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NULL HYPERSURFACE NORMALIZED BY THE STRUCTURE

VECTOR FIELD IN A PARASASAKIAN MANIFOLD

THÉOPHILE KEMAJOU MBIAKOP ID ∗ AND FERDINAND NGAKEU ID

Abstract. We examine the geometry of a null hypersurface M of a para-Sasakian manifold

(M,ϕ,K, η, g) transversal to the structure vector field K. The later is then a rigging ζ for

M , and M is called K-normalized null hypersurface. We characterize the geometry of such

a null hypersurface and prove under some conditions that there exist leaves of an integrable

distribution of the screen distribution admitting an almost para complex structure. Also, we

derive certain non-existence results and discuss some properties of semi-symmetric(resp. lo-

cally symmetric) K-normalized null hypersurfaces of para-Sasakian manifolds, for instance,

we demonstrate that any para-Sasakian manifold admitting a semi-symmetric totally geo-

desic K-normalized null hypersurface is of constant negative curvature along the null hy-

persurface.
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1. Introduction

A submanifold M of a semi-Riemannian manifold is null if the induced metric tensor is

degenerate on M . Null hypersurfaces are specifically essential because of their applications
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in physics and mainly in general relativity. The principal differences between null and non-

degenerate hypersurfaces stand up because of the absence of natural projections on the

former. This prevents the usual geometric objects from being induced on null hypersurfaces.

The rigging technique introduced in [6] has shown to be an efficient tool to study a null

hypersurface. Briefly, the main idea consists of choosing a vector field ζ, called a rigging,

such that ζp /∈ TpM for all p ∈ M . From this unique arbitrary choice, we derive all the

geometric objects needed to handle a null hypersurface: a null section of Rad(TM), a screen

distribution in TM , a transversal null section, and all the associated tensors.

Several authors have studied the geometry of null submanifolds of para-Sasakian manifolds

tangent to the structure vector field [1, 9, ]. In [8], the authors considered the case where the

null hypersurface is transversal to the structure vector field K. The later is then a rigging

ζ for M , and M will be called K-normalized null hypersurface in this work. The question

now arise of knowing wether it is always possible to select a structure vector field with

specific geometric properties (closedness, quasi-conformality, etc. ) but also with prescribed

geometric properties for the null hypersurface (curvature condition, umbilicity, geodesibility,

etc.). The goal of this paper is to provide a few answers to the above questions by studying

the geometry of K-normalized null hypersurfaces in para-Sasakian manifolds.

The organization of this paper is the following. Section 2 contains all the preliminar-

ies needed. In Section 3, we give an example, characterize the underlined null hypersurface

(Theorem 3.1), and prove under some condition that there exist leaves of an integrable distri-

bution of the screen distribution admitting an almost para-complex structure (Theorem 3.2).

We establish sufficient conditions to guarantee that the Ricci type tensor Ric is an induced

symmetric Ricci tensor of M (Theorem 3.3). We also show that there is no screen invariant

K-normalized null hypersurface in an almost para-contact metric manifoldM (Theorem 3.4)

, and we establish obstruction results involving the geometric conditions on the structure

vector field (Theorem 3.5, (Theorem 3.6 and Theorem 3.7). In Section 4, we discuss some

properties of a semi-symmetric (resp. locally symmetric) normalized null hypersurfaces of

para-Sasakian manifolds. We show that a K-normalized null hypersurface is totally geodesic

if and only if it is locally symmetric (Theorem 4.1) and that any para-Sasakian manifold

admitting a semi-symmetric totally geodesic K-normalized null hypersurface is of constant

negative curvature along the null hypersurface (Theorem 4.2).
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2. Preliminaries

In this section, we give a brief review about rigging tectnique and Para-sasakian manifolds.

2.1. Rigging technique for null hypersurface. Let (M
n+2

, g) be a Lorentzian manifold

and (M, g) a null hypersurface of (M, g). Due to Gutiérrez and Olea; see [6]. A rigging for

M is a vector field ζ defined on some open set of M containing M such that for each p ∈M

ζp /∈ TpM . Given a rigging ζ forM , we set ω = g(ζ, ·), ω = i∗ω,
⌣
g = g+ω⊗ω and g̃ = i∗

⌣
g ,

where i : M ↪→ M is the canonical inclusion map. It is well known that g̃ is a Riemannian

metric onM . The rigged vector field onM is the unique null vector field ξ given by g̃(ξ, .) = ω

and it satisfies g(ζ, ξ) = 1. A rigging ζ defines a screen distribution S (ζ) given by S (ζ) =

TM ∩ ζ⊥ = kerω. The null transversal vector field on M is

N = ζ − 1

2
g(ζ, ζ)ξ, (2.1)

which is the unique null vector field such that g(N, ξ) = 1. Moreover, it is worth noting that

TM admits the following splitting

TM |M = TM ⊕ span(N)

= {S (ζ)⊕ span(ξ)} ⊕ span(N). (2.2)

According to the decomposition (2.2), the Gauss and Weingarten equations of M and

S (ζ) are the following ( see[4, p. 82-85]):

∇XY = ∇XY +B(X,Y )N, ∇XPY =
⋆
∇XPY + C(X,PY )ξ, (2.3)

∇XN = −ANX + τ(X)N, ∇Xξ = −
⋆
AξX − τ(X)ξ, τ(X) = g(∇XN, ξ), (2.4)

∀X,Y tangent to M . Here, ∇ and
⋆
∇ are induced linear connction on TM and S (TM), re-

spectively, B and C are the second fundamental forms on TM and S (ζ) respectively. More-

over, AN and
⋆
Aξ are the shape operators on TM and S (TM), respectively, connected with

the second fundamental forms by B(X,Y ) = g(
⋆
AξX,Y ) and C(X,PY ) = g(ANX,PY ),

and τ is a 1-form on TM . The induced linear connection ∇ is not a metric connection. In

fact, using the fact that ∇g = 0, we have

(∇Xg)(Y,Z) = B(X,Y )ω(Z) +B(X,Z)ω(Y ), (2.16) (2.5)

∀X,Y, Z ∈ Γ(TM). Also C is not symmetric since

C(X,Y )− C(Y,X) = g(∇XY −∇YX,N) = ω([X,Y ]), ∀X,Y ∈ S (ζ). (2.6)
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Let us denote by R and R the Riemannian curvature tensors of ∇ and ∇, respectively.

Using (2.3) and (2.4), we get the so called Gauss-Codazzi equations [4]

g(R(X,Y )Z, ξ) = (∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z), (2.7)

g(R(X,Y )Z,PW ) = g(R(X,Y )Z,PW ) +B(X,Z)C(Y, PW )−B(Y,Z)C(X,PW ), (2.8)

g(R(X,Y )ξ,N) = g(R(X,Y )ξ,N) = C(Y,
⋆
Aξ X)− C(

⋆
Aξ Y,X)− 2dτ(X,Y ), (2.9)

∀X,Y, Z and W ∈ Γ(TM).

We say that the rigging vector field ζ has a quasi-conformal screen distribution if there

exists ϕ and σ in C∞(M) such that

ANX = ρ
⋆
AξX + σPX, (2.10)

for any X ∈ Γ(TM). For σ = 0, we simply say that ζ has conformal screen distribution.

We say that the rigging vector field is distinguished if the one-form τ vanishes. A null

hypersuface M is said to be totally umbilical (resp. totally geodesic) in M if there exists a

smooth function k on M such that

B(X,Y ) = kg(X,Y ) (2.11)

(resp. B vanishes identically on M). Remembering that
⋆
Aξξ = 0, M is totally umbilical

(resp. totally geodesic) in M if
⋆
AξX = kX for any X ∈ Γ(S (TM)) (resp.

⋆
Aξ = 0).

Also the screen distribution S (ζ) is totally umbilical (resp. totally geodesic) inM if there

is a smooth function λ such that C(X,PY ) = λg(X,Y ) for all X,Y ∈ Γ(TM) (resp. C

vanishes identically)([4],[2]).

2.2. Para-Sasakian Manifolds. A (2n + 1) dimensional manifold M
2n+1

is said to be an

almost paracontact metric manifold, if it admits a tensor field ϕ of type (1, 1), a struc-

ture vector field K, a 1-form η and a pseudo-Riemannian metric g satisfying the following

conditions[7][11]:

ϕ
2
= I − η ⊗K, η(K) = 1, ϕ(K) = 0, η ◦ ϕ = 0 (2.12)

g(ϕX, ϕY ) = −g(X,Y ) + η(X)η(Y ), X, Y ∈ Γ(TM̄), (2.13)

where I denotes the identity transformation. From (2.13), we deduce

g(X,ϕY ) = −g(ϕX, Y ) (2.14)

g(X,K) = η(X), (2.15)
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for X,Y ∈ Γ(TM). From (2.15), we get

g(K,K) = 1.

An almost para-contact metric manifold (M,ϕ,K, η, g) is called a para-Sasakian manifold if

[11]

(∇Xϕ)Y = −ḡ(X,Y )K + η(Y )X, ∀X,Y ∈ Γ(TM̄). (2.16)

From (2.16), we have

∇XK = −ϕX. (2.17)

Example 2.1. [1] Let M = R2n+1 be the (2n + 1)-dimensional real space with standard

coordinate system (x1, y1, x2, y2, ..., xn, yn, z). Defining

ϕ̄
∂

∂xα
=

∂

∂yα
, ϕ̄

∂

∂yα
=

∂

∂xα
, ϕ̄

∂

∂z
= 0,

η = dz, K =
∂

∂z
,

ḡ = η ⊗ η +
n∑

α=1

dxα ⊗ dxα −
n∑

α=1

dyα ⊗ dyα,

where α = 1, 2, ..., n. The set (R2n+1
n , ϕ,K, η, g) is an almost paracontact metric manifold.

If the paraholomorphic sectional curvature denoted by c is constant on the para-Sasakian

manifold (M,ϕ,K, η, g), then the later is a para-Sasakian space form. Moreover, the curva-

ture tensor R of M satisfies [9, Theorem 2.2]

g(R(X,Y )Z,W ) =
c− 3

4
{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}

+
(c+ 1)

4

{
η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+ g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )

+ g(ϕY,Z)g(ϕX,W )− g(ϕX,Z)g(ϕY,W )− 2g(ϕX, Y )g(ϕZ,W )
}
, (2.18)

∀ X,Y, Z ∈ Γ(TM). We refer to M(c) as a para-Sasakian space form.

3. Normalized null hypersurfaces of a para-Sasakian manifold

Let (M, ζ) be a normalized null hypersurface of a para-Sasakian manifold (M,ϕ,K, η, g).

K has the following pointwise decomposition along M :

K = KS + γξ + βN,
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where γ and β are smooth functions on M defined by β = η(ξ), γ = η(N), and KS ∈

Γ(S (ζ)). Consider a global vector field U on S (ζ) and its corresponding 1-form µ defined

by

U = −ϕξ, µ(X) = g(X,U),∀X ∈ Γ(TM). (3.19)

From (2.2), we have

ϕX = ϕX + µ(X)N, ∀X ∈ Γ(TM), (3.20)

where ϕ is a (1, 1)-tensor field on M . From (2.17) and (3.20), we obtain the following result,

which is similar to the one given in [3, Proposition 3.1]

Proposition 3.1. Let (M
(2n+1)

, ϕ,K, η, g) be a para-Sasakian manifold and M a null hy-

persurface of M . Then, ∀X ∈ Γ(TM) we get

⋆
∇XKS = γ

⋆
AξX + βANX − P (ϕ(X)),

X · γ = γτ(X)− C(X,KS )− ω(ϕ(X)),

X · β = −βτ(X)−B(X,KS )− µ(X),

(3.21)

where P is the projection morphism of Γ(TM) onto Γ(S (ζ)) associated to the decomposi-

tion(2.2).

Proof. On one hand, ∀X ∈ Γ(TM), we get

∇XK
(2.17)
= −ϕX

= −ϕX − µ(X)N = −P (ϕX)− ω(ϕX)ξ − µ(X))N.

On the other hand, ∀X ∈ Γ(TM), we get

∇XK =
⋆
∇XKS − γ

⋆
AξX − βANX

+ (C(X,KS ) +X · γ − γτ(X)) ξ

+ (X · β + βτ(X) +B(X,KS ))N.

Matching the tangential, radical and transversal components of the expressions above we get

the result. □

Now, we suppose that the structure vector field K never belongs to the tangent space of

the null hypersurface M . In this case K can be taken as a rigging ζ for M . Thus, we have

the following.
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Definition 3.1. A null hypersurface M of an almost para-contact metric manifold

(M,ϕ,K, η, g) such that the structure vector field K is a rigging for M is said to be K-

normalized.

This leads to the following direct consequence of our Proposition 3.1.

Corollary 3.1. Let (M
(2n+1)

, ϕ,K, η, g) be a para-Sasakian manifold andM a K-normalized

null hypersurface of M . Then for all X ∈ Γ(TM), we have

ANX = −1

2

⋆
AξX + P (ϕ(X)), (3.22)

τ(X) = 2ω(ϕ(X)) = −µ(X). (3.23)

Proof. Since K = ζ, then Eq.(2.1) leads to β = 1, γ = 1
2g(ζ, ζ) = 1

2 . Using this in (3.21)

together with the fact that ζS = 0, we get the result. □

Let (M,ϕ,K, η, g) be a (2n+1)-dimensional para-Sasakian manifold andM aK-normalized

null hypersurface of M . It is worth noting that

η(ξ) = 1, η(N) =
1

2
. (3.24)

Applying ϕ to the first equation of (3.19), we get

ϕU
(2.12)
= −N +

1

2
ξ. (3.25)

Also, from (2.14), it is obvious that

g(ϕN, ξ) = −1

2
g(ϕξ, ξ) = 0, g(ϕN,N) = −1

2
g(ϕξ,N) = 0, (3.26)

Then,

2ϕ(N) = −ϕ(ξ) = U ∈ S (ζ) (3.27)

since the components of both ϕN and ϕξ with respect to ξ and N vanish.

From (3.23) and (3.26), the following Corollary holds:

Corollary 3.2. Let (M
(2n+1)

, ϕ,K, η, g) be a para-Sasakian manifold andM a K-normalized

null hypersurface of M . Setting W = N − 1
2ξ, we have

τ(ξ) = −µ(ξ) = 2ω(ϕξ) = 0, (3.28)

ϕX = P (ϕX) + τ(X)W, ∀X,Y ∈ Γ(TM). (3.29)
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Definition 3.2. [1] Let (M
2n+1

, ϕ,K, η, g) be an almost paracontact metric manifold and M

a null hypersurface of M . M is said to be screen invariant (resp screen semi-invariant) if

ϕ(X) (resp. both ϕN and ϕξ) belong(s) to the screen distribution for all X ∈ S (ζ).

From equation (3.27), we get the following proposition given in [8, Proposition 3.1].

Proposition 3.2. [8] A K-normalized null hypersurface of an almost para-contact metric

manifold M is rather a screen semi-invariant null hypersurface of M .

The following Theorem proves the converse of this proposition. Namely, a rigged screen

semi-invariant null hypersurface in an almost paracontact metric manifold is transversal to

the structure vector field.

Theorem 3.1. Let M be a null hypersurface of an almost paracontact metric manifold

(M,ϕ,K, η, g) and (M, ζ) a normalized null hypersurface. Let ξ and Nζ be the rigged vector

field and the null transversal vector field associated to ζ. If ϕ(span{ξ}) = ϕ(span{Nζ}) then

K is transversal to M . If in addition g(ζ, ζ) = 1 and ϕN = −1
2ϕξ, then M is a K-normaized

null hypersurface.

Proof. In this proof, N stands for Nζ . Assume that ϕspan{ξ} = ϕspan{Nζ}. Then, there

exists a non vanishing function θ such that ϕξ = θϕN . The inner product of this relation with

respect to ϕξ and ϕN give (η(ξ))2 = θ(−1+η(ξ)η(N)) and −1+η(ξ)η(N) = θ(η(N))2. Since

θ ̸= 0, we get η(ξ) ̸= 0 and η(N) ̸= 0 and (η(ξ))2 = (θη(N))2. The later gives η(ξ) = ±θη(N).

The case η(ξ) = θη(N) implies that η(ξ)2 = θη(ξ)η(N) = −θ + θη(ξ)η(N), which is a

contradiction. Thus η(ξ) = −θη(N), from which η(ξ)2 = −θη(ξ)η(N) = −θ + θη(ξ)η(N),

that is

η(ξ)η(N) =
1

2
. (3.30)

Since θ = − η(ξ)
η(N) ̸= 0 and ϕξ = θϕN , it is worth noting that η(N)ϕξ+η(ξ)ϕN = 0. Applying

ϕ to this equation to get η(N)ξ− η(N)η(ξ)K + η(ξ)N − η(ξ)η(N)K = 0. This together with

(3.30) give K = η(N)ξ + η(ξ)N = γξ + βN. Thus K is transversal to M , which gives the

first claim.

Now,

ϕN = −1

2
ϕξ =⇒ ϕ(N +

1

2
ξ) = 0 =⇒ ϕζ = 0.
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Operating ϕ to the last equation of above relation and using the first equation of (2.13), we

have ζ = η(ζ)K. This leads to ζ = ±K as g(ζ, ζ) = 1. Therefore, K is a rigging for M and

M is K-normalized. Which completes the proof.

□

Example 3.1. Let M = R5 be a 5-dimensional almost paracontact metric manifold with the

structure (ϕ,K, η, g) given in Example 2.1.

Consider a submanifold M of (R5
2, ϕ, ζ, η, g) given by

M = {(x1, y1, x2, y2, z) ∈ R5|x1 + x2 −
√
3y1 + z = 0}.

It worth noting that TM is spanned by

{V1 =
∂

∂x1
− ∂

∂z
, V2 =

∂

∂x2
− ∂

∂z
, V3 =

∂

∂y1
+
√
3
∂

∂z
, V4 =

∂

∂y2
}.

Since K = ∂
∂z is a spacelike vector field, then we may use it as a rigging ζ for M . Then, the

corresponding rigged vector field is

ξ =
∂

∂x1
+

∂

∂x2
+
√
3
∂

∂y1
+

∂

∂z
.

The associated null transversal vector field is

N = K − 1

2
ξ =

1

2
(− ∂

∂x1
− ∂

∂x2
−
√
3
∂

∂y1
+

∂

∂z
).

The associated screen distribution is

S (ζ) = {U1 =
∂

∂x1
− ∂

∂x2
, U2 =

∂

∂x1
+ 2

∂

∂x2
+
√
3
∂

∂y1
, U3 =

∂

∂y2
}.

Next,

ϕξ =
∂

∂y1
+

∂

∂y2
+
√
3
∂

∂x1

=

√
3

3
(2U1 + U2) + U3.

From which we have ϕN = −1
2ϕξ ∈ S (ζ). Thus M is screen semi-invariant.

Now, using (3.19) in (2.13) leads to g(U,U) = 1, thus the distribution ϕ(⟨U⟩) is nonde-

generate. Then we are able to define the unique nondegenerate distribution D0 by

Definition 3.3.

S (ζ) = D0 ⊥ ⟨U⟩.
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This ends in the subsequent decomposition:

TM = {D0 ⊥ ⟨U⟩} ⊥ ⟨ξ⟩, (3.31)

TM = {D0 ⊥ ⟨U⟩} ⊥ {⟨ξ⟩ ⊕ ⟨N⟩}.

Proposition 3.3. [8] D0 is ϕ- invariant.

Setting

D = ⟨ξ⟩ ⊥ D0 and D′ = ⟨U⟩,

it follows that

TM = D ⊕D′.

LetM be a K-normalized null hypersurface, and S be the projection morphism of TM on D0

with respect to the decomposition (3.31). From this, any vector field X on M is expressed

as follows

X = SX + ω(X)ξ + µ(X)U. (3.32)

Applying ϕ to (3.32) and using (3.19), (3.25) and the fact η(X) = ω(X), we have

ϕX = ψX − 1

2
µ(X)ξ − η(X)U + µ(X)N = ψX − η(X)U + µ(X)W, (3.33)

where ψ is a globally defined tensor field of type (1, 1) on TM by

ψX = ϕSX,∀X ∈ Γ(TM). (3.34)

Applying ϕ to (3.33) and using (2.12), (3.25), (3.19) and η(X) = ω(X), we have

X − 1

2
ω(X)ξ − η(X)N = ϕ

2
X = ϕ(ψX) +

1

2
µ(X)U +

1

2
ω(X)ξ − η(X)N +

1

2
µ(X)U

= ψ2X − 1

2
µ(ψX)ξ − η(ψX)U

+ µ(ψX)N + µ(X)U +
1

2
ω(X)ξ − η(X)N

= ψ2X + µ(X)U +
1

2
ω(X)ξ − η(X)N.

This leads to

ψ2X = X − ω(X)ξ − µ(X)U, (3.35)

which implies that

ψ2X = SX.
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Substituting (3.33) into (2.13), we have

−g(X,Y ) + η(X)η(Y ) = g(ϕX, ϕY ) = g(ψX,ψY )− µ(X)µ(Y )− η(X)η(Y ).

This gives

g(ψX,ψY ) = −g(X,Y ) + 2ω(X)ω(Y ) + µ(X)µ(Y ). (3.36)

Theorem 3.2. Let (M
(2n+1)

, ϕ,K, η, g) be a para-Sasakian manifold and M a K-normalized

null hypersurface of M such that C(X,Y ) = C(Y,X), B(X,ϕY ) = B(ϕX, Y ), ∀X,Y ∈

Γ(D0). Then (M0, g, ψ) is an almost paracomplex manifold, where M0 is a leaf of the almost

paracontact complex distribution D0.

Proof. Under the hypothesis together with [8, Theorem 6.2], we have that D0 is integrable.

From (3.35) and (3.36), we have

ψ2X = X, g(ψX,ψY ) = −g(X,Y ) ∀X,Y ∈ Γ(D0). (3.37)

From (3.37), the claim follows. □

Proposition 3.4. If M is a K-normalized in (M
2n+1

, ϕ,K, η, g), then for X,Y ∈ Γ(TM),

we have

(∇Xϕ)Y = −1

2
g(X,Y )ξ + ω(Y )X + µ(Y )ANX +

1

2
B(X,Y )U, (3.38)

(∇Xµ)(Y ) = −g(X,Y )−B(X,ϕY )− τ(X)µ(Y ),

∇XU = −X − τ(X)U + ϕ(
⋆
Aξ X), (3.39)

B(X,U) = µ(
⋆
Aξ X), (3.40)

⋆
∇PX U = −PX + τ(X)ϕξ + P (ϕ(

⋆
Aξ X)),

C(X,U) = ω(ϕ(
⋆
Aξ X))− ω(X). (3.41)

Proof. Let X,Y ∈ Γ(TM), we get

−g(X,Y )ζ + η(Y )X = (∇Xϕ)Y = ∇X ϕ̄Y − ϕ̄(∇XY )

= ∇X(ϕY + µ(Y )N)− ϕ̄(∇XY +B(X,Y )N)

= ∇XϕY +∇Xµ(Y )N − ϕ̄(∇XY )−B(X,Y )ϕ̄N

= (∇Xϕ)Y + (∇Xµ)(Y )N +B(X,ϕY )N − µ(Y )ANX

+ µ(Y )τ(X)N −B(X,Y )ϕ̄N. (3.42)
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Also,

∇XU +B(X,U)N = ∇XU

= −(∇Xϕξ)

= −
(
(∇Xϕ)ξ + ϕ(∇Xξ)

)
= −X + τ(X)ϕξ + ϕ(

⋆
Aξ X)

= −X + τ(X)ϕξ + ϕ(
⋆
Aξ X) + µ(

⋆
Aξ X)N. (3.43)

Next, it is worth noting that

⋆
∇X U + C(X,U)ξ +B(X,U)N = −PX − ω(X)ξ + τ(X)ϕξ + P (ϕ(

⋆
Aξ X))

+ ω(ϕ(
⋆
Aξ X))ξ + µ(

⋆
Aξ X)N. (3.44)

When we equate tangential and normal parts in (3.42)(resp, (3.43), (3.44)), we get the

result. □

The following result is a direct consequence of Proposition 3.4.

Corollary 3.3. Let (M
(2n+1)

, ϕ,K, η, g) be a para-Sasakian manifold and M a null hyper-

surface of M . Then there is no K-normalization such that ∇ϕ = 0 or ∇U = 0.

Proof. (i) Replacing X and Y with ξ in (3.38) and X by ξ in (3.39) give (∇ξϕ)ξ = ξ and

∇ξU = ξ, which completes the proof. □

Proposition 3.5. Let (M
(2n+1)

, ϕ,K, η, g) be a para-Sasakian manifold andM a K-normalized

null hypersurface of M . Then ∀X ∈ Γ(TM), we have

ϕ(ANX) = −ϕ(
⋆
Aξ X) + 2X + 2τ(X)U − 1

2
ω(X)ξ.

Moreover, ϕ(ANξ) and ξ are linearly related.

Proof. Since U = 2ϕN, we have

∇XU +B(X,U)N = ∇XU = 2(∇XϕN)

= 2
(
(∇Xϕ)N + ϕ(∇XN)

)
(2.3)−(2.16)

= −ω(X)ξ − 2ω(X)N +X − 2ϕ(ANX) + 2τ(X)ϕN

= −ω(X)ξ + τ(X)U − 2ϕ(ANX)− 2µ(ANX)N − 2ω(X)N,
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that is

∇XU = −ω(X)ξ + τ(X)U − 2ϕ(ANX) +X. (3.45)

By equating (3.39) and (3.45), we have

ϕ(ANX) = −1

2
ϕ(

⋆
Aξ X) +X + τ(X)U − 1

2
ω(X)ξ, (3.46)

which gives the first claim. Now, setting X = ξ in (3.46), we have ϕ(ANξ) = −1
2ξ, which

completes the proof. □

It is known that the Ricci type tensor Ric is an induced symmetric Ricci tensor of M if

and only if the one form τ is closed on M [4, Theorem 3.2]. Using this, we get the following.

Theorem 3.3. Let M be a K-normalized null hypersurface of a para-Sasakian manifold M .

Then Ric is an induced symmetric Ricci tensor of M if and only if B(ϕX, Y ) = B(X,ϕY ).

Proof. From (3.23), we have τ(X) = −µ(X). Differentiating this and using (3.43), we get

Y τ(X) = −g(∇YX,U)− g(X,∇Y U)

(2.3)−(3.43)
= −µ(∇YX) + g(X,Y ) + τ(Y )µ(X)− g(X,ϕ(

⋆
Aξ Y ))

(3.23)(2.14)
= −µ(∇YX) + g(X,Y )− τ(Y )τ(X) + g(ϕ(X),

⋆
Aξ Y )

(3.20)
= −µ(∇YX) + g(X,Y )− τ(Y )τ(X) +B(ϕ(X), Y ),∀X,Y ∈ Γ(TM). (3.47)

Interchanging X and Y in (3.47), we get

Xτ(Y )− Y τ(X) = −µ([X,Y ]) +B(ϕY,X)−B(ϕX, Y ). (3.48)

On the other hand, (3.23) gives

τ([X,Y ]) = −µ([X,Y ]). (3.49)

Then, by (3.48), (3.49) and the definition of dτ , we have

2dτ(X,Y ) = [Xτ(Y )− Y τ(X)− τ([X,Y ])]

= B(ϕY,X)−B(ϕX, Y ). (3.50)

Thus dτ(X,Y ) = 0 if and only if B(ϕX, Y ) = B(X,ϕY ). Therefore, the claim follows from

[4, Theorem 3.2]. □
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Corollary 3.4. Let M be a K-normalized null hypersurface of a para-Sasakian manifold

M . If M is totally geodesic, then the one form τ is closed. Moreover, Ric is an induced

symmetric Ricci tensor of M .

The presence of transversal structure vector field K in para-Sasakian manifolds prevents

the existence of invariant null hypersurfaces. However, it is not the case when M is tangent

to K (see [1, Theorem 10 and 14 ]). In the following, we obtain some non-existence results

for K-normalized null hypersurfaces of a para-Sasakian manifolds.

Theorem 3.4. There is no screen-invariant K-normalized null hypersurface in an almost

para-contact metric manifold M .

Proof. If ϕ(X) ∈ S (ζ), ∀X ∈ S (ζ), then using (2.14) and (3.27), we will get g(ϕξ, ϕξ) =

−g(ξ, ϕ(ϕξ)) = 0, which is absurd since from (2.13) g(ϕξ, ϕξ) = 1. □

Theorem 3.5. Let (M,ϕ,K, η, g) be a para-Sasakian manifold and M a K-normalized null

hypersurface of M . Then,

(i) K cannot be screen quasi-conformal.

(ii) S (ζ) cannot be totally umbilical in M .

(iii) M cannot be distinguished.

Proof. Since from (3.28) of Corollary 3.2, τ(ξ) = −µ(ξ) = 0, then we have from (3.29) that

ϕξ = P (ϕξ).

(i) If K is screen quasi-conformal, then from (2.10), we will have ANξ = 0, which is a

contracdition since from (3.22) ANξ = P (ϕξ) = ϕξ ̸= 0. Indeed, if ϕξ = 0, then we will get

from (2.13) that 0 = g(ϕξ, ϕξ) = −g(ξ, ξ) + η(ξ)η(ξ) = 1, which is absurd.

(ii) If S (ζ) is totally umbilical, then using (3.41) of Proposition 3.4, we have 1 = C(ξ, U) =

γg(ξ, U) = 0, which is absurd.

(iii) If τ(X) = 0 ∀X ∈ S (ζ), we will have from (3.23) that µ(U) = 0 as U = −ϕξ ∈ S (ζ),

which is absurd since from (2.13) 1 = g(ϕξ, ϕξ) = µ(U). This completes the proof. □

Now, ∀X ∈ Γ(TM), ∀Y ∈ S (ζ), we have

C(X,Y ) = g(∇XY,N)

= g(∇XY,N)

= −g(Y,∇XN). (3.51)
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From item (iii) of Theorem 3.5, together with (3.51) and (3.51), we have the following

corollary.

Corollary 3.5. Let (M,ϕ,K, η, g) be a para-Sasakian manifold and M a K-normalized null

hypersurface of M . Then,

(a) S (ζ) cannot be a parallel distribution.

(b) N cannot be a closed conformal vector field.

Theorem 3.6. Let (M
2n+1

, ϕ,K, η, g)(n ≥ 1) be a para-Sasakian manifold. Then the struc-

ture vector field K cannot be a closed normalization for any null hypersurface M .

Proof. Suppose that K = ζ is a closed normalization for any null hypersurface M , then

η = g(ζ, .) is a closed 1-form on M which implies that S (ζ) is integrable. This implies from

(2.6) that C is symmetric on S (ζ). From (3.22), we have

−g(ϕX, Y ) +
1

2
B(X,Y ) + C(X,Y ) = 0, ∀X,Y ∈ S (ζ). (3.52)

Using (3.52) together with the fact that B and C are symmetric, we have

g(ϕX, Y )− g(ϕY,X) = 0, ∀X,Y ∈ S (ζ). (3.53)

Since g(ϕX, Y )
(2.14)
= −g(X,ϕY ), (3.53) leads to g(ϕX, Y ) = 0. This together with (3.33)

give

g(ψX, Y ) = 0, ∀X,Y ∈ S (ζ). (3.54)

From (3.54) together with the fact that S (ζ) is non-degenerate, we have ψX = 0 for all

X ∈ S (ζ). This and (3.35), give X = 0 for all X ∈ S (ζ). Which is absurd since S (ζ) is of

rank 2n− 1 with n > 1. Thus ζ cannot be closed. □

Theorem 3.7. Let (M,ϕ,K, η, g) be a para-Sasakian Lorentzian manifold . Then the struc-

ture vector field K cannot be a normalization for any flat null hypersurface M with parallel

screen shape operator
⋆
Aξ.

Proof. Let X ∈ S(ζ), we have

g(R(X, ξ)ξ,X) = g(∇X∇ξξ,X)− g(∇ξ∇Xξ,X)− g(∇[X,ξ]ξ,X)

= τ(ξ)g(
⋆
Aξ (X), X)− g(∇ξ(−τ(X)ξ−

⋆
Aξ (X)), X) + g(

⋆
Aξ ([X, ξ]), X)

(3.28)
= g(∇ξ

⋆
Aξ (X), X) + g(

⋆
Aξ (∇Xξ)− g(

⋆
Aξ (∇ξX), X)

= g((∇ξ

⋆
Aξ)(X), X)− g(

⋆
Aξ (X),

⋆
Aξ (X)). (3.55)
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If M were flat and
⋆
Aξ parallel then (3.55) will imply that

g(
⋆
Aξ (X),

⋆
Aξ (X)) = 0

which means that M is totally geodesic as the screen distribution is positive definite. By

using this we will get

∀X,Y ∈ Γ(TM),

0 = R(X,Y )U = ∇X∇Y U −∇Y ∇XU −∇[X,Y ]U

(3.39)
= −∇XY −Xτ(Y )U + τ(Y )X + τ(Y )τ(X)U

+∇YX + Y τ(X)U − τ(X)Y − τ(X)τ(Y )U

+ [X,Y ] + τ(Y,X)U

= τ(Y )X − τ(X)Y +
1

2
dτ(Y,X)U

3.4
= τ(Y )X − τ(X)Y. (3.56)

Setting X = ξ in (3.56) and using (3.28), we will have 0 = τ(Y )ξ ∀X ∈ Γ(TM), that is

τ(X) = 0 ∀X ∈ Γ(TM), which contradicts item (iii) of Theorem 3.5 and completes the

proof of the Theorem. □

Theorem 3.8. Let M be a totally umbilical K-normalized null hypersurface of a para-

Sasakian space form (M(c), ϕ,K, η, g). Then the umbilical factor k satisfies the partial dif-

ferential equation

ξ(k)− k2 − (c+ 1)

8
= 0. (3.57)

Moreover, if M is totally geodesic, then c = −1.

Setting X =W = ξ in (2.18) together with the fact that η(ξ) = 1, we have

g(R(ξ, Y )Z, ξ) =
(c+ 1)

4

{
− g(Y,Z) + 3µ(Z)µ(Y )

}
. (3.58)

From (2.11)-(2.5), it is worth noting that

(∇XB)(Y, Z) = XB(Y,Z)−B(∇XY,Z)−B(∇XZ, Y )

= X(k)g(Y,Z) + kXg(Y,Z)− kg(∇XY, Z)− kg(∇XZ, Y )

= X(k)g(Y,Z) + k(∇Xg)(Y,Z)

= X(k)g(Y,Z) + k2{g(X,Y )η(Z) + g(X,Z)η(Y )}.
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This leads to

(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)

= {X(k)− k2η(X) + kτ(X)}g(Y,Z)− {Y (k)− k2η(Y ) + kη(Y )}g(X,Z).

Replacing X by ξ in this equation and using (2.7) and (3.58), we have

(c+ 1)

4

{
− g(PY, PZ) + 3µ(PZ)µ(PX)

}
= g(PY, PZ)

{
ξ(k)− k2 + kτ(ξ)

}
.

Choosing PX = PZ = U ∈ S (ζ) together with the fact that µ(U) = g(U,U) = 1 and

τ(ξ) = 0, the previous equation becomes

ξ(k)− k2 − (c+ 1)

8
= 0.

Which gives item (3.57). Setting k = 0 in this equation, we have c = −1, which completes

the proof.

Theorem 3.9. There is no K-normalized null hypersurface of para-Sasakian space form

M(c)(c ̸= −1) such that the second fundamental form B is parallel.

Proof. From (2.7) and (3.58), we have

(c+ 1)

4

{
− g(Y,Z) + 3µ(Z)µ(Y )

}
= (∇ξB)(Y, Z)− (∇YB)(ξ, Z) + τ(ξ)B(Y,Z).

Being B parallel, choosing PY = PZ = U ∈ S (ζ) together with the fact that τ(ξ) = 0,

µ(U) = 1 = g(U,U), the previous equation becomes (−c−1)
8 = 0, that is c = −1, which is a

contradiction. Hence, the claim holds. □

4. K-Normalized null hypersurfaces with certain symmetries

This section deals with locally symmetric and semi-symmetric K-normalized null hyper-

surfaces of para-Sasakian space forms.

We say that a null hypersurface M is locally symmetric [5], if the following holds

(∇WR)(X,Y )Z = 0 ∀X,Y, Z,W ∈ Γ(TM).
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Using Lemma 3.2 in [5], ∀X,Y, Z,W T ∈ S (ζ), we have,

g((∇WR)(X,Y )Z, T ) = g((∇WR)(X,Y )Z, T ) + (∇WB)(X,Z)C(Y, T )

+B(X,Z)g((∇WAN )Y, T )− (∇WB)(Y, Z)C(X,T )

−B(Y,Z)g((∇WAN )X,T )−B(Y,Z)τ(X)C(W,T )

+ (∇YB)(X,Z)C(W,T )− (∇XB)(Y,Z)C(W,T ), (4.59)

and

g((∇WR)(X,Y )Z,N) = g((∇WR)(X,Y )Z,N) +B(X,Z)g((∇W (ANY ), N)

−B(Y,Z)g((∇W (ANX), N)−B(W,X)R(N,Y, Z,N)

−B(W,Y )R(X,N,Z,N). (4.60)

Lemma 4.1. Let M(c) be a para-Sasakian space form and R the Riemannian curvature

tensor of Levi-Civita connection ∇. Then we have for any X,Y, Z,W ∈ Γ(TM),

(∇WR)(X,Y )Z =
c+ 1

4


g(Y,Z)g(X,ϕW )ζ − g(X,Z)g(Y, ϕW )ζ + g(Y, Z)η(X)ϕW

−g(X,Z)η(Y )ϕW + g(Y, ϕW )η(Z)X − g(X,ϕW )η(Z)Y

+g(Z, ϕW )η(Y )X − g(Z, ϕW )η(X)Y

 .

(4.61)

Proof. Proof of the Lemma 4.1 here [9]. □

The following result is a transversal version of Theorem 4.2 of [9], where it was assumed

that the structure vector field is tangent to the null hypersurface.

Theorem 4.1. Let M be K-normalized null hypersurfaces of a para-Sasakian space form

M(c). If M is locally symmetric, then c = −1. If c = −1, then M is locally symmetric if

and only if it is totally geodesic.

Proof. Let M(c) be a para-Sasakian space form and M a locally symmetric K-normalized

null hypersurface of M(c). From (4.61), we have

g((∇WR)(ξ, Y )ξ,N) =
c+ 1

4
g(Y, ϕW ), ∀W ∈ Γ(TM) and Y ∈ S (ζ). (4.62)

From (2.18), we have

g(R(ξ,N)ξ,N)
(3.24)−(3.26)

=
c− 3

4
− (c+ 1)

4
= −1. (4.63)
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By taking X = ξ and Z = ξ in (4.60) and using (4.63)-(4.62), we obtain

B(W,Y ) =
c+ 1

4
g(Y, ϕW ), (4.64)

for any W ∈ Γ(TM) and Y ∈ S (ζ).

Taking Y = U and W = ξ in this equation together with the fact that g(U,U) = 1, we

have c = −1. Hence, the first claim holds. Now, let (M, ζ) K-normalized in M(c) with

c = −1. If M is locally symmetric, we get B = 0, due to (4.64). Conversely if (M, ζ) is

totally geodesic, using (4.59), (4.60) and (3.48), we get

g((∇WR)(X,Y )Z,PT ) = 0 and g((∇WR)(X,Y )Z,N) = 0.

Which completes the proof. □

Definition 4.1. [10] We say that M is semi-symmetric if R satisfies R(X,Y )R = 0 ∀X,Y ∈

Γ(TM), where R(X,Y ) operates on R as a derivation of the tensor algebra at each point.

Theorem 4.2. Let (M,ϕ,K, η, g) be a para-Sasakian manifold and M be a totally geodesic

K-normalized null hypersurface of M . If M is semi-symmetric, then M is of constant neg-

ative curvature along the null hypersurface.

Proof. ∀X,Y, Z ∈ Γ(TM), we have

(∇ZR)(X,Y )U −R(X,Y )Z = ∇Z(R(X,Y )U)−R(∇ZX,Y )U −R(X,∇ZY )U

−R(X,Y )∇ZU −R(X,Y )Z. (4.65)

But, from (3.56), we have

∇ZR(X,Y )U = ∇Z(τ(Y )X)−∇Z(τ(X)Y ) (4.66)

= (Z · τ(Y ))X + τ(Y )∇ZX − (Z · τ(X))Y − τ(X)∇ZY

(3.39)
= −µ(∇ZY )X + g(Z, Y )X − τ(Z)τ(Y )X + τ(Y )∇ZX

+ µ(∇ZX)Y − g(Z,X)Y + τ(Z)τ(X)Y − τ(X)∇ZY

−R(∇ZX,Y )U −R(X,Y )∇ZU
(3.56)
= −τ(Y )∇ZX + τ(∇ZX)Y − τ(∇ZY )X + τ(X)∇ZY

−R(X,Y )∇ZU −R(X,Y )Z
(3.39)
= +R(X,Y )Z + τ(Z)τ(Y )X − τ(Z)τ(X)Y −R(X,Y )Z.

Substituting the above equations in (4.65), we have

(∇ZR)(X,Y )U −R(X,Y )Z = g(Y,Z)X − g(X,Z)Y. (4.67)
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Setting Z = U in (4.67) and using (3.56), we get ∀X,Y ∈ Γ(TM)

(∇UR)(X,Y )U = R(X,Y )U + g(Y,U)X − g(X,U)Y
(3.23)−(3.39)

= 0.

(4.68)

Next, ∀X,Y, Z,W ∈ Γ(TM)

0
(3.56)
= (R(W,Z)R)(X,Y )U = R(W,Z)R(X,Y )U −R(X,Y )R(W,Z)U

−R(R(W,Z)X,Y )U −R(X,R(W,Z)Y )U

= τ(Y )R(W,Z)X − τ(X)R(W,Z)Y − τ(Z)R(X,Y )W + τ(W )R(X,Y )Z

− τ(Y )R(W,Z)X + τ(R(W,Z)X)Y − τ(R(W,Z)Y )X + τ(X)R(W,Z)Y

= −τ(Z)R(X,Y )W + τ(W )R(X,Y )Z + τ(R(W,Z)X)Y − τ(R(W,Z)Y )X

(2.8)
= −τ(Z)R(X,Y )W + τ(W )R(X,Y )Z + g(R(W,Z)U,X)Y − g(R(W,Z)U, Y )X

(3.43)
= τ(W ){g(Z, Y )X − g(Z,X)Y +R(X,Y )Z}

−τ(Z){g(W,Y )X − g(W,X)Y +R(X,Y )W}

(4.65)
= τ(W )(∇WR)(X,Y )U − τ(Z)(∇ZR)(X,Y )U. (4.69)

Setting W = U in (4.69) and using (4.68), we have (∇ZR)(X,Y )U = 0. From this and

(4.67), we have R(X,Y )Z = −g(Y, Z)X + g(X,Z)Y , for all X,Y, Z ∈ Γ(TM). From this to-

gether with (2.7) and (2.8), we have g(R(X,Y )Z,W ) = −{g(Y,Z)g(X,W )−g(X,Z)g(Y,W )}

for all X,Y, Z,W ∈ Γ(TM). Which completes the proof. □
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[1] Acet, B. E., Perktaş, S. Y., & Kılıç, E. (2014). On Lightlike Geometry of Para-Sasakian Manifolds. The

Scientific World Journal, 2014(1), 696231.
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[5] Güneş, R., Sahin, B., & Kiliç, E. (2003). On lightlike hypersurfaces of semi-Riemannian space. Turkish

J. Math, 27, 283-297.

[6] Gutiérrez, M., & Olea, B. (2016). Induced Riemannian structures on null hypersurfaces. Mathematische

Nachrichten, 289, 1219–1236.

[7] Kaneyuki, S., & Kozai, M. (1985). Paracomplex structures and affine symmetric spaces. Tokyo Journal

of Mathematics, 8,81–98.

[8] Ngakeu, F., Djomako, A. C., & Ndombol, B. (2019). Rigged null hypersurfaces in almost paracontact

metric manifolds. Gulf Journal of Mathematics, 7(2).

[9] Perktas, S. Y., Kilic, E., & Acet, B. E. (2014). Lightlike hypersurfaces of a para-Sasakian space form.

Gulf Journal of Mathematics, 2(2).
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