Bagewadi, C. S. & Venkatesha. (2007). Some curvature tensors on trans-Sasakian manifolds. Turk. J.
Math., 30, 1-11.
[3] Blair, D. E. (1976). Contact manifolds in Riemannian geometry, Lecture Notes in Math. Springer-Verlag,
509.
[4] Blair, D. E., & Oubifia, J. A. (1990). Conformal and related changes of metric on the product of two
almost contact metric manifolds. Publications Matematiques, 34, 199-207.
[5] Dragomir, S., & Ornea, L. (1998). Locally conformal Kaehler geometry. Progress in Mathematics, 155,
Birkhauser Boston, Inc., Boston, MA.
[6] Ghosh, G., & De, U. C. (2017). Kenmotsu manifolds with generalized Tanaka-Webster connection. Pub-
lications de I'Institut Mathematique-Beograd, 102, 221-230.
[7] Gray, A., & Hervella, L. M. (1980). The sixteen classes of almost Hermitian manifolds and their linear
invariants. Annali di Matematica Pura ed Applicata, (123)4, 35-58.
[8] Hamilton, R. S. (1982). Three-manifolds with positive Ricci curvature. J. Differential Geometry, (17)2,
255-306.
[9] Hamilton, R. S. (1988). The Ricci flow on surfaces, mathematics and general relativity. Contemp. Math.,
71, 237-262.
[10] Haseeb, A., & Prasad, R. (2019). n-Ricci solitons on (€)-LP-Sasakian manifolds with a Quarter-symmetric
metric connection. Honam Mathematical Journal, (41)3, 539-558.
[11] Janssens, D. & Vanhecke, L. (1981). Almost contact structures and curvature tensors. Kodai Math. J.,
4, 1-27.
[12] Kiran Kumar, D. L., Uppara, M., & Savithri, S. (2021). Study on Kenmotsu manifolds admitting gener-
alized Tanaka-webster connection. Italian Journal of pure and applied Mathematics, 46, 1-8.
[13] Marrero, J. C. (1992). The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl., (162)4,
77-86.
[14] Matsumoto, K. (1989). On a Lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci., 12,
151-156.
[15] Oubina, J. A. (1985). New classes of contact metric structures. Publ. Math. Debrecen, (32)3 & 4, 187-193.
[16] Perktas, S. Y., Acet, B. E., & Killic, E. (2013). Kenmotsu manifolds with generalized Tanaka-Webster
connection. Adiyaman University Journal of Science, 3, 79-93.
[17] Prakasha, D. G. (2013). On extended generalized @-recurrent Sasakian manifolds. J. Egyptian Math.
Soc., (21)1, 25-31.



246 A. SINGH, R. PRASAD, AND L. KUMAR

[18] Prakasha, D. G. & Hadimani, B. S. (2018). On the conharmonic curvature tensor of Kenmotsu manifolds
with generalized Tanaka-Webster connection. Miskolc Mathematical Notes, (19)1, 491-503.

[19] Prasad, R., Haseeb, A., & Gautam, U. K. (2021). On ¢-semi-symmetric LP-Kenmotsu manifolds with a
QSNM-connection admitting Ricci solitons. Kragujevac Journal of Mathematics, (45)5, 815-827.

[20] Singh, A., Mishra, C. K., Kumar, L., & Patel, S. (2022). Characterization of the Kenmotsu manifolds
admitting a non-symmetric non-metric connection. International Academy of Physical Sciences, (26)3,
265-274.

[21] Singh, A., Kishor, S., Pankaj, & Kumar, L. (2023). Characterization of the LP-Sasakian manifolds
admitting a new type of semi-symmetric non-metric connection. Ganita, (73)2, 149-163.

[22] Singh, A., Das, L. S., Prasad, R. & Kumar, L. (2024). Some Properties of Kenmotsu manifolds admitting
a new type of semi-symmetric non-metric connection. Communications in Mathematics and Applications,
(15)1, 145-160.

[23] Takagi, R. (1975). Real hypersurfaces in complex projective space with constant principal curvatures. J.
Math. Soc. Japan, (27), 45-53.

[24] Tanno, S. (1969). The automorphism groups of almost contact Riemannian manifold. Tohoku Math. J.,
(21), 21-38.

[25] Tanno, S. (1989). Variational problems on contact Riemannian manifolds. Transactions of the American
Mathematical Society, (314), 349-379.

[26] Thangmawia, L., & Kumar, R. (2020). Semi-symmetric metric connection on Homothetic Kenmotsu
manifolds. J. Sci. Res., (12)3, 223-232.

[27] Yaliniz, A. F., Yildiz, A., & Turan, M. (2009). On three dimensional Lorentzian S-Kenmotsu manifolds.
Kuwait J. Sci. Eng., 36, 51-62.

[28] Yano, K., & Kon, M. (1984). Structures on manifolds. Series in Pure Mathematics, 3.

[29] Zeren, S., Yildiz, A., & Perktas, S. Y. (2022). Characterizations of Lorentzian para-Sasakian manifolds

with respect to the Schouten-Van Kampen connection. Hagia Sophia Journal of Geometry, (4)2, 1-10.

DEPARTMENT OF MATHEMATICS AND STATISTICS, DR. RAMMANOHAR LOHIA AVADH UNIVERSITY, AYODHYA-

224001, U.P., INDIA

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, UNIVERSITY OF LUCKNOW, LUCKNOW-226007, INDIA.

DEPARTMENT OF MATHEMATICS AND STATISTICS, DR. RAMMANOHAR LOHIA AVADH UNIVERSITY, AYODHYA-

224001, U.P., INDIA



	1. Introduction
	2. Preliminaries
	3. The generalized Tanaka-Webster connection (GTWC) "055D
	4. Extended generalized -recurrent Lorentzian -Kenmotsu manifold admitting the GTWC "055D
	5. Certain conditions on Lorentzian -Kenmotsu manifold admitting the GTWC "055D
	6. Ricci soliton on Lorentzian -Kenmotsu manifold with GTWC "055D
	7. Example of Lorentzian -Kenmotsu manifold
	References

