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A CLASS OF INDEFINITE ALMOST PARACONTACT METRIC

MANIFOLDS

S. SUNITHA DEVI ID ∗ AND K. L. SAI PRASAD ID

Abstract. This research, we develop a new class of indefinite almost paracontact metric

manifolds, termed (ϵ)-para Kenmotsu manifolds and we obtain some typical identities for the

curvature tensor, scalar curvature and Ricci tensor. Furthermore, in particular, we investi-

gate the curvature features of three-dimensional (ϵ)-para Kenmotsu manifolds. We establish

an essential as well as sufficient condition for an (ϵ)-para Kenmotsu 3-manifold to have an

indefinite space form. Furthermore, we classify and demonstrate that (ϵ)-para Kenmotsu 3-

manifolds, which are either semi-symmetric, Ricci-semi-symmetric or semi-symmetric type,

are η-Einstein. In conclusion, we create a 3-D (ϵ)-para Kenmotsu manifold example.
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1. Introduction

With an emphasis on Sasakian manifolds, Takahashi [16] introduced almost contact mani-

folds equipped with pseudo-Riemannian metrics in 1969. The terms (ϵ)-almost contact metric

and (ϵ)-Sasakian have also been used to refer to indefinite almost contact metric manifolds

and the indefinite Sasakian manifolds, respectively. The (ϵ)-Kenmotsu manifold which has

Received:2024.07.24 Revised:2024.09.22 Accepted:2024.12.04

∗ Corresponding author

Seelam Sunitha Devi ⋄ sunithamallakula@yahoo.com ⋄ https://orcid.org/0000-0002-0398-0556

Kothuri Lakshmi Sai Prasad ⋄ klsprasad@gvpcew.ac.in ⋄ https://orcid.org/0000-0002-8447-008X .

247

HTTPS://ORCID.ORG/0000-0002-0398-0556
HTTPS://ORCID.ORG/0000-0002-8447-008X


248 S. SUNITHA DEVI AND K. L. SAI PRASAD

been introduced by De and Sarkar [1] is based on a class of almost contact Riemannian man-

ifolds called Kenmotsu manifolds [3]. They proved that the curvatures are influenced by the

presence of a new structure with indefinite metrics.

On the other hand, in 1976, Sato [12] defined the notions of an almost paracontact struc-

ture, which is similar to the almost contact structure. By replacing the vector field ξ in almost

paracontact manifold with −ξ, Matsumoto [4] first proposed the concept of Lorentzian almost

paracontact in 1989. Lorentzian para-Sasakian (LP -Sasakian) manifolds connected to the

Lorentzian metric are the outcome of this. While the structural vector field ξ is always time-

like, the semi-Riemannian metric in a Lorentzian almost paracontact manifold has only an

index of 1. Abdul Haseeb along with Rajendra Prasad [2] defined Lorentzian para-Kenmotsu

(also called LP -Kenmotsu) manifolds in 2018. Afterward, numerous geometers, including

[7, 8, 9, 10, 11, 14, 18], have extensively investigated these manifolds.

Inspired by these studies, Tripathi et al ., [17] presented the notion of an indefinite almost

paracontact metric structure, also referred to as an (ϵ)-almost paracontact structure, by

linking an almost paracontact structure with a semi-Riemannian metric, which need not be

Lorentzian. In this instance, ϵ = 1 or ϵ = −1 indicates that the structure vector field ξ is

either space-like or time-like. In addition, they introduced and examined the characteristics

of (ϵ)-para Sasakian [17] and (ϵ)-para Sasakian 3-manifolds [6].

Inspired by the prior study, the current paper continues the discussion of indefinite almost

paracontact metric manifolds, introducing the idea of (ϵ)-para Kenmotsu manifolds based on

para-Kenmotsu manifolds, defined by Sinha and Sai Prasad in 1995 [13].

The format of the paper is as follows: We define an (ϵ)-para Kenmotsu manifold, investigate

some of its fundamental characteristics and derive some typical identities for the Ricci tensor,

scalar curvature, and curvature tensor in Section-2. Furthermore, we explore the curvature

features of (ϵ)-para Kenmotsu three-dimensional manifolds. We attained an essential as

well as sufficient condition for an (ϵ)-para Kenmotsu 3-dimensional manifold M3 to have an

indefinite space form. Furthermore, in Sections 3, 4, and 5, we classify and demonstrate that

(ϵ)-para Kenmotsu 3-manifolds, which are either semi-symmetric, Ricci-semi-symmetric, or

semi-symmetric type, are η-Einstein. In conclusion, we create a 3-D (ϵ)-para Kenmotsu

manifold example.
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2. (ϵ)-para Kenmotsu manifolds

A differentiable manifold (Mn, g) of n-dimension is regarded as an (ϵ)-almost paracontact

metric manifold [17] with the structure tensors (ϕ, ξ, η, g, ϵ), where the tensor field (1, 1)

is represented by ϕ, the vector field by ξ, the 1-form by η, the semi-Riemannian metric by

g(X,Y ), not necessarily Lorentzian, such that

η(ξ) = 1, (2.1)

X = X − η(X)ξ, where X = ϕX, (2.2)

g (ξ, ξ) = ϵ, (2.3)

g (X, ξ) = ϵ η(X), (2.4)

g (ϕX, ϕY ) = g (X, Y )− ϵ η(X) η(Y ); (2.5)

for every X,Y ∈ χ(Mn), and χ(Mn) is a collection of differentiable vector fields on Mn. Since

the structure vector field ξ which has been vector field that is either space-like or time-like,

and the rank of that tensor filed ϕ is (n− 1), in this case, (ϵ) is either 1 or −1.

If g(X, Y ) is positive definite, that is

dη(X, Y ) = g(X, ϕY ), (2.6)

then the manifold Mn is referred as an almost paracontact metric manifold [12]. Evidently,

on Mn, we have

ϕ ξ = 0, η(ϕX) = 0. (2.7)

Definition 2.1. An (ϵ)-paracontact metric structure is referred to as an (ϵ)-para Kenmotsu

structure if

(∇XΦ)Y = g (X,ϕY )ξ − ϵ η(Y )ϕX, (2.8)

where, for all vector fields X and Y , the Levi-Civita connection is given by ∇ with regard to

the indefinite metric g(X, Y ). An (ϵ)-para Kenmotsu manifold is a manifold Mn with the

(ϵ)-para Kenmotsu structure.

For ϵ = 1 and the Riemannian metric g(X, Y ), the manifold Mn is the standard para-

Kenmotsu manifold.

An (ϵ)-almost paracontact metric manifold is an (ϵ)-para Kenmotsu manifold if and only

if

∇Xξ = ϵ ϕ2(X) = ϵ (X − η(X)ξ). (2.9)
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Furthermore, from (2.4), we get

(∇Xη) Y = ϵ g(∇Xξ, Y ).

Then by using the above expression and (2.9), we have

(∇Xη) Y = ϵ g(X, Y )− η(X) η(Y ). (2.10)

Lemma 2.1. Let Mn be an (ϵ)-para Kenmotsu manifold. Then, the type (1, 3) Riemannian

Christoffel curvature tensor R(X,Y ) satisfies

R (X, Y )ξ = η(X) Y − η(Y ) X. (2.11)

Consequently,

R (ξ, X) Y = ϵ η(Y )X − g(X, Y ) ξ, (2.12)

R (ξ, X)ξ = ϵX − ϵ η(X) ξ, (2.13)

η(R(X,Y ) Z) = ϵ g(X, Z) η(Y )− ϵ η(X) g(Y, Z), (2.14)

S (Y, ξ) = −(n− 1) η(Y ), (2.15)

for all vector fields X,Y and Z, where S(X,Y ) denotes the Ricci tensor and Q is known to

be the Ricci operator with regard to ∇.

Proof. By using the equations (2.9), (2.1), and (2.10) in

R(X, Y ) ξ = ∇X∇Y ξ −∇Y ∇Xξ −∇[X, Y ]ξ,

we obtain (2.11). Moreover, we have

R(X,Y, Z,W ) = g(X, Z) g(Y, W )− g(Y, Z) g(X, W ).

Then, by using (2.4) and from the above expression, we obtain the results (2.12), (2.13), and

(2.14). Further, on the contraction of the above expression with respect to X and W , we get

(2.15), and hence it completes the proof. □

Furthermore, it is recognized that we have in a semi-Riemannian 3-manifold

R (X, Y )Z = g(X, Z) QY − g(Y, Z) QX + S(X, Z)Y

− S(Y, Z)X − r

2
[g(X, Z)Y − g(Y, Z)X],

(2.16)

where r is the manifold’s scalar curvature.

By substituting ξ for Z in (2.16) as well as utilizing the equation (2.11) for n = 3, we have

ϵ [η(Y ) QX − η(X) QY ] =
[
3 +

rϵ

2

]
[η(Y ) X − η(X) Y ]. (2.17)
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Then for Y = ξ in (2.17) and utilizing (2.2) & (2.15), we get

QX =
1

2
(r + 6ϵ) X − 1

2
(r + 10ϵ) η(X) ξ,

and hence

S(X, Y ) = g(QX, Y ) =
1

2

[
(r + 6ϵ) g(X, Y )− ϵ (r + 10ϵ) η(X) η(Y )

]
. (2.18)

Therefore from (2.16) and (2.18)

R(X, Y ) Z =
[
g(X, Z) Y − g(Y, Z) X

][r
2

+ 6ϵ
]

+
[
g(Y, Z) η(X) ξ − g(X, Z) η(Y ) ξ + ϵη(Y ) η(Z)X − ϵη(X) η(Z)Y

][r
2
+ 5ϵ

]
.

(2.19)

It demonstrates that an (ϵ)-para Kenmotsu manifold with constant scalar curvature is an

indefinite space form.

Lemma 2.2. If the scalar curvature of an (ϵ)-para Kenmotsu manifold of dimension 3 is

−6ϵ, then the manifold has an indefinite space form. Also, the converse.

Proof. Consider a 3-D (ϵ)-para Kenmotsu manifold M3 which has an indefinite space form.

Then

R(X, Y ) Z = c [g(X, Z) Y − g(Y, Z) X], (2.20)

where c represents the manifold’s constant curvature. Using the definition of Ricci curvature

as well as equation (2.20), we get

S(X, Y ) = 2c g(X, Y ). (2.21)

Utilizing (2.21) in the scalar curvature definition yields

r = 6c. (2.22)

Next, it is evident from (2.21) and (2.22) that

S(X, Y ) =
r

3
g(X, Y ). (2.23)

Using (2.23) and entering X = Y = ξ in (2.18), we get

r = −6ϵ. (2.24)

On the other hand, the proof is completed if r = −6ϵ, in which case the manifold is clearly

an indefinite space form as shown by equation (2.19). □

Theorem 2.1. Each (ϵ)-para Kenmotsu manifold of dimension 3 is η-Einstein.
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Proof. The theorem’s proof is derived from (2.18) and (2.11). □

3. Semi-symmetric (ϵ)-para Kenmotsu 3-manifolds

Definition 3.1. An (ϵ)-para Kenmotsu manifold of dimension 3 is semi-symmetric [15] if

R(X, Y ) ·R = 0, (3.25)

holds for all vector fields X and Y .

Theorem 3.1. M3 is an η-Einstein manifold, if it is a semi-symmetric (ϵ)-para Kenmotsu

3-manifold.

Proof. Consider

(R(X,Y ) ·R) (Z,W,U) = 0, (3.26)

for all vector fields X, Y, Z, and U .

The above equation implies that

(R(X, Y,R (Z, W, U)) − R(R(X, Y, Z), W, U)

−R(Z, R(X, Y, W ), U) − R(Z, W,R(X, Y )U) = 0.
(3.27)

Afterward, specifically for X = ξ, we have

(R(ξ, Y,R (Z, W, U)) − R(R(ξ, Y, Z), W, U)

− R(Z, R(ξ, Y, W ), U) − R(Z, W,R(ξ, Y )U) = 0.
(3.28)

Using the aforementioned equation along with (2.12) and (2.14), we now obtain

′R (Z, W, U, Y )ξ = ϵ g(Z, U) η(W )Y − ϵ g(W, U) η(Z)Y − ϵ η(Z) R(Y, W, U)

+ g(Y,Z) R(ξ, W, U)− ϵ η(W ) R(Z, Y, U) + g(Y, W ) R(Z, ξ, U)

− ϵ η(U) R(Z, W, Y ) + g(Y, U) R(Z, W, ξ).

(3.29)

Then by using equations (2.11), (2.12), (2.14), and the inner product with ξ, the above

equation is reduced to

′R(Z, W, U, Y ) = g(Y, W ) g(Z, U) − g(Y, Z) g(W, U), (3.30)

which, when contracted with regard to U and W , results in

S(Y, Z) = η(Y ) η(Z)− n ϵ g(Y,Z). (3.31)
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For Z = ξ in (3.31), we obtain

S(Y, ξ) = −(n− 1) η(Y ). (3.32)

This concludes the proof of the theorem. □

4. Ricci semi-symmetric (ϵ)-para Kenmotsu 3-manifolds

If a semi-Riemannian manifold, Mn, satisfies the following condition, its Ricci tensor, S,

is deemed Ricci-semi-symmetric [5].

R (X, Y ) · S = 0, for all X, Y ∈ χ(Mn), (4.33)

where R(X, Y ) serves as a derivation on S.

Let us suppose that M3 be a Ricci-semi-symmetric (ϵ)-para Kenmotsu three-dimensional

manifold. That is

(R (X,Y ) · S) (Z, U) = 0. (4.34)

The above equation further implies that

S(R(X, Y )Z, U) + S(U, R(X, Y ) Z) = 0. (4.35)

For X = ξ in (4.35), we have

S (R(ξ, Y )Z, U) + S(U, R(ξ, Y ) Z) = 0. (4.36)

Now by using (2.12) and (2.15), we have, from the above equation

ϵ η(Z) S(Y, U) + (n− 1) g(Y, Z) η(U) + ϵ η(U) S(Y, Z) + (n− 1) g(Y, U) η(Z) = 0.

(4.37)

Using equations (2.2) and (2.4) and substituting U = Z = ξ in (4.37), we obtain

S(Y, ξ) = −(n− 1) η(Y ). (4.38)

Based on this, we could say the following:

Theorem 4.1. M3 is an η-Einstein manifold, if it is a Ricci-semi-symmetric (ϵ)-para Ken-

motsu 3-manifold.



254 S. SUNITHA DEVI AND K. L. SAI PRASAD

5. Semi-symmetric type (ϵ)-para Kenmotsu 3-manifolds

A semi-Riemannian manifold Mn is considered semi-symmetric type if

S(X, Y ) ·R = 0, (5.39)

holds for all vector fields X and Y .

Theorem 5.1. The semi-symmetric type (ϵ)-para Kenmotsu 3-manifold is η-Einstein.

Proof. Let M3 be a semi-symmetric type (ϵ)-para Kenmotsu 3-manifold. Then

(S(X, Y ) ·R)(Z, U, V ) = 0, (5.40)

for all vector fields X, Y, Z, U , and V .

The above equation implies that

S (Y, R(Z, U, V ))X − S(X, R(Z, U, V ))Y + S(Y, Z) R(X, U, V )

− S(Z, X) R(Y, U, V ) + S(Y, U) R(Z, X, V )− S(U, X) R(Z, Y, V )

+ S(V, Y ) R(Z, U, X)− S(V, X) R(Z, U, Y ) = 0.

(5.41)

For X = ξ in (5.41), we have

S(Y, R(Z, U, V ))ξ − S(ξ, R(Z, U, V ))Y + S(Y, Z) R(ξ, U, V )

− S(Z, ξ) R(Y, U, V ) + S(Y, U) R(Z, ξ, V )− S(U, ξ) R(Z, Y, V )

+ S(V, Y ) R(Z, U, ξ)− S(V, ξ) R(Z, U, Y ) = 0.

(5.42)

Taking the inner product with ξ and using equations (2.22), (2.12), (2.14), (2.15) in (5.42),

we get

S(Y,R(Z,U, V )) + 2(n− 1)g(Z, V )η(U)η(Y )− 2(n− 1)g(U, V )η(Y )η(Z)

+ ϵη(V )η(U)S(Y,Z)− g(U, V )S(Y,Z) + g(Z, V )S(Y, U)

− ϵS(Y,U)η(V )η(Z) + (n− 1)g(Z, Y )η(U)η(V )− (n− 1)g(U, Y )η(V )η(Z) = 0.

(5.43)

If we put ξ in place of V in (5.43) and on using (2.11), we get

ϵ η(Z) S(Y, U)− ϵ η(U) S(Y, Z) + (n− 1) g(Y, Z)η(U) − (n− 1) g(U, Y ) η(Z) = 0.

(5.44)

Put U = Y = ξ in (5.44). Then by using (2.2), (2.4), we get

S (Z, ξ) = −(n− 1) η(Z), (5.45)

which proves the theorem. □
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6. Example of a 3-dimensional (ϵ)-para Kenmotsu manifold

In this section, we create a 3-D (ϵ)-para Kenmotsu manifold example.

Example 6.1. Let M3 = {(x, y, z) ∈ R3}, where (x, y, z)-represent the standard coordinates

in R3, be a 3-D manifold. Let e1, e2, and e3 be the vector fields on M3, given by

e1 = −x
∂

∂x
, e2 = x

∂

∂y
, e3 = x

∂

∂z
. (6.46)

Clearly, at any point in M3, {e1, e2, e3} represent a set of linearly independent vectors.

The Riemannian metric g(X, Y ) is explained by

g (ei, ej) =

 ϵ, if i = j

0, if i ̸= j; i, j = 1, 2, 3.

Let η be the 1-form defined by:

g(X, e1) = ϵ η(X).

Let ϕ be a (1, 1)-tensor field on M3 explained by:

ϕ(e1) = 0, ϕ(e2) = −ϵ e2, ϕ(e3) = −ϵ e3.

Then the linearity of ϕ & g(X, Y ) yields that

η(e1) = 1, ϕ2(X) = X − η(X)e1 ;

and g(ϕX, ϕY ) = g(X, Y )− ϵ η(X) η(Y ),

for all X, Y, Z ∈ M3.

The structure (ϕ, ξ, η, g, ϵ) therefore establishes an (ϵ)-almost paracontact structure on M3

for e1 = ξ.

Now from (6.46), we also have

[
e1, e2

]
= −ϵ e2, [e1, e3] = −ϵ e3, [e2, e3] = 0.

Koszul’s formula provides the Levi-Civita connection ∇ of the metric tensor g(X, Y ) as

follows:

2g (∇XY,Z) = Xg (Y,Z) + Y g (Z,X)− Zg (X,Y )

− g (X, [Y, Z])− g (Y, [X,Z]) + g (Z, [X,Y ]).
(6.47)
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Utilizing the above formula and e1 = ξ yields the following result:

∇e1 e1 = 0, ∇e1 e2 = 0, ∇e1 e3 = 0;

∇e2 e1 = ϵ e2, ∇e2 e2 = −ϵ e1, ∇e2 e3 = 0;

∇e3 e1 = ϵ e2, ∇e3 e2 = 0, ∇e3 e3 = −ϵ e1.

(6.48)

The preceding computations show that the manifold M3 under consideration meets the con-

ditions ∇X ξ = ϵ (X − η(X) ξ), for all e1 = ξ.

It can be seen from this that the manifold M3, that is being studied is a dimension three

(ϵ)-para Kenmotsu manifold having the structure (ϕ, ξ, η, g, ϵ).

7. Conclusion

This paper defines a new class of indefinite almost paracontact metric manifolds, termed

(ϵ)-para Kenmotsu manifolds, using a semi-Riemannian metric. When these manifolds are

semi-symmetric or Ricci-semi-symmetric, the metric described by them is both geometrical

and physical in nature. The geometrical features of these manifolds are widely applied in

a variety of physical and geometrical fields, including the construction of super resolution

sensors in electronic and communication systems, in electrical engineering, and in the general

theory of relativity.
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