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Abstract. In this paper, we introduce the notion of rough I-statistical convergence of

complex uncertain sequences in four aspects of uncertainty, viz., almost surely, measure,

mean, distribution as an extension of rough convergence, rough statistical convergence, and

rough I-convergence of complex uncertain sequences. Also, we explore the concept of rough

I-statistical convergence in p-distance, and rough I-statistical convergence in metric of com-

plex uncertain sequences. Overall, this study mainly presents a diagrammatic scenario of

interrelationships among all rough I-statistical convergence concepts of complex uncertain

sequences and include some observations about the above convergence concepts.
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1. Introduction

The idea of the convergence of a sequence of real numbers has been extended to statistical

convergence independently by Fast [12] and Steinhaus [30]. Later, it was studied by Fridy [13]

and many other researchers. A sequence (xm) is said to be statistically convergent to ℓ

provided that for each ε > 0 such that

lim
m→∞

1
m |{k ≤ m : |xk − ℓ| ≥ ε}| = 0, m ∈ N.

The concept of I-convergence was introduced by Kostyrko et al. [20] as a generalization
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of statistical convergence. The idea of I-convergence was further extended to I-statistical

convergence by Savas and Das [27]. Later on, more investigation in this direction can be

found in the works of [11,15,28].

The idea of rough convergence was first introduced by Phu [23] in finite-dimensional

normed spaces. A sequence (xm) is said to be rough convergent to ℓ provided that for

each ε > 0 ∃ mε ∈ N such that

|xm − ℓ| < r + ε for all m ≥ mε,

where r is a non-negative real number and called roughness degree. After that, Dündar and

Çakan [10] introduced the notion of rough I-convergence of sequence. The concept of rough

I-statistical convergence of sequences was introduced by Savaş et al. [29] in the year 2018.

On the other hand, in 2007, Liu [21] introduced a theory named uncertainty theory, in-

cluding different types of convergence of uncertain sequences and identifying the relationships

among various forms of convergence, such as convergence in measure, distribution, mean, and

convergence a.s. Then the concept has been extended to the c.u.v.s by Peng [22]. After that,

Chen et al. [2] subsequently studied the idea of convergence of c.u.s.s using c.u.v.s. In 2017,

Tripathy and Nath [31] proposed the idea of statistical convergence of c.u.s.s in the context of

uncertainty theory. After that, Debnath and Das [6,7] introduced the notion of rough conver-

gence and rough statistical convergence of c.u.s.s, and this field has also seen a lot of exciting

changes; for details, see [1, 3–5, 9, 14, 16, 17, 19, 24–26]. The concept of rough I-convergence

of complex uncertain sequences was recently introduced by Debnath and Halder [8].

Inspired by the above works, in this paper we introduce the notion of rough I-statistical

convergence of c.u.s.s in four aspects of uncertainty, viz., a.s., measure, mean, and distribu-

tion. We also explore the concepts of rough I-statistical convergence in p-distance, and rough

I-statistical convergence in metric of c.u.s.s. Finally, we try to establish the relationship

among all rough I-statistical convergence concepts of c.u.s.s with an attached diagramatic

section.

2. Definitions and Preliminaries

In this section, we provide some basic ideas and results on generalized convergence concepts

and the theory of uncertainty that will be used throughout the article.

Definition 2.1. [20] Consider a non-empty set S. An ideal on S is defined as a family of

subsets I that satisfies the following conditions:

(i) The empty set, ϕ, belongs to I.
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(ii) For any U, V ∈ I, the union of U and V , denoted as U ∪ V , is also in I.

(iii) For any U ∈ I and any subset V ⊂ U , V is a member of I.

An ideal I is called non-trivial if I ̸= {Φ} and S /∈ I.

A non-trivial ideal I is called an admissible ideal in S if and only if {{s} : s ∈ S} ⊂ I.

Example 2.1. (i) If := The set of all finite subsets of N forms a non-trivial admissible

ideal.

(ii) Id := The set of all subsets of N whose natural density is zero forms a non-trivial

admissible ideal.

Definition 2.2. [20] A sequence (xm) is said to be I-convergent to ℓ, if for every ε > 0,

the set {m ∈ N : |xm − ℓ| ≥ ε} ∈ I.

The usual convergence of sequences is a special case of I-convergence (I=If -the ideal of

all finite subsets of N). The statistical convergence of sequences is also a special case of

I-convergence. In this case, I=Id =
{
A ⊆ N : lim

m→∞
|A∩{1,2,··· ,m}|

m = 0
}
, where |A| is the

cardinality of the set A.

Definition 2.3. [29] A sequence (xm) is said to be rough I-statistically convergent to ℓ ∈ R,

if for every δ, υ > 0,{
m ∈ N :

1

m
|{k ≤ m : |xk − ℓ| ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree. For r = 0, rough I-statistical convergence coincides with

I-statistical convergence.

Definition 2.4. [21] Let P be a σ-algebra on a non-empty set Υ. If the set function X on

Υ satisfies the following axioms, it is referred to be an uncertain measure:

• The first axiom, which deals with normality, is X{Υ} = 1;

• The second, which deals with duality, is X{Ξ}+ X{Ξc} = 1 for any Ξ ∈ P;

• The third, which deals with subadditivity is for every countable sequence of {Ξm} ∈ P,

X{
∞⋃

m=1
Ξm} ≤

∞∑
m=1

X{Ξm}.

An u.s. is denoted by the triplet (Υ,P,X ), and an event is denoted by each member Ξ in

P.

Definition 2.5. [21] A c.u.v. is represented by a variable ζ in the uncertainty space

(Υ,P,X ) if and only if both its real part ξ and imaginary part η are uncertain variables.
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Here, ξ and η correspond to the real and imaginary components of the complex variable

ζ = ξ + iη, respectively.

Definition 2.6. [22] Let ζ = ξ+iη be a c.u.v., where ξ is the real part and η is the imaginary

part of ζ. Then the complex uncertainty distribution of ζ is denoted by Ψ : C → [0, 1] and is

defined by Ψ(z) = X {ξ ≤ s, η ≤ t} for any complex number z = s+ it.

Definition 2.7. [22] Let ζ = ξ + iη be a c.u.v. If the expected value of ξ and η i.e., E[ξ]

and E[η] exists, then the expected value of ζ is defined by

E[ζ] = E[ξ] + iE[η].

Definition 2.8. [25] Let ζ and ζ∗ be two c.u.v.s. Then the p-distance between them is

defined as

dp (ζ, ζ
∗) = (E [∥ζ − ζ∗∥p])

1
p+1 , p > 0.

Definition 2.9. [26] A c.u.s. sequence (ζm) is considered statistically convergent in p-

distance to ζ if

lim
m→∞

1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1

p+1 ≥ ε
}∣∣∣ = 0 for every ε > 0.

Definition 2.10. [4] Let ζ and ζ∗ be two c.u.v.s, then the metric between them is defined

as follows

D (ζ, ζ∗) = inf {t : X {∥ζ − ζ∗∥ ≤ t} = 1} .

Definition 2.11. [4] If the condition lim
m→∞

D (ζm, ζ) = 0 is hold for a c.u.s. (ζm), then (ζm)

is called convergent in metric to ζ.

Definition 2.12. [8] A c.u.s. (ζm) is considered to be rough I-convergent a.s. to ζ if for

every small positive value δ, and for any event Ξ where X{Ξ} = 1 we have the following

condition satisfied for every element ϱ ∈ Ξ:

{m ∈ N : ∥ζm(ϱ)− ζ(ϱ)∥ ≥ r + δ} ∈ I,

where r is called roughness degree.

Definition 2.13. [8] A c.u.s. (ζm) is considered to be rough I-convergent in measure to ζ

if, for every given small positive values ε and δ, there exists a set satisfying the condition

{m ∈ N : X (∥ζm − ζ∥ ≥ ε) ≥ r + δ} ∈ I,

where r is called roughness degree.
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Definition 2.14. [8] Let Ψ,Ψ1,Ψ2, · · · denote the complex uncertainty distributions of

c.u.v.s ζ, ζ1, ζ2, · · · , respectively. The c.u.s. (ζm) is called rough I-convergent in distribution

to ζ if, for every small positive values δ, there exists a set satisfying the condition:

{m ∈ N : ∥Ψm(z)−Ψ(z)∥ ≥ r + δ} ∈ I,

where r is called roughness degree and for all z at which Ψ(z) is continuous.

Definition 2.15. [8] A c.u.s. (ζm) is considered to be rough I-convergent in mean to ζ if,

for every given small positive values δ, there exists a set satisfying the condition

{m ∈ N : E [∥ζm − ζ∥] ≥ r + δ} ∈ I,

where r is called roughness degree.

In this article, we assume that I to be a non-trivial admissible ideal of N and r as a

non-negative real number .

3. Main Results

Definition 3.1. A c.u.s. (ζm) is considered to be rough I-statistically convergent a.s. to ζ

if, for every small positive value δ and υ, and for any event Ξ where X{Ξ} = 1 we have the

following condition satisfied for every element ϱ ∈ Ξ:{
m ∈ N :

1

m
|{k ≤ m : ∥ζk(ϱ)− ζ(ϱ)∥ ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree. If we take r = 0 we obtain the notion of I-statistical

convergence a.s. of c.u.s. which was introduced by Halder and Debnath [14].

Definition 3.2. A c.u.s. (ζm) is considered to be rough I-statistically convergent in measure

to ζ if, for every given small positive values ε, δ and υ, there exists a set satisfying the

condition {
m ∈ N :

1

m
|{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree.

Definition 3.3. A c.u.s. (ζm) is considered to be rough I-statistically convergent in mean to

ζ if, for every given small positive values δ, and υ, there exists a set satisfying the condition{
m ∈ N :

1

m
|{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree.
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Definition 3.4. Let Ψ,Ψ1,Ψ2, · · · denote the complex uncertainty distributions of c.u.v.s

ζ, ζ1, ζ2, · · · , respectively. The c.u.s. (ζm) is called rough I-statistically convergent in dis-

tribution to ζ if, for every small positive values δ and υ, there exists a set satisfying the

condition: {
m ∈ N :

1

m
|{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree and for all z at which Ψ(z) is continuous.

Theorem 3.1. The c.u.s. (ζm) where ζm = ξm + iηm is rough I-statistically convergent

in measure to ζ = ξ + iη if and only if the uncertain sequence (ξm) and (ηm) are rough

I-statistically convergent in measure to ξ and η, respectively.

Proof. Omitted, since it can be established using standard technique. □

Theorem 3.2. If a c.u.s. (ζm) is rough I-statistically convergent in mean to ζ, then it is

rough I-statistically convergent in measure to ζ.

Proof. The proof follows from the following Markov inequality. □

Remark 3.1. However, the reverse of the above theorem does not hold in general.

Example 3.1. Consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2, · · · } with power set and X{Υ} = 1,

X{Φ} = 0 and

X{Ξ} =



sup
ϱm∈Ξ

m
(2m+1) , if sup

ϱm∈Ξ

m
(2m+1) <

1
2

1− sup
ϱm∈Ξc

m
(2m+1) , if sup

ϱm∈Ξc

m
(2m+1) <

1
2

1
2 , otherwise

for m = 1, 2, 3, · · ·

Also, ζm(ϱ) (the c.u.v.s) are defined by

ζm(ϱ) =


im, if ϱ = ϱm

0, otherwise

for m = 1, 2, 3, · · ·

and ζ ≡ 0. Take I=Id.

For every ε, δ, υ > 0 and r ≥ 0 we have,{
m ∈ N : 1

m |{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m |{k ≤ m : X (ϱ : ∥ζk(ϱ)− ζ(ϱ)∥ ≥ ε) ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m |{k ≤ m : X{ϱk} ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m

∣∣∣{k ≤ m : k
2k+1 ≥ r + δ

}∣∣∣ ≥ υ
}
∈ I.

Thus the sequence (ζm) is rough I-statistically convergent in measure to ζ for r = 1
2 .

However, for each m, we have the complex uncertainty distributions of uncertain variable



352 S. DEBNATH AND A. HALDER

∥ζm − ζ∥ is

Ψm(t) =


0, if t < 0

1− m
2m+1 , if 0 ≤ t < m

1, if t ≥ m

for m = 1, 2, 3, · · · .

Now E [∥ζm − ζ∥] =
∫ +∞
0 (1−Ψm(t)) dt =

∫m
0

m
2m+1dt =

m2

2m+1 .

Consequently, for any given δ and υ both greater than zero, and r = 1
2 ,{

m ∈ N : 1
m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ

}
=

{
m ∈ N : 1

m

∣∣∣{k ≤ m : k2

2k+1 ≥ r + δ
}∣∣∣ ≥ υ

}
/∈ I.

Hence the sequence (ζm) is not rough I-statistically convergent in mean to ζ for r = 1
2 .

Theorem 3.3. Let (ξm) and (ηm) be the real and imaginary part of a c.u.s. (ζm) are

considered to be rough I-statistical convergence in measure to ξ and η respectively. then (ζm)

is rough I-statistically convergent in distribution to ζ = ξ + iη.

Proof. Let z = s + it be a continuous point of the complex uncertainty distribution Ψ. For

any α > s and β > t, we can express

{ξm ≤ s, ηm ≤ t} = {ξm ≤ s, ηm ≤ t, ξ ≤ α, η ≤ β} ∪ {ξm ≤ s, ηm ≤ t, ξ > α, η > β}

∪ {ξm ≤ s, ηm ≤ t, ξ ≤ α, η > β} ∪ {ξm ≤ s, ηm ≤ t, ξ > α, η ≤ β}

⊂ {ξ ≤ α, η ≤ β} ∪ {|ξm − ξ| ≥ α− s} ∪ {|ηm − η| ≥ β − t} .

By the subadditivity axiom, we can conclude that:

Ψm(z) = Ψm(s+ it) ≤ Ψ(α+ iβ) +X{|ξm − ξ| ≥ α− s}+X{|ηm − η| ≥ β − t}.

Since (ξm) and (ηm) are rough I-statistically convergent in measure to ξ and η respectively,

then it follows that for any given δ, υ and r ≥ 0, we can conclude that:

Ψm(z) = Ψm(s+ it) ≤ Ψ(α+ iβ) +X{|ξm − ξ| ≥ α− s}+X{|ηm − η| ≥ β − t}.

Since (ξm) and (ηm) are rough I-statistically convergent in measure to ξ and η respectively,

then it follows that for any given δ, υ and r ≥ 0, we can conclude that:{
m ∈ N : 1

m |{k ≤ m : X (|ξk − ξ| ≥ α− s) ≥ r + δ}| ≥ υ
}
∈ I

and
{
m ∈ N : 1

m |{k ≤ m : X (|ηk − η| ≥ β − t) ≥ r + δ}| ≥ υ
}
∈ I.

Then for any α > s, β > t and letting α+ iβ → s+ it, we have

∥Ψm(z)−Ψ(z)∥ ≤ X {|ξm − ξ| ≥ α− s}+ X {|ηm − η| ≥ β − t} .

Then for every δ > 0 and r ≥ 0,

{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}

⊆ {k ≤ m : X {|ξk − ξ| ≥ α− s} ≥ r + δ}

∪ {k ≤ m : X {|ηk − η| ≥ β − t} ≥ r + δ} .
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⇒ 1
m |{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}|

≤ 1
m |{k ≤ m : X {|ξk − ξ| ≥ α− s} ≥ r + δ}|

+ {k ≤ m : X {|ηk − η| ≥ β − t} ≥ r + δ} .

For every υ > 0,{
m ∈ N : 1

m |{k ≤ m : ∥Ψk(z)−Ψ(z)∥ ≥ r + δ}| ≥ υ
}

⊆
{
m ∈ N : 1

m |{k ≤ m : X {|ξk − ξ| ≥ α− s} ≥ r + δ}| ≥ υ
}

∪ {m ∈ N : {k ≤ m : X {|ηk − η| ≥ β − t} ≥ r + δ} ≥ υ} ∈ I.

Hence the c.u.s. (ζm) is rough I-statistically convergent in distribution to ζ. □

Remark 3.2. However, the reverse of the above theorem does not hold in general.

Example 3.2. Consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2} with X (ϱ1) = X (ϱ2) = 1
2 . We

define a c.u.v. as

ζ(ϱ) =


i, if ϱ = ϱ1,

−i, if ϱ = ϱ2.

We also define ζm = −ζ for m = 1, 2, · · · and take I=Id.

Then the sequence (ζm) and ζ have the same distribution as:

Ψm(z) = Ψm(s+ it) =



0, if s < 0,−∞ < t < +∞,

0, if s ≥ 0, t < −1,

1
2 , if s ≥ 0,−1 ≤ t < 1,

1, if s ≥ 0, t ≥ 1.

So the sequence (ζm) is rough I-statistically convergent in distribution to ζ.

However, for a given ε, δ, υ > 0 and r ≥ 0, we have{
m ∈ N :

1

m
|{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ

}
/∈ I.

Thus the sequence (ζm) is not rough I-statistically convergent in measure to ζ for r = 0.1.

Definition 3.5. A c.u.s. (ζm) is said to be rough I-statistically convergent in p-distance to

ζ if for every δ, υ > 0 such that{
m ∈ N :

1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1

p+1 ≥ r + δ
}∣∣∣ ≥ υ

}
∈ I,

where r is called roughness degree.

Theorem 3.4. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). Then (ζm) is considered

to be rough I-statistically convergent in measure to ζ if it is rough I-statistically convergent

in p-distance to ζ.
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Proof. Let the c.u.s. (ζm) be rough I-statistically convergent in p-distance to ζ, then for

every choice of δ and υ greater than zero, we obtain{
m ∈ N : 1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1

p+1 ≥ r + δ
}∣∣∣ ≥ υ

}
∈ I.

Then for any given ε, p > 0, we have

X (∥ζm − ζ∥ ≥ ε) ≤ E [∥ζm − ζ∥p]
εp

(Using Markov Inequality).

So for every δ > 0 and r ≥ 0,

{k ≤ m : X (∥ζk − ζ∥ ≥ ε} ≥ r + δ}

⊆
{
k ≤ m : (E [∥ζk − ζ∥p])

1
p+1 ≥ r′ + δ′

}
, where r′ + δ′ = [(r + δ) · εp]

1
p+1 .

For every υ > 0,{
m ∈ N : 1

m |{k ≤ m : X (∥ζk − ζ∥ ≥ ε) ≥ r + δ}| ≥ υ
}

⊆
{
m ∈ N : 1

m

∣∣∣{k ≤ m : (E [∥ζk − ζ∥p])
1

p+1 ≥ r′ + δ′
}∣∣∣ ≥ υ

}
∈ I.

Hence the sequence (ζm) is rough I-statistically convergent in measure to ζ. □

Remark 3.3. However, the reverse of the above theorem does not hold in general.

Example 3.3. Let N =
∞⋃
j=1

Dj, where Dj = {2j−1j∗ : 2 does not divide j∗, j∗ ∈ N} be the

decomposition of N such that each Dj is infinite and Dj ∩Dj∗ = Φ, for j ̸= j∗. Let I be the

class of all subsets of N that can intersect only finite number of Dj
′s. Then I is a non-trivial

admissible ideal of N (see for details in [20]).

Now we consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2, · · · } with power set and X{Υ} = 1,

X{Φ} = 0 and

X{Ξ} =



sup
ϱm∈Ξ

βm, if sup
ϱm∈Ξ

βm < 1
2

1− sup
ϱm∈Ξc

βm, if sup
ϱm∈Ξc

βm < 1
2

1
2 , otherwise

where βm = 1
j+1 , if m ∈ Dj for m = 1, 2, 3, · · · .

Also, the c.u.v.s are defined by

ζm(ϱ) =


i(m+ 1), if ϱ = ϱm

0, otherwise

for m = 1, 2, 3, · · ·

and ζ ≡ 0.

It can be shown that, the sequence (ζm) is rough I-statistically convergent in measure to ζ ≡ 0

but it is not rough I-statistically convergent in p-distance to ζ ≡ 0.
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Theorem 3.5. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). Then (ζm) is consid-

ered to be rough I-statistically convergent in distribution to ζ if it is rough I-statistically

convergent in p-distance to ζ.

Proof. If the sequence (ζk) exhibits rough I-statistically convergent in p-distance to ζ, then,

according to theorems 3.4 and 3.3, it also demonstrates rough I-statistically convergent in

distribution to the same limit ζ. □

Remark 3.4. However, the reverse of the above theorem does not hold in general.

Example 3.4. In example 3.3, the complex uncertainty distributions of (ζm) are

Ψm(z) = Ψm(s+ it) =



0, if s < 0, t < ∞

0, if s ≥ 0, t < 0

1− βm, if s ≥ 0, 0 ≤ t < (m+ 1)

1, if s ≥ 0, t ≥ (m+ 1)

for m = 1, 2, 3, · · ·

and the complex uncertainty distributions of ζ is

Ψ(z) = Ψ(s+ it) =


0, if s < 0, t < ∞

0, if s ≥ 0, t < 0

1, if s ≥ 0, t ≥ 0.

It can be shown that the c.u.s. (ζm) is rough I-statistically convergent in distribution to ζ ≡ 0

but it is not rough I-statistically convergent in p-distance to ζ ≡ 0.

Definition 3.6. A c.u.s. (ζm) is said to be rough I-statistically convergent in metric to ζ if

for every δ, υ > 0 such that{
m ∈ N :

1

m
|{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ

}
∈ I,

where r is called roughness degree.

Theorem 3.6. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). Then (ζm) is considered

to be rough I-statistically convergent in mean to ζ if it is rough I-statistically convergent in

metric to ζ.

Proof. Let the c.u.s. (ζm) be rough I-statistically convergent in metric to ζ, then for every

δ, υ > 0 and r ≥ 0 we have,{
m ∈ N :

1

m
|{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ

}
∈ I,
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where D (ζm, ζ) = inf {t : X {∥ζm − ζ∥ ≤ t} = 1} .

Let D (ζm, ζ) = q and Ψm(t) represent the complex uncertainty distributions of the uncertain

variable ∥ζm − ζ∥. Then, we have D (ζm, ζ) = inf {t : Ψm(t) = 1} .

Now for any positive number ℓ,

E [∥ζm − ζ∥] =
∫ +∞
0 (1−Ψm(t)) dt =

∫ q+ℓ
0 (1−Ψm(t)) dt+

∫ +∞
q+ℓ (1−Ψm(t)) dt

=
∫ q+ℓ
0 (1−Ψm(t)) dt < 1 · (q + ℓ) = q + ℓ

⇒ E [∥ζm − ζ∥] ≤ q ⇒ E [∥ζm − ζ∥] ≤ D (ζm, ζ) .

So for every δ > 0 and r ≥ 0,

{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ} ⊆ {k ≤ m : D (ζk, ζ) ≥ r + δ}

⇒ 1
m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≤ 1

m |{k ≤ m : D (ζk, ζ) ≥ r + δ}| .

Then for every υ > 0,{
m ∈ N : 1

m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ
}

⊆
{
m ∈ N : 1

m |{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ
}
∈ I.

Hence the sequence (ζm) is rough I-statistically convergent in mean to ζ. □

Remark 3.5. However, the reverse of the above theorem does not hold in general.

Example 3.5. Consider the u.s. (Υ,P,X ) to be {ϱ1, ϱ2, · · · } with power set and X{Υ} = 1,

X{Φ} = 0 and

X{Ξ} =



sup
ϱm∈Ξ

mβm

2m+1 , if sup
ϱm∈Ξ

mβm

2m+1 < 1
2

1− sup
ϱm∈Ξc

mβm

2m+1 , if sup
ϱm∈Ξc

mβm

2m+1 < 1
2

1
2 , otherwise

where βm =


1, if m = k2, k ∈ N

0, otherwise

for m = 1, 2, 3, · · · .

Also, the c.u.v.s are defined by

ζm(ϱ) =


i(m+ 1), if ϱ = ϱm

0, otherwise

for m = 1, 2, 3, · · ·

and ζ ≡ 0. Take I=Id.

The complex uncertainty distributions associated with the uncertain variable ∥ζm − ζ∥ is

Ψm(t) =


0, if t < 0

1− mβm

2m+1 , if 0 ≤ t < (m+ 1)

1, if t ≥ (m+ 1)

for m = 1, 2, 3, · · · .
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Now E [∥ζm − ζ∥] =
∫ +∞
0 (1−Ψm(t)) dt =

∫ (m+1)
0

mβm

2m+1dt =
m(m+1)βm

2m+1 .

Then for every δ, υ > 0 and r ≥ 0, we have{
m ∈ N : 1

m |{k ≤ m : E [∥ζk − ζ∥] ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m

∣∣∣{k ≤ m : k(k+1)βk

2k+1 ≥ r + δ
}∣∣∣ ≥ υ

}
∈ I.

Again the metric between complex uncertain veriables ζm and ζ is given by

D (ζm, ζ) = inf {t : X {∥ζm − ζ∥ ≤ t} = 1} = inf {t : Ψm(t) = 1} = m+ 1.

Thus for every δ, υ > 0 and r ≥ 0,{
m ∈ N : 1

m |{k ≤ m : D (ζk, ζ) ≥ r + δ}| ≥ υ
}

=
{
m ∈ N : 1

m |{k ≤ m : (k + 1) ≥ r + δ}| ≥ υ
}
/∈ I.

Hence the c.u.s. (ζm) is rough I-statistically convergent in mean to ζ ≡ 0 but it is not rough

I-statistically convergent in metric to ζ ≡ 0.

Theorem 3.7. Let ζ, ζ1, ζ2, · · · be c.u.v.s defined on u.s. (Υ,P,X ). If (ζm) is rough I-

statistically convergent in metric to ζ, then it is rough I-statistically convergent in measure

to ζ.

Proof. Let (ζm) be rough I-statistically convergent in metric to ζ, then it is rough I-

statistically convergent in measure to ζ by theorem 3.6 and 3.2. □

Remark 3.6. However, the reverse of the above theorem does not hold in general.

Example 3.6. From example 3.5, it can be shown that the c.u.s. (ζm) is rough I-statistically

convergent in measure to ζ ≡ 0 but it is not rough I-statistically convergent in metric to ζ ≡ 0.

4. Diagramatic representation among all convergence concepts

1. rough I-statistically convergence in measure

2. rough I-statistically convergence in metric

3. rough I-statistically convergence in mean

4. rough I-statistically convergence in distribution

5. rough I-statistically convergence in p-distance

1

2

3 4

5

5. Conclusion

This paper has mainly discussed some rough I-statistical convergence concepts of c.u.s.s,

such as rough I-statistical convergence in measure, mean, distribution, a.s., and established
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the relationships among them. Also, we initiate the notion of rough I-statistical conver-

gence in p-distance, and rough I-statistical convergence in metric of c.u.s.s and include some

interesting examples related to the notion. Furthermore, this paper is a more generalized

form of rough I-convergence of c.u.s.s, which was introduced by Debnath and Halder [8],

which is a very recent and a new approach in complex uncertainty theory. In this paper, we

try to establish relationships among all rough I-statistical convergence concepts of c.u.s.s.

However, we observe that certain concepts are unrelated to each other. It may attract future

researchers in this direction.
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[9] Dowari, P. J., & Tripathy, B. C. (2023). Lacunary statistical convergence of sequences of complex

uncertain variables. Bol. Soc. Paran. Mat., 41, 1-10.
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