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SOME INEQUALITIES ON SUBMANIFOLDS OF A COMPLEX SPACE

FORM EQUIPPED WITH COMPLEX SEMI-SYMMETRIC METRIC

CONNECTION

BURÇIN DOĞAN ID ∗, NERGIZ (ÖNEN) POYRAZ ID , AND EROL YAŞAR ID

Abstract. The aim of this study is to introduce geometric inequalities on a complex space

form equipped with complex semi-symmetric metric connection (complex s-s.m.c) and to

get a formula between intrinsic and extrinsic invariants with the help of these.
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1. Introduction

According to the famous embedding theory of J. F. Nash, any Riemannian manifold can

be isometrically immersed in a suitable Euclidean space. Thus, one of the most fundamental

problems of Riemannian submanifold theory is to establish relationships between intrinsic and

extrinsic invariants. The Riemannian invariants characterizing a Riemannian manifold have

been studied by several geometers for a long time. We note that the sectional curvature and

the scalar curvature are called the main intrinsic curvatures and the squared mean curvature

is called the main extrinsic curvature of a Riemann manifold. B.Y. Chen introduced some

specific submanifolds which have important intrinsic invariants in [4, 6, 7].
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Let N be a Riemann manifold and τ(p) is scalar curvature of N . Then inf(K)(p) is defined

as follows

inf(K)(p) = inf{K(Π)}

where K(Π) is a plane section of TpN. Thus, a new Riemannian invariant δN for N was

introduced by Chen in [4] as

δN = τ(p)− inf(K)(p). (1.1)

In [4] and [3], Chen established the general optimal inequality and a sharp inequality which

named Chen inequality for a submanifold Nn of a real space form R(̃c), respectively,

δN ≤ n2(n− 2)

2(n− 2)
∥H∥2 + 1

2
(n+ 1)(n− 2)c (1.2)

and

∥H∥2 (p) ≥ 4

n2
{Ric(U1)− (n− 1)̃c}, ∀U1 ∈ T 1

pN
n, (1.3)

where ∥H∥2 is the squared mean curvature and Ric(U1) is Ricci curvature of N
n at U1. Using

the above last inequality, many authors established similar inequalities for different kind of

submanifolds in ambient manifolds which have different kind of structures [3, 12, 13, 16, 17,

22, 23] and so on Chen-Ricci inequality was introduced by Hong and Tripathi in [11]. Later,

Chen inequalities for submanifolds of real space forms admitting a semi-symmetric metric

conection (s-s.m.c.) was studied by Mihai and Özgür in [14]. On the other hand, Yücesan

studied totally real submanifolds of an indefinite Kaehler manifold with a complex s-s.m.c.

in [21].

The study is organized as follows:

In section 2, we present preliminaries which will be used throughout this paper. We give

some basic information about s-s.m.c. and complex s-s.m.c., respectively. In the last section,

we study geometric inequalities for submanifold of complex space forms equipped with a

complex s-s.m.c. and present important characterization theorems.

2. Preliminaries

Let (Ñ , g̃) be a real 2m−dimensional semi-Riemannian manifold and J be an almost

complex structure such that, for any U1, U2 ∈ TpÑ ,

g̃(JU1, JU2) = g̃(U1, U2), J2 = −I (2.4)

where TpÑ is the tangent space of Ñ at p.
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If complex structure J is parallel according to Levi-Civita connection
◦
∇̃ of g̃, that is, the

following equation is satisfied, then (Ñ , g̃, J) will be called an indefinite Kaehler manifold

(
◦
∇̃U1J)U2 = 0. (2.5)

For a Kaehler manifold, J is integrable and the index of g̃ is even, say 2v, 0 ≤ v ≤ m.

Note that if v = 0, then Ñ is a positive definite Kaehler manifold (i.e., a classical Kaehler

manifold). Moreover, the opposite −g̃ of an indefinite Kaehler metric g̃ is also Kaehler with

index 2(m− v), where 2v is the index of g̃. The indefinite Kaehler metric with index v = 2

is a complex version of the Lorentzian metric [1].

2.1. Semi-symmetric metric connections. Let Ñ be a real n−dimensional semi-Riemannian

manifold with a metric tensor g̃ of index v, 0 ≤ v ≤ n, and its Levi-Civita connection
◦
∇̃. A

linear connection
◦
∇ on Ñ is said to be semi-symmetric if the torsion tensor of the connection

◦
∇ satisfies

◦
T (U1, U2) = π(U2)U1 − π(U1)U2, ∀U1, U2 ∈ TpN, (2.6)

where π is a 1−form. A semi-symmetric connection
◦
∇ is called a semi-symmetric metric

connection. [10] if it further satisfies the equation

◦
∇g̃ = 0. (2.7)

A relation between a s-s.m.c.
◦
∇ and the Levi-Civita connection

◦
∇̃ of Ñ , which has been

obtained by Yano [19], is given by

◦
∇U1U2 =

◦
∇̃U1U2 + π̃(U2)U1 − g̃(U1, U2)P, (2.8)

where P is the tangent vector on N associated with the 1−form π̃ by

π̃(U1) = g̃(U1, P ), (2.9)

for any tangent vector U1.

2.2. Complex semi-symmetric metric connections. [21] Let Ñ be a real 2m−dimensional

indefinite Kaehler manifold. Now, we consider a linear connection ∇̃ on Ñ . When

∇̃g̃ = 0, ∇̃J = 0 (2.10)

and the torsion tensor T̃ is of the form

T̃ (U1, U2) = π̃(U2)U1 − π̃(U1)U2 − 2g̃(JU1, U2)JP̃ , (2.11)
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the connection ∇̃ is called a complex semi-symmetric metric connection (complex s-s.m.c.),

where π̃ is a 1−form and P̃ is the tangent vector defined by

π̃(U1) = g̃(P̃ , U1). (2.12)

Let ∇̃ and
◦
∇̃ be a complex s-s.m.c. and the Levi-Civita connection defined on Ñ , respec-

tively. Then

∇̃U1U2 =
◦
∇̃U1U2 + π̃(U2)U1 − g̃(U1, U2)P̃ + Γ̃(U2)JU1

+ Γ̃(U1)JU2 − g̃(JU1, U2)JP̃ ,
(2.13)

where π̃ and Γ̃ are 1−forms with (2.12) and

Γ̃(U1) = g̃(JP̃ , U1), (2.14)

for any tangent vector U1.

Let N be a n−dimensional submanifold of a Riemannian manifold Ñ and
◦
∇ and ∇ be the

Levi-Civita connection and the complex s-s.m.c. on N induced by the Levi-Civita connection
◦
∇̃ and the complex s-s.m.c. ∇̃ of Ñ , respectively. Then the Gauss formulas with

◦
∇ and ∇,

respectively, are as followings:

◦
∇̃U1U2 =

◦
∇U1U2 +

◦
h (U1, U2) (2.15)

and

∇̃U1U2 = ∇U1U2 + h (U1, U2) (2.16)

where
◦
h is the second fundamental form of N in Ñ and h is a (0, 2)-tensor on N.

We denote by R̃ and
◦
R̃ the Riemannian curvature tensors of an indefinite Kaehler manifold

Ñ with respect to ∇̃ and
◦
∇̃, respectively. Also, let R and

◦
R be the Riemannian curvature

tensors of a submanifold N of Ñ with respect to ∇ and
◦
∇. Then the Gauss equations are

with respect to the Levi-Civita connection and the complex s-s.m.c. can be written as

◦
R̃(U1, U2, V1, V2) =

◦
R(U1, U2, V1, V2)+g̃(

◦
h(U1, V1),

◦
h(U2, V2))−g̃(

◦
h(U2, V1),

◦
h(U1, V2)) (2.17)

and

R̃(U1, U2, V1, V2) = R(U1, U2, V1, V2)+g̃(h(U1, V1), h(U2, V2))−g̃(h(U2, V1), h(U1, V2)) (2.18)

respectively, [21].
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Then, by a straightforward computation, we find

R̃(U1, U2)V1 =
◦
R̃(U1, U2)V1 − α̃(U2, V1)U1 + α̃(U1, V1)U2

− F̃ (U1)g̃(U2, V1) + F̃ (U2)g̃(U1, V1)− β̃(U2, V1)JU1

+ β̃(U1, V1)JU2 − G̃(U1)g̃(JU2, V1) + G̃(U2)g̃(JU1, V1)

+ γ̃(U1, U2)JV1 − Ẽ(V1)g̃(JU1, U2)

(2.19)

where

α̃(U2, V1) = (
◦
∇̃U2 π̃)V1 − π̃(U2)π̃(V1)

+ Γ̃(U2)Γ̃(V1) +
1
2 g̃(U2, V1)π̃(P̃ ),

(2.20)

β̃(U2, V1) = (
◦
∇̃U2Γ̃)V1 − π̃(U2)Γ̃(V1)

− Γ̃(U2)π̃(V1) +
1
2 g̃(JU2, V1)π̃(P̃ ),

(2.21)

γ(U1, U2) = (
◦
∇̃U1Γ̃)U2 − (

◦
∇̃U2Γ̃)U1, (2.22)

E(V1) = 2(π̃(V1)JP̃ − Γ̃(V1)P̃ ) (2.23)

and

g̃(F̃ (U1), U2) = α̃(U1, U2), g̃(G̃(U1), U2) = β̃(U1, U2). (2.24)

On the other hand, we have

β̃(U2, V1) = −α̃(U2, JV1), α̃(U2, V1) = β̃(U2, JV1), (2.25)

γ̃(U1, U2) = β̃(U1, U2)− β̃(U2, U1)− π̃(P̃ )g̃(JU1, U2), (2.26)

γ̃(U1, U2) = −γ̃(U2, U1), g̃(Ẽ(V1), V2) = − g̃(Ẽ(V2), V1). (2.27)

From now on, in this paper, we assume that v = 0, that is, Ñ is a classical Kaehler

manifold.

Let {e1, ..., en} be an orthonormal basis of the TpN
n. Then, following equation can be written

for the mean curvature vector

H(p) =
1

n

n∑
l=1

h(el, el). (2.28)

We note that, N is totally geodesic if h = 0; minimal if H = 0 and totally umbilical if

h(U1, U2) = g(U1, U2)H, ∀ U1, U2 ∈ TN.
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If we consider a 2−dimensional non-degenerate plane Π = Span{el, es}, then we can

calculate the sectional curvature of the section Π at p ∈ N by

Kls =
g(R(es, el)el, es)

g(el, el)g(es, es)− g(el, es)2
. (2.29)

We denote by K(π) the sectional curvature of Nn. For {e1, ..., en} orthonormal basis and

a k-plane section L of TpNn, the scalar curvature τ at p and the Ricci curvature (or k-Ricci

curvature) of L at U1 is respectively defined by

τ(p) =
∑

1≤l<s≤n

Kls, (2.30)

RicL(U1) = K12 +K13 + ...+K1k (2.31)

where π ⊂ TpNn is a plane section and U1 be a unit vector in L. We note that for {e1, ..., ek}

is an orthonormal basis of L such that e1 = U1, Kls is spanned by el, es [3].

The Riemannian invariant θk is defined as:

θk(p) =
1

k − 1
inf
L,U1

RicL(U1), p ∈ N (2.32)

where k is a integer such that 2 ≤ k ≤ n, L runs over all s-plane sections in TpNn and U1

runs over all unit vectors in L.

Let Ñ be a real 2n−dimensional Kaehler manifold and J almost complex structure. The

sectional curvature of Ñ in the direction of an invariant 2-plane section by J is called the

holomorphic sectional curvature. If the holomorphic sectional curvature is constant 4c for all

plane sections π of TpÑ invariant by J for any p ∈ Ñ , then Ñ is called a complex space form

and is denoted by Ñ(4c). The curvature tensor
◦
R̃ with respect to

◦
∇̃ on Ñ(4c) is calculated

by

◦
R̃(U1, U2, V1, V2) = c{ g̃(U1, V2) g̃(U2, V1)− g̃(U2, V2) g̃(U1, V1) (2.33)

+ g̃(JU1, V2) g̃(JU2, V1)− g̃(JU1, V1) g̃(JU2, V2)

− 2 g̃(U1, JU2) g̃(V1, JV2)}.

3. k-Ricci Curvature and k-Scalar Curvature

Let Ñ be a Kaehler manifold endowed with a complex s-s.m.c.. Then from (2.19) and

(2.33) we get
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R̃(el, es, es, el) = c(1 + g̃2(Jel, es))− α(el, el)− α(es, es)

− (2γ̃(el, es) + g̃(Ẽ(es), el))g̃(Jel, es)− π(P )g̃2(Jel, es).
(3.34)

From (3.34) we derive

R̃(el, es, es, el) = c(1 + g2(Jel, es))− α(el, el)− α(es, es) (3.35)

−π̃(p)g̃2(Jel, es)−Nls.

Thus, taking U1 = V2 = el and U2 = V1 = es and using (3.35), we have

R(el, es, es, el) = c(1 + g2(Jel, es))− α(el, el)− α(es, es)− π(p)g̃2(Jel, es)

− Nls +
2n+2∑
r=n+1

hr(el, el)h
r(es, es)− hr(el, es)h

r(es, el).
(3.36)

Then, we find

2τ(p) = n(n− 1)c+ c ∥T∥2 − 2(n− 1)λ− π(p) ∥T∥2

−
m∑

l,s=1

mij +
n∑

l,s=1

2m∑
r=m+1

hrllh
r
ss − (hrls)

2.
(3.37)

If we write JU1 with its components as JU1 = TU1 + FU1, then we get

∥T∥2 =
n∑

l,s=1

g̃2(Jel, es).

Thus, (3.37) can be written by

2τ(p) = n(n− 1)c− 2(n− 1)λ− π(p) ∥T∥2 + n2 ∥H∥2

− c ∥T∥2 −
m∑

l,s=1

mij −
n∑

l,s=1

2m∑
r=m+1

(hrls)
2.

(3.38)

Theorem 3.1. Let Nn be a real n−dimensional submanifold of a real 2m− dimensional

Kaehler manifold of constant holomorphic sectional curvature is constant 4c endowed with

complex s-s.m.c.. Then, the followings are true.

(i) For each unit vector U1 ∈ T 1
p (N), we have

Ric(U1) ≤ (n− 1)c+ c
n∑

s=2
g2(JU1, es)− λ− 1

2

n∑
l=1

Nll −
n∑

s=2
N1s

− 1
2π(p)

n∑
s=2

g2(JU1, es) +
1
4n

2 ∥H∥2 − (n− 2)α(U1, U1).
(3.39)

(ii) The equality case of (3.39) is satisfied by unit U1 ∈ T 1
p (N), if and only if (iff)

h(U1, U2) = 0, for all U2 ∈ T 1
p (N) orthogonal to U1,

h(U1, U1) =
n
2H(p).

(3.40)
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(iii) For ∀U1 ∈ T 1
p (N), equality of (3.39) is satisfied iff either p is a totally geodesic point

or p is a totally umbilical point and n = 2.

Proof. Let {e1, e2, ..., en}and {en+1, ..., e2m} be orthonormal basis of TU1N and T⊥
U1
N at U1 ∈

N , respectively, where en + 1 is parallel to the mean curvature vector H. Then, from (3.38)

we have

n∑
l,s=1

2m∑
r=n+1

(hrls)
2 = n(n− 1)c+ c ∥T∥2 − 2(n− 1)λ

− π(p) ∥T∥2 −
n∑

l,s=1

Nls + n2 ∥H∥2 − 2τ(p). (3.41)

From (3.41) we get

1

4
n2 ∥H∥2 = τ(p)− 1

2
(n(n− 1) + ∥T∥2)c+ (n− 1)λ+

1

2

n∑
l,s=1

Nls

+
1

2
π(p) ∥T∥2 + 1

4

2m∑
r=n+1

(hr11 − hr22 − ...− hrnn)
2 (3.42)

+

2m∑
r=n+1

n∑
s=2

(hr1s)
2 −

2m∑
r=n+1

∑
2≤l<s≤n

(hrllh
r
ss − (hrls)

2).

Then using (3.36), we have

2m∑
r=n+1

(hrllh
r
ss − (hrls)

2) =
∑

2≤l<s≤n

Kls −
(n− 1)(n− 2)

2
c

− c
∑

2≤l<s≤n

g2(Jel, es) + (n− 2)(λ− α(e1, e1))

+
∑

2≤l<s≤n

mls + π(p)
∑

2≤l<s≤n

g2(Jel, es). (3.43)

From (3.42) and (3.43) we derive

Ric(e1) = (n− 1)c+ c
n∑

s=2

g2(Je1, es)− λ− 1

2

n∑
l

mll −
n∑

s=2

N1s

− 1

2
π(p)

n∑
s=2

g2(Je1, es) +
1

4
n2 ∥H∥2 (3.44)

−1

4

2m∑
r=n+1

(hr11 − hr22 − ...− hrnn)
2

−
2n+2∑
r=n+1

n∑
s=2

(hr1s)
2 − (n− 2)α(e1, e1).

By choosing e1 = U1 in equation (3.44), (3.39) is obtained.
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When the equality case of (3.39), the followings are satisfied:

hr12 = hr13 = ... = hr1n = 0 and hr11 = hr22 + ...+ hrnn (3.45)

where r ∈ {n+ 1, ..., 2n+ 2}. Thus, (3.40) is holded.

Let inequality (3.39) satisfy case of equality for ∀U1 ∈ TpN
n. Then, from (3.45), ∀r ∈

{n+ 1, ..., 2n+ 2}, we get i ∈ {1, ..., n},

hrls = 0, l ̸= s, (3.46)

2hrll = hr11 + hr22 + ...+ hrnn. (3.47)

Using (3.47), we derive

(n− 2)(hr11 + hr22 + ...+ hrnn) = 0.

It is clear that, there are two situations for the last equality. For hr11 + hr22 + ...+ hrnn = 0,

if we consider (3.47) and (3.46) together, then, we can write hrls = 0 for all l, s ∈ {1, ..., n}

and r ∈ {n+1, ..., 2n+2} which gives that p is a totally geodesic point. On the other hand,

if n = 2, then from 3.47, 2hr11 = 2hr22 = hr11 + hr22, which completes the proof. The converse

is clear. □

Theorem 3.2. Let Nn be a real n−dimensional submanifold of a real 2m− dimensional

Kaehler manifold of constant holomorphic sectional curvature is constant 4c endowed with

complex s-s.m.c.Then, we get

τ(p) ≤ 1

2
(n(n− 1) + ∥T∥2)c− (n− 1)λ

− 1

2
π(p) ∥T∥2 − 1

2

n∑
l,s=1

mij +
1

2
n2 ∥H∥2 . (3.48)

Equality case of 3.48 holds iff N is totally geodesic.

Theorem 3.3. Let Ñ(c) be an m−dimensional real space form of constant holomorphic

sectional curvature 4c equipped with complex s-s.m.c. ∇̃ and Nn be n−dimensional Einstein

submanifold of Ñ(c). Then,

τ(p) ≤ n(n− 1)

2
(c+ ∥H∥2) + c

2
∥T∥2 − (n− 1)λ (3.49)

− (n− 1)λ− 1

2
π(p) ∥T∥2 − 1

2

n∑
l,s=1

mij
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is satisfied and the equality case of (3.49) holds at p ∈ Nn iff p is a totally umbilical point.

Proof. The relation (3.38) at p ∈ Nn is equivalent with

n2 ∥H∥2 = 2τ(p)− n(n− 1)c− c ∥T∥2) + 2(n− 1)λ

+ π(p) ∥T∥2 +
n∑

l,s=1

mij +

2m∑
r=n+2

n∑
l,s=1

(hls)
2 (3.50)

+
n∑

l=1

(hn+1
ll )2 +

∑
l ̸=s

(hn+1
ls )2.

For a choosen orthonormal basis, let {e1, e2, ..., en} diagonalize the shape operator Aen+1 .

Then the shape operators take the forms

Aen+1 =



a1 0 . . . 0

0 a2 . . . 0

. . . .

. . . .

. . . .

0 0 . . . an


, (3.51)

Aer = (hrls) , l, s = 1, ..., n; r = n+ 2, ..., n+ p, traceAer = 0. (3.52)

From (3.50), we get

n2 ∥H∥2 = 2τ(p)− n(n− 1)c− c ∥T∥2) + 2(n− 1)λ (3.53)

+ π(p) ∥T∥2 +
n∑

l,s=1

mij +

n∑
l=1

(a2l ) +

2m∑
r=n+2

(hrls)
2.

On the other hand, since

0 ≤
∑
l<s

(al − as)
2 = (n− 1)

∑
l

a2l − 2
∑
l<s

alas (3.54)

we obtain

n2 ∥H∥2 =

(
n∑

l=1

al

)2

=

n∑
l=1

a2l + 2
∑
l<s

alas ≤ n

n∑
l=1

a2l (3.55)

which implies
n∑

l=1

a2l ≥ n ∥H∥2 . (3.56)

So from (3.53) and (3.56), we have

n2 ∥H∥2 ≥ 2τ(p)− n(n− 1)c− c ∥T∥2 + 2(n− 1)λ+ π(p) ∥T∥2 (3.57)

+
n∑

l,s=1

mls + n ∥H∥2 +
2n+2∑
r=n+2

n∑
l,s=1

(hrls)
2.
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If (3.49) is case of equality, using (3.54) and (3.57) we obtain

a1 = a2 = ... = an and Aer = 0, r = n+ 2, ...,m. (3.58)

which gives p is a totally umbilical point. The converse is obvious. □

Theorem 3.4. Let Ñ(c) be 2m−dimensional real space form of constant holomorphic sec-

tional curvature 4c equipped with complex s-s.m.c. ∇̃ and Nn be n−dimensional submanifold

of Ñ(c). Then we have

θk(p) ≤ c+ ∥H∥2 + c

n(n− 1)
∥T∥2 − 2

n
λ (3.59)

− λ

n(n− 1)
π(p) ∥T∥2 − 1

n(n− 1)

n∑
l,s=1

mls.

Lemma 3.1. If n > k ≥ 2 and a1, ..., an, a are real numbers such that(
n∑

l=1

al

)2

= (n− k + 1)

(
n∑

l=1

a2l + a

)
(3.60)

then

2
∑

1≤l<s≤k

alas ≥ a (3.61)

with equality holding iff

a1 + a2 + ...+ ak = ak+1 = ... = an. (3.62)

Theorem 3.5. Nn be n−dimensional submanifold of an 2m−dimensional real space form

Ñ(c) of constant holomorphic sectional curvature 4c endowed with complex s-s.m.c. ∇̃. Then,

for each k-plane section (n > k ≥ 2) and p ∈ Nn , we obtain

τ(p)− τ(πk) ≤ 1

2
(n+ k − 1)(n− k)c+

1

2
c

n∑
l,s=k+1

g2(Jel, es)

− (n− k)λ− (k − 1)trace(N|
π⊥
k

)

− 1

2

π(p)
n∑

l,s=k+1

g2(Jel, es) +
n∑

l,s=k+1

mls

 (3.63)

+
n2(n− k)

2(n− k + 1)
∥H∥2 .

(3.63) is the equation of equality at p ∈ Nn iff there exist {e1, ..., en} and {en+1, ..., e2m}

orthonormal basis of TpNn and T⊥
p Nn, respectively, such that (a) Πk=Span{e1, ..., ek} and
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(b) the shape operators Aer , take the forms

Aen+1 =



hn+1
11 0 . . . 0

0 hn+1
22 . . . 0

. . . 0

. . .

. . .

0 0 . . . hn+1
kk

0

(
k∑

l=1

hn+1
ll

)
In−k



, (3.64)

Aer = (hrls) , l, s = 1, ..., n; r = n+ 2, ..., 2n+ 2, traceAer = 0. (3.65)

Proof. Let Πk is a k−plane section and we choose orthonormal basis {e1, ..., en} and {en+1, ...,

e2m} of TpNn and T⊥
p Nn at p, respectively, such that Πk = Span{e1, ..., ek}. If we consider

that the mean curvature vectorH is in the direction of the normal vector to en+1 and e1, ..., en

diagonalize the shape operator Aen+1 , then the shape operators take the forms (3.51) and

(3.52). So, we can rewrite (3.38) as(
n∑

l=1

hn+1
ll

)2

= (n− k + 1)

 n∑
l=1

(
hn+1
ll

)2
+
∑
l ̸=s

(
hn+1
ls

)
+

2n+2∑
r=n+2

n∑
l,s=1

(hrls)
2 + ϵ

 (3.66)

where

ϵ = 2τ(p)− n(n− 1)c− c ∥T∥2 + 2(n− 1)λ

+ π(p) ∥T∥2 +
n∑

l,s=1

mls −
n2(n− k)

(n− k + 1)
∥H∥2 . (3.67)

Applying Lemma 1 in (3.66), we get

2
∑

1≤l<s≤k

hn+1
ll hn+1

ss ≥
∑
l ̸=s

(
hn+1
ls

)2
+

2m∑
r=n+2

n∑
l,s=1

(hrls)
2 + ϵ. (3.68)

From equation (3.36) it also follows that

2τ(πk) = k(k − 1)c+ c

k∑
l,s=1

g2(Jel, es)− 2(k − 1)

k∑
l=1

α(el, el)

− π(p)
k∑

l,s=1

g2(Jel, es)−
k∑

l,s=1

mls +
k∑

l,s=1

2n+2∑
r=n+2

(
hrllh

r
ss − (hrls)

2
)

+

k∑
l=1

(hn+1
ll )2 + 2

∑
1≤l<s≤k

hn+1
ll hn+1

ss −
k∑

l,s=1

(hn+1
ls )2. (3.69)
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Using (3.68) and (3.69)

2τ(πk) ≥ k(k − 1)c+ c

k∑
l,s=1

g2(Jel, es)−
k∑

l,s=1

mls

−2(k − 1)
k∑

l=1

α(el, el)− π(p)
k∑

l,s=1

g2(Jel, es) (3.70)

+
k∑

l,s=1

2m∑
r=n+2

(
hrllh

r
ss − (hrls)

2
)
+

k∑
l=1

(hn+1
ll )2

+

n∑
l ̸=s

(hn+1
ls )2 +

2m∑
r=n+2

n∑
l,s=1

(hrls)
2 + ϵ−

k∑
l,s=1

(hn+1
ls )2

is obtained. From this, we can write that

2τ(πk) ≥ k(k − 1)c+ c
k∑

l,s=1

g2(Jel, es)− 2(k − 1)
k∑

l=1

α(el, el)

− π(p)

k∑
l,s=1

g2(Jel, es)−
k∑

l,s=1

mls (3.71)

+

2m∑
r=n+2

(hr11 + hr22 + ...+ ...hrkk)
2 +

2m∑
r=n+2

∑
l,s>k

(hrls)
2

+
2m∑

r=n+2

∑
s>k

(
(hr1s)

2 + (hr2s)
2 + ...+ (hrks)

2
)
+ ϵ,

or

τ(πk) ≥ k(k − 1)

2
c+

c

2

k∑
l,s=1

g2(Jel, es)

−(k − 1)

k∑
l=1

α(el, el) (3.72)

− π(p)

2

k∑
l,s=1

g2(Jel, es)−
1

2

k∑
l,s=1

mls +
1

2
ϵ.

We remark that

α(e1, e1) + α(e2, e2) + ...+ α(ek, ek) = λ− trace(λ|
π⊥
k

). (3.73)
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From (3.67), (3.71) and (3.72), we get

2τ(πk) ≥ −(n+ k − 1)(n+ k)c− c
n∑

l,s=k+1

g2(Jel, es) + 2(n− k)λ

+ (k − 1)trace(N|
π⊥
k

)− π(p)

n∑
l,s=k+1

g2(Jel, es)−
k∑

l,s=1

mls

+ 2τ(p) +
n∑

l,s=1

mls −
n2(n− k)

(n− k + 1)
∥H∥2

which completes the proof. □

By Theorem 5 we obtain the following corollary.

Corollary 3.1. Let Nn be n−dimensional submanifold of an 2m−dimensional real space

form Ñ(c) of constant holomorphic sectional curvature 4c endowed with complex s-s.m.c. ∇̃.

Then, for each k-plane section and p ∈ Nn, we get

δN ≤ 1

2
(n+ 1)(n− 2)c+

1

2
c

n∑
l,s=3

g2(Jel, es)

− (n− 2)λ− trace(N|
π⊥
k

)

− 1

2

π(p)
n∑

l,s=3

g2(Jel, es) +
n∑

l,s=3

mls


+

n2(n− 2)

2(n+ 1)
∥H∥2 .
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