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INEXTENSIBLE FLOWS OF CURVES WITH QUASI-FRAME IN

3-DIMENSIONAL GALILEAN SPACE G3
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Abstract. In this study we research inextensible flows of curves in 3-dimensional Galilean

space G3 with a new aspect. For this research we use a new adapted frame which called

quasi-frame in 3-dimensional Galilean space G3. From this perspective, inextensible curve

flows are examined with the help of this frame then important characterizations and results

are obtained.
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1. Introduction

The theory of curves is one of the most intriguing and thoroughly studied topics in differen-

tial geometry. Additionally, curve flows, which determine the evolution of curves or surfaces,

are crucial to this theory. In this case, the curve’s flow can be used to analyze the change in

the curve. It is argued that a curve has an inextensible flow if the arc length is preserved. In

addition to structural mechanics [19], computer vision [9, 14], and computer animation [3]

all use the inextensible flows of curves and surfaces. The techniques researched in this paper

are produced by Gage and Hamilton [7] and Grayson [8]. Kwon and Park offered a thorough

description of the differences between heat flows and inextensible flows of planar curves [12].

Furthermore, in R3, Kwon et al. reveals a general formulation for developable surfaces and
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inextensible flows of curves [11]. Latifi and Razavi examined inextensible flows of curves in

Minkowski 3-space [13]. Inextensible flows of curves were analyzed by Ögrenmis and Yen-

eroğlu [15] in the three-dimensional Galilean space G3 and by Öztekin and Gün Bozok [16]

in the four-dimensional Galilean space.

In the literature, computations have often been performed using the Frenet frame. Never-

theless, in certain situations, the Frenet frame has drawbacks. For instance, it is impossible

to define the Frenet frame when the second derivative is zero. An alternative frame can

therefore be defined in this situation. The frame known as quasi frame or q-frame is one of

these alternative frames. Using the quasi-normal vector established by Coquillart in 1987 [1],

a q-frame was obtained. This frame’s principal concept is that the projection and tangent

vectors are multiplied to obtain the vector known as the quasi-normal vector. Using a quasi-

normal vector along a space curve, Dede et al. defined a new frame known as the q-frame [2].

With the help of these definitions, the quasi frame has been examined for different curves in

many different spaces [5, 6, 10, 18].

In this research paper, with the help of the quasi frame inextensible flows of curves are

researched in 3-dimensional Galilean space G3. In this regards, new characterizations and

important results have been obtained for inextensible curve flows.

2. Preliminaries

The Galilean space is one of the Cayley-Klein spaces with the projective metric with the

signature (0,0,+,+). In 3-dimensional Galilean space denoted as G3 the scalar product is

descripted by

⟨w1, w2⟩ =

 x1x2 , if x1 ̸= 0 ∨ x2 ̸= 0

y1y2 + z1z2 , if x1 = 0 ∧ x2 = 0
(2.1)

where w1 = (x1, y1, z1) and w2 = (x2, y2, z2) . Consideringly for a vector w = (x, y, z) the

Galilean norm can be expressed by

∥w∥ =

 x , if x ̸= 0√
y2 + z2 , if x = 0

. (2.2)

For an admissible curve C of the class Cr (r ≥ 3) in G3 the following characterization can

be defined

r = r (s, y (s) , z (s)) , (2.3)
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here s is the arc length on C. Also for this curve the curvature and torsion can be represented

as

κ (s) =
√
y′′2 + z′′2 and τ (s) =

1

κ2 (s)
det

(
r′ (s) , r′′ (s) , r′′′ (s)

)
. (2.4)

The orthonormal trihedron is expressed by

T (s) =
(
1, y′ (s) , z′ (s)

)
,

N (s) =
1

κ (s)

(
0, y′′ (s) , z′′ (s)

)
, (2.5)

B (s) =
1

κ (s)

(
0,−z′′ (s) , y′′ (s)

)
,

where t, n, b are the tangent, principal normal and binormal vectors, respectively. Moreover,

the Frenet formulas can be given by,

T ′ (s) = κ (s)N (s) ,

N ′ (s) = τ (s)B (s) , (2.6)

B′ (s) = −τ (s)N (s) .

For detailed information about Galilean space we refer to [20, 17].

In 3-dimensional Galilean space the quasi-frame, which is crucial to a variety of geometric

computations is derived from Frenet-Serret frame of the curve and can be described by

{T (s), Nq(s), Bq(s)} as;

T =
α′

∥α′∥
, Nq =

T × z

∥T × z∥
, Bq = T ×Nq, (2.7)

where z is the projection vector given by either (1, 0, 0), (0, 1, 0) or (0, 0, 1) . The parallelism

respect to unit tangent vector T determines the choice of the projection vector z. Here it is

selected z = (1, 0, 0). Let θ(s) is an angle between N and Nq then the quasi-frame, known

as {T (s), Nq(s), Bq(s)} can be written

Nq = cos θN + sin θB, (2.8)

Bq = − sin θN + cos θB, (2.9)

and

N = cos θNq − sin θBq, (2.10)

B = sin θNq + cos θBq. (2.11)
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Also using the equations (2.6) and (2.10), it is obtained that

T ′ = κN = κ cos θNq − κ sin θBq. (2.12)

By using the replacement K1 = κ cos θ and K2 = κ sin θ, the following equation can be found,

T ′ = K1Nq −K2Bq. (2.13)

In the same way considering the equations (2.8) and (2.9), it is determined that

N ′
q = K3Bq, B′

q = −K3Nq, (2.14)

where θ′ + τ = K3. Therefore, the quasi-formulas are given by

T ′ = K1Nq −K2Bq,

N ′
q = K3Bq, (2.15)

B′
q = −K3Nq.

Consequently the quasi-curvatures K1, K2 and K3 can be represented as

K1 = κ cos θ, K2 = κ sin θ, K3 = θ′ + τ, (2.16)

where κ, τ are curvature and torsion, respectively [4].

Corollary 2.1. Let α(s) be a curve in G3. The quasi-curvatures K1, K2 and K3 can be

given, respectively, by [4]

K1 = g(T ′, Nq),K2 = −g(T ′, Bq),K3 = g(N ′
q, Bq) = −g(B′

q, Nq). (2.17)

Corollary 2.2. The quasi-frame in the value of G3, is a generalization of the Frenet frame.

To be more precise, the quasi-frame and the Frenet frame are equal when K2 equals zero [4].

Example 2.1. Let β : I −→ G3 be a curve defined as

β(s) = (s, sin 3s, cos 3s) .

Then the quasi frame of β is

T = (1, 3 cos 3s,−3 sin 3s) ,

Nq = (0,− sin 3s,− cos 3s) ,

Bq = (0, cos 3s,− sin 3s) ,

and quasi-curvatures are

K1 = 9 K2 = 0 K3 = −3.
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3. Inextensible Flows of Curves according to Quasi-Frame in G3

According to this research, β : [0, l]× [0, w) −→ G3 is considered as a one parameter family

of smooth curves in 3-dimensional Galilean space G3 where l is the arc length of the initial

curve. Moreover, u is the curve parameterization variable where 0 ≤ u ≤ l. If the speed of

the curve β is denoted as v =

∣∣∣∣∂β∂u
∣∣∣∣, then the arc length of β can be represented as

s (u) =

∫ u

0

∣∣∣∣∂β∂u
∣∣∣∣ du , (3.18)

and
∂

∂s
can be expressed by

∂

∂s
=

1

v

∂

∂u
,

here the arc length parameter is ds = vdu. For any flow in G3 the following equation can be

written

∂β

∂t
= f1T + f2Nq + f3Bq, (3.19)

where {T,Nq, Bq} is quasi-frame in G3. The arc length variation is given by

s (u, t) =

∫ u

0
vdu .

In G3, the requirement that the curve not be subject to either elongation or compression can

be given as the following condition

∂

∂t
s (u, t) =

∫ u

0

∂v

∂t
du = 0 , (3.20)

for u ∈ [0, l] [15].

Definition 3.1. A curve evolution β (u, t) and its flow
∂β

∂t
in G3 are called inextensible if

the following equation is satisfied [15],

∂

∂t

∣∣∣∣∂β∂u
∣∣∣∣ = 0.

Lemma 3.1. Let
∂β

∂t
= f1T +f2Nq+f3Bq be a smooth flow of the curve β where {T,Nq, Bq}

is a quasi-frame in G3. The flow is inextensible then

∂v

∂t
=
∂f1
∂u

. (3.21)

Proof. Let
∂β

∂t
be a smooth flow of the curve β in G3. Using the definition of β, we reach

v2 =

〈
∂β

∂u
,
∂β

∂u

〉
. (3.22)



INT. J. MAPS MATH. (2025) 8(1):150-159 / INEXTENSIBLE FLOWS OF CURVES ... 155

Since
∂

∂u
and

∂

∂t
are commute, we get

v
∂v

∂t
=

〈
∂β

∂u
,
∂

∂u
(f1T + f2Nq + f3Bq)

〉
. (3.23)

Substituting (2.15) in (3.23) we reach

∂v

∂t
=

〈
T,

(
∂f1
∂u

)
T +

(
∂f2
∂u

+ f1vK1 − f3vK3

)
Nq

+

(
∂f3
∂u

− f1vK2 + f2vK3

)
Bq

〉
.

If necessary calculations are done then the equation (3.21) can be obtained easily. □

Theorem 3.1. Let
∂β

∂t
= f1T + f2Nq + f3Bq be a smooth flow of the curve β in G3. The

flow is inextensible if and only if

∂f1
∂s

= 0. (3.24)

Proof. Considering the equations (3.20) and (3.21) we have

∂

∂t
s (u, t) =

∫ u

0

∂v

∂t
du =

∫ u

0

∂f1
∂u

= 0. (3.25)

The proof can be finished by reversing the argument to demonstrate sufficiency. Therefore,

the desired result is obtained. □

We now limit ourselves to parametrized curves with arc length. In other words, v = 1 and

the local coordinate u corresponds to s which is the arc length of the curve. Therefore the

following lemma can be given;

Lemma 3.2. Let
∂β

∂t
= f1T + f2Nq + f3Bq be a smooth flow of the curve β in G3. If the

flow is inextensible then,

∂T

∂t
=

(
∂f2
∂s

+ f1K1 − f3K3

)
Nq +

(
∂f3
∂s

+ f2K3 − f1K2

)
Bq,

∂Nq

∂t
= ψBq, (3.26)

∂Bq

∂t
= −ψNq,

where ψ =
〈
∂Nq

∂t , Bq

〉
.

Proof. Since
∂

∂t
and

∂

∂s
are commute we get

∂T

∂t
=

∂

∂t

∂β

∂s
=

∂

∂s
(f1T + f2Nq + f3Bq) .
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Thus, it can be seen that

∂T

∂t
=

(
∂f1
∂s

)
T +

(
∂f2
∂s

+ f1K1 − f3K3

)
Nq

+

(
∂f3
∂s

+ f2K3 − f1K2

)
Bq. (3.27)

Substitute the equation (3.24) in (3.27), we find

∂T

∂t
=

(
∂f2
∂s

+ f1K1 − f3K3

)
Nq +

(
∂f3
∂s

+ f2K3 − f1K2

)
Bq.

Let us differentiate the quasi-frame with respect to t as

0 =
∂

∂t
⟨T,Nq⟩ =

(
∂f2
∂s

+ f1K1 − f3K3

)
+

〈
T,
∂Nq

∂t

〉
,

0 =
∂

∂t
⟨T,Bq⟩ =

(
∂f3
∂s

+ f2K3 − f1K2

)
+

〈
T,
∂Bq

∂t

〉
,

0 =
∂

∂t
⟨Nq, Bq⟩ =

〈
∂Nq

∂t
,Bq

〉
+

〈
Nq,

∂Bq

∂t

〉
.

Considering the above equation and the following equations〈
∂Nq

∂t
,Nq

〉
=

〈
∂Bq

∂t
,Bq

〉
= 0,

then, we obtain

∂Nq

∂t
= ψBq,

∂Bq

∂t
= −ψNq,

where ψ =
〈
∂Nq

∂t , Bq

〉
. □

Theorem 3.2. Let
∂β

∂t
= f1T + f2Nq + f3Bq be a smooth flow of the curve β in G3. If the

flow is inextensible, the following partial differential equation holds:

∂K1

∂t
=

∂

∂s

(
∂f2
∂s

+ f1K1 − f3K3

)
−
(
∂f3
∂s

+ f2K3 − f1K2

)
K3 −K2ψ,

∂K2

∂t
= K1ψ − ∂

∂s

(
∂f3
∂s

+ f2K3 − f1K2

)
K3 −

(
∂f2
∂s

+ f1K1 − f3K3

)
K3,

∂K3

∂t
=

∂ψ

∂s
,

where ψ =
〈
∂Nq

∂t , Bq

〉
.
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Proof.

∂

∂s

∂T

∂t
=

∂

∂s

[(
∂f2
∂s

+ f1K1 − f3K3

)
Nq +

(
∂f3
∂s

+ f2K3 − f1K2

)
Bq

]
,

=
∂

∂s

[(
∂f2
∂s

+ f1K1 − f3K3

)]
Nq +

(
∂f2
∂s

+ f1K1 − f3K3

)
K3Bq

+
∂

∂s

[(
∂f3
∂s

+ f2K3 − f1K2

)]
Bq

−
(
∂f3
∂s

+ f2K3 − f1K2

)
K3Nq. (3.28)

Also, we have

∂

∂t

∂T

∂s
=

∂

∂t
(K1Nq −K2Bq) , (3.29)

=
∂K1

∂t
Nq +K1ψBq −

∂K2

∂t
Bq +K2ψNq,

where ψ =
〈
∂Nq

∂t , Bq

〉
. Hence from (3.28) and (3.29), we get

∂K1

∂t
=

∂

∂s

(
∂f2
∂s

+ f1K1 − f3K3

)
−
(
∂f3
∂s

+ f2K3 − f1K2

)
K3 −K2ψ,

∂K2

∂t
= K1ψ − ∂

∂s

(
∂f3
∂s

+ f2K3 − f1K2

)
−
(
∂f2
∂s

+ f1K1 − f3K3

)
K3.

Also,

∂

∂s

∂Nq

∂t
=

∂

∂s
(ψBq)

=
∂ψ

∂s
Bq −K3ψNq. (3.30)

Also, we have

∂

∂t

∂Nq

∂s
=

∂

∂t
(K3Bq)

=
∂K3

∂t
Bq −K3ψNq. (3.31)

Hence from (3.30) and (3.31), we get

∂K3

∂t
=
∂ψ

∂s
. (3.32)

□
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